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Abstract
We consider the reduction of parametric families of linear dynamical systems hav-
ing an affine parameter dependence that allow for low-rank variation in the state
matrix. Usual approaches for parametric model reduction typically involve exploring
the parameter space to identify representative parameter values and the associ-
ated models become the principal focus of model reduction methodology. These
models are then combined in various ways in order to interpolate the response.
The initial exploration of the parameter space can be a forbiddingly expensive
task. A different approach is proposed here that requires neither parameter sam-
pling nor parameter space exploration. Instead, we represent the system response
function as a composition of four subsystem response functions that are non-
parametric with a purely parameter-dependent function. One may apply any one
of a number of standard (non-parametric) model reduction strategies to reduce the
subsystems independently, and then conjoin these reduced models with the under-
lying parameterization to obtain the overall parameterized response. Our approach
has elements in common with the parameter mapping approach of Baur et al.
(PAMM 14(1), 19–22 2014) but offers greater flexibility and potentially greater
control over accuracy. In particular, a data-driven variation of our approach is
described that exercises this flexibility through the use of limited frequency-sampling
of the underlying non-parametric models. The parametric structure of our system
representation allows for a priori guarantees of system stability in the resulting
reduced models across the full range of parameter values. Incorporation of sys-
tem theoretic error bounds allows us to determine appropriate approximation orders
for the non-parametric systems sufficient to yield uniformly high accuracy across
the parameter range. We illustrate our approach on a class of structural damp-
ing optimization problems and on a benchmark model of thermal conduction in a
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semiconductor chip. The parametric structure of our reduced system representation
lends itself very well to the development of optimization strategies making use of effi-
cient cost function surrogates. We discuss this in some detail for damping parameter
and location optimization for vibrating structures.
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1 Introduction

Consider a linear time invariant dynamical system, parameterized with a k-
dimensional parameter vector p = [p1, p2, . . . , pk

]T ∈ Ω ⊆ R
k and represented in

state-space form as:

Eẋ(t; p) = A(p)x(t; p) + Bw(t),

y(t; p) = Cx(t; p), (1)

where E, A(p) ∈ R
n×n, B ∈ R

n×m, and C ∈ R
�×n are constant (time-invariant)

matrices. In (1), x(t; p) ∈ R
n, u(t) ∈ R

m, and y(t; p) ∈ R
� denote the state vec-

tor, inputs, and outputs, respectively. We assume throughout that the matrix E is
invertible.

1.1 Basic structure

The presumed structural feature of (1) that we will exploit extensively will be that
the system matrix A(p) has the parametric form:

A(p) = A0 − U diag(p1, p2, . . . , pk)V
T = A0 −

k∑

i=1

piuiv
T
i , (2)

where U = [u1, u2, . . . , uk

] ∈ R
n×k and V = [v1, v2, . . . , vk

] ∈ R
n×k are constant

matrices with ui, vi ∈ R
k for i = 1, . . . , k. The parameterization in (2) is a special

case of a general affine parametrization A(p) = A0 −∑i piAi with an added rank
constraint that rank(Ai) = 1. Even for a general affine parametrization with Ai ∈
R

n×n individually having unrestricted rank but having rank(
∑

i piAi) = k � n, in
aggregate the form of (2) may be assumed without loss of generality (allowing for
the possibility that the parameters are replaced by functions of {pi}i). The condition
k � n is a practical constraint leading to the prospect of computational efficiency,
but there is no theoretical restriction on the size of k.

Taking the Laplace transform of (1), the full-order transfer function of the
parametrized system is obtained as:

H(s; p) = C(sE−A(p))−1B =C
(
sE−
(
A0 − U diag(p1, p2, . . . , pk)V

T
))−1

B.

(3)
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The goal of parametric model reduction, in this setting, is to find a reduced parametric
system:

Erẋr (t; p) = Ar(p)xr (t; p) + Brw(t),

yr (t; p) = Crxr(t; p), (4)

where Er, Ar(p) ∈ R
r×r , Br ∈ R

r×m, and Cr ∈ R
�×r with r � n such that the

reduced transfer function:

Hr (s; p) = Cr(sEr − Ar(p))
−1Br

approximates H(s; p) accurately for the parameter range of interest.
Several approaches to parametric model order reduction (pMOR) exist. One of

the most common approaches involves state-space projection using globally defined
bases: Choose a set of parameter samples p1, . . . , pns . For every parameter sample
pi , the full-order model H(s; pk) becomes a non-parametric linear time-invariant sys-
tem, for which a plethora of model reduction methods are available. Whatever choice
is made, let Zi

r and Wi
r denote local model reduction bases for the parameter sam-

ple pi , for each i = 1, . . . , ns . Then concatenate these local bases to form the global
model reduction bases Zr and Wr : Zr = [Z1

r , . . . , Z
ns
r ] and Wr = [W 1

r , . . . , W
ns
r ].

This concatenation step is usually followed by a rank-revealing QR or truncated SVD
computation to compute and condense orthogonal bases. The parametric reduced
model quantities in (4) are obtained via a Petrov-Galerkin projection, i.e.,

Er = WT
r EZr, Ar(p) = WT

r A(p)Zr, Br = WT
r B, and Cr = CZr . (5)

Reviews of methods that consider such a reduction framework can be found, e.g.,
in [3, 4, 6, 9, 11, 13, 14, 16, 29, 59]. These approaches are widely studied especially
for systems inheriting structure tied with particular applications; see, e.g., [6, 13–15,
59, 62, 65, 66].

The global basis approach has been applied successfully in many circumstances
requiring parametric model reduction and in some cases it may be the only viable
approach. Nonetheless, it comes with some drawbacks, the main issue being the
need to sample the parameter domain adequately in order to construct representa-
tive local bases. Except for special cases [9, 34], how one chooses optimal parameter
sampling points with respect to a joint global frequency-parameter error measure
has not been known until recently. In [43], Hund et al. tackle this joint-optimization
problem by deriving optimality conditions and then constructing model reduction
bases that enforce those conditions. The most widely used approaches for global
basis construction in pMOR are greedy or optimization-based sampling strategies;
see [14] for a survey. However, especially in the case of high-dimensional parame-
ter domains, this off-line stage could prove prohibitively expensive since it requires
a large-number of full-order function evaluations. One may try to avoid the overhead
of these high-fidelity sampling techniques and pick parameter samples heuristically.
Since the global bases directly depend on the initial sampling and this, in turn, influ-
ences the final accuracy of the parametric reduced model, if this initial sampling
stage is not done properly the reduced model could not be expected to provide good
approximations over a wide parameter range.

Page 3 of 34Adv Comput Math (2020) 46: 83 83



In this paper, we focus on systems having the special structure described in (2).
We develop a novel parametric model order reduction approach that is sampling free
(that is, there is no need for parameter sampling) yet it still offers uniformly high
fidelity across the full parameter range. Significantly, the reduced model retains the
parametric structure of the original full model.

1.2 Amotivating example: damping optimization

Consider the vibrational system described by:

Mq̈(t) + Dq̇(t) + Kq(t) = B2w(t),

y(t) = C2q(t), (6)

where M and K are real, symmetric positive definite matrices of size n×n, denoting
the mass and stiffness matrices, respectively. The state variables are described by the
coordinate vector q ∈ R

n representing structure displacements. The time-dependent
vector w(t) ∈ R

m is the primary excitation and typically represents an input distur-
bance. B2 ∈ R

n×m is the primary excitation matrix, i.e., the input-to-state mapping.
Similarly, y(t) ∈ R

� is the performance output, representing a quantity of interest
that is obtained from the state-vector q via a mapping by the state-output matrix
C2 ∈ R

�×n.
The damping matrix D ∈ R

n×n is modeled as:

D = Dint + Dext ,

where Dext represents external damping and Dint represents internal damping. The
internal damping Dint is usually taken to be a small multiple of the critical damping
denoted by Dcrit or a small multiple of proportional damping (see, e.g., [15, 19]):

Dint = αcDcrit, where Dcrit = 2M1/2
√

M−1/2KM−1/2M1/2. (7)

Other possibilities for modeling internal damping have been considered, e.g., in [46].
We are mainly interested in external damping taking the form:

Dext = U2 diag (p1, p2, . . . , pk)U
T
2 ,

where the non-negative entries pi for i = 1, . . . , k represent the friction coefficients
of the dampers, usually called gains or viscosities, and the matrix U2 encodes the
damper positions and geometry; for more details, see, e.g., [15, 18, 21, 49, 62, 64].

In damping optimization problems, the principal goal is to determine an optimal
external damping matrix Dext that will minimize the influence of the input w (viewed
as a disturbance) on the output, y. One can consider different optimality measures in
quantifying this influence. For input-state-output representations of dynamical sys-
tems, natural optimization criteria are usually based on system norms such as the H2
or the H∞ system norm (see, e.g., [15, 21, 63]; a mixed performance measure was
considered in [52]). Evidently, the specific choice of optimization criterion strongly
depends on the application context at hand. The pMOR methods we develop in this
paper allow for the use of different optimization criteria, thus enabling a broad range
of applications.
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By defining the state-vector as x = [qT q̇T ]T , we obtain a first-order state-space
representation of the vibrational system:

Eẋ(t) = A(p)x(t) + Bw(t),

y(t) = Cx(t),
(8)

where

E =
[

I 0
0 M

]
, B =

[
0
B2

]
, C = [C2 0

]
, (9)

and A(p) =
[

0 I

−K −Dint

]

︸ ︷︷ ︸
A0

−
[

0
U2

]

︸ ︷︷ ︸
U

diag(p1, p2, . . . , pk)
[

0 UT
2

]

︸ ︷︷ ︸
V T =UT

, (10)

with p = [p1, p2, . . . , pk

]T . Note that the model for damped vibration in (9)–(10)
has the parametric structure described in (2).

The optimization of damper locations can be formulated effectively as optimiza-
tion over a finite (but potentially large) number of configurations for the matrix
B2; this is a demanding combinatorial optimization problem and for each B2-
configuration, one must optimize over p, the parameter vector. pMOR approaches
seeking to make this task cheaper have been considered previously: for optimiza-
tion based on the H2 norm criterion, [15] used a global basis approach, as described
above, where local bases were obtained via the dominant pole algorithm [60]. Using
the same optimization criterion, [62] applied a global basis approach where local
bases were obtained via the Iterative Rational Krylov Algorithm (IRKA) [37], an
H2-optimal model reduction approach. Even though both approaches show great
promise, success in each case depends on the initial parameter sampling used to con-
struct the global basis, an issue that is faced in most pMOR cases. For the damping
optimization problem, an efficient heuristic that can guide a parameter sampling strat-
egy is not available, and the natural alternative, a preliminary offline greedy sampling
stage, can be computationally very demanding and potentially negate the gains one
would anticipate from model reduction.

In subsequent sections, we will propose two frameworks that remove the need
for parametric sampling in problems structured as in (2), including in particular the
damping optimization problem discussed above.

2 PMOR based on subsystemmodel reduction

We introduce first a sampling-free reduction method for (3), providing both error
bounds and a discussion of the stability guarantees that can be made for the reduced
models across the full parameter range.
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2.1 Reformulation of the parametric transfer function

The crucial observation and starting point for our development is that we can rewrite
the structured transfer function (3) in a form that separates the s and p dependence
by making use of the Sherman-Morrison-Woodbury formula [32].

Proposition 1 Consider the structured transfer function

H(s; p) = C
(
sE −

(
A0 − U diag(p1, p2, . . . , pk)V

T
))−1

B, (11)

where pi ≥ 0, for i = 1, 2, . . . , k. Then,

H(s; p) = H1(s) − H2(s)D(p) [I + D(p)H3(s)D(p)]−1 D(p)H4(s), (12)

where the diagonal matrix

D(p) = diag(
√

p1,
√

p2, . . . ,
√

pk) (13)

encodes the parameters, andH1(s),H2(s),H3(s), andH4(s) are transfer functions
that are independent of the parameters, given by

H1(s) = C(sE − A0)
−1B, H2(s) = C(sE − A0)

−1U,

H3(s) = V T (sE − A0)
−1U, and H4(s) = V T (sE − A0)

−1B.
(14)

Proof Let T ∈ C
n×n be invertible and assume for the moment that X ∈ C

n×k

and Y ∈ C
n×k are such that Ik + YT T −1X is invertible. The Sherman-Morrison-

Woodbury formula asserts that T + XYT is invertible and

(T + XYT )−1 = T −1 − T −1X(Ik + YT T −1X)−1YT T −1.

Conversely, if T + XYT is invertible, then Ik + YT T −1X will be invertible as well.
The conclusion follows from (11) and (13) with the assignments: T = sE − A0,
X = UD(p), and Y = V D(p).

Remark 1 Notice that if we define the extended parameterized transfer function:

F̃(s; p) =
[

H1(s) H2(s)D(p)

D(p)H4(s) I + D(p)H3(s)D(p)

]

,

then (12) is the Schur complement of F̃(s; p) with respect to the (2,2) block:

H(s; p) =
[
F̃(s; p)/(I + D(p)H3(s)D(p))

]
.

Remark 2 Proposition 1 assumes that the parameter vector p has non-negative
entries, leading to the form (12) where the diagonal matrix D(p) appears sym-
metrically in the second term. This form was motivated in part by the damping
optimization problem described in Section 1.2, but evidently neither this form nor
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the non-negativity of the parameter range is a necessary assumption and the general
case can be accommodated in a similar way by defining:

D̃(p) = diag(p1, p2, . . . , pk)

and

H(s; p) = H1(s) − H2(s)D̃(p)
[
I + H3(s)D̃(p)

]−1
H4(s), (15)

where H1(s), H2(s), H3(s), and H4(s) are as defined in (14). We will use the sym-
metric formulation presented in Proposition 1, noting that all results to follow are
easily generalized to non-positive parameter classes using the non-symmetric form
(15).

2.2 Subsystemmodel reduction

Proposition 1 displays a decomposition of the full-order transfer function H(s; p) in
terms of four non-parametric transfer functions with the parameter dependency enter-
ing as an interconnection coupling the four systems. Since Hi (s), for i = 1, 2, 3, 4,
are non-parametric, they may be reduced without any need for sampling via well-
established model reduction techniques such as balanced truncation (BT) [48, 50],
Hankel norm approximation (HNA) [31], or iterative rational Krylov algorithm IRKA
[37]; see [4, 6, 13] for further choices. Moreover, each system Hi (s), may be reduced
independently of the others, potentially using different reduction orders and even
different reduction methodologies.

Let the reduced model for Hi (s) be denoted by Ĥi (s), for i = 1, . . . , 4. The
resulting parametric reduced model for H(s; p) is Ĥ(s; p) given by:

Ĥ(s; p) = Ĥ1(s) − Ĥ2(s)D(p)(I + D(p)Ĥ3(s)D(p))−1D(p)Ĥ4(s). (16)

Online evaluation or simulation of Ĥ(s; p) for a given parameter value is trivial
as it only involves reduced quantities and evaluation of the matrix D(p). We have
constructed a parameterized, easy-to-evaluate, reduced model without any need for
parameter sampling. Algorithm 1 below gives a sketch of this process.

Algorithm 1 Parametric reduced order model based on reduction of subsystems.

1: Offline Stage: Calculate the four non-parametric reduced systems

H1(s) → Ĥ1(s),H2(s) → Ĥ2(s),H3(s) → Ĥ3(s),H4(s) → Ĥ4(s),

(Reductions can be performed via a variety of non-parametric reduction tech-
niques)

2: Online Stage: For any given parameter p = [
p1, p2, . . . , pk

]T , obtain the
parametric model by

H(s; p) ≈ Ĥ(s; p) = Ĥ1(s)− Ĥ2(s)D(p)(I +D(p)Ĥ3(s)D(p))−1D(p)Ĥ4(s).

Some observations are appropriate regarding step 1 in Algorithm 1. The model
H1(s) has the same input-output dimension as H(s; p). The model H2(s) has the
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same number of outputs (�) as H(s; p) and k inputs. Analogously, the model H4(s)

has the same number of inputs (m) as H(s; p), and k outputs. Provided that the
input/output dimension is modest, reducing H1(s), H2(s), and H4(s) will not be
expected to be strongly influenced by the size of k since in most cases the smaller of
the input/output dimensions determines the difficulty in reducing dynamical systems.
On the other hand, the model H3(s) will have k-inputs and k-outputs. Therefore, if k

is significantly larger than � and m, this may be the most difficult subsystem of the
four to reduce with high fidelity. Although the framework and theoretical analysis we
develop here would also apply to a system with transfer function:

H(s; p) = C(sE − (A0 − pA1))
−1B

even when A1 has full rank. It is unlikely that any computational benefits would
be seen with this strategy since H3(s) will then be an n-dimension dynamical sys-
tem with n-inputs and n-outputs. Such models are not generally amenable to model
reduction.

We next consider error bounds for parameterized reduced models obtained from
Algorithm 1.

Theorem 1 Let the full order transfer function H(s; p), and the corresponding sub-
systems Hi (s), for i = 1, . . . , 4 be given as in (12) and (14). Assume that the
non-parametric reduced modelsHi (s) are reduced so that

‖Hi − Ĥi‖ ≤ εi, for i = 1, . . . , 4, (17)

and that the corresponding parametric reduced model Ĥ(s; p) is constructed as in
(16). Then,

‖H(·; p)) − Ĥ(·; p))‖ ≤ ε1 + f1(p, Ĥ3, Ĥ4)ε2

+f1(p, Ĥ3, Ĥ4)f2(p,H2,H3)ε3 + f2(p,H2,H3)ε4,

(18)

where

f1(p,G1,G2) = ‖D(p)
(
I + D(p)G1(·)D(p)

)−1
D(p)G2(·)‖ and (19)

f2(p,G1,G2) = ‖G1(·)D(p)
(
I + D(p)G2(·)D(p)

)−1
D(p)‖. (20)

Proof First, by using the formulae (12) and (16), we obtain:

H(s; p) − Ĥ(s; p) = H1(s) − Ĥ1(s) + Ĥ2(s)̂E1 − H2(s)E1, (21)

where
E1 = D(p)(I + D(p)H3(s)D(p))−1D(p)H4(s)

and
Ê1 = D(p)(I + D(p)Ĥ3(s)D(p))−1D(p)Ĥ4(s).

The last two terms in (21) can be manipulated together as:

Ĥ2(s)̂E1 − H2(s)E1 = [Ĥ2(s) − H2(s)]̂E1 + H2(s)(̂E1 − E1)

= [Ĥ2(s) − H2(s)]̂E1 + H2(s)[̂E2Ĥ4(s) − E2H4(s)],
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where
E2 = D(p)(I + D(p)H3(s)D(p))−1D(p)

and
Ê2 = D(p)(I + D(p)Ĥ3(s)D(p))−1D(p),

and then, the previous expression can be rewritten as:

Ĥ2(s)̂E1 − H2(s)E1 = [Ĥ2(s) − H2(s)]̂E1 (22)

+H2(s)[(̂E2 − E2)Ĥ4(s) + E2(Ĥ4(s) − H4(s))].
Using the identity, (I + M̂)−1 − (I + M)−1 = (I + M)−1(M − M̂)(I + M̂)−1, we find

Ê2 − E2 = D(p)(I + D(p)H3(s)D(p))−1D(p)

×[H3(s) − Ĥ3(s)]D(p)(I + D(p)Ĥ3(s)D(p))−1D(p). (23)

Substituting (23) into (22), which is then substituted into (21), yields:

H(·; p) − Ĥ(·; p) = [H1(s) − Ĥ1(s)]
+[H2(s) − Ĥ2(s)]D(p)

(
I + D(p)Ĥ3(s)D(p)

)−1
D(p)Ĥ4(s)

+H2(s)D(p)
(
I + D(p)H3(s)D(p)

)−1
D(p)[Ĥ4(s) − H4(s)]

+H2(s)D(p)
(
I + D(p)H3(s)D(p)

)−1
D(p)[H3(s) − Ĥ3(s)]

×D(p)
(
I + D(p)Ĥ3(s)D(p)

)−1
D(p)Ĥ4(s).

The upper bound follows by taking norms on both sides.

2.3 Uniform stability of the parameterized reducedmodel

In many applications, the parameters of interest are not only non-negative but are
also restricted to some given subset Ω of R

k . We will assume in all that follows
that p ∈ Ω for some fixed Ω given as a closed but not necessarily bounded subset
of the non-negative orthant in R

k . Likewise, it occurs in many applications that the
full parameterized model H(s, p) defined in (11) is asymptotically stable for every
p ∈ Ω , so that eigenvalues of the matrix pencil λE − A(p) (which are then poles of
the transfer function H(s, p)) have negative real parts for every p ∈ Ω . Following
terminology introduced in [14, §5.4], we refer to this property as uniform asymptotic
stability.1 Evidently, it will be important that this property be maintained across the
whole family of reduced models as well. For example, the damping optimization
problem we considered in Section 1.2 is asymptotically stable for every parameter
in the parameter domain of interest, and so having guarantees that the same is true
for the parameterized reduced model would be both useful and reasonable. Except
for some special cases when structural features guarantee asymptotic stability (e.g.,

1Note that this is a pointwise property with respect to p ∈ Ω , contrasting with other common uses of the
qualifier “uniform.”
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when E = ET is positive define, A(p) = AT (p) is negative definite for all p, and one
chooses Wr = Zr in (5)), uniform asymptotic stability across the given parameter
range may be difficult to enforce in parameterized reduced models. See [14, §5.4]
for a brief discussion on this issue. Significantly, our present framework is able to
provide guarantees of uniform asymptotic stability for a broad class of problems.

By examining the parametric structure of the decomposition of the original trans-
fer function H(s, p) in (12), we can deduce conditions sufficient to guarantee
asymptotic stability across the full parameter range. For the original parameterized
system, the overall system poles for p = 0 (i.e., for the unperturbed system) are
eigenvalues of the matrix pencil sE − A0 and hence, also poles for the subsys-
tems H1(s), H2(s), H3(s), and H4(s). Thus, it is natural to adopt the assumption
that all four original non-parametric subsystems are asymptotically stable. Secondly,
by examining the corresponding parametric decomposition of the reduced transfer
function, Ĥ(s, p), in (16), the poles of Ĥ(s, p) must be contained within the set of
points made up by the poles of Ĥ1(s), Ĥ2(s), and Ĥ4(s), together with the zeroes of
I +D(p)Ĥ3(s)D(p) (i.e., values of s where I +D(p)Ĥ3(s)D(p) becomes singular).
Not all values in this aggregate set are necessarily poles of Ĥ(s, p) since there could
be pole-zero cancellation. In order to assure uniform asymptotic stability in Ĥ(s, p),
we should require that the non-parametric reduced subsystems Ĥ1(s), Ĥ2(s), and
Ĥ4(s) should retain asymptotic stability. This can be done by employing any of a
variety of reduction strategies that enforce asymptotic stability, for example, BT [48,
50], HNA [31], or IRKA with enforced stability [12, 36, 37].

We will also need to guarantee that all zeros of I + D(p)Ĥ3(s)D(p) occur in
the left half plane for all values of p ∈ Ω , in order to assure uniform asymptotic
stability in Ĥ(s, p). This translates into seeking conditions on Ĥ3(s) such that when-
ever Re(s) ≥ 0 and p ∈ Ω then I + D(p)Ĥ3(s)D(p) is invertible. We look to our
damped vibration model, (8)–(10), for guidance. Due to the internal damping term,
Dint, eigenvalues of the matrix pencil sE − A0 have negative real parts; and thus
all the subsystems, H1(s), H2(s), H3(s), and H4(s), are asymptotically stable. A
key point to note is that H3(s) = sUT

2 (s2M + sD + K)−1U2 is a transfer func-
tion describing a passive dynamical system; indeed, it is a port-Hamiltonian system.
Port-Hamiltonian systems are a category of dynamical systems possessing repre-
sentations that encode the manner in which energy passes through the system. In
its simplest form, a port-Hamiltonian system has a transfer function that appears as
HPH(s) = BT Q(sI − (J − R)Q)−1B where B ∈ R

n×k and Q, J , and R are in
R

n×n; Q is symmetric positive-definite; R is symmetric positive-semidefinite; and J

is skew-symmetric. The subsystem transfer function, H3(s), from our damped vibra-

tion problem has precisely this form as can be seen by assigning J =
[

0 I

−I 0

]
,

R =
[

0 0
0 D

]
, Q =

[
K 0
0 M−1

]
, and B =

[
0
U2

]
.

The defining representation for port-Hamiltonian systems leads to a key property
that we will exploit: the transfer function HPH(s) is positive real, which means that
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HPH(s) + HPH(s)
T

is positive semi-definite for all s with Re(s) ≥ 0. This can be
easily seen from:

HPH(s) + HPH(s)
T = BT

(
(sQ−1 − (J − R))−1 + (s̄Q−1 − (J − R)T )−1

)
B

= F�
(
(s + s̄)Q−1 + 2R

)
F ≥ 0,

for s + s̄ = 2Re(s) ≥ 0, with F = (sQ−1 − (J − R))−1B.
Since it has port-Hamiltonian structure, the subsystem transfer function, H3(s),

from our damped vibration problem is positive real. When H3 is reduced in such
a way that Ĥ3 is also positive real, we will see that the aggregate parameterized
model Ĥ(s, p) will be uniformly asymptotically stable. Note that positive real model
reduction can be accomplished in a variety of ways, e.g., using positive real balanced
truncation [25, 53] or interpolatory port-Hamiltonian model reduction [28, 38, 58].

Theorem 2 Suppose that the full parameterized model H(s, p) described in (11)
has been decomposed as in (12) into subsystems H1(s), H2(s), and H4(s) that are
each asymptotically stable, and a subsystem H3(s) that is positive real. If the corre-
sponding reduced subsystems Ĥ1(s), Ĥ2(s), and Ĥ4(s) retain asymptotic stability,
and Ĥ3(s) retains positive-realness, then the reduced parameterized model Ĥ(s, p)
in (16) is uniformly asymptotically stable for p ∈ Ω .

Proof Following on the discussion above, the reduced transfer function Ĥ(s, p) in
(16) has all its poles drawn from a set composed of the aggregate poles of Ĥ1(s),
Ĥ2(s), and Ĥ4(s), together with the set of zeroes of I + D(p)Ĥ3(s)D(p). The poles
of Ĥ1(s), Ĥ2(s), and Ĥ4(s) are independent of p and all have negative real parts
since these subsystems have been reduced so as to be asymptotically stable. If the
reduced parameterized model Ĥ(s, p) were not uniformly asymptotically stable then
it must be that at least one zero of I + D(p)Ĥ3(s)D(p) is not in the open left half-
plane and, in particular, it must be true that I + D(p0)Ĥ3(z0)D(p0) is singular for
some z0 with Re(z0) ≥ 0 and some p0 ∈ Ω . In this case, there must then exist a
non-trivial x0 ∈ C

n such that (I + D(p0)Ĥ3(z0)D(p0))x0 = 0 and so,

0 > −‖x0‖2 = x�
0D(p)Ĥ3(z0)D(p)x0

= 1

2
(D(p)x0)

�

(
Ĥ3(z0) + Ĥ3(z0)

T
)

(D(p)x0) ≥ 0.

The last inequality comes from the assumption that Ĥ3(s) is positive real and leads
us to a contradiction. Thus, all zeros of I + D(p)Ĥ3(s)D(p)) must necessarily occur
in the open left half-plane, Re(s) < 0 for all p ∈ Ω , and the reduced parameterized
model Ĥ(s, p) is uniformly asymptotically stable.

Another approach that guarantees uniform asymptotic stability under still weaker
assumptions (but with sampling) was proposed by Baur and Benner [10]. H(s, p) is
sampled at ns parameter configurations, p(i) for i = 1, 2, . . . , ns , and each of the
resulting ns systems is reduced independently using any of the stability-preserving
reduction methods previously mentioned (see citations above for BT, HNA, and
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IRKA with enforced stability). The final parametric reduced system is obtained by
(multivariate) interpolation of these local reduced models in the p-domain. Since
interpolation with respect to p will not shift pole locations with respect to s (in effect,
the p-dependency is focussed completely in the B- and/or C-matrix), the resulting
reduced parametric system is guaranteed to be uniformly asymptotically stable. Con-
versely, in our formulation, the poles vary with p, yet in such a way as to assure
uniform asymptotic stability. Allowing for the movement of poles with variation of
p gives both greater flexibility and efficiency, and supports our goal to reduce and
possibly altogether avoid the need for parameter sampling.

Remark 3 Significantly, Theorem 2 guarantees for the damping optimization prob-
lem considered in Section 1.2 (as well as for other problems yielding H3(s)

subsystems with positive real or port-Hamiltonian structure), parameterized reduced
models that are uniformly asymptotically stable and built without any parameter
sampling. Uniform asymptotic stability is assured even in cases that the parameter
domain Ω is an unbounded subset of the non-negative orthant in R

k .

2.3.1 Uniform asymptotic stability in the general case

Theorem 2 guarantees uniform asymptotic stability when the decomposition
described in (12) yields a subsystem H3(s) that has positive real or port-Hamiltonian
structure that is retained in Ĥ3(s), and then uniform asymptotic stability can be
assured even in cases that Ω is unbounded. Unfortunately, the hypothesis that is
required on H3(s) may either be difficult to determine in practice or it may be that
the ensuing structure-preserving reduction may be awkward to implement. Thus, it
may be useful to seek more broadly applicable strategies.

We find that if the full parametric model, written in terms of subsystems as in
(11), has subsystems that are assumed, as before, to be asymptotically stable, and if
model reduction techniques are applied that produce reduced subsystems that retain
this asymptotic stability, then uniform asymptotic stability can still be assured but
generally only on a subset of the original parameter range, Ω .

Corollary 1 Suppose that the full parameterized model H(s, p) described in (11)
has been decomposed as in (12) into subsystemsH1(s),H2(s),H3(s) andH4(s) that
are each asymptotically stable. Suppose further that the reduced subsystems Ĥ1(s),
Ĥ2(s), Ĥ3(s), and Ĥ4(s) retain asymptotic stability. Let M > 0 be chosen so that
‖Ĥ3‖H∞ < M and define:

ΩM =
{
p ∈ Ω

∣
∣∣
∣ ‖p‖∞ ≤ 1

M

}
⊂ Ω .

Then the reduced parameterized model Ĥ(s, p) in (16) is uniformly asymptotically
stable for p ∈ ΩM .

Proof Following on to the proof of Theorem 2, since the poles of Ĥ1(s), Ĥ2(s), and
Ĥ4(s) are independent of p and all have negative real parts, in order to prove uniform
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asymptotic stability of Ĥ(s, p) for p ∈ ΩM , we need only assure that the zeroes of
I+D(p)Ĥ3(s)D(p) lie in the left half plane for p ∈ ΩM . Arguing for a contradiction,
note that if the reduced parameterized model Ĥ(s, p) were not uniformly asymptot-
ically stable then it must be that at least one zero of I + D(p0)Ĥ3(s)D(p0) is not
in the open left half-plane for some p0 ∈ ΩM , and I + D(p0)Ĥ3(z0)D(p0) will be
singular for some z0 with Re(z0) ≥ 0. In this case, there exists a non-trivial x0 ∈ C

n

such that (I + D(p0)Ĥ3(z0)D(p0))x0 = 0, and so, ‖x0‖ = ‖D(p0)Ĥ3(z0)D(p0)x0‖
and 1 ≤ ‖D(p0)Ĥ3(z0)D(p0)‖. Now,

1 ≤ ‖D(p0)Ĥ3(z0)D(p0)‖H∞ ≤ ‖D(p0)‖2
2 ‖Ĥ3‖H∞ = ‖p0‖∞‖Ĥ3‖H∞ < 1,

leading to a contradiction. Thus, all zeros of I + D(p)Ĥ3(s)D(p)) must occur in the
open left half-plane, Re(s) < 0 for all p ∈ ΩM , and the reduced parametric model
Ĥ(s, p) is uniformly asymptotically stable for p ∈ ΩM .

Remark 4 This corollary is evidently a relaxation of Theorem 2. The flexibility that
we gain by allowing arbitrary model reduction approaches to be deployed on the
subsystems (so long as asymptotic stability is retained) weakens the conclusions inso-
far as uniform asymptotic stability for all p ∈ Ω is no longer a priori guaranteed
but must be constrained by an a posteriori quantity, ‖Ĥ3‖H∞ . A priori guarantees
of asymptotic stability could be recovered if we have an upper bound to ‖H3‖H∞
and are able to construct Ĥ3(s) in such a way as to retain this bound. Suppose that
πmax denotes πmax = supp∈Ω ‖p‖∞ and assume that it happens that H3(s) satis-

fies ‖H3‖H∞ < 1
πmax

. We construct a reduced subsystem for Ĥ3(s) in such a way

that it retains the same bound: ‖Ĥ3‖H∞ < 1
πmax

. This can be done, e.g., through a
norm-preserving reduction technique such as bounded real balancing [53, 55]. We
take M = 1

πmax
in Corollary 1 so that ΩM ≡ Ω and then the parameterized reduced

model, Ĥ(s, p), in (16) is guaranteed to be uniformly asymptotically stable for all
p ∈ Ω .

2.4 The parameter mapping approach of Baur et al. [8]

Parameterization given above in (2) appears as a (relatively) low-rank change from
the base dynamic matrix, A0, and it is this structural feature that we have exploited
here. Another strategy that exploits this parametric structure has been proposed in
[8]. How do the methods compare?

In [8], one augments and modifies the system by introducing a set of k addi-
tional synthetic inputs, ω(t), and outputs, η(t), in such a way that the internal system
parameterization is mapped to a feedthrough term. The original system response is
recovered by constraining the synthetic inputs so as to null the synthetic outputs. The
modified system has internal dynamics that is independent of parameters and so can
be reduced independently of the parameterization. The final parameterized reduced
model is recovered by imposing a constraint on the synthetic inputs analogous to the
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original construction; they are chosen so as to null the (reduced) synthetic outputs.
To illustrate, define:

Eẋ(t) = A0x + [B UD(p)]
[
w(t)

ω(t)

]
,

[
ŷ(t)

η(t)

]
=
[

C

D(p)V T

]
x(t) +

[
0

I

] [
w(t)

ω(t)

]
.

(24)

Evidently, this system has m + k inputs, � + k outputs, and the parameterization now
acts on a k-dimensional subpace that is common to both input and output spaces.
Notice in particular that the parameterization no longer acts directly on the state
vector. What relation does the response of (24) have with that of the original system
(2)? If ω(t) is chosen so that η(t) = 0 (for example, if ω(t) is assigned by state
feedback as ω(t) = −D(p)V T x(t)), then the remaining output ŷ(t) matches the
output of the parameterized system described in (2): ŷ(t) = y(t; p). Indeed, with
this added constraint imposed on the synthetic inputs, the transfer function for the
resulting system is identical to what has been defined by (11).

The dynamical system described in (24) may be reduced using any strategy appro-
priate for linear time-invariant MIMO (multiple input/multiple output) systems. Since
the parameterization has been mapped to the synthetic input/output spaces and is now
external to system dynamics, model reduction strategies can be pursued without the
need of any parameter sampling. The approach described in [8] proposes a projective
reduced model derived, say, as in (4)–(5) using projection bases defined by Zr and
Wr :

Erẋr (t) = A0rxr + [Br WT
r UD(p)]

[
w(t)

ω̂(t)

]
,

[
ŷr (t)

ηr (t)

]
=
[

Cr

D(p)V T Zr

]
xr(t) +

[
0

I

] [
w(t)

ω̂(t)

]
.

(25)

Following [8], we set up a state feedback constraint to null the reduced synthetic out-
puts, similar to what has gone before. If ω̂(t) is assigned via reduced state feedback as
ω̂(t) = −D(p)V T Zrxr(t), then ηr(t) = 0, and the reduced output ŷr (t) will define
the output of a reduced parametric system (2): yr(t; p) = ŷr (t). The state-space
representation of the resulting reduced model is given by:

WT
r EZr ẋr (t) = WT

r A0Zrxr − WT
r UD2(p)V T Zr + WT

r Bw(t), (26)

ŷr (t) = CZrxr(t). (27)

This dynamical system is identical to (4) and similarly we may rewrite it as in (16):

Ĥ(s; p) = Ĥ1(s) − Ĥ2(s)D(p)(I + D(p)Ĥ3(s)D(p))−1D(p)Ĥ4(s).

However, in this case, each system, Hi (s), has been reduced with a single pair of
projection bases, Zr and Wr , for i = 1, 2, 3, 4; the same projection bases are used
for all four systems. So, the framework developed here, summarized in Algorithm 1,
contains that of [8] as a special case.

Although the approach we take here is evidently closely aligned with the approach
of [8], an important distinction is that we are able here to reduce the individual sub-
systems, Hi (s), independently of one another. This allows us to better control the
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fidelity of the final model, and as we described in Section 2.3, we are able to guar-
antee asymptotic stability of Ĥ(s; p) uniformly in p, so long as each reduced model
Ĥi (s), i = 1, 2, 3, 4 is asymptotically stable and the single reduced Ĥ3(s) is also
positive real. Naturally, these assertions may also be made with the approach of [8]
or its recent formulation for second-order systems [56], but it can be substantially
more difficult to guarantee these properties using a single choice of projecting bases,
Zr and Wr . We are able to exploit the flexibility of reducing the four subsystems
independently of one another and do not suffer under these constraints.

It is also worth pointing out here connections to the work [66] where the authors
performed sampling-free model reduction of a second-order dynamical system as
in (6) where parametrization enters into the matrix D, in the frequency domain, as
D(s, p) = ÛZ(p, s)ÛT where Û ∈ C

n×k and Z(s, p) ∈ C
k×k . Then, [66] performs

the model reduction in the second-order form (6) via a block second-order Arnoldi
process using interpolatory model reduction (moment matching) around s = 0. As
in [8], this is achieved by extending the input matrix by the low-rank factor Û and
applying model reduction to the new system. Therefore, similar to [8], one can con-
sider [66] as a method in which all the subsystems are reduced by the same model
reduction subspace. Moreover, [66] performs only one-sided model reduction and the
output equation does not enter into the reduction step.

2.5 Numerical examples

We illustrate the performance of Algorithm 1 on two numerical examples. BT is used
for subsystem reduction in both examples. Since the subsystems have the same E-
and A-terms, only a single Schur decomposition (a significantly expensive prelimi-
nary step in solving Lyapunov equations for BT) is needed in the offline stage, which
occupies step 1 of Algorithm 1. Thus, step 1 is significantly cheaper than applying
BT independently to the four subsystems.

Example 1 This is a parametric version of the Penzl model [44, 57]. The full model
transfer function H(s, p) = C(sE − A(p))−1B is defined as:

E = I and A = diag(A(p1), A(p2), A(p3), −1, −2, . . . , −M),

where A(pi) =
[−1 pi

−pi −1

]
, for i = 1, . . . , 3;

C = [c1 c2 . . . cM+6] ∈ R
1×(M+6) where ci =

{
10, i = 1, . . . , 6
1, i = 7, . . . , M+6;

and B = CT . The parameters p1, p2, p3 represent magnitudes of the imaginary parts
of the conjugate-paired eigenvalues of A(pi), for i = 1, 2, 3, and so they will control
the location of peaks in the frequency response.

This system can be represented in the structured form of (2) with:

A(p) = A0 − U diag(p1, p1, p2, p2, p3, p3)V
T ,
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where A0 = diag(−I6, −1, −2, . . . , −M);

ui =
{−ei+1, i = 1, 3, 5,

ei−1, i = 2, 4, 6.
and vi = ei for i = 1, . . . , 6.

ei denotes here the ith canonical vector. We choose M = 100, so n = 106. Based on
the Hankel singular values of each subsystem, Hi (s), computed in step 1 of Algo-
rithm 1, we decide on appropriate reduction orders, ri , for subsystem Ĥi (s) and
choose r1 = 10, r2 = 1, r3 = 6, and r4 = 1. We are exploiting an advantage of
our framework in choosing reduction orders for the subsystems independently of one
another.

In Fig. 1, we compare H(s, p�) and Ĥ(s, p�) for s on the imaginary axis at an
arbitrarily chosen parameter configuration:

p� = (p1, p2, p3) = (10, 100, 5000).

Note that the reduced model has been obtained without any parameter sampling.
The top plot in Fig. 1 shows | H(ıω, p�) | and | Ĥ(ıω, p�) | for 10−2 ≤ ω ≤
104—visually, this is nearly an exact match. The bottom plot of Fig. 1 shows the

relative error in the approximation at p�,
| H(ıω, p�) − Ĥ(ıω, p�) |

maxω | H(ıω, p�) | , across the same

frequency range. The quality of the approximation at p� is evidently quite good, with
relative errors uniformly smaller than 2 × 10−6.

In order to illustrate the quality of approximation as the parameter configurations
change as well, we present in Fig. 2a surface plot that shows the magnitude of |

10-2 10-1 100 101 102 103 104
10-2

100

102 FOM
ROM

10-2 10-1 100 101 102 103 104
10-12

10-10

10-8

10-6

Fig. 1 Transfer function plot and relative error for (p1, p2, p3) = (10, 100, 5000)
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Fig. 2 Magnitude of transfer function and relative error for parameters given by (28)

H(ıω, p) | (top) and relative error (bottom) as in Fig. 1 but now allowing variation
of p1, p2, p3 along a ray in parameter space:

p = (p1, p2, p3) = (p, 10 p, 50 p), with p ∈ [1, 100]. (28)

As mentioned earlier, the parameters control the imaginary part of the complex
poles and different parameter selections will move these peaks in the frequency
domain. The top plot in Fig. 2 shows how the peaks of | H(ıω, p) | are moving
with the parameter p. The lower subplot shows magnitude of relative errors on the
same range of frequency and parameter variation and demonstrates that the reduced
model is accurate across the parameter domain (28), with the largest relative error
remaining less than 10−6. Note this accuracy was achieved with four non-parametric
model reductions without any parameter sampling and the reduced model Ĥ(s, p) is
asymptotically stable for every parameter sample.

Example 2 This is a model drawn from the Oberwolfach Benchmark Collection
representing thermal conduction in a semiconductor chip [54]. The full model is
described by:

Eẋ = (A − ptAt − pbAb − psAs)x + Bu,

y = Cx,

where E, A ∈ R
4257×4257 represent respectively the distributed heat capacity and

conductivity in the chip; the matrices At, Ab, As ∈ R
4257×4257 are diagonal matrices

resulting from the discretization of convection boundary conditions and have ranks
111, 99, and 31, respectively. The matrix B ∈ R

1×4257 is a load profile vector and
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C ∈ R
7×4257 is an output matrix. The parameters pt , pb, ps represent film inter-

face coefficients and can be viewed as design parameters. For further details on this
model, refer to [30, 54].

We fix pt = 1000, assign the remaining parameters to p = [pb ps], allowing
pb and ps to vary between 1 and 109. This model is rewritten in accord with our
parameterized format (2) taking A0 = A − ptAt , with pt = 1000, while U and V

are matrices with rank(U) = rank(V ) = rank(Ab) + rank(As) = 130.
Based on Hankel singular values obtained in step 1 of Algorithm 1, we reduce

each subsystem Hi (s) to Ĥi (s) via BT to a reduction order of ri , choosing r1 =
46, r2 = 66, r3 = 200, and r4 = 16. Note that the reduction order r3 is sig-
nificantly bigger than the others; this may be anticipated since H3(s) in this case
represents a dynamical system with a relatively large input/output port dimension:
130 inputs and 130 outputs. In Fig. 3, we illustrate the quality of the approxima-
tion obtained by Algorithm 1 over the full parameter domain using the H2 system

norm, ‖H(·, p)‖H2 =
√

1
2π

∫∞
−∞ ‖H(ıω, p)‖2

F dω (system norms are discussed in
Section 4). In Fig. 3, the horizontal axes represent parameter variation in ps and pt ,

while the vertical axis represents the relative error
‖H(·;p)−Ĥ(·;p)‖H2

‖Ĥ(·;p)‖H2
for the reduced

system Ĥ(s, p) as calculated by Algorithm 1. It is clear from the figure that Ĥ(s, p)
accurately represents H(s, p) across the full parameter domain, with relative error
uniformly smaller than 2.4×10−6 for all values of (ps, pb) ∈ [1, 109]×[1, 109]. This
high-fidelity approximation is obtained at the cost of four non-parametric subsys-
tem model reduction without any parameter sampling. As in the previous example,
Ĥ(s, p) is asymptotically stable throughout the parameter range.

3 Data-driven PMORwith subsystem frequency sampling

In Section 2, we proposed a sampling-free parametric model reduction approach that
involved the preliminary reduction of four non-parametric models. In this section,
we present a second approach that depends on the same decomposition into four
subsystems yet uses instead a data-driven framework based on transfer function
(frequency-domain) sampling to construct parametric reduced models in the offline
stage. We first briefly review data-driven modeling frameworks and then present our
approach to data-driven PMOR.

3.1 Data-drivenmodeling from transfer function samples

Let H(s) denote the transfer function of a (non-parametric) linear dynamical sys-
tem. H(s) need not be a rational function of s and can contain, for example, internal
delays or other non-rational dependence in s. Assume that we have access to samples
of this transfer function, i.e., we have H(ξ1),H(ξ2), . . . ,H(ξN) where ξi ∈ C for
i = 1, 2, . . . , N are the sampling points. When obtained experimentally, these sam-
pling points are chosen on the imaginary axis. If an analytical evaluation of H(s) is
possible, they can be chosen arbitrarily as long as they do not coincide with the poles
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Fig. 3 Relative error for different parameters for thermal model

of H(s). In our numerical experiments, we will work with samples on the imaginary
axis but the theoretical discussion applies to the general case.

Data-driven modeling in this case amounts to the following question: Given the
samples {H(ξi)}Ni=1 (but without access to internal dynamics of H(s), i.e., without
access to a state-space realization), construct a rational approximation of degree-r ,
Ĥ(s), that fits the data in an appropriate sense. There are various ways to fit this
frequency domain data. One can require that Ĥ(s) interpolates the data at every sam-
pling point using the Loewner framework [5, 47]; one can construct Ĥ(s) so as to fit
the data in a least-squares (LS) sense [20, 26, 40]; or finally, one can force Ĥ(s) to
interpolate some of the data while minimizing the LS fit in the rest [23, 51]. In this
work, we focus solely on fitting data in a LS sense.

Thus, given samples {H(ξi)}Ni=1, our goal is to construct a degree-r ratio-
nal function Ĥ(s), i.e., a reduced transfer function, that minimizes the LS error
N∑

i=1

‖H(ξi) − Ĥ(ξi)‖2
F . Note that due to the non-linear dependence on the poles of

Ĥ(s), this is a non-linear LS problem. There are various approaches for solving this
problem, see, e.g., [20, 26, 33, 40, 42, 51, 61]. Our approach employs the Vector
Fitting (VF) framework of [40], though one could easily adapt any of the other LS
methods. We view VF as a known tool to be employed (as we did with BT and IRKA
in the subsystem reduction discussion of Section 2) and therefore we do not provide
detailed background information. We do note that VF uses a barycentric-form for
Ĥ(s) (as opposed to a state-space realization) and converts the non-linear LS prob-
lem into a sequence of weighted linear LS problems each of which could be solved
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easily by well-established numerical linear algebra tools at every step. The variables
determined in each step are coefficients of the barycentric form. Once the iteration
is terminated, a state-space form is recovered. For details, we refer the reader to [24,
27, 39, 40], [35, Chap 7] and the references therein.

Regarding computational cost, VF performs m·� QR factorizations of size N×(2r)

in every step [27]. When m and � are modest, say m, � < 10, the computational effort
is not significant. The cost increases as m and � grow; however, there are various
ways to speed up the process such as performing the m · � QR factorizations in paral-
lel [24, 39] as they are independent of each other. We have not needed sophisticated
refinements such as these; in our studies, a basic implementation proved to be rela-
tively efficient. Assume that the underlying system is a rational function itself, i.e.,
H(s) = C(sE − A)−1B. Then, obtaining the samples, {H(ξi)}Ni=1, requires solving
N linear systems of size n × n with multiple right-hand size. This is a much larger
cost relative to all the remaining steps of VF. Indeed, the main cost of VF is the initial
sampling step itself.

3.2 pMOR from offline samples

We consider now how to integrate the subsystem structure developed in Proposition 1
into VF for parameterized problems. As we noted above, the main cost in VF gener-
ally comes from computing the transfer function samples at selected frequencies. We
want to avoid re-sampling H(s, p) from scratch for every new p considered.

Recall (12), repeated here:

H(s; p) = H1(s) − H2(s)D(p) [I + D(p)H3(s)D(p)]−1 D(p)H4(s).

Given predetermined points {ξ1, . . . , ξN } ⊂ C, compute subsystem samples:

H1(ξi), H2(ξi), H3(ξi), H4(ξi) for i = 1, . . . , N,

and note that these computed values do not depend on any p values. In particular, we
need only perform this sampling once in a preliminary Offline Stage. Moreover, all
four subsystem transfer functions share the same resolvent (sE − A0)

−1 and so the
evaluation of Hj (ξi) for j = 1, . . . , n, can exploit this fact, significantly reducing
the overall numerical cost of the step.

Subsequently, for any parameter, p, we can efficiently calculate the values
H(ξi; p) using (12) as

H(ξi; p) = H1(ξi) − H2(ξi)D(p)(I + D(p)H3(ξi)D(p))−1D(p)H4(ξi), (29)

for i = 1, . . . , N . This step comes essentially at no cost and we can resample
H(ξi; p) for any p with almost no effort. This allows us to employ a data-driven
approach such as VF to construct cheaply a reduced model at any desired parameter
value. This is summarized as Algorithm 2.

To determine the quality of approximations from Algorithm 2, we consider the
discrete LS error examined through a relative error measure:

e(H(·; p)), Ĥ(·; p))) =
N∑

i=1

∥
∥
∥H(ξi; p) − Ĥ(ξi; p)

∥
∥
∥

2

F

/ N∑

i=1

‖H(ξi; p)‖2
F . (30)
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Algorithm 2 Parametric reduced order model based on VF.

1: Offline Stage: For predetermined points in the complex plane, {ξ1, . . . , ξN },
calculate

H1(ξi), H2(ξi), H3(ξi), H4(ξi) for i = 1, . . . , N, using (14).

2: Online Stage:
For any given parameter p calculate H(ξi; p) for i = 1, . . . , N using
formula (29).

3: Based on H(ξ1; p), . . . ,H(ξN ; p) obtain reduced system Ĥ(s; p) using VF.

As was the case for Algorithm 1, our sampling-based Algorithm 2 is well suited for
computationally efficient parameter optimization and the study of associated system
properties. In Algorithm 2, step 1 is executed only once in the Offline Stage. Then,
each time the parameter p is varied, (in the Online Stage), steps 2–3 can be executed
efficiently. In the next section, we discuss how one can use Algorithms 1 and 2,
informed by error estimates given by (18) and (30), in order to ensure robust and
accurate parameter optimization.

Remark 5 State-space representation of Ĥ(s; p). Recall that parameterized reduced
models obtained from Algorithm 1 will have the factored form given in (16) involving
the individually reduced subsystems Ĥi (s) for i = 1, . . . , 4. While an explicit system
realization will be available for each of these reduced subsystems, an explicit system
realization for the aggregate system, Ĥ(s; p), as described in (16) is not immediate
and in some contexts, it may be useful to have such a realization. Using basic manip-
ulations for the addition, multiplication, and inversion of transfer functions (see for
example §3.6 of [67]), one may arrive at such a realization for Ĥ(s; p). These expres-
sions rapidly become quite complicated and uninformative so we do not include them
here, though such realizations are eminently feasible.

In contrast to Algorithm 1, Algorithm 2 will have available only frequency domain
samples of the subsystems Hi (s) for i = 1, . . . , 4 and so an explicit parametrized
state-space realization will not generally be feasible. However, for any particular p�

selected in the Online Stage, the output of VF in step 3 of Algorithm 2 will be directly
a state-space realization of Ĥ(s; p�).

4 Parameter optimization for systems with low-rank
parameterization

In this section, we consider algorithms for parameter optimization that involve
dynamic constraints reflecting low-rank structure as in (2). We will incorporate the
proposed sampling-free parametric model reduction techniques of Sections 2 and 3
to allow for efficient surrogate optimization.

Parameter optimization plays a vital role in many applications. In the case of
damping optimization, this is a computationally demanding problem even for mod-
erate dimensions, principally due to the combinatorial character of the task of
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optimizing damping parameters (viscosities) together with their positions within the
structure. Optimization of damping parameters using criteria based on system norms
was studied, e.g., in [15, 21, 52, 62]. We present here effective algorithms for parame-
ter optimization in structured systems and then apply them in numerical experiments
that illustrate efficient optimization of damping parameters. The use of model reduc-
tion for optimization in more general settings is discussed in, e.g., [1, 2, 7, 17, 22, 41,
45, 65] and the references therein.

4.1 The choice of cost function for damping optimization

For a fixed but otherwise arbitrary δ > 0, consider the ODE-constrained optimization
problem:

p� = arg min
p∈Ω

‖y(·, p)‖
subject to Eẋ(t; p) = A(p)x(t; p) + Bw(t),

y(t; p) = Cx(t; p), x(0; p) = 0,

and ‖ w‖L2 ≤ δ. (31)

There are many viable choices for selecting the norm for ‖y(·, p)‖ and the algorithms
we describe below will apply to various scenarios. For the damping optimization
problem of Section 1.2, there will be a natural choice of norm that is discussed below.

Recall that in the damping optimization setting, the input w represents an input
disturbance with energy bounded by δ and the goal is to minimize the influence
of w on the output y. Therefore, one might choose to minimize ‖y(·, p)‖L∞ :
= supt≥0 ‖y(·, p)‖∞ or ‖y(·, p)‖L2 :=

√∫∞
0 ‖y(·, p)‖2

2dt . These norms can be
equivalently represented using the transfer function H(s, p). The corresponding
frequency-domain norms are the H2 and H∞ norms:

‖H(·, p)‖H2
:=
√

1

2π

∫ ∞

−∞
‖H(ıω, p)‖2

F dω and ‖H(·, p)‖H∞ := sup
ω∈R

‖H(ıω, p)‖2 ,

(32)
where ı2 = −1 and ‖·‖F denotes the Frobenius norm. For a stable linear (parametric)
dynamical systems with an input w(t) having ‖w‖L2 ≤ ∞ and the corresponding
output y(t; p), it holds:

‖y(·, p)‖L∞ ≤ ‖H(·, p)‖H2
‖w‖L2 and ‖y(·, p)‖L2 ≤ ‖H(·, p)‖H∞ ‖w‖L2 .

If we choose to minimize ‖y(·, p)‖L∞ in (31), then the resulting computational
problem can be relaxed to:

p� = arg min
p∈Ω

‖H(·, p)‖H2
where H(s, p) = C

(
sE −

(
A0 − U D2(p)V T

))−1
B. (33)

For the special cases of a scalar-valued input or a scalar-valued output, this reformu-
lation is exact since the the H2 norm in these cases is precisely the L2 −L∞ induced
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norm of the underlying convolution operator. In the discussion below, we present the
analysis and algorithms for the parameter optimization problem (33) in the general
multi-input/multi-output setting.

4.2 Surrogate optimization with reduced parametric models

A major cost in solving (33) is the repeated evaluation of the H2 norm. For H(s; p) =
C(sE − A(p))−1B, the H2 norm is computed by solving a Lyapunov equation:

‖H(·, p)‖H2
= √trace(CPCT )

where P solves A(p)PET + EPA(p)T + BBT = 0.

Solving a large-scale Lyapunov equation is computationally demanding and in this
optimization setting, one has to repeat this task for many different p values. We
will use the parametric reduced models from Algorithms 1 and 2 to relieve this
computational burden, so that instead of (33), we solve a surrogate optimization
problem:

p̂� = arg min
p∈Ω

∥
∥∥Ĥ(·, p)

∥
∥∥
H2

, (34)

where the reduced parametric transfer function Ĥ(·, p) will be constructed using
either Algorithms 1 or 2, without need for parameter sampling.

Assume p� is the minimizer of (33) and note that:

∥
∥H(·, p�)

∥
∥
H2

≤
∥∥
∥H(·, p�) − Ĥ(·, p�)

∥∥
∥
H2

+
∥∥
∥Ĥ(·, p�)

∥∥
∥
H2

. (35)

The surrogate optimization problem (34) will minimize the second term in (35).
Evidently, we will want the reduced model Ĥ(s, p) to be a sufficiently accurate
approximation at the minimizer p̂� so that the first term in (35) is comparatively
insignificant.

4.2.1 Surrogate optimization with reducedmodel via Algorithm 1

To guarantee that Ĥ(s, p) is accurate enough at the optimizer p̂�, we need to evaluate

the term
∥
∥
∥H(·, p̂�) − Ĥ(·, p̂�)

∥
∥
∥
H2

. Therefore, an efficient evaluation (estimation) of

this term during optimization is crucial for a numerically effective implementation.
When Algorithm 1 is employed to construct the reduced model Ĥ(s, p), The-

orem 1 shows how
∥
∥
∥H(·, p̂�) − Ĥ(·, p̂�)

∥
∥
∥
H2

can be bounded using the subsystem

errors εi = ‖Hi (·) − Ĥi (·)‖, for i = 1, 2, 3, 4. Unfortunately, two of the terms in
(18) depend on the full order quantities H1(s) and H2(s). Therefore, in our surrogate
optimization routine, we will use an approximation to this upper bound. Assuming
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Ĥ2(s) and Ĥ3(s) are accurate approximations to H2(s) and H3(s), i.e., H2 ≈ Ĥ2,
and H3 ≈ Ĥ3(note that we can control this accuracy in the model reduction stage),
we will approximate the upper bound using Theorem 1 as:

‖H(·; p)) − Ĥ(·; p))‖ � ε1 + ε2 f1(p, Ĥ3, Ĥ4)

+ ε3 f1(p, Ĥ3, Ĥ4)f2(p, Ĥ2, Ĥ3)

+ ε4 f2(p, Ĥ2, Ĥ3)
def= f (p), (36)

where εi = ‖Hi (·) − Ĥi (·)‖ for i = 1, . . . , 4 and f1 and f2 are given by (19) and
(20), respectively. To simplify notation, we have denoted this upper bound estimate,
(i.e., the right hand-side of (36)) as f (p).

Now, using f (p), we can efficiently estimate the accuracy of the reduced model at
a given parameter value p. In Algorithm 3, we give an outline of a surrogate optimiza-
tion method using this estimate. Starting with initial reduced subsystems in step 1
(constructed for a given accuracy), Algorithm 3 solves the surrogate optimization
problem in step 2. Then, step 3 checks whether the reduced model is accurate enough
at the current optimizer using the estimate f (p) for the upper bound. If it is, the
algorithm terminates. Otherwise, step 5 adaptively increases the reduced dimension
and step 6 resolves the surrogate optimization for the updated reduced model. This
procedure is repeated until a desired tolerance is met.

There are various algorithmic details that help speed up the computations. Instead
of wading into those details, we will highlight some points. For example, assume that
subsystem model reduction in Algorithm 1 is performed using BT. Then, to increase
the reduced dimensions in step 5, one does not need to apply model reduction from
scratch. In the case of BT, one will only need to add more vectors to the BT-based
model reduction bases from already computed quantities. If IRKA is employed in
Algorithm 1, then the current reduced-model poles, appended with some others, will
be an effective initialization strategy for IRKA, yielding faster convergence.

4.2.2 Surrogate optimization with reducedmodel via Algorithm 2

We now focus on solving the optimization problem (33) using reduced models from
the data-driven Algorithm 2. One major difference from Algorithm 1 is that in this
case, there are no reduced subsystems. Instead, for any given p, we have a numeri-
cally efficient way to find an accurate approximation Ĥ(s, p) to H(s, p). Therefore,
the subsystem-based error estimate in (36) does not apply here. However, we have
the sample-based (discretized) version e(p) defined in (30). For example, if VF is
employed in Algorithm 2, the error e(p) will be automatically calculated during the
construction of Ĥ(s, p) and thus no additional effort is needed to compute e(p).
Therefore, following similar arguments to those found in Section 4.2.1, when solving
the surrogate optimization problem (34), we need to ensure that the reduced model
Ĥ(s, p) is an accurate approximation to H(s, p) at the optimizer p = p̂� where
accuracy is now measured using e(p).
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Algorithm 3 Surrogate parameter optimization using reduced models via Algorithm 1.

Require: System matrices A(p), E, B, C defining (1);
initial point p0 for optimization routine
tolerance 0 < τ � 1 for error bound
tolerance 0 < ν � 1 for optimization routine
starting reduced dimensions r1, r2, r3, r4 and the corresponding subsystems
Ĥ1, Ĥ2, Ĥ3, and Ĥ4.

Ensure: approximation of optimal parameters
1: Choose the reduced orders r1, r2, r3, r4 (and thus the reduced subsystems Ĥ1(s),

Ĥ2(s), Ĥ3(s), and Ĥ4(s) via Algorithm 1) so that f (p0) < τ ‖Ĥ(·, p0)‖H2 .
2: Solve the surrogate optimization problem

p̂� = arg min
p

∥∥
∥Ĥ(·, p)

∥∥
∥
H2

with the initial guess p0 and tolerance ν.
3: while minimizer p� such that f (p�) > τ ‖Ĥ(·, p0)‖H2 do
4: p0 = p̂�

5: Increase the reduced orders r1, r2, r3, r4 (and thus the reduced subsystems
via Algorithm 1) so that f (p̂�) < τ ‖Ĥ(·, p0)‖H2 .

6: Determine the new minimizer by solving the surrogate optimization problem

p̂� = arg min
p

∥
∥
∥Ĥ(·, p)

∥
∥
∥
H2

using the updated Ĥ, the initial guess p0, and tolerance ν.
7: end while

The resulting approach is briefly discussed in Algorithm 4. The fundamental
structure is almost identical to that of Algorithm 3. We test whether e(p̂�) is below
a prespecified tolerance. If not, we increase the order of the reduced model in
Algorithm 2 until we reach the desired accuracy.

We note that during the optimization procedure, for every new p, Algorithm 4
resamples Ĥ(s, p) (at practically no cost) and constructs a new reduced model based
on these new samples. In analogy to Algorithm 3, it is as if the model reduction
subspaces are changing with every p. Therefore, even though we cannot theoret-
ically guarantee it, we expect that Algorithm 4 may produce smaller errors than
Algorithm 3. This will be studied in Section 4.3 via numerical experiments.

As is the case with Algorithm 3, there are various numerical aspects that one
could exploit to make the online computations faster. For example, one main factor
determining the convergence speed of VF is the initial selection of poles. In damp-
ing optimization, the poles from the critical damping case are perfect candidates.
If in step 5 of Algorithm 4, one must increase the order of the model, the already-
converged poles from the previous optimization step (appended with a small number
of additional ones) can be expected to speed up convergence. We will elaborate on
these points in the numerical example below.
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Algorithm 4 Surrogate parameter optimization using reduced models via Algorithm 2.

Require: System matrices A(p), E, B, C defining (1);
initial point p0 for optimization routine
tolerance 0 < τ � 1 for error bound
tolerance 0 < ν � 1 for optimization routine
Samples {Hi (ξi)}Ni=1 at predetermined points in the complex plane ξ1, . . . , ξN .

Ensure: approximation of optimal parameters
1: Choose the reduced order in Algorithm 2 so that e(p0) < τ .
2: Solve the surrogate optimization problem

p̂� = arg min
p

∥
∥∥Ĥ(·, p)

∥
∥∥
H2

with the initial guess p0 and tolerance ν with Ĥp computed via Algorithm 2 using
samples {Hi (ξi)}Ni=1.

3: while minimizer p� such that e(p�) > τ do
4: p0 = p̂�

5: Increase the reduced order used in Algorithm 2 so that e(p�) < τ .
6: Determine the new minimizer by solving the surrogate optimization problem

p̂� = arg min
p

∥∥
∥Ĥ(·, p)

∥∥
∥
H2

using the updated Ĥ, the initial guess p0, and tolerance ν.
7: end while

4.3 Numerical example

We revisit the damping optimization problem described in Section 1.2 and focus on
optimizing the viscosities for different sets of damping positions. We consider an n-
mass oscillator with 2d + 1 masses and 2d + 3 springs as shown in the figure in
Section 4.3. This oscillator has two rows of d masses connected with springs. The
leading masses in each row on the left edge are connected to a fixed boundary while
on the opposite (right) edge the masses (md and m2d ) are connected to a single mass
m2d+1, which, in turn, is connected to a fixed boundary. See [15, 62] for further
details.
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The state-space model is given by (6) where the stiffness matrix is given by

K =

⎡

⎢
⎢
⎣

K11 −κ1

K22 −κ2

−κT
1 −κT

2 k1 + k2 + k3

⎤

⎥
⎥
⎦ , Kii = ki

⎡

⎢
⎢
⎢⎢
⎢
⎣

2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2

⎤

⎥
⎥
⎥⎥
⎥
⎦

,

with κi = [0 . . . 0 ki

]
for i = 1 and i = 2, and the mass matrix is M =

diag (m1, m2, . . . , m2d+1).
We pick 1801 masses (d = 900) with the values:

mi =
⎧
⎨

⎩

1000 − i
2 , i = 1, . . . , 450,

i + 325, i = 451, . . . , 900,

1300 − i
4 , i = 901, . . . , 2d + 1.

The stiffness values are chosen as k1 = 500, k2 = 200, and k3 = 300. The parameter
αc that determines the influence of the internal damping defined by (7) is set to
0.02. The primary excitation corresponds to the four masses closest to the left ground
reference anchor (with larger influence on the mass that is closer to the anchor point)
and the one mass closest to right ground reference anchor, i.e., B2 ∈ R

(2d+1)×5 with:

B2(1 : 2, 1 : 2) = diag(20, 10),

B2(901 : 902, 3 : 4) = diag(20, 10),

B2(1801, 5) = 30;
and all other entries being zero. We are interested in the two displacements, yielding
the output:

y(t; p) = [q400(t; p) q1300(t; p)
]T .

In this example, we consider optimization over four dampers with gains p1, p2, p3
and p4 with their positions encoded in:

U2 = [ ej1 − ej1+10, ej2 , ej3 , ej3 − ej3+100
]
,

where ei is the ith canonical vector and the indices j1, j2, j3 determine the damp-
ing positions. To illustrate the performance of our surrogate optimization framework
for different damping configurations, the following indices are considered: j1 ∈
{100, 300, 500, 700}, j2 ∈ {150, 350, 550, 750}, and j3 ∈ {1400, 1700}. This results
in 32 different damping configurations for which the H2 system norm is optimized
(i.e., solve (33) and the surrogate problem (34)).

The full optimization problem (33) and the surrogate problem (34) were solved
using MATLAB’s built-in fminsearch with a transformation that allows constrained
optimization. The starting point was p0 = (100, 100, 100, 100) and for each param-
eter, the range was [0, 5000]. The stopping tolerance for optimization was set to
ν = 5 · 10−4. In solving the surrogate optimization problem, we employed both
Algorithms 3 and 4. Our implementation takes advantage of the fact that the first
subsystem H1(s) is independent of not only the parameter p but also the damping
positions. Therefore, for the 32 damping configurations considered, reducing H1(s)

in Algorithm 3 (or sampling of H1(s) in Algorithm 4) needs to be done only once.
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In Algorithm 3, for each damping configuration, we used:

termination tolerance for error bound: τ = 10−2;
initial reduction dimensions: (r1, r2, r3, r4) = (280, 300, 480, 430).

The reduced orders ri were chosen based on the Hankel singular values of each sub-
system. Reduced subsystem updates were performed such that each time an update
was needed, ri was increased by 15%. Similarly, in Algorithm 4 for each damping
configuration, we used:

termination tolerance for error bound: τ = 10−4;
initial reduction order set to 130;

number of predetermined sampling points {ξ1, . . . , ξN } set to N = 500.

The sampling points ξ1, . . . , ξN were chosen to be logarithmically spaced between
the smallest and largest (by magnitude) undamped eigenfrequencies. We initial-
ized VF using dominant poles [15]. During the optimization process each time that
e(H(·; p)), Ĥ(·; p))) > τ , the order was increased by 10%.

Across all damping configurations, Algorithm 3 entered the inner while loop only
in 15% of the cases and Algorithm 4 in 34% of the cases. For Algorithm 3, this
means that model reduction was performed only once for most configurations. For
Algorithm 4, note that it employs Algorithm 2, which resamples H(s, p) almost at
no cost, and then applies VF. Repeated application of VF constitutes only a modest
cost increment since the required frequency sampling is obtained already at an earlier
step. Remarkably, we have also observed that in nearly all cases that we consider, VF
converges quickly. In particular, across all 32 damping configurations, application of
VF for the initial surrogate optimization step took on average 13 iterations to con-
verge. But in the vast majority of subsequent VF application, convergence occurred
often after a single iteration (93.5% of total VF applications) or two iterations (3.3%
of total VF applications).

Figure 4 depicts the relative errors in the optimal gains for different damping con-
figurations calculated by Algorithm 3 (denoted by blue squares) and Algorithm 4
(denoted by black triangles). The relative errors in the optimal gain is calculated by
‖p� − p̂�‖/‖p�‖, where p� and p̂� denote the optimal gains calculated with, respec-
tively, the full model (i.e., solving (33)) and the reduced model (i.e., solving (34)).
The figure shows in most cases Algorithm 4 gave more accurate results.

However, since the cost function, the H2 norm, can be flat with respect to some
damping parameters, the quality of the surrogate optimization is better illustrated
in Fig. 5 where we show the relative errors in the cost function. For the opti-
mal gain p� obtained by solving the full problem (33) and the optimal gain p̂�

obtained by solving the surrogate problem (34), the relative error is computed by
|‖H(·;p�)‖H2−‖Ĥ(·;p�)‖H2 |

‖Ĥ(·;p�)‖H2
. These results are illustrated in Fig. 5. Even though both

algorithms yield accurate results, the surrogate optimization with Algorithm 4 is
consistently better with the largest relative error in the order of 10−4.

In Algorithm 3, the relative termination tolerance for the error bound was set to
10−2. But, Fig. 5 reveals that relative errors are usually a few order of magnitudes
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Fig. 4 Relative errors in the optimal gains for Algorithms 3 and 4

Fig. 5 Relative errors for H2 norm at optimal gain for Algorithm 3 and Algorithm 4
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Table 1 Acceleration factors
using surrogate optimization Algorithm 3 Algorithm 4

Acceleration factor 7.8 60

smaller. Thus, we can conclude that, (at least in this example) the approximate error
bound (36) is not sharp in general and therefore in some cases, Algorithm 3 might
lead to a larger reduced order than necessary.

Another important quantity to measure is the speed-up compared to the full prob-
lem. Table 1 shows the average speed-ups for the optimization process obtained by
both algorithms.

Both methods produce optimized parameters with satisfactory relative errors and
with considerable acceleration of the optimization process. For this damping opti-
mization problem, Algorithm 4 not only produced more accurate results but also
yielded bigger speed-up than Algorithm 3. The significant difference in timing seen
in Table 1 is mainly due to the fact that in the VF the most expensive step is data-
collection, which is essentially free here. Additional speed up is obtained because
convergence within VF was usually extremely fast. Therefore, for this problem, Algo-
rithm 4 was more efficient. However, we also note that Algorithm 3, being based on
subsystem reduction that includes estimation of the true error f (p) as opposed to the
sampling-based error e(p), might improve the robustness of the optimization process.

5 Conclusions

We have introduced a framework for producing reduced order models of dynamical
systems having an affine, low-rank parameter structure. The new framework does not
require any sampling in the parameter domain and instead parametrically combines
intermediate subsystems that are non-parametric. Our approach guarantees uniform
stability of the aggregated reduced model across the entire parameter domain in many
cases. Beyond the computational examples we provide for illustration, we show in
some detail how this approach can be deployed efficiently in parameter optimization
problems as well

There are various future directions for this work. One is to employ this framework
to parametric models resulting from stationary PDEs with low-rank parametric struc-
ture. In this case, our approach will correspond do converting a parametric stationary
model to interconnection of four non-parametric ones. In this paper, our focus was
to fully remove the parameter sampling, including the knowledge of the parameter
domain. However, the knowledge of parameter domain can help produce even bet-
ter reduced models. If one knows the parameter domain, this means that we have
some information on the range of the term D(p) in (13). In this case then, as opposed
to reducing, for example, H2(s), we can perform an (input) weighted model reduc-
tion on H2(s) where this weight can reflect the range of D(p). These issues will be
investigated in future works.
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20. Berljafa, M., Güttel, S.: The RKFIT algorithm for nonlinear rational approximation. SIAM J. Sci.
Comput. 39(5), 2049–2071 (2017)

21. Blanchini, F., Casagrande, D., Gardonio, P., Miani, S.: Constant and switching gains in semi-active
damping of vibrating structures. Int. J. Control 85(12), 1886–1897 (2012)

Page 30 of 34Adv Comput Math (2020) 46: 83 83

https://doi.org/10.1002/zamm201400158
https://doi.org/10.1002/zamm.201000077
https://doi.org/10.1002/zamm.201000077
https://doi.org/10.1002/nla.833


22. Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-
dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008)

23. Carracedo Rodriguez, A., Gugercin, S.: The p-AAA algorithm for data driven modeling of paramet-
ricdynamical systems. Technical report, arXiv preprint available at arXiv:2003.06536 (2020)

24. Chinea, A., Grivet-Talocia, S.: On the parallelization of vector fitting algorithms. IEEE Trans.
Compon. Packaging Manuf. Technol. 1(11), 1761–1773 (2011)

25. Desai, U., Pal, D.: A transformation approach to stochastic model reduction. IEEE Trans. Autom.
Control 29(12), 1097–1100 (1984)
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