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ABSTRACT

The increased pervasiveness of technological advancements in au-
tomation makes it urgent to address the question of how work is
changing in response. Focusing on applications of machine learning
(ML) to automate information tasks, we draw on a simple frame-
work for identifying the impacts of an automated system on a
task that suggests 3 patterns for the use of ML—decision support,
blended decision making and complete automation. In this paper,
we extend this framework by considering how automation of one
task might have implications for interdependent tasks and how
automation applies to coordination mechanisms.
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1 INTRODUCTION

The evolution of work design—long interlinked to technology—has
recently been accelerated by the increased capabilities of artificial
intelligence (AI), machine learning (ML) in particular. There are
many different ML techniques that can support the automation
of a broad range of activities, including many decision-making
tasks that until recently were the exclusive domain of humans. By
automation, we mean the capability of a system to perform some
tasks without human involvement. For example, ML approaches
are being applied to tasks ranging from credit-card fraud detection
[6], to detecting skin cancers [13], to advising judicial decisions
[4]. As ML-based systems become able to handle a greater range of
decision-making tasks, they can be used for more kinds of work.
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Much of the rhetoric around work and AI focuses on people
being replaced by automated systems [1]. However, this view of
the relationship between people and machines is too simplistic,
because automatable tasks rarely stand in isolation [2, 7]. As a result,
analysts expect that “technological disruptions such as robotics
and machine learning—rather than completely replacing existing
occupations and job categories—are likely to substitute specific
tasks previously carried out as part of these jobs” [34, p. 19].

For instance, consider the work of a “computer user support
specialist”, a job we will use as a running example in this paper. It
may soon be (if it is not already) feasible to develop an automated
system to answer at least some computer users’ support questions
[19]. However, to be functional, such a system needs to fit the
complex work of an organization. Someone must identify that there
is a problem, collect relevant information to input to the system,
explain the system’s diagnosis to the user, implement the fix and
so on. All of this surrounding work needs to adapt to an automated
computer-support system (and vice versa). The research question
we address in this conceptual paper is: what are the implications of
different relationships between human and ML-based automated
systems for designing work that includes multiple tasks ?

2 BACKGROUND

In this section, we draw on a conceptual framework for task automa-
tion to analyze how ML-based systems might have an impact on the
design of human jobs. We first present a model for analyzing jobs
then discuss different levels of automation. This discussion provides
a basis for our exploration of the impact of different approaches to
automation for work that includes multiple tasks.

2.1 Task design

We start by presenting our perspective on human work. In their
jobs, most workers do a variety of different actions that might be
more or less susceptible to automation. As noted above, a job is
therefore not the right level of analysis at which to understand the
impacts of technology. We follow the job analysis approach [32] in
considering a job “an aggregation of tasks assigned to a worker” [33,
p- 825]. In turn, a “task represents certain processes in which the
worker, through his or her actions, transforms inputs into outputs
meaningful to the goals of the job by using tools, equipment, or work
aids” [33, p. 825]. The Employment and Training Administration
of the U.S. Department of Labor has a database called O*Net that
provides detailed information about jobs, including the comprised
tasks. For example, the top three tasks (of 16) given for a “computer
user support specialist” are:

(1) Answer user inquiries regarding computer software or hard-
ware operation to resolve problems.
(2) Oversee the daily performance of computer systems.
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Figure 1: A four-stage model of human information processing for a task integrated with 3V at input/output and task variety

and analyzability frameworks.

(3) Read technical manuals, confer with users, or conduct com-
puter diagnostics to investigate and resolve problems or to
provide technical assistance and support.

In summary, the design of work is defined as “the content and
organization of one’s work tasks, activities, relationships and re-
sponsibilities” [23, p. 662].

We will next recap prior work on automation of individual tasks
as a basis for our analysis of multiple tasks. Research has offered
different frameworks for analyzing tasks for automatability. For
instance, Koorn et al. [16] classified tasks into 8 categories (e.g., cre-
ative, system supervision, information exchange) and differentiated
them by ease of automation and routineness. In contrast, our goal
is to examine in more detail the implications of different degrees of
automation for performing a task, which calls for a more detailed
framework. To analyze tasks, we draw on our prior work [8], in
which synthesized different task models.

We first used a model from Parasuraman et al. [22] that sug-
gests decomposing information-processing tasks into a “simple
four-stage view of human information processing” (p. 287): 1) infor-
mation acquisition; 2) information analysis; 3) decision and action
selection; and 4) action implementation (see Figure 1). Since we
are focusing on applications of ML, we restrict our analysis to
information-processing tasks, i.e., we do not consider the impact
of robots on physical work. Tasks can thus be characterized by
considering their inputs, outputs and the nature of the mapping
between them.

o Inputs are the information acquired for the task. To analyze
these, we drew on a second model, the definition proposed
for big data. Specifically, inputs are characterized by the
volume, velocity and variety [17] of the information acquired,
as shown to the left in Figure 1. For example, some tasks
like answering user computer-support queries might have
a high volume of requests in total, arriving at a high rate
during certain times of the day (velocity) with a high variety
of different queries, some more common, but with lots of
exceptions.

e Outputs can also be characterized by the 3Vs, as shown to
the right in Figure 1. In this case, by variety we consider a
number of possible actions to be selected among. The deci-
sion could be binary (e.g., cancer/no cancer for a radiological
screening) or of very high dimensionality (e.g., hundreds
of possible replies in a customer-support setting or for a
more complicated medical diagnosis). Again, we also need
to consider the distribution of the outputs, whether some

outputs are more common than others, i.e., the proportion
of exceptions [24].

e Third, we considered the complexity of the decision rules
that connect inputs and outputs, which covers the steps of
information analysis and decision & action selection. These
rules could be very regular [i.e., high analyzability, 24] or
very irregular (low analyzability).

The above discussion has considered inputs, outputs and the
mapping as static, but there could also be a dynamic aspect. For
example, the nature of the inputs and outputs could change over
time rather than being static and pre-given. Tasks are most likely
repeated, so the information acquired as inputs could include feed-
back from prior rounds. And the mapping rules could evolve as
system learns or as inputs and outputs change.

2.2 Levels of task automation

We next consider how a new technology might enable a task to
be executed by a worker in a different way or to be completely
automated. We first consider which components of the task are au-
tomated. Information acquisition has to be at least partly automated
for the task to be automatable, but the performance of a task might
also rely on information held by a person. Similarly, information
analysis and decision selection could be done by humans, automa-
tion or some mix, as is the case for action implementation. These
combinations yield a number of patterns of automation. To analyze
these, we draw on a fourth model from Pacaux et al. [21], who
identified 10 levels of automation, some with sublevels. Level 1 is
no automation, i.e., all four steps performed by a human, while level
10 is total automation, i.e., all four steps performed by a machine
without human intervention. Similar to [28] we develop a frame-
work with four levels: no automation, decision support, blended
decision making and full automation.

e No automation means that the steps of information analy-
sis, decision & action selection and action implementation
are performed by a human. We leave open the possibility
that information acquisition and action implementation are
supported by a system but the system does not take action
autonomously, only when directed by a human. For instance,
computer user support can be done entirely by a human,
possibly receiving problem reports via a system.

e Decision support means that information analysis is auto-
mated, meaning that the system can recommend a few or one
action to take. However, the human makes the final selection.
In this case, information acquisition must also be automated
to provide the input information for analysis, while action



implementation might or might not be automated. For com-
puter user support, this level of automation means that a
system reads the problem report and makes a suggestion
about the diagnosis or resolution (e.g., based on a model
learned from a corpus of prior reports and resolutions), but
leaves the choice of a fix to the human technician.

o Blended decision making means that the system makes and
implements a final decision for a subset of cases, either de-
ferring some decisions to a human to make or having certain
cases delegated to it. In this case, both information acquisi-
tion and action implementation must also be automated for
at least the subset of cases that will be handled by the system.
For computer user support, a system might automatically
provide or even implement a solution to selected problem
reports, e.g., ones for which it is a high confidence solution
or if directed by the human technician.

e Finally, full automation means that the system handles all
cases by itself, with the human’s role being to set parameters
for the system to follow, monitor performance and perhaps
intervene if needed.

2.3 Drivers and limits to automation

We recognize two technological drivers that support an increase in
automation from one level to the next. The first driver is digitization:
increasingly more data and interactions are digital. The greater
penetration of digitized data implies that the data-acquisition and
action-implementation steps of our task model are increasingly
done via a system, increasing the range of tasks executable through
machine processing. This trend can be expected to continue for
the near future. For example, consider our computer user-support
specialist answering user inquiries. These inquiries could be made
face-to-face or over the phone. However, if they are submitted via
a computer system (digitally), then they can be processed by the
system, opening the potential for automation. Similarly, if the users’
computer systems are networked, an automated system could act
on them directly to address problems, expanding automation to
include action implementation.

The second issue is about what can be automated in the interven-
ing steps of information analysis and decision & action selection. In
the past, decision-making was automated with a set of rules: if some
parameter or combination of parameters have particular values,
then a particular decision is taken. ML systems provide new capabil-
ities for complex pattern recognition. Rather than having to make
explicit ”if-then” rules, an ML system can learn the appropriate out-
puts given a large set of training examples (input-output pairs) [12].
For example, given a sufficient volume of problems and solutions,
a system can learn what solution to suggest given a user query. As
a result, an ML-based system can learn to identify solutions that
were not coded ex-ante by humans and thus handle less analyzable
mappings between inputs and outputs. This ability to learn from
experience is what sets ML-approaches apart from other forms of
Al On-going development of ML technology suggests that systems
will be capable of learning increasingly more complex connections
between inputs and outputs. Further, systems may be trained on
large general corpora and then transfer that learning to learn a

specific task more quickly. For instance, an efficient approach to
image classification is to start with a pre-trained model.

Nevertheless, the possibility for automation still depends on
the nature of the task, particularly the proportion of exceptions in
the inputs and outputs and the stability and analyzability of the
mapping between them [24].

e Stable, routine tasks, those with high analyzability and few
exceptions, have little or no need for information analysis or
decision and action selection, meaning that a worker can just
implement the actions. Such tasks are also very automatable,
as long as information acquisition and action implementation
can be done by the system.

o If the task has low analyzability, but few exceptions, then
analysis is hard, but the selection of actions is from limited
range. These tasks may be increasing amenable to automa-
tion with the capability of ML-systems to learn more complex
patterns.

o For tasks with high analyzability but many exceptions, anal-
ysis may be easy, suggesting automation, but large number
of choices for action may be problematic for ML, both in en-
suring that the training data are complete and for achieving
the necessary precision in decision making.

e Non-routine tasks are both low in analyzability and high in
exceptions, suggesting that automation will be difficult.

e Finally, unstable tasks for which the inputs, outputs or the
mapping evolve over time are also challenging to automate.

In addition to these technological drivers, we note a number of
managerial drivers to substitute machine for human labour, such
as increased productivity, cost-cutting, addressing labour shortages
and a desire to regulate processing.

2.4 Challenges created by automation using
machine learning

Finally, we consider some challenges created by the distinctive
characteristics of ML systems that are unlike prior systems for
supporting or automating work and that create new challenges
for automation. We note that not all approaches to Al share these
features, hence our focus here on ML.

o A first difference is that ML performance depends heavily
on the quantity and quality of data available for the training
[3, 15]. Furthermore, as systems are reliant on data, they
often exhibit hybrid agency, combining human and machine
actions; human to generate an initial dataset and then further
ML-based actions, meaning that initial human biases in the
data may be amplified. [26].

e Second, the results of ML are most often probabilistic: e.g.,
when classifying an unknown case, an ML system likely
provides probabilities that the unknown case fits one of the
known categories rather than a definitive answer.

e Finally, many ML techniques are opaque (deep learning in
particular): unable to provide a human-understandable ex-
planation of why a particular output was selected [12].

As a result, ML-based systems behave quite differently than pro-
grammed ones or even other approaches to Al (e.g., rule-based
systems). These differences can cause problems for use and users.



The application of an ML system is an algorithmic phenomenon,
but our ability to control the technology is limited: an unwanted
behavior is hard to fix if it is the result of training rather than
programming and the precise reason for the answer can not be
easily pinpointed [10, 12]. For example, engineers at Google were
embarrassed when their image-labeling-system labeled a black user
as a “gorilla”, but reportedly the only solution so far has been to
eliminate the term “gorilla” from the labels [29]. Designing inter-
faces that work with the strengths and limitations of ML is an open
challenge [11]. ML systems can thus display on a small scale the
problems [10] described as arising from the complexity of large-
scale interconnected systems.

A general concern with automation is the ability of those inter-
acting with the automated systems to understand what the sys-
tems are doing and to intervene if needed. For instance, there have
been many studies of pilots interacting with autopilot systems that
largely automate the job of flying. One outcome of this work is the
identification of the problem of automation surprises [27], when
the human operator loses track of the state of the automated sys-
tem and so is surprised by unexpected or inappropriate actions or
has difficulty taking over in a crisis. The often opaque nature of
ML may exacerbate this problem if it makes it harder for a user to
understand what the system is doing.

3 AUTOMATION OF MULTIPLE TASKS

The contribution of this paper is to continue the analysis of the
different patterns of relationship between human and ML-based
automated systems identified above to understand the impact of
ML-based systems across multiple tasks. Our analysis above [8]
has considered an individual task. But jobs are collections of tasks,
not just one, and furthermore, people doing a job typically have to
interact with others. As a result, the impact of using ML for a task
will propagate beyond the boundaries of the task itself.

To analyze multiple tasks, we consider how a particular task is
interdependent with others, defined as “the extent to which the
inputs, processes, or outputs of the tasks affect or depend on the
inputs, processes, or outputs of other tasks within the same job” [33,
p- 826]. For example, the second task in the list for a computer user
support specialist is to monitor system performance. It may be that
handling problem reports from users is helpful to see when system
performance has changed, because the kinds of problems change. If
handling problem reports were entirely automated, the specialists
would need to develop new ways to get information about the
systems. We can also consider interdependencies between tasks that
compose different jobs. An isolated task might be automated with
few consequences, while one that interacts with many other jobs
will be more problematic. While this perspective is quite common
in studies of organizational design, it is interesting to note that the
O*Net database does not explicitly record task interdependencies
or what other jobs a job interacts with.

To analyze interdependencies, we adopt a coordination theory
approach [9, 18]. Malone and Crowston [18] analyzed group ac-
tion in terms of actors performing interdependent tasks to achieve
some goal. These tasks might require or create various resources.
The actors face coordination problems arising from dependencies
that constrain how tasks can be performed. In coordination theory,

dependencies are conceptualized as arising because of the use of
common resources among tasks. The key point in coordination the-
ory is that the dependencies create problems (or possible synergies)
that may require additional work to manage. The necessary tasks
of managing dependencies are what Malone and Crowston [18]
called coordination mechanisms. As the pattern of dependencies
among tasks changes, we expect to see corresponding shifts in the
needed coordination mechanisms. We next introduce each kind of
dependency and associated coordination mechanisms.

o First, a shared-input dependency emerges among activities
that use a common resource [like Thompson’s pooled de-
pendency, 31]. For these, the resource must be allocated to a
particular user (if it is not shareable), e.g., through a schedule
or first-come-first-served. If we consider as a resource the
actor, either a human or a machine, who carries out the steps
in the tasks, we can think of the resource assignment coordi-
nation mechanism instead as a task assignment mechanism
that identifies which actor should work on which task, e.g.,
first-come-first-served, bidding in a market or some kind of
matching. For instance, a problem report might be assigned
to the first available computer support technician, techni-
cians might themselves pick which to work on from the list
of reports or a manager (or system) might match reports to
technicians based on some model of expertise.

e Second, producer-consumer or flow dependencies match
Thompson’s sequential dependency [31]: one task produces
a resource that a second uses. Flow dependencies including
three sub-dependencies: the need to manage the usability of
the resource as well as the timing and location of its avail-
ability. Considering usability, we might consider whether
the producer of the resource adapts to the needs of the user
or vice versa. For timing, we might consider whether the
producer tells the user when to work or vice versa. For com-
puter support, usability is a factor for both the quality of
problem reports and suggested fixes, as discussed below.

e Third, a shared-output or fit dependency occurs when two
activities collaborate in the creation of an output (in the
case where the output is identical, there is potential synergy,
since the duplicate work can be avoided; for instance, for
computer support it is common to maintain a database of
past reports to avoid solving the same problem twice).

o A final possible relation between two tasks is when one is a
subtask of the other, that is, when the work to accomplish
some goal is decomposed into smaller tasks to be performed.
From a coordination theory perspective, the additional work
needed to identify which subtasks to perform (i.e., planning)
is another kind of coordination mechanism.

The above presentation starts with the dependencies, but coor-
dination can also be analyzed by identifying a coordination mecha-
nism (e.g., task assignment) and looking for the dependency that it
manages. A final point is that coordination mechanisms are them-
selves tasks, so adding a coordination mechanism may create new
dependencies that themselves must be managed. For instance, a
task assignment mechanism may require information from another
task (e.g., the skills needed), implying a flow dependency from that
task to the task assignment that must be managed.



The coordination theory perspective leads us to consider two
possible impacts of automation. First, we consider how automating
one task might impact another task with which it is interdependent.
Second, we consider the implications of automating coordination
mechanisms themselves.

3.1 Automation of interdependent tasks

To illustrate the first situation, we consider issues when the output
of one task is the input to the next (a flow or producer-consumer
dependency). For example, our computer user support specialist
consumes (or elicits) problem reports as input and produces recom-
mended solutions as an output. The input and outputs are provided
from and to some other task: the input to the support task comes
from a customer who’s encountered a problem and the output goes
back to that customer to implement.

As discussed above, flow dependencies imply three sub-depen-
dencies: usability, timing and transfer. We analyze the impacts of
automation by considering how these dependencies are affected.

e To manage usability, coordination theory suggests approa-

ches such as standardization, producers asking consumers
what input they want, or for consumers to give feedback
on the output to refine the solution. Considering the first
flow dependency in our example, from the computer user
to the user support system, one option to ensure that the
input is usable by an automated system is to require them
to be presented in a standard format. However, the need for
standardized inputs may be problematic if the information
is hard to express, e.g., if it is based on tacit knowledge,
requiring some interaction to ensure the input is usable.
We noted above that extracting useful problem reports is
an important skill for a computer user support specialist,
i.e., in practice the consumer of a problem report needs to
work to ensure the report is usable. However, it is much
more challenging to develop an automated system that can
interact to elicit information from a user.
Considering next the flow from the system back to the user,
the automated system needs to know what output is needed
and to present results in a usable format. In this case, guid-
ance on addressing the problem could be given in a standard
format. More likely though, it would be desirable to cus-
tomize the advice to the skills and knowledge of the user,
which is again more challenging.

e Regarding timing, the second sub-dependency, the consumer
needs to know when the input is ready to process. Options
to manage this dependency include having the producer ex-
plicitly inform the consumer or for the consumer to monitor
the producer to notice when the output is ready. Automa-
tion of the consumer might be advantageous, as it might
be possible to process the output on demand. In the case of
computer user support that means automatically processing
a problem report when it is submitted rather than waiting
for a technician to be available.

e Third, transfer of the problem report and solution must be
done electronically rather than physically, which we already
identified as a precondition for automation.

e Finally, we note that flows of information from producer to
consumer may be implicit rather than explicit. As we noted,
handling customer problem reports may be a way to learn
about the status of systems, e.g., identifying problems by
when the problem reports change. As a result, automating
problem resolution may remove an important source of in-
formation for managing systems. And conversely, if system
oversight is automated, user-support specialists may be un-
aware of ongoing system problems that affect users. In other
words, coordination can be achieved both through explicit
communication and through visibility of work in other work
spaces. This combination of implicit and explicit mechanisms,
also referred as stigmergic coordination [5], often plays an
under-appreciated role in supporting coordination. Being
emergent and sometimes informal, stigmergic coordination
could be difficult to map while designing and implementing
a ML-system. However, to automate a task without consid-
ering its role as implicit coordination nexus could lead to a
lack of communication flow into the organization and to the
disconnection among some tasks.

3.2 Automation of coordination mechanisms

We next consider the possible implications of automating coordi-
nation mechanisms. We will focus on two dependencies that raise
particularly interesting points, mechanisms for coordinating shared
inputs and for coordinating flow dependencies.

3.2.1 Shared inputs. When multiple tasks have shared inputs, mean-
ing they use the same resources, a task or resource assignment
coordination mechanism is needed to decide which task gets which
resource. Following the analysis we developed above, the task of
resource assignment might be done manually, with decision sup-
port or entirely automated. The matching of task and resource can
be improved by learning from past data.

We can apply the analysis performed above for individual tasks
to the task-assignment task to assess its suitability for automation.
For the assignment to be automatable, the analyzability of the as-
signment should be high with few exceptions. For instance, for
Uber, drivers and riders are essentially interchangeable, meaning
that the assignment is easily analyzable based on location. In con-
trast, the fit between a programmer and a programming task (to
take another example) depends on many factors, which may be
why these systems are implemented as decision support rather than
fully automated.

In management studies, resource allocation is often studied to-
gether with the power balance and structure among different parts
or individuals of the organizations. If automated resource allocation
becomes more common, it could shift power inside organizations
or among workers. For example, Uber drivers perceive having little
or no control over the assignments they receive or the implications
of the system’s decisions for their pay [20].

3.2.2  Flow dependency. A flow or producer/consumer dependency
exists when the output of a task becomes the input of another task.
In the prior section, we considered the implications for coordination
when one of the tasks was automated. In this section, we discuss
how the needed coordination mechanisms themselves might be



automated. As noted above, a producer/consumer dependency in-
volves three sub-dependencies.

(1) To assure usability, we can rely on standardized solutions
or the direct involvement of the users to explicitly express
their needs. The coordination mechanism needed to deter-
mine usability can increasingly be automated thanks to the
amount of available data, the possibility to integrate different
sources and the velocity with which a certain output can be
re-arranged according to the other variables. However, such
recommendations have a range of known problems, e.g., the
possibility of bad recommendation due to biases in the data
or the “cold start” problem in making recommendations for
a new user [25, 30].

(2) Considering timing, one approach to managing prerequisite
dependencies is to signal the consumer that it can start;
another is for the consumer to actively monitor the producer.
The activity of notifying, as well as sequencing and tracking,
can be done by a person or can be automated by a system.
As with other automated notifications, an issue could be that
a system overwhelms a human with notifications or requires
responses more quickly than a human can provide them [14].

(3) Finally, considering transfer, with information products, it
is easy for a system to manage the movement of an infor-
mation product from one actor to another. (With robots,
it is increasingly possible to automate such movement for
physical goods as well.)

4 DISCUSSION

The patterns of automation discussed above differ in the level of
automation, from individual support to complete automation. Much
of the rhetoric has focused on the final case, but research is also
needed on how to effectively do the former, hence our focus on
elucidating patterns of interaction and their implications for work.

Despite the differences, the patterns have a number of com-
monalities. First is a need for a sufficient volume and quality of
training materials and a sufficient regularity of the relationship
between inputs and outputs. If the task has many exceptions, an
ML might not be able to learn them, suggesting a decision-support
or blended-decision- making pattern. A particular challenge to the
blended-decision-making pattern is the ability of the ML to know
when it does not know and should defer the case to the human.
Finally, if the task is not stable, automation will be challenging.

A second common issue has been transparency of decision mak-
ing. In all of the models, there is a need for human workers to
maintain awareness of the system’s performance. Human under-
standing of the whole system is needed to ensure that first, the
agents (human and AI) collaborate in a safe manner, comprehend-
ing each other’s intentions and actions; second, the automation of
certain activities does not obstruct implicit coordination with other
tasks; and third, humans still pay attention to the tasks, even when
not directly performing them. All of these issues are tied up in the
need to design a usable interface between the system and humans
that informs without overwhelming.

A third issue as automation increases is to identify the circum-
stances under which is reasonable for humans to be able to veto

the machine. These interventions may decrease the reproducibil-
ity of the task (and so face managerial opposition), but they also
acknowledge that the automated system may not have complete
information. Visibility and agency are tightly coupled, because the
former is necessary to be able to implement the latter. We note that
a human worker may technically have the authority to make the fi-
nal decision (i.e., the system nominally follows the decision-support
pattern) but face obstacles to exercising the authority, resulting in
complete automation in practice (i.e., the human reduced to the
“voice of the system” [10, p. 934]). The pressure to follow the system
could be from internal management or external forces. For exam-
ple, a doctor who decides to ignore the advice of a medical expert
system could feel at risk for a malpractice suit for not following
its encapsulated “best practice”. In such a situation, a doctor might
feel forced to cede authority to the system or view doing so as an
easier option. Or even more simply, the design of the system may
make it practically impossible to exert control, e.g., by not expos-
ing sufficient detail about the situation or not providing effective
controls to override a decision.

A fourth issue, from a practice perspective, concerns the role of
organization design in ML implementation projects. Implementing
ML systems means redesigning the organizational processes and
redefining communication and coordination flows both at implicit
and explicit level. Shifting from a human to a system performing
some task requires not only technological skills and competencies
but also an organizational assessment of the nature of the task
being redesigned, with a specific analysis of its dependencies, both
the existing ones and those that will emerge with the automation.
Moreover, applying ML to specific tasks might also lead to the
design of tasks that were not needed before. For example, consider
the design of autonomous vehicles: when the driver is human,
there is a legitimate assumption that s/he will pay attention while
driving, while with an autonomous vehicle, there will be the need
to motivate the human-driver to pay attention (e.g., if hands are
not on the wheel, sound an alarm).

4.1 Recommendations for practice

Our conclusion is that designers have to distinguish between the
automation of single information-processing tasks and the automa-
tion of work, considered as an interlacement of interdependent
tasks, and that there are different options for how the automation is
implemented, as described above. Necessary conditions regarding
the data to apply ML solutions to both tasks and work coincide:
1) input data must be digitized; 2) data volume should be high,
including known correct answers to train from; 3) data variety
should be at least medium to make ML attractive and feasible; and
4) data velocity should be high to justify automation. The lack of
one of these conditions would suggest the application of different
solutions to that automation problem.

Considering single-task automation, in decision-support sys-
tems, the ML enables the system to anticipate the emergence of
an event, warning humans and possibly providing them a set of
corrective actions to take. Even better, such systems might enable
a more proactive role for humans: not simply reacting to an event,
but able to address the issue while or before it occurs. In this sce-
nario, task analyzability can be medium-low or medium because



Table 1: Mapping data and task characteristics to conditions for applicability of ML

Dimension Variable State Implications for use of ML
Type Digitized Necessary condition for ML: Data must be digital to be processed by
ML
Data
Volume High Necessary condition for ML: Sufficient data required for ML training
Variety Medium Low variety can be handled with a simpler algorithm (e.g. if-then); too
high variety makes ML difficult to implement
Velocity High Low velocity would not provide a payback for implementing ML
ek Analyzability High Highly analyzable tasks are easier to automate
asxs Medium Consider implementing as decision support to incorporate human
judgement
Varijety (task excep- Medium High number of different actions may be problematic both for ML
tions) training and precision of recommendation
Task Relationships: ~ Expressibility of task High Features on which to match tasks to resources or workers need to be
Shared input and resource charac- explicit
dependence teristics
Expressibility of con- High Inputs to and outputs from automated systems need to be made explicit;
Task Relationships:  sumer needs eliciting tacit information is difficult for a system
Flow dependence Volume of data about High System needs data about consumers if it is to infer needs rather require
consumer them to be given
Dependence Low Automating a task requires changes to interdependent tasks (note
that dependencies may not be explicit); difficult with high level of
dependence
Visibility of process =~ Medium to high Workers need visibility into automated processes to monitor perfor-

mance and avoid automation surprises

the uncertainty about activities will be addressed by the human
intervention. Similarly, task variety can be higher since exceptions
can be handled by humans. We note that many of our examples fall
into this category, in part for the reasons above, and in part because
it is easier to have a system advise a human on what action to take
than for it to take action itself.

In blended decision-making systems, ML is able to autonomously
take care of routine activities, executing all the actions needed to
resolve an issue. The system will provide a fast and accurate solu-
tion to recurrent problems, allowing humans to focus their effort
on the exceptions and less obvious issues. In this case, tasks ana-
lyzability should be medium-high or high because the ML system
should be able to process the task information and execute actions
without human intervention in a large part of the cases. However,
task variety can be medium or medium-high since routine tasks
(those with few exceptions) will be autonomously managed by the
machine, while others are addressed to human attention.

In full task automation systems, humans intervene only to man-
age few exceptions, while the machine will autonomously collect
and analyze information, make a decision and execute an action. In
this case the designer will be in a scenario with high analyzability
and low task-variety or she should try to adjust the organizational
environment towards those conditions.

Considering next work automation across multiple tasks, in de-
cision support systems, dependencies between the automated task
and the rest of the work-activities pose less of a concern because the
decision will be carried out by humans and their capabilities and be-
haviour can serve as a buffer for the interdependent tasks. The main
issues with ML automation will thus concern the human-computer
interaction for the individual task.

In blended decision-making, some task outputs are autonomously
processed by the machine without human intervention. In these
cases, coordination should be carefully designed since the other
tasks in the work-process will need to be interfaced with a machine-
based output rather than a human being or artefact. At the same
time the work process should also be able to function when hu-
mans make decisions and execute actions, since this scenario also
happens. In this scenario the outputs will likely increase the data
variety of the subsequent interdependent tasks.

Finally, in full task automation systems, the whole work process
should be re-designed to have a minimum human intervention. In
this scenario, the designer should focus on the hidden embedded
tasks that humans perform while working and that should be made
explicit when the automation is on full scale. Table 1 summarizes
our recommendations mapping from data, task and task relationship
characteristics to the possibility of applying ML.



5 CONCLUSION

The analysis of the articles in this paper was a pilot of the concep-
tual framework, with several possibilities for improvement. Many
of the examples given are drawn from the popular press. A short-
coming of relying on such articles is that few discuss impacts of
the system on workers in any detail. More detailed case studies are
needed to establish these connections. A particular focus should
be on the nature of the interface needed for the human worker to
be able to interact effectively with the automation. A limitation
of our analysis is that we have considered tasks atomically, as ei-
ther automated or not, which does not illuminate possibilities for
continuous interaction as humans carry out a task with system
support, e.g., the way a modern spell checker autonomously and
in real time corrects spelling mistakes as a person is typing. The
framework developed in this paper may need to be extended to
cover this kind of interaction. Finally, further analysis is needed
of multiple intersecting tasks, not just pairs, e.g., when tasks are
composed of multiple subtasks. As well, many tasks are performed
by or with teams rather than solely by individuals, so research is
needed to identify how a system can be an effective team mem-
ber, performing a task that is interdependent with multiple human
workers, not just one.

A final message of this paper is that, contrary to the rhetoric of
an inevitable “march of automation”, there are a variety of options
for how automated systems can be used with differing impacts on
jobs. The decision about which pattern to follow is partly driven by
nature of the task and the work process in which it is embedded and
partly by the increasing system capabilities. Designers should resist
technological determinism, that is, to assume that technologies
naturally evolve in given directions. They should be aware of how
technological capabilities interact with managerial decisions about
how technologies should be deployed, such as decisions about the
desired locus of decision making. Designers should strive for a fit
between system characteristics and the characteristics of the set-
ting in which the automation is introduced. Our conceptual model
can support designers in identifying different possible patterns of
relationships between humans and machines, proposing a range
of different scenarios for automation (not only the all-or-nothing
cases) in which the deployment of the ML system is integrated with
the work redesign.
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