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Abstract—Selecting a sparse subset of antennas to obtain high-
resolution direction-of-arrival estimates while circumventing the
complexity associated with using a large array is critical in
many radar applications. Since this subset selection problem is
combinatorial, deep learning has been recently proposed as a
possible solution for efficiently solving it. However, the bottleneck
in this approach is training data generation, which requires an
exhaustive search over all possible subarrays. In this paper,
we propose an efficient method for generating training data
using ideas from submodular optimization. In particular, we
use the log-determinant of the Cramér-Rao lower bound as
our cost function due to its submodular structure. It is then
minimized through a greedy optimization approach to determine
the best subarray. We provide numerical simulations to validate
the performance of the proposed array selection strategy. Our
simulations show that the proposed approach is ten times faster
in training than an exhaustive search method while providing
comparable performance.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important prob-
lem in applications such as radar and sonar imaging, radio
astronomy, acoustic-source localization, and more [1]. The
goal is to estimate the directions of far-field targets from
the signals received at a set of sensors or an antenna array.
For a given operating wavelength of the signals, the angular
resolution of DOA estimation is inversely proportional to the
number of antenna elements. Hence, ensuring high-resolution
requires a large number of elements. There are two practical
problems that arise when using a large number of elements.
First, the receiver becomes expensive as each array element
requires dedicated hardware that typically comprises of a
down-converter and an analog-to-digital converter. Second, a
large volume of data is generated from a full array which
requires computationally expensive processing at the receiver
end.

In order to strike a balance between the resolution and both
the hardware and computational cost, one may select a sparse
array that consists of fewer elements than a full array. A
simple and straightforward sparse array choice is to randomly
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select a few elements from a full array. This is similar,
in principle, to designing measurement matrices to achieve
compressive sensing [2], [3]. The estimated DOAs from the
random measurements may not be optimal. A better choice
is to select the subarray that mimimizes some error statistics
in the DOA estimation. However, the error statistics depends
on the ground-truth DOAs which are not known a priori. In
the DOA estimation problem, only noisy sensor measurements
are available that are, typically, a non-linear function of the
DOAs. Hence, it is necessary to consider methods that do not
explicitly depend on the unknown parameters.

A supervised learning-based solution is naturally applicable
to the problem at hand. In [4], [S], a DL-based approach
for sparse antenna selection is developed by treating it as a
classification problem, which is solved using a convolutional
neural network (CNN). The network is trained with inputs
as signals from a full array and output-labels as the desired
sparse array. This DL based method was shown to be efficient
compared with a random selection strategy. The method does
not require a priori knowledge of DOAs and works directly
with the measurements. However, a bottleneck of the DL-
based method lies in the generation of the training data. In [4],
[5], the labels are generated by minimizing the CRLB through
an exhaustive search method. For large arrays, this approach
is impractical. The process of training data generation is
equivalent to solving antenna subset selection problem for
known DOAs. In this paper, we propose the use of an efficient
subset selection method for training data generation.

Prior Art on Subset Selection: Antenna selection is a
combinatorial problem where the goal is to select K out of [NV
antenna elements. The selection is achieved via minimizing
a predefined cost function that is a measure of accuracy of
DOA estimation from the sparse array measurements. In [6]-
[8], switching matrix-based array selection method is proposed
that minimizes a lower bound on DOA estimation by using a
combinatorial search. However, the combinatorial search based
methods are not always scalable. For example, for N = 64
and K = 32, the number of searches required is of the order
of 1018,

The selection problem can also be written as a Boolean-
convex problem, where the objective function is a measure
of estimation accuracy and the constrains are Boolean (can
be either one or zero). Joshi and Boyd [9] consider log-
determinant of the Cramér-Rao lower bound (CRLB) as the
objective function. They proposed a convex relaxation of



the optimization problem where the Boolean constraints are
relaxed to convex constraints (can take values between zero
and one). The relaxed problem is efficiently solved by off-
the-shelf optimizer such as interior point methods. Chepuri
and Leus [10] considered different functions of the CRLB,
such as log-determinant, maximum eigenvalue, and trace, as
the objective functions and proposed a relaxed optimization
technique that is solved in polynomial time.

Convex relaxation methods may suffer from gradient com-
putation step during each iteration and may not converge in
finite amount of iterations. In order to improve the computa-
tional aspect, greedy algorithms have been proposed. These
approaches takes finite number of iterations for a given size
of the ground set and subset and also does not require the
gradient computation. In greedy approaches, at each iteration,
a new antenna element is added to already chosen elements
such that it minimizes a given cost function. Godrich et al.
[11] proposed a greedy algorithm for sensor selection where
the Cramér-Rao lower bound (CRLB) is used as a performance
metric.

Nembhauser et al. [12] showed that the greedy method results
in a solution that is closer to the solution by an exhaustive
search. In particular, they showed that the value of cost
function for a greedy solution is (1 — 6_1) of the value of the
cost function of an exhaustive search, where e is the Euler’s
number, provided that the cost function is submodular [13]. A
submodular function is a set function that exhibits diminishing
marginal gains, that is, adding additional elements results in
diminishing benefits. A greedy optimization method with a
submodular cost function is called submodular optimization.
Not surprisingly, submodular optimization has found many
applications in wireless networking. For instance, several
submodular optimization-based sensor selection methods have
been proposed in [14]-[19]. The primary difference between
these methods is the choice of the cost functions: [14], [15],
[18] use a mutual information (MI)-based cost function, [17]
uses frame-potential (FP) of linear measurements, [16] uses
maximum a posterior (MAP)-based cost, and [19] uses log-
determinant of CRLB.

Contributions: In this paper, we propose an efficient data
generation approach for training of the CNN in [4], [5].
To generate the training data, starting from the ground-truth
DOAs, we first construct measurements corresponding to the
full array which act as an input to the CNN. The computation
of the output labels, that is, the sparse arrays, is a sensor
selection problem for a given DOA. To this end, we consider
a submodular optimization method to estimate the subsets that
are subsequently used to train the CNN. Hence, the approach
is a combination of submodular optimization and DL, where
explicit knowledge of the unknown DOAs is used for training.
Once trained, the network can be used to estimate subarrays
for any unseen measurements without knowing the DOAs.
We compare different submodular cost functions for the DOA
estimation problem and show that the log-determinant of
CRLB [19] results in a minimum error in estimation of DOAs
from the sparse array. We show that the performance of the

resulting subarray is comparable to the performance of the
CNN that is trained through an exhaustive search. Moreover,
for selecting 10 antennas out of 16, the proposed training
approach is shown to be 10 times faster than the approach
in [4].

The paper is organized as follows. In the next section, we
introduce the signal model for DOA estimation and formally
define the problem statement. In Section III, we give a
brief introduction to submodular optimization and present the
proposed fast data labeling approach. Simulation results are
presented in Section IV followed by conclusions.

Throughout the paper, we reserve boldface lowercase, bold-
face uppercase, and calligraphic letters for vectors, matrices,
and index sets, respectively. We denote the transpose and
Hermitian by ()T and (-)H, respectively. The number of
ways K elements are chosen from N elements is denoted
b N _ N!

Y\ i | = Kin=K)
by E. The real, imaginary, and angle of any complex numbers
are written as Re(+), Im(-), and Z(-), respectively.

. The expectation operator is denoted

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

Consider an N element antenna linear array system along
the z-axis. The position of the n-th element is py. Assume
L targets in the far-field region with respect to the antenna
array. The angle of arrival of the signal from the ¢-th target is
denoted by #,. We assume that the targets lie on a grid with
M points where M > L.

The n-th array element receives the signal y,,(¢). For this
setting, the signal received at the full antenna array is given
by

y(t) = Ax(t) + w(t), (1)

where y(t) = [y1(t), yo(t), -+ ,yn(t)]*. The matrix A €
CNXM g the array steering matrix whose nm-th entry is
given by eI X Pnsin(®m) The functions x(¢) has L nonzero
values for each ¢ € R. The non-zero entries of x(¢) determines
the DOAs. In particular, if the support of x(t) is denoted
by a set of integers {m,}L_, then the DOAs of the sources
are {0, }L_,. The corresponding signals in x(t), give as
{@p, ()}, are narrow band deterministic signals that are
transmitted by the source at a wavelength \. The term w(¢)
denotes measurement noise whose samples are assumed to
be spatially (across sensors) and temporally, independent and
identically distributed, and are circular complex Gaussian
random variables with zero mean and variance o>

w*

B. Problem Formulation

For simplicity, we omit the time index ¢ from the measure-
ment model (1) and hence write

y =Ax+w. 2)



The DOA estimation problem is equivalent to estimating the
support of the sparse vector x,

Sx = support(x). 3)

As discussed earlier, it is desirable to estimate Sy from a
subset of measurements of y. Let K be a subset of the set
N = {1,2,--- N} with cardinality || = K. Then yx
denotes K subsamples of y that are indexed by K.

The objective is to choose the best subset K out of Q@ = (}/)
possible choices such that the error in estimating Sy from
yx 18 minimized. This amounts to solving the following

optimization problem

Ingt = argmin  C(Sy, Sx,K) . t.
KeN

K=K, 4

where S‘x is an estimation of Sy from yx. The cost function
C() is a real-valued function that measures the reconstruction
error. The mean-squared error (MSE) E|Sx — Sx||3 is one
possible choice of the cost function.

The goal is to solve (4) in order to generate the training
data for DL methods.

III. A FAST-LEARNING SPARSE ARRAY

We employ a CNN-based deep network classifier for sparse
antenna selection [4]. We train the CNN to find the best sparse
array from the covariance matrix of the received signal as
in [4], [5]. For fast-training the CNN, we propose to solve
(4) by using a submodular-optimization based data generation
method.

A. Submodular Function and Greedy Approach

The cost function in (4) depends on the reconstruction
algorithm, the ground-truth, Sx, and the subset . Hence, for
a fixed reconstruction algorithm and a given Sk, it is a set
function that maps any subset of N to a real number. The
function C(Sy, Sx, K) is submodular if it satisfies the prop-
erty of decreasing marginals. Mathematically, C(Sy, Sx, K) is
submodular if for every KC; C Ky C N the cost satisfies the
following inequality

C(Sx, Sx, K1 U {i}) > C(Sy, Sy, K2 U {i}),  Vie M\Ko.

Further, the cost is monotonic if for every K1 C Ko C N,
C(Sx: Sx, K1) < C(Sx, Sk, Ka). (5)

In [12], it is shown that if C(SX,SX,IC) is a monotonic
submodular function, then the optimization problem in (4) can
be solved in a near-optimal sense by applying a K -step greedy
method. Algorithm 1 summarizes this procedure. The MSE is
a preferred cost function, however, MSE is not submodular in
general [17]. One alternative is to minimize a scalar function
of the CRLB that denotes a lower bound on the variance
of unbiased estimators. Let C,.(Sx,K) denote the CRLB in
estimation of Sy from y. Then the cost function

log det(C,.(Sx, K)) (6)

Algorithm 1 Greedy Algorithm for Submodular Optimization

Initialize: = @
for k=1to K do

[S1] ¢* = max
iEN\K

[S2] K + Ku{i*}
end for

—C (smsx,icU {z’})

is submodular and monotone provided that IC # @ [19, Theo-
rem VI.2]. Through simulations, we show that the submodular
cost function in (6) results in a lower MSE in estimation of
DOAs compared with the other choices of submodular costs.

B. A Fast-Training Data Generation
Selection of a K-element sparse subarray from an N-

g possible choices is
analogous to a classification problem with ) classes. Here
each class represents a different choice of subarray. A CNN
is trained to achieve this classification [4].

The input to the CNN is an autocorrelation matrix that
is computed from the signals received from a full array.
Starting from P snapshots of the measurements, {y(t,)})_,
we construct a sample autocorrelation matrix

element full array among ) =

1 & y
R = P I;Y(tp)yH(tp) ecV Na (7

where we assume that the targets are not changing their
directions over the snapshots. In other words, the vectors
{x(t,)}}-, have common support. The matrices Re(R),
Im(R), and Z(R) act as input to the CNN and it outputs
an estimate of the subset K.

In [4], [5], the output label K is selected by minimizing
the mean CRLB that is computed by averaging the CRLBs of
DOAs for the L targets. Minimization is achieved by an ex-
haustive search over all possible subsets. Then, by using a set
of training features-label pairs ((Re(R),Im(R), Z(R)),K) a
network is learned that can be used to solve the optimization
problem in (4).

A submodular-cost based data labeling approach is scalable
to any array size. We use the cost function in (6) and
then by applying Algorithm 1 estimate a subset for a given
Sx. Then the CNN is trained with the input-output pairs
((Re(R),Im(R), Z(R)), Kereeay), Where Kgreeqy denotes the
subset estimated by submodular optimization. During train-
ing, we assume that x is not changing across snapshots.
We summarize the steps for generating the training data in
Algorithm 2. The training steps are the same as in [4] except
for the Step-3. The proposed sparse array selection approach
is generic and is applicable to any linear and non-linear
measurement model.

The design of the CNN layers is similar to that in [4], [5].
We recall the CNN structure for the sake of completion. The
CNN consists of nine layers. The input layer of CNN accepts



Algorithm 2 Fast training data generation for sparse array
selection.
Input: Number of antennas N, number of targets L,
sparse subarray size K, number of data realizations 7T,
number of DOA angles S, number of snapshots P and
o2
Output: Training data: Input-output pairs consisting of
sample covariances R(*%) and output labels /C(59) for s =
1,...,Sandi=1,...,T.

1: Select a set of L-sparse target DOAs and corresponding
amplitudes {x(*)}5_,.

2: For each x(®), generate P snapshots of the data by using
(1) and then compute the autocorrelation matrix R(®) by
using (7).

3: For each x(®), compute the subarrays K(*) by using the
cost function (6) and Algorithm 1.

4: Repeat steps 1 to 3 for 7' times by chaining the am-
plitudes of each x(*) and generate the input-output pairs
(R KED) for s =1,---,Sand i =1,---,T.

the two-dimensional inputs (Re(R),Im(R), Z(R)) in three
real-valued channels. The second, fourth and sixth layers are
convolutional layers with 64 filters of size 2 x 2. To reduce
the dimensions, the third and fifth layers are designed as max-
pooling that reduce the dimension by half. The next two layers
are fully connected layers with 512 units whose 50% are
randomly dropped out to minimize overfitting during training.
Each convolutional and fully-connected layers are followed
by rectified linear units (ReLU) where ReLU(a) = max(a,0).
The dimension of the output layer is equal to the number of
classes. As shown in [4], the actual number of classes is much
smaller than Q.

To train the network, we collect data for S target instances
and for T realizations that results in ST data samples. We
train the proposed network in MATLAB on a PC with Intel
Core i7-6700 CPU. During the training process, 10% of the
training data is used for validation. We used the stochastic
gradient descent algorithm with momentum for updating the
network parameters with learning rate of 0.05 and mini-batch
size of 500 samples for 200 epochs.

IV. SIMULATION RESULTS

We evaluate the performance of the proposed data labeling
method and resulting DOA estimation. First, we access the
performance of greedy approaches and justify the use of cost
function in (6). Then we compare the results of CNNs with
different training methods.

Throughout the simulations, we consider one-dimensional
linear arrays. The signal-to-noise ratio (SNR) is defined as
101log,o([|1x]|?/Mo?2). Once the subsets are computed, orthog-
onal matching pursuit (OMP) is applied to estimate x from
the measurements from the selected subsets. The normalized
MSE ||x — %||?/||x/|? is used as performance measure that is
averaged over 500 independent realizations for a given SNR.
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Fig. 1. A comparison of various submodular cost functions in terms of MSE
in estimating DOAs from the selected subarrays. CRLB-based cost functions

have 1 to 2 dB lower MSE compared to other methods for SNR > 20 dB. Both
standard (exhaustive) and greedy CRLB methods have comparable errors.

TABLE I
A COMPARISON OF AVERAGE COMPUTATION TIME AND MSE FOR 20 dB
SNR
Method Time (in msec.) MSE (in dB)

FP [17] 63.1 -6.66
MAP [16] 41.2 -6.98
MI [14], [15] 17.5 -6.82
CRLB Exhaustive [4] 510 -9.27
CRLB Greedy [19] 51 -9.18
Random 0.3 -6.56
DL [4], [5] 430 -8.66
DL greedy (proposed) 430 -8.58
Full - -11.50

with NV = 16 elements. The objective is to choose K = 10
elements for L = 3 targets with M = 100.

A. Comparison of Submodular Methods

There are several choices of submodular cost functions
such as MI, FP, MAP-based, and CRLB-greedy as in (6).
In Fig. 1, we compare the performances of these methods
for different SNRs. The objective is to choose K = 10
elements from N = 16 element array for L = 3 targets with
M = 100. We also compared the error for a full array and
an exhaustive search method that minimizes (6). The latter
approach is termed as CRLB Exhaustive. It is observed that,
among different submodular cost functions, CRLB greedy
has the lowest MSE. In Table 1, a comparison of the MSE
and computation time is presented for different methods.
For CRLB cost, performances of both exhaustive search and
greedy method are similar for different SNRs. However, the
CRLB greedy method is 10 times faster than CRLB Exhaustive
in the present settings.



—FULL
0 Random
=—DL
. = =DL Greedy
m = =(CRLB Exhaustive
SN
€3]
=
-10 1
-15+
0 5 10 15 20 25 30

SNR

Fig. 2. A comparison of DL-based methods with two different training
approaches. Both standard DL method and DL greedy method, trained by
using submodualr optimization, have similar errors. DL-based methods are
adaptive and perform better than the random selection method.
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Fig. 3. A comparison of DL-based methods for closely spaced targets. DL-
based methods are adaptive and perform better than the random selection
method.

B. Comparison of DL-based methods

We consider a full array with N = 16 elements, with
an objective to choose K = 10 elements. The grid size is
M = 100. We train the proposed CNN structure for L = 3
targets whose DOAs are selected uniformly at random. We
select S = 5000 different target locations and 7" = 100 data
realizations with 100 data snapshots. The SNR for training
is set to be 20 dB. Two different CNNs are trained. The first
network is trained as in [4] where an exhaustive search is used
for data labeling. The second network is trained by the data
generation process described in Algorithm 1. Once trained,
the sparse subsets are estimated for different measurements
and subsequently, OMP is applied to estimate the DOAs and
corresponding amplitudes from the subsamples.

In Fig. 2, we compare the performance of DL based methods
with a random selection method and CRLB Exhaustive. The

e FULL
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Fig. 4. A comparison of DL-based methods for 10 targets. DL-based methods
are adaptive and perform better than the random selection method.

performance of the DL based technique is similar for both
exhaustive and greedy training methods. The latter is compu-
tationally efficient and practical for larger arrays. We observe
that data-based DL approaches perform better than a random
selection strategy. For high SNRs (> 20dB), CRLB Exhaustive
method results in a 2 dB less error compared with the DL-
based methods. In terms of the computation time (See Table 1),
the DL based methods are slower compared with the greedy
methods. However, both the CRLB Exhaustive method and
greedy approaches requires explicit knowledge of the DOAs to
estimate the subsets whereas DL-based methods do not require
that.

C. Comparison of DL-based methods for closely-spaced tar-
gets

In this simulation, we consider two closely spaced targets
with N = 16, K = 10, and M = 100. Specifically, we
consider the DOAs 6,,, and 6,,, such that |sin(6,,,) —
sin(f,,,)| < 1/N. In other words, the spatial frequencies cor-
respond to DOAs are smaller than the Fourier resolution limit.
In Fig. 3, we compare the performance of DL based methods
with a random selection method, CRLB Exhaustive, and the
full array. By using fewer antenna elements, the accuracy of
the DL-based methods is reduced by 2 dB compared with
the full array. The DL-based methods have 1 dB less error
compared with the random selection.

D. Comparison of DL-based methods for a large array

We compare the performance for subset selection methods
for a large array and a large number of targets. Specifically,
we consider selection of K = 30 antennas from N = 64. The
number of targets is L = 10 and we consider a grid size of
M = 200. A CRLB-exhaustive method for the training data
generation amounts to search over choice of the order of 1018
and hence can not be used. Hence we compare only the greedy
methods that are salable to large arrays. In Fig 4, we compare
the performance of the DL-greedy and CRLB-greedy methods



with the full and random array. We observe that both CRLB-
greedy and DL-greedy methods perform similarly and the DL-
greedy method performs better than the random selection.

V. CONCLUSION

In this paper, we have proposed a submodular optimization-
based data generation approach to train a CNN that performs
the task of subset selection. Our hybrid approach uses a
CRLB-based submodular cost function that is minimized by
a computationally efficient greedy algorithm. The resulting
sparse arrays are used as output labels to train a CNN
with the sample covariance matrix of the received signal as
input. DOAs are estimated from the partial measurements by
applying the OMP algorithm. The training of the resulting
network is 10 times faster than conventional network without
any performance degradation.
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