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POLYNOMIAL PRECONDITIONED ARNOLDI WITH STABILITY
CONTROL\ast 
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Abstract. Polynomial preconditioning can improve the convergence of the Arnoldi method for
computing eigenvalues. Such preconditioning significantly reduces the cost of orthogonalization; for
difficult problems, it can also reduce the number of matrix-vector products. Parallel computations
can particularly benefit from the reduction of communication-intensive operations. The GMRES
algorithm provides a simple and effective way of generating the preconditioning polynomial. For some
problems high degree polynomials are especially effective, but they can lead to stability problems that
must be mitigated. A two-level ``double polynomial preconditioning"" strategy provides an effective
way to generate high-degree preconditioners.
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1. Introduction. We seek eigenvalues and eigenvectors of a large (possibly non-
symmetric) n\times n matrix A. The restarted Arnoldi algorithm [28, 34] (invoked by the
eigs command of MATLAB) is a standard workhorse for such problems, but for
some matrices convergence is slow. One can improve convergence via a shift-invert
transformation, i.e., applying the algorithm to (A  - \mu I) - 1 to find eigenvalues near
\mu \in C. Here we investigate an effective alternative that does not need any explicit
inversion of A. Our new polynomial preconditioned Arnoldi method is fairly simple to
implement and can accelerate convergence for difficult problems.

When applied to the matrix A and starting vector v, the Arnoldi algorithm ap-
proximates eigenvalues using Rayleigh--Ritz estimates from the Krylov subspace

(1.1) \scrK m(A, v) \equiv span\{ v,Av, . . . , Am - 1v\} .

Any vector x in this space, including the approximate eigenvectors, can be written as
x = \omega (A)v for some \omega \in \scrP m - 1, where \scrP s denotes the set of polynomials of degree s
or less. The Arnoldi process builds an orthonormal basis for the subspace (1.1) via a
Gram--Schmidt process, requiring many inner products as m grows.

Polynomial preconditioning methods [15, 16, 27, 29, 30, 32, 37] apply the Arnoldi
algorithm to the matrix \pi (A) for some polynomial \pi \in \scrP d. Now eigenvalue estimates
are drawn from the Krylov subspace

(1.2) \scrK m(\pi (A), v) = span\{ v, \pi (A)v, . . . , \pi (A)m - 1v\} ,
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A2 MARK EMBREE, JENNIFER A. LOE, AND RONALD MORGAN

a subspace of \scrK d(m - 1)+1(A, v). The large subspace \scrK d(m - 1)+1(A, v) contains bet-
ter approximations to the desired eigenvectors of A than does \scrK m(A, v). A poly-
nomial preconditioner \pi is effective if the low-dimensional subspace \scrK m(\pi (A), v) \subseteq 
\scrK d(m - 1)+1(A, v) contains such improved estimates of the desired eigenvectors.

More specifically, any x \in \scrK m(\pi (A), v) can be written as x = \omega (\pi (A))v, where
\omega \in \scrP m - 1. Since \omega \circ \pi \in \scrP d(m - 1), polynomial preconditioning leads to eigenvector
estimates that are high-degree polynomials in A. This feature comes at a cost, since
\pi (A) must be applied to a vector each time the subspace dimension m is increased.
In typical high-performance computing environments these matrix-vector products
can be evaluated more efficiently than inner products, which require significant com-
munication and synchronization. Thus the subspace (1.2) can be constructed much
more efficiently (in terms of both work and storage) than building out a standard
Krylov subspace (1.1) of dimension d(m  - 1) + 1. In summary, polynomial precon-
ditioning gives an efficient way to involve high-degree polynomials, while controlling
the dimension of the subspace and limiting the cost of orthogonalization.

What is a good choice for the preconditioning polynomial \pi ? Section 2 describes
one choice for \pi , inspired by the GMRES algorithm. By the spectral mapping the-
orem, any eigenvalue \lambda of A is mapped to an eigenvalue \pi (\lambda ) of \pi (A). As the con-
vergence theory in section 3 indicates, effective preconditioners separate the desired
eigenvalues from the undesired ones.

Polynomial preconditioning is a special kind of spectral transformation, in which
the Arnoldi algorithm is applied to f(A) for some function f that maps the desired
eigenvalues of A to the largest magnitude eigenvalues of f(A); see, e.g., [19]. Typ-
ically such transformations involve a matrix inverse. One might seek a polynomial
preconditioner \pi that mimics a more complicated f(A). For example, Thornquist [38]
advocates \pi (A) \approx (A - \mu I) - 1. Here we do not seek \pi that approximates (A - \mu I) - 1,
but merely one that distances the desired eigenvalues from the rest of the spectrum.

Although methods for polynomial preconditioning have been proposed in the past,
they are not generally used in practice. To become popular, a polynomial precondi-
tioner must be both effective and easy to implement. We shall also explore stability,
an important consideration for practical algorithms.

Section 2 discusses the choice of the GMRES (minimum residual) polynomial for
the preconditioning, followed by some convergence theory in section 3. Numerical
experiments begin in section 4 and suggest several practical issues that a robust algo-
rithm should address. Section 5 studies the sensitivity of \pi to the choice of GMRES
starting vector, while section 6 introduces a ``damped"" polynomial and discusses when
it will be useful. Section 7 addresses numerical stability, showing how the addition of
duplicate roots in \pi can control distant unwanted eigenvalues. Finally, section 8 de-
scribes double polynomial preconditioning, which enables the use of very large degree
polynomials. Throughout \| \cdot \| denotes the vector and matrix 2-norm.

2. Minimum residual polynomials. We seek the eigenvalues of A nearest the
origin.1 For the polynomial preconditioner \pi we use the minimum residual polyno-
mial [18, 23] that arises when solving the linear system Ax = b using the GMRES
algorithm [33] (or MINRES for symmetric A [25]). This polynomial satisfies

\| \pi (A)b\| = min
p\in \scrP d

p(0)=1

\| p(A)b\| ,

1If one seeks eigenvalues near \mu \in C, replace A with A  - \mu I. If \mu is in the interior of the
spectrum, note that | \pi (z)| is less likely to attain its maximum over the spectrum at \mu . The challenge
of computing interior eigenvalues arises in Example 2 and is the subject of future work.
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POLYNOMIAL PRECONDITIONED ARNOLDI A3
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Fig. 2.1. GMRES polynomials \pi (z) (red lines) tend to separate eigenvalues closest to the origin,
while mapping large-magnitude eigenvalues of A close to zero. The black dots and horizontal gray
lines show the values of \pi (\lambda j).

and hence \pi \in \scrP d must satisfy \pi (0) = 1; | \pi (z)| will generally be small over the
spectrum of A.2 Denote the eigenvalues of A as \sigma (A) = \{ \lambda j\} , so the eigenvalues
of \pi (A) are \{ \pi (\lambda j)\} . If GMRES converges quickly, then \| \pi (A)b\| is small, and the
eigenvalues of \pi (A) are typically concentrated near 0. However, the condition \pi (0) = 1
means that \pi is generally not able to map the small eigenvalues of A as close to
zero, making these eigenvalues better separated in the spectrum of \pi (A). Figure 2.1
illustrates this point, using a symmetric A with 20 eigenvalues logarithmically spaced
in the interval [10 - 3, 0.9] and 80 eigenvalues uniformly spaced in the interval [1, 2];
we seek a few of the smallest eigenvalues. Figure 2.1 shows \pi (z) for degree d = 1, 2, 4,
and 8 (red lines) and the values of \pi (\lambda j) (black dots and gray lines). Since the small
eigenvalues of A are near the origin (where \pi (0) = 1), \pi (\lambda j) is large for these values,
while \pi (\lambda j) is small for the larger eigenvalues. Moreover, \pi separates the tightly
clustered eigenvalues near the origin. The desired eigenvalues of \pi (A) (nearest 1)
will be easier for Arnoldi to compute than the corresponding (smallest) eigenvalues
of A. Figure 2.1 also hints at a complication: when the degree is large, the map \pi 
entangles some of the larger eigenvalues from the interval [10 - 3, 0.9] with those from
[1, 2].

The GMRES polynomial \pi is easy to construct in factored form. To find its
roots, run a cycle of GMRES(d) and compute the harmonic Ritz values [12, 20, 22,
24] (reciprocals of Rayleigh--Ritz eigenvalue estimates for A - 1 from A\scrK d(A, b)). For
numerical stability, label the roots using the modified Leja ordering [1, Alg. 3.1],
giving

(2.1) \pi (z) = (1 - z/\theta 1) \cdot \cdot \cdot (1 - z/\theta d).

A quick listing of the algorithm follows.

2This form allows one to write \pi (z) = 1  - z\varphi (z) for some \varphi \in \scrP d - 1. Then 0 \approx \pi (A)b =
(I  - A\varphi (A))b suggests that \varphi (A) \approx A - 1. Thornquist uses this \varphi as the polynomial preconditioner,
replacing A with A - \mu B for generalized eigenvalue problems [38].
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A4 MARK EMBREE, JENNIFER A. LOE, AND RONALD MORGAN

Polynomial Preconditioned Arnoldi
with GMRES Polynomial of Degree \bfitd 

1. Construction of the polynomial preconditioner, \bfitpi :
(a) Run one cycle of GMRES(d).
(b) Find the harmonic Ritz values, \theta 1, . . . , \theta d, the roots of the GMRES poly-

nomial: given the Arnoldi decomposition AVd = Vd+1Hd+1,d, find the
eigenvalues of Hd,d + h2d+1,d fe

T
d , where f = H - \ast 

d,ded with elementary

coordinate vector ed = [0, . . . , 0, 1]T .
(c) Order the GMRES roots with modified Leja ordering [1, Alg. 3.1]. (For

guidance on handling underflow or overflow, see [11, p. 4].)

2. PP-Arnoldi: Apply restarted Arnoldi to the matrix \pi (A) = \Pi di=1(I - A/\theta i).
(The experiments in sections 4--8 use a thick-restarted Arnoldi method with
exact shifts [21, 22, 35, 40].)

3. Convergence theory for polynomial preconditioning. Let \sigma (A) denote
the spectrum of A. We seek some subset \Sigma := \{ \lambda 1, . . . , \lambda k\} of \sigma (A), typically those
eigenvalues having smallest magnitude. The eigenvalues in \Sigma should be listed with
their full multiplicity, but we presume that the eigenvalues in \Sigma are nonderogatory
(i.e., there exists only one linearly independent eigenvector for each distinct eigenvalue
in \Sigma ); this assumption is standard for Krylov subspace convergence theory, required
because of the concept of reachable invariant subspaces [3, 4].

3.1. Polynomial preconditioning in a simple setting. Polynomial precon-
ditioning using the GMRES residual polynomial is a sophisticated algorithm that is
challenging to analyze in fine detail. To indicate why it works, in this subsection we
study the simple case of Hermitian A and degree d = 2 polynomial, before presenting
more general but less detailed analysis in the subsequent subsections.

Suppose A is Hermitian with positive eigenvalues \lambda 1 < \lambda 2 < \cdot \cdot \cdot < \lambda n, and we
seek to compute \lambda 1 using the standard Arnoldi (Lanczos) method. We can bound
convergence at the mth step using a polynomial \phi \in \scrP m satisfying \phi (\lambda 1) = 1, with
magnitude as small as possible over [\lambda 2, \lambda n]. Standard theory (e.g., [28, Thm. 2.2],
[31, sect. 6.11], [32, Chap. 6]) uses Chebyshev polynomials to bound convergence of
the Ritz residual at the mth step by C\rho m, with constant C and asymptotic rate3

(3.1) \rho \equiv 
\surd 
K  - 1\surd 
K + 1

, K \equiv \lambda n  - \lambda 1
\lambda 2  - \lambda 1

.

Does polynomial preconditioning improve this asymptotic rate? Suppose we apply
the Arnoldi algorithm to the matrix \pi (A) for the quadratic GMRES polynomial

\pi (z) =
\Bigl( 
1 - z

\theta 1

\Bigr) \Bigl( 
1 - z

\theta 2

\Bigr) 
.

Here \theta 1 and \theta 2 are the harmonic Ritz values4 from \scrK 2(A, b) for some b, labeled

\lambda 1 \leq \theta 1 \leq \theta 2 \leq \lambda n.

3Here K behaves like the condition number of a matrix, and the convergence rate resembles that
obtained for the conjugate gradient algorithm with the origin shifted to \lambda 1.

4Since harmonic Ritz values are reciprocals of standard Ritz values for A - 1 (from the space
A\scrK 2(A, b)) and A is Hermitian, 1/\theta 1 and 1/\theta 2 must fall between the extreme eigenvalues of A - 1,
i.e., in [1/\lambda n, 1/\lambda 1]. Thus their reciprocals, the harmonic Ritz values, are located in [\lambda 1, \lambda n]. For
more details, see [2]; the situation is more complicated for non-Hermitian problems.
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POLYNOMIAL PRECONDITIONED ARNOLDI A5

0
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\pi (z)

z

0\lambda 1 \lambda 2 \theta 1 z \star \lambda  \star \theta 2 \lambda n

\pi (\lambda 1)

\pi (\lambda 2)

\pi (\lambda n)

\pi (z \star )

Fig. 3.1. The quadratic polynomial \pi (z), which attains its minimum at z \star \in [\lambda 1, \lambda n].

To show that polynomial preconditioning is effective, we must argue that \pi (\lambda 1) is
better separated from the rest of the spectrum of \pi (A) than \lambda 1 was from the rest
of the spectrum of A, i.e., we should show that Arnoldi finds \pi (\lambda 1) with a faster
convergence rate than the standard approach.

Figure 3.1 illustrates the setting. The location of the unwanted eigenvalues of
\pi (A) relative to \pi (\lambda 1) determines the convergence rate. We must bound the unwanted
eigenvalues in an interval that does not contain \pi (\lambda 1).

\bullet Complications arise if \pi (\lambda 1) < \pi (\lambda n), in which case the desired eigenvalue
\pi (\lambda 1) is in the interior of the spectrum of \pi (A). We seek conditions that
eliminate this possibility. In fact, we prefer the stronger condition \pi (\lambda 2) \geq 
\pi (\lambda n), to ensure \pi (\lambda 2) is the eigenvalue of \pi (A) closest to \pi (\lambda 1). Simple
algebra reduces \pi (\lambda 2) \geq \pi (\lambda n), that is,\Bigl( 

1 - \lambda 2
\theta 1

\Bigr) \Bigl( 
1 - \lambda 2

\theta 2

\Bigr) 
\geq 

\Bigl( 
1 - \lambda n

\theta 1

\Bigr) \Bigl( 
1 - \lambda n

\theta 2

\Bigr) 
,

to the condition5

\theta 1 + \theta 2 \geq \lambda 2 + \lambda n,

suggesting a practical way to deter difficulties: compute degree-2 GMRES
polynomials for a few b, and select the one that maximizes \theta 1+ \theta 2. (This can
be done without knowledge of the eigenvalues of A.)

\bullet To bound the spectrum of \pi (A), we must know its most negative extent,

min
\lambda \in \{ \lambda 2,...,\lambda n\} 

\pi (\lambda ).

Suppose this minimum is attained for \lambda = \lambda  \star . For later use, we will also
consider the global minimum of \pi (z), which gives a lower bound on \pi (\lambda ) for
\lambda \in \sigma (A). Setting the derivative of \pi to zero yields the global minimizer

z \star =
\theta 1 + \theta 2

2
,

5If we merely have that \theta 1+\theta 2>\lambda 1+\lambda n, the method will still converge, but \pi (\lambda n) will determine
the asymptotic rate, rather than \pi (\lambda 2).
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A6 MARK EMBREE, JENNIFER A. LOE, AND RONALD MORGAN

attaining the minimum

\pi (z \star ) =
1

2
 - \theta 21 + \theta 22

4\theta 1\theta 2
.

Provided \theta 1 + \theta 2 \geq \lambda 2 + \lambda n, the unwanted eigenvalues of \pi (A) fall in the interval\bigl[ 
\pi (\lambda  \star ), \pi (\lambda 2)

\bigr] 
\subseteq 

\bigl[ 
\pi (z \star ), \pi (\lambda 2)

\bigr] 
.

The quadratic polynomial preconditioned Arnoldi convergence rate is thus

\widehat \rho :=

\sqrt{} \widehat K  - 1\sqrt{} \widehat K + 1
, \widehat K \equiv \pi (\lambda 1) - \pi (\lambda \ast )

\pi (\lambda 1) - \pi (\lambda 2)
\leq \pi (\lambda 1) - \pi (z\ast )

\pi (\lambda 1) - \pi (\lambda 2)
.

Substituting the formula \pi (z) = 1 - z(\theta 1 + \theta 2)/(\theta 1\theta 2) + z2/(\theta 1\theta 2) into the expression

for \widehat K and simplifying leads to the appealing formula

\widehat K =
(\theta 1 + \theta 2)(\lambda  \star  - \lambda 1) + (\lambda 21  - \lambda 2 \star )

(\theta 1 + \theta 2)(\lambda 2  - \lambda 1) + (\lambda 21  - \lambda 22)

=

\biggl( 
\lambda  \star  - \lambda 1
\lambda 2  - \lambda 1

\biggr) \biggl( 
\theta 1 + \theta 2  - (\lambda 1 + \lambda  \star )

\theta 1 + \theta 2  - (\lambda 1 + \lambda 2)

\biggr) 

=

\biggl( 
\lambda  \star  - \lambda 1
\lambda 2  - \lambda 1

\biggr) \biggl( 
1 - \lambda  \star  - \lambda 2

\theta 1 + \theta 2  - (\lambda 1 + \lambda 2)

\biggr) 
.

Compare this \widehat K to the earlier factor K in (3.1) for the standard Arnoldi method
without preconditioning:

K =
\lambda n  - \lambda 1
\lambda 2  - \lambda 1

.

Smaller values of K and \widehat K give faster convergence rates \rho and \widehat \rho . Since \lambda \ast \leq \lambda n,

\lambda  \star  - \lambda 1
\lambda 2  - \lambda 1

\leq \lambda n  - \lambda 1
\lambda 2  - \lambda 1

,

with equality holding only when \lambda  \star = \lambda n. Since further

1 - \lambda  \star  - \lambda 2
\theta 1 + \theta 2  - (\lambda 1 + \lambda 2)

\leq 1,

with equality holding only when \lambda \ast = \lambda 2, we can conclude that \widehat K < K: quadratic
polynomial preconditioning will improve the convergence rate, under the mild condi-
tion \theta 1 + \theta 2 \geq \lambda 2 + \lambda n. This improved rate comes at the cost of two matrix-vector
products per iteration for the quadratically preconditioned case.

Is this improvement reflected in practice? Take a simple example with A =
diag(1, 2, 3, . . . , 1000), giving K = 999. The value of \widehat K varies, but the average for

10 trials with random starting vectors b is much smaller, \widehat K \approx 302. Ten trials using
the restarted Arnoldi method with quadratic polynomial preconditioning (with max-
imum subspace dimension 10, keeping 1 Ritz value at restart) to find \lambda 1 = 1 took an
average of 851 matrix-vector products, compared to an average of 1298 matrix-vector
products with no polynomial preconditioning: simple quadratic preconditioning gives
a 34\% reduction. The results of these 10 tests vary considerably, from 688 to 954
matrix-vector products with polynomial preconditioning and from 991 to 1481 with-
out. However, \theta 1 + \theta 2 changes only between 1.1865 to 1.2217. The results seem more
correlated to the magnitude of the first component in the starting vector.
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POLYNOMIAL PRECONDITIONED ARNOLDI A7

3.2. Invariant subspace convergence theory. Now consider the general set-
ting. How does the preconditioned Arnoldi algorithm converge as the dimension of
the Krylov subspace increases? Especially for nonsymmetric A, the error in individual
eigenvalue estimates does not always decrease at a consistent rate. Thus we prefer
to analyze the rate at which the Krylov subspace ``captures"" the invariant subspace
(span of eigenvectors and generalized eigenvectors) associated with \Sigma \equiv \{ \lambda 1, . . . , \lambda k\} .

Let us make this notion precise. Let \scrU denote the maximal invariant subspace
associated with the desired eigenvalues \Sigma . Since none of these eigenvalues are deroga-
tory, dim(\scrU ) = k. The Arnoldi algorithm approximates \scrU by some Krylov subspace \scrV ,
whose dimension will generally exceed k. The containment gap (or just gap) between
\scrU and \scrV ,

(3.2) \delta (\scrU ,\scrV ) \equiv max
u\in \scrU 

min
v\in \scrV 

\| u - v\| 
\| u\| 

,

measures the sine of the largest canonical angle between \scrU and its best k-dimensional
approximation from \scrV . Note that \delta (\scrU ,\scrV ) \in [0, 1] with \delta (\scrU ,\scrV ) = 1 when dim(\scrV ) <
dim(\scrU ) = k: \scrV must have dimension at least k in order to approximate all of \scrU . For
additional properties of the gap, see [3, 6, 14].

For the polynomially preconditioned Arnoldi algorithm, the Krylov subspace
\scrK m(\pi (A), v) plays the role of \scrV . How does \delta (\scrU ,\scrK m(\pi (A), v)) depend on the choice
of \pi , the dimension m, and the starting vector v? We shall apply the convergence
theory from [4], which uses the following notation and assumptions.

(a) Label the desired eigenvalues as \lambda 1, . . . , \lambda k, allowing multiplicities. Assume
none of these eigenvalues are derogatory, and these eigenvalues are disjoint
from the rest of the spectrum \{ \lambda k+1, . . . , \lambda n\} .

(b) \scrU denotes the k-dimensional invariant subspace associated with \lambda 1, . . . , \lambda k.
(c) Pg denotes the spectral projector onto \scrU , so that Pb \equiv I  - Pg is the spectral

projector onto the invariant subspace associated with \lambda k+1, . . . , \lambda n.
(d) \Omega b is a compact subset of C that contains the eigenvalues \lambda k+1, . . . , \lambda n.
(e) \alpha g(z) \equiv (z  - \lambda 1) \cdot \cdot \cdot (z  - \lambda k) is the component of the minimal polynomial of

A associated with the desired eigenvalues.
For the sake of comparison, we start with Theorem 3.3 of [4] for the standard Arnoldi
method applied to (A, v). For a Krylov subspace of dimension m \geq 2k,

(3.3) \delta (\scrU ,\scrK m(A, v)) \leq 
\biggl( 

max
\psi \in \scrP k - 1

\| \psi (A)Pbv\| 
\| \psi (A)Pgv\| 

\biggr) 
\kappa A(\Omega b) min

p\in \scrP m - 2k

max
z\in \Omega b

| 1 - \alpha g(z)p(z)| .

This bound has three ingredients.
\bullet The starting vector v only appears in the constant

C1 \equiv max
\psi \in \scrP k - 1

\| \psi (A)Pbv\| 
\| \psi (A)Pgv\| 

.

If k = 1, C1 = \| Pbv\| /\| Pgv\| gauges the bias of v toward the desired invariant
subspace. For k > 1, the eigenvalues of A also influence C1. For additional
details about this constant, see [3, sect. 5.1].

\bullet The constant
C2 \equiv \kappa A(\Omega b) \geq 1

is a measure of the nonnormality of A associated with the unwanted eigenval-
ues. If A is symmetric, then \kappa A(\Omega b) = 1. For nonnormal A, enlarging \Omega b to
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A8 MARK EMBREE, JENNIFER A. LOE, AND RONALD MORGAN

contain points beyond \lambda k+1, . . . , \lambda n typically reduces \kappa A(\Omega b). For a detailed
discussion of this constant, see [3, sect. 5.2].

\bullet As the Krylov subspace dimension m grows, the approximation problem

(3.4) min
p\in \scrP m - 2k

max
z\in \Omega b

| 1 - \alpha g(z)p(z)| 

gives the mechanism for convergence. The minimization problem seeks poly-
nomials that approximate 1/\alpha g(z) = (z  - \lambda 1)

 - 1 \cdot \cdot \cdot (z  - \lambda k)
 - 1 over z \in \Omega b.

The convergence of this polynomial approximation problem depends on the
proximity of \Omega b to the desired eigenvalues \lambda 1, . . . , \lambda k. Better separation be-
tween the desired and undesired eigenvalues yields faster convergence.

3.3. Convergence theory for polynomial preconditioning. Polynomial pre-
conditioning alters the convergence bound (3.3), replacing A by \pi (A). Note that if
\pi maps two distinct eigenvalues \lambda j \not = \lambda \ell to exactly the same point, \pi (\lambda j) = \pi (\lambda \ell ),
then the theory of reachable invariant subspaces [4, sect. 2.1] dictates that the Krylov
subspace \scrK m(\pi (A), v) cannot contain both eigenvectors associated with \lambda j and \lambda k (it
will typically contain a one-dimensional subspace of their span). Thus, we must avoid
the case where any eigenvalue \pi (\lambda 1), . . . , \pi (\lambda k) is derogatory.

Theorem 3.1. Suppose \pi (\lambda 1), . . . , \pi (\lambda k) are nonderogatory eigenvalues of \pi (A),
and \{ \pi (\lambda 1), . . . , \pi (\lambda k)\} \cap \{ \pi (\lambda k+1), . . . , \pi (\lambda n)\} = \emptyset . Using the notation established
above, the gap between the desired invariant subspace \scrU (associated with the non-
derogatory eigenvalues \lambda 1, . . . , \lambda k of A) and the polynomially-preconditioned Krylov
subspace \scrK m(\pi (A), v) for m \geq 2k satisfies

\delta (\scrU ,\scrK m(\pi (A), v)) \leq 
\biggl( 

max
\psi \in \scrP k - 1

\| \psi (\pi (A))Pbv\| 
\| \psi (\pi (A))Pgv\| 

\biggr) 
\kappa \pi (A)(\Omega 

\pi 
b ) min

p\in \scrP m - 2k

max
z\in \Omega \pi 

b

| 1 - \alpha \pi g (z)p(z)| .

Here \Omega \pi b is a compact subset of C that contains \pi (\lambda k+1), . . . , \pi (\lambda n), and

\alpha \pi g (z) :=
\bigl( 
z  - \pi (\lambda 1)

\bigr) 
\cdot \cdot \cdot 

\bigl( 
z  - \pi (\lambda k)

\bigr) 
.

For this bound to converge, \pi must map the desired eigenvalues outside \Omega \pi b :

\{ \pi (\lambda j)\} kj=1 \cap \Omega \pi b = \emptyset .

Since the spectral projectors are invariant under the transformation A \mapsto \rightarrow \pi (A) (pro-
vided the desired and undesired eigenvalues remain disjoint under \pi ), Pb and Pg are
the same for A and \pi (A).

Consider the simplest case: seeing k = 1 eigenvalue of a symmetric A. Since k = 1,
the constants in (3.3) and Theorem 3.1 that involve v are just C1 = \| Pbv\| /\| Pgv\| .
Since A is symmetric, C2 = \kappa A(\Omega b) = \kappa \pi (A)(\Omega 

\pi 
b ) = 1. The only difference in the

convergence bounds in (3.3) and Theorem 3.1 then comes from the polynomial ap-
proximation problems. As suggested by Figures 2.1 and 3.1, the map \pi can effectively
separate the desired eigenvalues from the rest of the spectrum, making it possible that

min
p\in \scrP m - 2k

max
z\in \Omega \pi 

b

| 1 - \alpha \pi g (z)p(z)| \ll min
p\in \scrP m - 2k

max
z\in \Omega b

| 1 - \alpha g(z)p(z)| .

Keep A symmetric but allow general k \geq 1. Presuming that \pi has real coefficients
(ensuring \pi (\sigma (A)) \subset R), denote

\Omega \pi b \equiv 
\Bigl[ 

min
k+1\leq j\leq n

\pi (\lambda j), max
k+1\leq j\leq n

\pi (\lambda j)
\Bigr] 
\subset R.
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POLYNOMIAL PRECONDITIONED ARNOLDI A9

Table 3.1
Asymptotic convergence rates for various polynomial degrees d, for the example in Figure 2.1

with k = 5 desired eigenvalues. The first row is for standard Arnoldi, \pi (A) = A. The set \Omega \pi 
g is the

smallest interval that contains \{ \pi (\lambda j)\} kj=1, while \Omega \pi 
b is the smallest interval that contains the map

of the unwanted eigenvalues, \{ \pi (\lambda j)\} nj=k+1. When \Omega \pi 
b and \Omega \pi 

g overlap, we set \rho = 1.

d \Omega \pi 
g \Omega \pi 

b \rho \rho 1/d

standard [0.0010, 0.0042] [ 0.0060, 2.0000] 0.9416
1 [0.9973, 0.9993] [ - 0.3055, 0.9961] 0.9416 0.9416
2 [0.9936, 0.9985] [ - 0.0705, 0.9908] 0.9030 0.9503
3 [0.9840, 0.9962] [ - 0.2018, 0.9772] 0.8589 0.9506
4 [0.9690, 0.9925] [ - 0.4384, 0.9557] 0.8232 0.9525
5 [0.9529, 0.9886] [ - 0.4155, 0.9329] 0.7845 0.9526
6 [0.9292, 0.9829] [ - 0.4102, 0.8994] 0.7407 0.9512
7 [0.9063, 0.9772] [ - 0.4036, 0.8673] 0.7057 0.9514
8 [0.8753, 0.9695] [ - 0.3909, 0.8240] 0.6650 0.9503

16 [0.5563, 0.8830] [ - 0.3501, 0.4002] 0.4134 0.9463
24 [0.1046, 0.7217] [ - 0.3096, 0.2434] 1.0000 1.0000

Let \lambda \ast \in \{ \lambda 1, . . . , \lambda k\} denote the desired eigenvalue that is mapped closest to \Omega \pi b :

dist(\pi (\lambda \ast ),\Omega 
\pi 
b ) = min

1\leq j\leq k
dist(\pi (\lambda j),\Omega 

\pi 
b ) = min

1\leq j\leq k
min
z\in \Omega \pi 

b

| \pi (\lambda j) - z| .

Supposing that \pi (\lambda \ast ) \not \in \Omega \pi b , define

(3.5) K \equiv 
maxz\in \Omega \pi 

b
| \pi (\lambda \ast ) - z| 

minz\in \Omega \pi 
b

| \pi (\lambda \ast ) - z| 
\geq 1.

Then using standard Chebyshev approximation theory [31, sect. 6.11] (cf. (3.1)), the
polynomial approximation problem in Theorem 3.1 converges at the asymptotic rate

(3.6) \rho \equiv 
\surd 
K  - 1\surd 
K + 1

\in [0, 1),

meaning that there exists some constant C > 0 such that for all m \geq 2k,

min
p\in \scrP m - 2k

max
z\in \Omega \pi 

b

| 1 - \alpha \pi g (z)p(z)| \leq C\rho m.

Table 3.1 compares this convergence rate \rho for the standard Arnoldi method (first
row, \pi (z) = z) to the convergence obtained for minimum residual polynomials \pi of
increasing degree d for the symmetric A used in Figure 2.1. We seek the k = 5
smallest magnitude eigenvalues of A. (When d = 1, the shift-invariance property of
the Krylov subspace implies that polynomial preconditioning and standard Arnoldi
generate the same approximation subspace: \scrK m(\pi (A), v) = \scrK m(A, v).) Note that the
fastest convergence rate per polynomial degree, \rho 1/d, is obtained for the standard case
(or d = 1). This is expected: the preconditioned space \scrK m(\pi (A), v) only contains
a small part of the much larger space \scrK d(m - 1)+1(A, v). However, the preconditioned
method achieves its convergence rate while using subspaces of much lower dimension.

3.4. The effect of restarting on convergence. To obtain accurate eigenvalue
estimates while limiting the dimension m of the Krylov subspace (1.1), the Arnoldi
algorithm is restarted [28, 34]. We begin by describing the standard restarted Arnoldi
algorithm with no preconditioning. After taking m steps of the Arnoldi process with
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A10 MARK EMBREE, JENNIFER A. LOE, AND RONALD MORGAN

the matrix A and starting vector v0 \equiv v (the first cycle), the method runs a fresh
set of m steps with the same A but a new starting vector, v1. In general, cycle c+ 1
takes m Arnoldi steps with A and starting vector vc. These new starting vectors are
formed using polynomial restart methods [28, 29, 34]: given some positive integer
r \leq m - k, such methods construct vc = \phi c(A)vc - 1, where \phi c \in \scrP r. Aggregate these
starting vectors to get vc = \Phi c(A)v for \Phi c \equiv \phi 1 \cdot \cdot \cdot \phi c \in \scrP cr, so that cycle c+1 of the
restarted Arnoldi method uses the Krylov subspace

(3.7) \scrK m(A,\Phi c(A)v) = span\{ \Phi c(A)v,A\Phi c(A)v, . . . , Am - 1\Phi c(A)v\} ,

generally an m-dimensional subspace of \scrK cr+m(A, v). For any x \in \scrK m(A,\Phi c(A)v)
there exists some \omega \in \scrP m - 1 such that

(3.8) x = \omega (A)\Phi c(A)v

with \omega \cdot \Phi c \in \scrP cr+m - 1. Like polynomial preconditioning, restarting with polynomial
filters gives access to elements in a high-degree Krylov subspace, while keeping the
overall subspace dimension low.

The convergence behavior will depend on the polynomial filters [3, 4]. While these
filters can be constructed from Chebyshev polynomials [29], filters built from ``exact
shifts"" (unwanted Ritz values) [34] are simpler and more widely used. Such shifts
always give convergence for symmetric A [34] (aside from pathological v0) and usually
work well for nonsymmetric A (though they can fail, in theory [9, 10]). Moreover,
these filters can be implemented stably using the implicitly restarted Arnoldi [34],
thick-restart Arnoldi [21, 22, 35, 40], and Krylov--Schur [36] algorithms. Since these
exact-shift filters are built up during each cycle of the restarted Arnoldi procedure,
they require numerous inner product evaluations.

Practical Arnoldi eigenvalue computations that use polynomial preconditioning
will also incorporate polynomial restarting, using the approximation space

\scrK m(\pi (A),\Phi c(\pi (A))v)

= span\{ \Phi c(\pi (A))v, \pi (A)\Phi c(\pi (A))v, . . . , \pi (A)m - 1\Phi c(\pi (A))v\} .(3.9)

Generally (3.9) is an m-dimensional subspace of \scrK d(cr+m - 1)+1(A, v). Now for any
x \in \scrK m(\pi (A),\Phi c(\pi (A))v) there exists a polynomial \omega \in \scrP m - 1 such that

(3.10) x = \omega (\pi (A))\Phi c(\pi (A))v,

so preconditioning gives access to vectors x that can be written in terms of a poly-
nomial ((\omega \circ \pi ) \cdot (\Phi c \circ \pi )) of degree d(cr +m - 1), i.e., d times larger than available
with restarting alone in (3.8).

How do preconditioning and restarting combine to affect convergence? We first
address this question by continuing the experiment started in Figure 2.1, seeking
the k = 5 smallest magnitude eigenvalues. Figure 3.2 compares convergence of the
polynomially preconditioned Arnoldi algorithm, with and without restarting. In the
top figures (no restarts), increasing the preconditioning polynomial degree d improves
the convergence, but increases the number of matrix-vector products involving A.
The bottom figures incorporate polynomial restarting, limiting the Krylov subspace
to having dimension m = 2k and using filter polynomials of degree r = k at each
cycle. Polynomial preconditioning improves convergence by a larger margin, enough
to now deliver convergence using fewer matrix-vector products.
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Fig. 3.2. Arnoldi iterations and matrix-vector products for various choices of d and k = 5
eigenvalues, for the example in Figure 2.1 without restarts (top) and with restarts using m = 2k
(bottom). Without restarts, standard Arnoldi requires more steps (top left) but fewer matrix-vector
products (top right). Restarting can give polynomial preconditioning another advantage, making it
faster in terms of both steps (bottom left) and matrix-vector products (bottom right).

By adapting [4, eq. (3.10)], we can also provide a bound on the gap between
the desired invariant subspace \scrU and the restarted Krylov subspace using polynomial
preconditioning. Suppose the aggregate polynomial filter \Phi c \in \scrP cr has R distinct
roots (the shifts), also distinct from the images of the desired eigenvalues, \Sigma \pi =
\{ \pi (\lambda 1), . . . , \pi (\lambda k)\} . Let \Psi c \in \scrP R - 1 interpolate 1/\alpha \pi g at these R points. Then

\delta (\scrU ,\scrK m(\pi (A),\Phi c(A)v))

\leq 
\biggl( 

max
\psi \in \scrP k - 1

\| \psi (\pi (A))Pbv\| 
\| \psi (\pi (A))Pgv\| 

\biggr) 
\kappa \pi (A)(\Omega 

\pi 
b ) max

z\in \Omega \pi 
b

| 1 - \alpha \pi g (z)\Psi c(z)| .(3.11)

If the roots of \Psi c are distributed throughout \Omega \pi b , we expect maxz\in \Omega \pi 
b
| 1 - \alpha \pi g (z)\Psi c(z)| 

to be small. Even for standard Arnoldi computations with nonsymmetric A, charac-
terizing the precise locations of the shifts has proved extremely challenging [5, 9, 10];
still, the bound (3.11) indicates how the polynomial preconditioner and the shifts can
combine to enhance convergence.

4. Experiments. How does polynomial preconditioning perform in practice? In
this section we explore two examples involving nonsymmetric A. Here and in future
sections, our experiments use the thick restarted Arnoldi method [22, 40], which we re-
fer to as Arnoldi(m, k): m denotes the largest subspace dimension and k < m denotes
the number of Ritz values kept at each restart.6 We seek the nev < k smallest mag-
nitude eigenvalues, leaving a buffer of k  - nev eigenvalues to accelerate convergence.

6All examples involve real matrices; to preserve real arithmetic during the restarting process,
sometimes k is temporarily reduced to k  - 1 to avoid splitting a conjugate pair of Ritz values.
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A12 MARK EMBREE, JENNIFER A. LOE, AND RONALD MORGAN

Each orthogonalization step is followed by a pass of reorthogonalization. Convergence
is tested at each Arnoldi cycle using the original matrix A: Let \nu 1, . . . , \nu m denote the
Ritz values for \pi (A) at the end of a cycle, ordered by increasing distance from 1
(| 1  - \nu 1| \leq | 1  - \nu 2| \leq \cdot \cdot \cdot \leq | 1  - \nu m| ), and let y1, . . . , ym \in Cn denote the associated
unit-norm Ritz vectors. Then the Rayleigh quotient \mu j \equiv y\ast jAyj gives an eigenvalue
estimate for A. When seeking nev < k eigenvalues, we require \| Ayj  - \mu jyj\| \leq rtol
for j = 1, . . . , nev, with rtol = \| A\| 10 - 8 unless otherwise stated. The reported op-
eration counts give a rough impression of the matrix-vector products with A, dot
products, and other vector operations (scalar multiplications and additions); these
counts will vary a bit with implementation details (e.g., reorthogonalization strategy,
which residuals are checked at each cycle, etc.). In each case, to explore robustness we
use a random starting vector b to generate \pi and a different random starting vector
v for the Arnoldi iterations. (In practice one might naturally use the same starting
vector to generate \pi and for the Arnoldi iterations.) We average our results over ten
trials, to minimize variation due to these starting vectors.

Example 1. Consider a finite difference discretization of a convection-diffusion
equation on the unit square with homogeneous Dirichlet boundary conditions. On the
bottom half of the square, the operator is  - uxx - uyy+20ux, and on the top,  - 100uxx - 
100uyy + 2000ux. We use five increasingly fine discretizations that give matrices of
size n = 2500, 10,000, 40,000, 160,000, and 640,000. These matrices are nonsymmet-
ric, but have real spectra; they exhibit a significant departure from normality: the
condition number of the eigenvector matrix computed by MATLAB is approximately
2.62\times 104 for n = 2500, and 3.73\times 104 for n = 10,000; for all these n, the Henrici num-
ber \| ATA - AAT \| /\| A\| 2 \approx 0.095. We seek the nev = 15 smallest magnitude eigenval-
ues and the corresponding eigenvectors using Arnoldi(50,20), meaning the maximum
subspace dimension is m = 50, and k = 20 Ritz vectors are saved at the restart.

Figure 4.1 compares regular Arnoldi(50,20) to degree d = 25 polynomial precon-
ditioned Arnoldi(50,20) for the five matrices, giving both the number of matrix-vector
products for convergence (left axis) and an estimate of the total cost (right axis). For
n = 2,500, polynomial preconditioning uses slightly more matrix-vector products. As
the matrix size increases and the eigenvalue problem becomes more difficult, polyno-
mial preconditioning becomes increasingly better in comparison. For n = 640,000,
regular Arnoldi averages 207,755 matrix-vector products, while polynomial precondi-
tioned Arnoldi with d = 25 only averages 63,017.

The computational cost is estimated as cost = nnzr\times mvps+vops, where nnzr \approx 5
is the average number of nonzeros per row in A, mvps is the number of matrix-vector
products, and vops is the number of length-n vector operations, such as dot products
and daxpys. Of course, the cost of an mvp compared to a vop depends on the com-
puter and implementation, but this rough estimate shows the potential for polynomial
preconditioning to reduce computational cost. In Figure 4.1, cost is associated with
the right axis (asterisks for regular Arnoldi, squares for d = 25). The axes are scaled
so the values on the left axis are one-fifth of the corresponding height on the right
axis, allowing one to see what portion of cost is due to mvps. For regular Arnoldi,
most matrix-vector products are accompanied by an orthogonalization step; precon-
ditioning uses more matrix-vector products (to compute \pi (A)v) relative to vector
operations. For this sparse A, vops dominate mvps for regular Arnoldi. Polynomial
preconditioning with d = 25 reduces the vops per matrix-vector product by a factor
of about 22 or 23 for all the n values shown here. With n = 2,500, the cost for reg-
ular Arnoldi is 654,079.52, but only 56,785.66 for polynomial preconditioning. With
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Fig. 4.1. Example 1 (convection diffusion matrix): comparison of regular Arnoldi(50, 20) to
polynomial preconditioned Arnoldi(50,20) with degree d = 25 for matrices of size 2,500, 10,000,
40,000, 160,000, and 640,000, averaged over 10 trials. Circles (regular Arnoldi) and diamonds
(polynomial preconditioned) indicate the number of matrix-vector products (left axis). Asterisks and
squares show the corresponding approximate cost (cost = nnzr\times mvps+vops, right axis). (Polynomial
preconditioning found the 15 leftmost eigenvalues in all trials; one trial of the unpreconditioned
version for n = 10,000 missed the 14th eigenvalue.)

n = 640,000, the comparison is 39,614,862.23 to 829,431.11. Increasing the degree to
d = 100 drops the cost to 523,878.07: over 75 times cheaper than regular Arnoldi.

We continue the example by looking at the polynomials for the matrix of size n =
10,000. The upper portion of Figure 4.2 shows representative GMRES polynomials of
degree 10 and 25, evaluated at all of the eigenvalues. The steeper slope at the origin
of the d = 25 polynomial better separates the small eigenvalues from the others, as
is clear from the close-up plot on the bottom. The desired first nev = 15 eigenvalues
come first, followed by the next k - nev = 5 eigenvalues that serve as a buffer for the
desired ones, and finally the next few eigenvalues: the polynomial mapping separates
the small eigenvalues from the others.

A gap ratio for the 15th eigenvalue that takes into account the buffer Ritz values
is \lambda 21 - \lambda 15

\lambda 10000 - \lambda 21
= 2.00\times 10 - 5 for the matrix A, which gives some indication of the even-

tual convergence of that eigenvalue. With d = 10 polynomial preconditioning, the

gap ratio improves to \pi (\lambda 21) - \pi (\lambda 15)
\pi (\lambda 5100) - \pi (\lambda 21)

= 1.46 \times 10 - 3, and for d = 25, it is better still:
\pi (\lambda 21) - \pi (\lambda 15)
\pi (\lambda 5146) - \pi (\lambda 21)

= 8.48 \times 10 - 3. While these ratios suggest that polynomial precondi-

tioning improves the convergence rate in terms of Arnoldi cycles, a larger gap ratio
does not guarantee a reduction of overall matrix-vector products, since each iteration
with a higher degree polynomial requires more of them. As Figure 4.1 shows, for
n = 10,000 the number of matrix-vector products for d = 25 is a bit smaller than for
regular Arnoldi.

Figure 4.3 shows results for n = 160,000 using different degree polynomials. Stan-
dard Arnoldi(50,20) is plotted at d = 0; then polynomial preconditioned Arnoldi(50,20)
is applied with d = 5, 10, 15, . . . , 50. The matrix-vector products, denoted on the left
axis, hit a minimum for d = 15 and increase slightly beyond that. The cost estimate
(right axis) decreases. For d = 50, cost \approx 316,060. The cost can go down a bit further
with higher d; for d = 150, cost \approx 298,222. See Table 8.1 for further testing with a
larger version of this example, including timings and dot product counts.
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Fig. 4.2. Example 1 (convection diffusion matrix, n = 10,000): Polynomials of degree d = 10
(black) and d = 25 (red) for the convection-diffusion matrix of size n = 10,000. The upper plot
shows the polynomial values \pi (\lambda ) plotted for all eigenvalues \lambda of A. The bottom plot zooms in on
the smallest eigenvalues, highlighting the sought-after nev = 15 smallest magnitude eigenvalues, the
buffer of k  - nev = 5 additional eigenvalues, and a few of the remaining unwanted eigenvalues.

0 5 10 15 20 25 30 35 40 45 50
104

105
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105
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107

Fig. 4.3. Example 1 (convection diffusion matrix, n = 160,000): A comparison of convergence
between standard Arnoldi (50, 20) (d = 0) and polynomial preconditioned Arnoldi(50, 20) with d =
5, 10, 15, . . . , 50. Circles indicate the number of matrix-vector products (left axis). The approximate
cost (cost = nnzr\times mvps+ vops) is indicated with asterisks (right axis).

Example 2. The matrix E20r0100 from SuiteSparse [7] has a complex spectrum
and a moderate departure from normality. (The condition number of the matrix of
eigenvectors computed by MATLAB is approximately 1.67 \times 106.) The matrix has
dimension n = 4241 and an average of nearly 31 nonzeros per row. As before, we
seek the nev = 15 eigenvalues nearest the origin, which are in the interior of the
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Fig. 4.4. Example 2 (Matrix E20r0100). The top plots show the eigenvalues of A, with the
nev = 15 desired eigenvalues (nearest 0) as blue circles and the k  - nev = 15 buffer eigenvalues as
green stars; the undesired eigenvalues are shown as black \times symbols. The middle plots show the
eigenvalues of the preconditioned matrix \pi (A) for degree d = 10; the desired eigenvalues are mapped
near 1. The bottom plots show the eigenvalues of \pi (A) for d = 25.

spectrum. (A has 1199 eigenvalues with (quite small) negative real parts.) Here we
use Arnoldi(100,30) to access larger subspaces. Figure 4.4 shows how polynomial
preconditioning changes the spectrum. The top left shows the spectrum of A, with
a close-up on the right of the smallest-in-magnitude eigenvalues. The middle left
portion of Figure 4.4 shows the resulting spectrum of \pi (A) for a preconditioner of
degree d = 10. We expect \pi to map the eigenvalues of A near the origin close to 1;
this is the case, but these eigenvalues remain in the interior of the spectrum. They
are shown in the middle right portion of the figure. Similarly, the degree 25 spectrum
is shown in the bottom portions of the figure. Note that even with just d = 10, the
spectrum improves: many eigenvalues are mapped near the origin and the eigenvalue
originally nearest the origin is relatively better separated from its nearest neighbor
by a factor of about 40 after the mapping. Table 4.1 gives computational results for
different preconditioner degrees. A degree d = 15 polynomial reduces the number of
matrix-vector products by a factor of almost 9 and vector operations by a factor of
more than 125. Matrix-vector products are not further reduced with higher degree
polynomials, but the vector operations are. Even low degree polynomials are effective
for this example, but this is not always true for a tougher complex spectrum; see
Example 2 with matrix Af23560 in [11, p. 18].

5. Two starting vectors. For the examples in the last section we randomly
generated the starting vector b used to create \pi , an approach that works quite well
in our experience. However, one might wonder: What happens if one makes a poor
choice for b? How can one hedge against such a case? Here we consider the possibility
that an unusual or skewed starting vector for \pi can give bad results and show how
two starting vectors can be used to generate \pi to minimize such risk.
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Table 4.1
Example 2 (matrix E20r0100, n = 4241): results for polynomial preconditioning with different

degree polynomials using Arnoldi(100, 30) to seek nev = 15 eigenvalues, averaged over 10 trials.

Degree Cycles mvps vops Dot products cost \# correct
d (millions) (millions) (millions) eigenvalues
0 7,959.1 558,258.0 171.80 74.41 189.10 14.8
5 308.6 109,067.6 6.82 2.89 10.20 14.0

10 97.4 68,926.6 2.19 0.91 4.33 14.0
15 58.9 62,740.8 1.35 0.55 3.29 14.0
20 46.0 65,510.1 1.07 0.43 3.10 14.0
25 43.2 76,936.4 1.02 0.41 3.41 14.0
50 44.5 158,253.2 1.14 0.42 6.04 14.7
75 27.9 149,730.0 0.77 0.27 5.41 14.8

100 14.8 107,274.7 0.46 0.15 3.78 14.0

Example 3. Let A be diagonal with 1, 2, 3, . . . , 1000 on the main diagonal. We
run Arnoldi(50,20) to calculate nev = 15 eigenvalues to residual norm of 10 - 8 and use
a different starting vector v for the polynomial preconditioned Arnoldi loop than the
vector b used to develop \pi (with d = 10). The method requires only one cycle to find
all 15 correct eigenpairs. Next, we make the last 100 components of the starting vector
b for the polynomial small by multiplying them by 0.01. The resulting \pi is not small
much past \lambda = 930; \pi (\lambda ) goes up to at least 7 at \lambda = 1000, transforming the problem
of finding the eigenvalues near 1 into an interior eigenvalue problem. Convergence is
much slower, with 16.8 cycles needed (average of 10 trials), and then only the first four
desired eigenvalues (\lambda = 1, 2, 3, 4) are found. The remaining computed eigenvalues
fall in \{ 938, 939, . . . , 956\} , depending on the run: eigenvalues \lambda that \pi maps closer to
the target point 1 than the desired eigenvalues \lambda = 5, . . . , 15.

To mitigate against the risk of choosing a bad b vector, we propose an algorithm
that uses two starting vectors to determine one polynomial, applying GMRES to a
2\times 2 block diagonal system of dimension 2n.

Polynomial Determined by Two Starting Vectors
1. Set-up: Generate random vectors b1 and b2 with \| b1\| = \| b2\| = 1/

\surd 
2. Let

\widehat b = \biggl[ 
b1
b2

\biggr] 
, \widehat A =

\biggl[ 
A 0
0 A

\biggr] 
.

2. Generate polynomial: Run a cycle of GMRES(d) with starting vector \widehat b
and matrix \widehat A, and find the roots of the GMRES polynomial \pi .

This approach essentially uses two Krylov subspaces, one each with b1 and b2, and
so takes into account both starting vectors. We tested Example 3 with the skewed
starting vector for b1, but b2 a random vector. The results are good: we now need
only one or two cycles to compute all the desired small eigenvalues.

6. Damped polynomials. In certain situations, the GMRES polynomial maps
too many (i.e., more than nev) small eigenvalues \lambda to large values of | \pi (\lambda )| . This
concern can be reduced through the use of damped polynomials.

6.1. Overenthusiastic polynomials. The next example motivates the utility
of a damped GMRES polynomial; it also illustrates that polynomial preconditioning
can be effective even for a not especially sparse matrix.
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Fig. 6.1. Example 4 (S1rmq4m1 matrix): Convergence of standard Arnoldi(50, 20) (d = 0)
and polynomial preconditioned Arnoldi(50, 20) with d = 5, 10, 15, . . . , 60. Blue circles indicate the
average number of matrix-vector products (left axis); red asterisks show the average approximate
cost (cost = nnzr\times mvps+ vops, right axis). These results vary widely over ten trials; vertical bars
show the minimum and maximum matrix-vector products and cost over these trials.

Example 4. Consider S1rmq4m1 from SuiteSparse, a symmetric, positive definite
matrix of size n = 5489 with an average of nnzr \approx 47.8 nonzeros per row. Finding
the small eigenvalues is difficult because they are packed close together relative to
the whole spectrum. The first 15 range from 0.3797 to 1.9027, the 21st is 2.2630,
and the largest is 6.87 \times 105. Figure 6.1 shows the performance of Arnoldi(50,20)
applied to find the nev = 15 smallest magnitude eigenvalues of A. The gap ratio
| \lambda 21 - \lambda 15| 
| \lambda 5489 - \lambda 21| \approx 5.24\times 10 - 7 roughly describes the eventual convergence for the 15th ei-

genvalue. For typical preconditioning with d = 20, the gap ratio improves three orders

of magnitude to | \pi (\lambda 21) - \pi (\lambda 15)| 
| \pi (\lambda 2737) - \pi (\lambda 21)| =

| 0.99728 - 0.99771| 
|  - 1.82056 - 0.99728| \approx 1.54\times 10 - 4, though recall each

preconditioned Arnoldi iteration requires 20 matrix-vector products. Nevertheless,
there is an improvement in matrix-vector products by a factor of 6.5 over these ten
trials, and cost = nnzr \times mvps + vops is reduced by a factor of 25.51. Though A
has a relatively large number of nonzeros, nnzr \approx 47.8, the cost of vector operations
still dominates for regular Arnoldi; in contrast, with polynomial preconditioning the
matrix-vector products are the bigger expense. Moreover, for d = 20 polynomial
preconditioning decreases the dot products by a factor of 130.34 over regular Arnoldi.

Figure 6.1 shows that polynomials of degree d > 20 can cause problems, giving
much less consistent performance across the ten trials; for each d > 20, at least one
run failed to find the correct nev = 15 smallest eigenvalues. What is going on here?
Figure 6.2 indicates the problem, showing \pi (\lambda ) for d = 10, 20, and 30 for the first of
our ten trials. The slope of \pi at the origin is much steeper for d = 20 than for d = 10,
explaining the faster convergence. Degree d = 30 is even steeper, but has a problem
near \lambda = 10,000, where \pi (\lambda ) > 1 for five eigenvalues: \pi maps eigenvalues of A from
the interior of the spectrum to the exterior of \pi (A), mixing seven of them among
or above the nev = 15 desired smallest eigenvalues of \pi (A) near 1. The resulting
interior eigenvalue problem can lead to slow convergence and spurious eigenvalues.
Of the converged Ritz values for this example, only 11 fall among the nev desired
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Fig. 6.2. Example 4 (S1rmq4m1matrix): polynomials of degree d = 10, 20, 30, then the damped
polynomial for d = 30. The top plot shows \pi (\lambda ) for all eigenvalues \lambda of A; the bottom plot zooms
in near the origin. The damped polynomial is much better at isolating small magnitude eigenvalues
of A as largest eigenvalues of \pi (A).

smallest magnitude eigenvalues; the others are unwanted interior eigenvalues of A.
As Figure 6.1 shows, erratic convergence continues for larger values of d.

We call the polynomials that jump up too high ``overenthusiastic."" This matrix
seems prone to such polynomials because about half its spectrum is near the origin
(2703 eigenvalues are less than 600; the next 2786 go from 700 up to 6.87\times 105): the
GMRES polynomial has more roots near these small eigenvalues, with roots located
less precisely among the others. One might caution users to stick with smaller degree
d for problems like this, but we suggest an alternative that allows larger d.

Damping the polynomial provides a possible remedy to overenthusiasm. Damp-
ing techniques are considered in [16] for symmetric matrices and polynomials that
approximate the Dirac delta function. Here we take a different approach. We want
the GMRES polynomial to have fewer roots among the small eigenvalues and to be
smaller on the rest of the spectrum. Thus we damp by changing the starting vector
for GMRES(d) from a random vector b to Ab: premultiplication by A will generally
reduce the components of b in the eigenvectors corresponding to the small eigenvalues.
(Think of performing one step of the power method.) The GMRES polynomial for Ab
is then less likely to be overenthusiastic, because Ab will be diminished in eigenvectors
associated with small eigenvalues. Figure 6.2 includes the damped polynomial of de-
gree d = 30. This polynomial no longer jumps too high in the middle of the spectrum,
so damping does effectively address the overenthusiasm. Its slope is much less steep
at the origin than for the standard polynomial: thus it yields slower than desired con-
vergence. For the run shown here, cost = 4.28\times 106, about the same as for undamped
d = 20 (cost = 4.23\times 106); of course, both are better than cost = 97.4\times 106 required
without polynomial preconditioning. It is also possible to blend starting vectors of
the form Ab+ \alpha b; see [11, p. 18] for an example.
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Fig. 7.1. Example 5, with d = 15: The top plot shows the residual norms, cycle by cycle, for
Arnoldi(50, 20); the large eigenvalue in A limits the attainable accuracy. The bottom plot shows how
adding extra roots at the largest harmonic Ritz value tames the polynomial.

6.2. Easy problems. Figure 2.1 (for d = 8) showed that a polynomial can be
too effective, in the sense that it can map desired eigenvalues among undesired ones.
This situation happens when too high a degree polynomial is used for an easy problem.
Possible fixes include reducing the degree of the polynomial preconditioner or using
the damped polynomial. For an automatic procedure, see [11, sect. 6.3].

7. Stability. High degree preconditioners can have steep slopes and be compu-
tationally unstable [17, 18]. Here we propose a way to cope with this.

Example 5. Let A be the diagonal matrix of order n = 10,000 with diagonal
entries 0.1, 0.2, 0.3, . . . , 9.9, 10, 11, 12, . . . , 9908, 9909, 20000, giving 100 relatively small
eigenvalues and one outlying eigenvalue, \lambda = 20,000. Using Arnoldi(50,20) with
d = 5, the nev = 15 computed eigenvalues all reach a residual norm at or below
rtol = 2.1\times 10 - 11, marginally better than the 6.1\times 10 - 11 obtained without polynomial
preconditioning. With d = 10, the accuracy degrades to 7 \times 10 - 9, while d = 15
only reaches 2.3 \times 10 - 6. Figure 7.1 shows the d = 15 residual convergence (top),
and the corresponding preconditioner \pi (bottom, solid line): \pi has a root at \theta 15 =
20,000.0000000000036379, which of course is very near the large eigenvalue \lambda 10000 =
20,000 (and must be an artifact of rounding, since harmonic Ritz values for a real
symmetric positive definite A cannot exceed the largest eigenvalue). When \pi (A)v is
computed for some vector v, the factored form \pi (A) = \Pi 15

j=1(I  - A/\theta j) is used. The
component of \pi (A)v in the direction of the eigenvector z10000 that corresponds to
the large eigenvalue is \gamma 10000\Pi 

15
i=1(1 - \lambda 10000/\theta i)z10000, where \gamma 10000 is the coefficient

for z10000 in an eigenvector expansion of v. Fourteen of the (1  - \lambda 10000/\theta i) terms
magnify this component and the fifteenth reduces it back down, but with substantial
cancellation error: indeed, in this case 1 - \lambda 10000/\theta 15 \approx 2.22\times 10 - 16 (machine epsilon).
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Fig. 7.2. Example 5, test of instability: A large outlying eigenvalue gives a large pof(j); the
attainable accuracy (blue circles) degrades as the degree d increases. An extra root in \pi at the largest
harmonic Ritz value can improve the attainable accuracy for larger d values (yellow diamonds).

We can monitor the possible loss of accuracy due to this cancellation error by
computing how large the component is blown up by the other terms. Define

pof(j) \equiv 
d\prod 
i=1
i\not =j

| 1 - \theta j/\theta i| ;

``pof"" stands for ``product of other factors evaluated at Ritz value."" (This definition
uses \theta j , where we might prefer to use an eigenvalue, but \theta j will approximate it in the
case of interest.) The quantity pof(j) gauges the slope of \pi at \theta j , since

| \pi \prime (\theta j)| = pof(j)/| \theta j | .

(Unlike \pi \prime (\theta j), pof(j) is scale-invariant.) Large pof(j) values signal points where \pi 
changes rapidly, warning of ill-conditioning in related computations.

For the matrix in Example 5, the accuracy steadily degrades as the degree d
increases. This is shown in Figure 7.2, where circles stand for MaxErr, the maximum
eventual residual norm of the 15 computed eigenvalues. Let MaxPof be the maximum
pof(j) value (which occurs at the largest harmonic Ritz value). These are plotted with
stars, and steadily increase as d increases. Once the instability is the main source of
error, starting at degree 10, the ratio MaxPof/MaxErr is on the order of 1015. So the
maximum Ritz residual norm grows with the maximum pof(j) value.

We can improve stability when some pof(j) is large by adding an additional root
at \theta j to \pi , making \theta j a double root. When \theta j is almost an eigenvalue \lambda of A, this
makes \pi (\lambda ) so near zero that even if the component of \pi (A)v in the direction of this
eigenvector is off by several orders of magnitude, it is not significant relative to the
other terms. If \theta j is a double root of \pi , then the slope \pi \prime (\theta j) = 0, suggesting better
conditioning. However, the extra root increases the degree of \pi and the number of
matrix-vector products with A needed to apply \pi (A). When is an extra root worth
adding, and how many should be included? In the test described above, an extra root

D
ow

nl
oa

de
d 

11
/1

0/
21

 to
 1

28
.1

73
.4

1.
17

1 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POLYNOMIAL PRECONDITIONED ARNOLDI A21

added little benefit when pof(j) \leq 104. In further testing, we have found that a new
root is roughly needed for every factor of 1014 that MaxPof exceeds 104. Thus we
suggest making \theta j a double root if pof(j) exceeds 104, a triple root if pof(j) exceeds
1018, a quadruple root if pof(j) exceeds 1032, etc., incrementing by 1014 each time.

Adding Roots for Stability
1. Setup: Assume the d roots (\theta 1, . . . , \theta d) of \pi have been computed and then

sorted according to the modified Leja ordering [1, Alg. 3.1].
2. Compute pof (\bfitj ): For j = 1, . . . , d, compute pof(j) =

\prod 
i\not =j | 1 - \theta j/\theta i| .

3. Add roots: Compute the least integer greater than (log10(pof(j))  - 4)/14
for each j. Add that number of \theta j values to the list of roots. Put the first
added root at the end; if there are others, space them in the interior of the
current list, evenly between the occurrence of that root and the end of the list
(keeping complex roots together). See [1, 26] for other multiple root options.

Example 5 (continued). We now apply the procedure just given to Example 5 for
increasing values of d. The test adds a root for d \geq 8. Figure 7.2 shows MaxErr for
different degree polynomials with an added root (so the degree of the preconditioner
is actually one more than the degree shown in the plot). The accuracy for degree 25 is
far better than without the added root (2.8\times 10 - 12 compared to 3.4\times 101). However,
even with a double root accuracy is lost for d > 30; for large d, MaxPof/MaxErr is
roughly 1030. For d = 40 with one root added, MaxErr = 1.0 \times 10 - 1. However, at
that point MaxPof = 2.0 \times 1028, so according to the plan given above another extra
root is needed. With this triple root, MaxErr improves vastly to 4.5 \times 10 - 12. The
bottom of Figure 7.1 compares the original d = 15 polynomial to those with one and
two added roots at the large harmonic Ritz value. The slope of the original \pi is large
at \lambda = 20,000. Adding a root causes the polynomial to level off briefly there. The
polynomial with a triple root is not needed at this degree, but notice how it would
add considerable stability near the extreme eigenvalue.

Example 6. We use matrix S1rmq4m1 from Example 4 with a damped polynomial
from starting vector Ab. In this case we do a single example (instead of ten trials)
and run further to residual norms below 10 - 8. Polynomial preconditioned Arnoldi is
fairly stable, but for d = 100 it only reaches MaxErr of 1.6 \times 10 - 7. With one added
root, the accuracy improves to 7.8 \times 10 - 11. For original degree 150, seven roots are
added, improving accuracy dramatically from 3.1\times 102 to 6.2\times 10 - 11. See Table 7.1
for more results. Note how bad the results become as the degree d increases, and how
consistently good the results are with the stability control. As we go to higher degree
polynomials, the number of added roots rapidly increases. For original degrees 200,
250, 300, and 400, there are 20, 45, 87, and 157 added roots. The best cost in the table
is for the degree 100+1 polynomial, so using this higher degree stabilized polynomial
is potentially worthwhile. The next example has much more need of stability control.

Example 7. Consider the CRY2500 matrix from SuiteSparse, which has size
n = 2500 and an average of 4.9 nonzeros per row. The ratio of largest to small-
est magnitude eigenvalues is 2.5 \times 1010, making computation of the smallest ones a
difficult problem. There are 50 eigenvalues in the positive half of the complex plane, so
in order to get many of the smallest magnitude eigenvalues, we use Arnoldi(500,200)
with nev = 100. Regular Arnoldi does not even begin to converge because of the
difficulty, and there appears to be significant roundoff error. We try a polynomial
of degree 75, for which 30 roots are added for stability, so d = 105. This gives an
effective method. In 12 cycles it computes all 100 desired eigenvalues to residual
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Table 7.1
Example 6 (S1rmq4m1, n = 5489). High-degree preconditioning polynomials limit the accuracy

attainable; adding duplicates of troublesome roots improves the situation considerably.

Regular GMRES polynomial Polynomial with added roots
Degree MaxErr Cost (millions) Added roots MaxErr Cost (millions)

30 2.6\times 10 - 10 8.34 0 2.6\times 10 - 10 8.34
50 1.4\times 10 - 10 4.95 0 1.4\times 10 - 10 4.95
100 3.3\times 10 - 7 --- 1 7.9\times 10 - 11 3.35
150 3.1\times 10+2 --- 7 6.2\times 10 - 11 3.73
200 1.1\times 10+4 --- 20 1.0\times 10 - 10 3.56
250 2.1\times 10+5 --- 45 4.9\times 10 - 11 4.32

norms of 5.3 \times 10 - 9 or less. (These residual norms do level off and do not further
improve.) With other choices of polynomial degree, the accuracy is not as great,
reaching only 3.2 \times 10 - 7 in 16 cycles with d = 62 (50 plus 12 extra), and 1.6\times 10 - 8

in 12 cycles with d = 155 (100 + 55). With higher degree polynomials, the accuracy
gets worse. This example points out that polynomial preconditioning can sometimes
make difficult problems solvable, but does not always make them easy.

Stability control with added roots has been effective in our testing, but can have
difficulties. We devised a pathological problem by skewing the starting vector against
an outlying eigenvalue so severely that the associated harmonic Ritz value is far from
that eigenvalue: extra roots in the wrong place do not much help.

8. Double polynomial preconditioning. Communication-avoiding methods
minimize operations that transfer data across processors (and incur related synchro-
nizations) such as dot products, potentially at the cost of extra communication-free
work on local processors. We have already seen (e.g., Table 4.1) that polynomial
preconditioning can significantly reduce the number of dot products required to com-
pute eigenvalues. In fact, dot products can be even more significantly reduced by
combining two levels of polynomial preconditioning, giving access to very high degree
polynomials (which can permit lower subspace dimensions, and hence less memory).

Example 8. We revisit the convection-diffusion matrix from Example 1 of size
n = 640,000, again using Arnoldi(50,20) to compute the nev = 15 smallest eigenvalues.
Table 8.1 reports results averaged over 10 trials, which all find the desired eigenvalues.
Large degree preconditioning polynomials accelerate convergence, in terms of time and
dot products. However, a concern emerges as d increases: construction of \pi becomes
increasingly expensive (e.g., the d = 150 computation takes 60,412.4 dot products,
28,172.8 of which come from the GMRES run used to construct \pi ). We seek to avoid
this limitation, while still reaping the benefits of high degree polynomials.

These observations motivate double polynomial preconditioning. Start by gen-
erating the GMRES polynomial \pi 1 of degree d1 for A. As before, we expect the
smallest magnitude eigenvalues of A to be mapped to the eigenvalues of \pi 1(A) near-
est 1. Thus define \tau (\alpha ) \equiv 1 - \pi 1(\alpha ): we now seek the smallest magnitude eigenvalues
of \tau (A). To compute these smallest magnitude eigenvalues of \tau (A), apply polyno-
mial preconditioning to this matrix, i.e., apply GMRES to \tau (A) to generate a new
GMRES polynomial \pi 2 of degree d2. Now apply Arnoldi(m, k) to compute the nev
eigenvalues of \pi 2(\tau (A)) nearest 1. The composite polynomial \pi 2 \circ \tau has degree d1d2,
making use of extremely high degree polynomials more practical. (We presume that
\pi 2(\tau (\lambda 1)), . . . , \pi 2(\tau (\lambda \itn ev)) are mapped to distinct values.)

D
ow

nl
oa

de
d 

11
/1

0/
21

 to
 1

28
.1

73
.4

1.
17

1 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POLYNOMIAL PRECONDITIONED ARNOLDI A23

Table 8.1
Example 8 (convection-diffusion, n = 640,000). Work required for Arnoldi(50, 20) to compute

the nev = 15 smallest magnitude eigenvalues. Double polynomial preconditioning (bottom part of
the table) can significantly reduce the number of communication-intensive dot products required by
standard polynomial preconditioning (top part of the table).

Degree Cycles MVPs Cost Time Dot products
d or d1 \times d2 (thousands) (thousands) (minutes) (thousands)

Polynomial preconditioned Arnoldi
0 6924.5 207.8 39614.9 243.4 15999.9

10 253.2 76.6 1835.4 19.4 561.9
25 82.7 63.0 829.4 11.3 185.1
50 41.2 63.6 611.9 9.7 95.4

100 20.6 64.8 523.9 9.2 57.8
125 16.5 65.3 519.8 8.8 56.3
150 14.0 67.0 535.5 9.1 60.4

Double polynomial preconditioning
15\times 20 = 300 3.8 41.0 273.6 1.4 9.7
15\times 40 = 600 2.0 48.9 314.9 1.6 6.9
15\times 50 = 750 2.0 61.2 392.0 2.0 7.9

25\times 40 = 1000 1.0 51.0 321.0 1.6 5.2
25\times 60 = 1500 1.0 76.5 481.4 2.4 8.0

Example 8 (continued). The bottom half of Table 8.1 shows the effectiveness of
double polynomial preconditioning for the convection-diffusion problem. The first
column reports the polynomial degrees d1 and d2, e.g., 15 \times 20 = 300 means that \tau 
has degree d1 = 15 and \pi 2 has degree d2 = 20, so the composite polynomial \pi 2 \circ \tau 
has degree 300. Because high degree composite polynomials can be formed without
the need for much GMRES orthogonalization, the dot products are greatly reduced
(but other costs can go up). For composite degree 25 \times 40 = 1000, only 5209.2 dot
products are needed, a tenfold reduction from the lowest number given for single
polynomial preconditioning and 3071 times better than with no polynomial precon-
ditioning. Arnoldi(50,20) needs only one cycle with this high degree polynomial. (In
these tests, we only check residual norms at the end of cycles. To further reduce
operations, we could check residuals midcycle and terminate early.)

Example 9. We revisit the matrix in Example 5. In this case, double polynomial
preconditioning can help cure the instability, though this is not guaranteed in general.
Let the first polynomial have degree d1 = 6, which has a root near 19,991.2, close
enough to \lambda = 20,000 so that the spectrum of \pi 2(\tau (A)) with d2 = 20 does not have
a large unwanted eigenvalue, and there is no instability: Arnoldi(50,20) finds the
nev = 15 smallest eigenvalues in two cycles (composite degree 6 \times 20 = 120). Next,
we change to d1 = 5, for which \pi 1 has a root only at 19,700.5: not close enough to
\lambda = 20,000, so for d2 = 20 the matrix \pi 2(\tau (A)) has a large unwanted eigenvalue,
and no progress is made in 50 Arnoldi cycles. However, the MaxPof test described
in section 7 suggests that a double root be added here: that is sufficient to give
convergence in two cycles, finding most of the nev = 15 desired eigenvalues.

Further investigation is needed to understand the stability of double polynomial
preconditioning and check whether the extra-root test we developed for single poly-
nomial preconditioning remains effective in this setting.

9. Conclusions. Polynomial preconditioning can vastly improve eigenvalue cal-
culations for difficult problems, giving the benefit of working with high-degree poly-
nomials in A without requiring high-dimensional subspaces. Two significant obstacles
have prevented wider use of previous polynomial preconditioning: complications in
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choosing the polynomial preconditioner and instability associated with high degree
polynomials. Here we have presented an approach that addresses both issues.

For the first obstacle, we systematically apply the GMRES (residual) polynomial,
which is easy to compute and adapts to the spectrum of A. For the second, we aid sta-
bility by adding extra copies of certain roots in a systematic manner. Computational
experiments illustrate the success of this method and identify scenarios that merit
special handling: using multiple starting vectors for GMRES or damping the GM-
RES starting vector. While polynomial preconditioning often reduces matrix-vector
products for difficult problems, the reduction in vector operations (such as dot prod-
ucts) is even greater, so this approach holds great promise for communication-avoiding
eigenvalue computation on high performance computers. Double polynomial precon-
ditioning gives access to very high degree polynomials in A and can further reduce
dot products. Techniques from [8, 13] can potentially aid parallel implementations.

Future research should include computation of interior eigenvalues, generalized
eigenvalue problems, and application to computing stable eigenvalues in matrices
that exhibit a significant departure from normality [39, Chap. 28]. Stability control
for double polynomial preconditioning should also be investigated.
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