
A Fast-Learning Sparse Antenna Array

Satish Mulleti∗, Chiranjib Saha†, Harpreet S. Dhillon†, Yonina C. Eldar∗
∗Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel 76100

†Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, USA

Email: mulleti.satish@gmail.com, csaha@vt.edu, hdhillon@vt.edu, yonina.eldar@weizmann.ac.il

Abstract—Selecting a sparse subset of antennas to obtain high-
resolution direction-of-arrival estimates while circumventing the
complexity associated with using a large array is critical in
many radar applications. Since this subset selection problem is
combinatorial, deep learning has been recently proposed as a
possible solution for efficiently solving it. However, the bottleneck
in this approach is training data generation, which requires an
exhaustive search over all possible subarrays. In this paper,
we propose an efficient method for generating training data
using ideas from submodular optimization. In particular, we
use the log-determinant of the Cramér-Rao lower bound as
our cost function due to its submodular structure. It is then
minimized through a greedy optimization approach to determine
the best subarray. We provide numerical simulations to validate
the performance of the proposed array selection strategy. Our
simulations show that the proposed approach is ten times faster
in training than an exhaustive search method while providing
comparable performance.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important prob-

lem in applications such as radar and sonar imaging, radio

astronomy, acoustic-source localization, and more [1]. The

goal is to estimate the directions of far-field targets from

the signals received at a set of sensors or an antenna array.

For a given operating wavelength of the signals, the angular

resolution of DOA estimation is inversely proportional to the

number of antenna elements. Hence, ensuring high-resolution

requires a large number of elements. There are two practical

problems that arise when using a large number of elements.

First, the receiver becomes expensive as each array element

requires dedicated hardware that typically comprises of a

down-converter and an analog-to-digital converter. Second, a

large volume of data is generated from a full array which

requires computationally expensive processing at the receiver

end.

In order to strike a balance between the resolution and both

the hardware and computational cost, one may select a sparse

array that consists of fewer elements than a full array. A

simple and straightforward sparse array choice is to randomly
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select a few elements from a full array. This is similar,

in principle, to designing measurement matrices to achieve

compressive sensing [2], [3]. The estimated DOAs from the

random measurements may not be optimal. A better choice

is to select the subarray that mimimizes some error statistics

in the DOA estimation. However, the error statistics depends

on the ground-truth DOAs which are not known a priori. In

the DOA estimation problem, only noisy sensor measurements

are available that are, typically, a non-linear function of the

DOAs. Hence, it is necessary to consider methods that do not

explicitly depend on the unknown parameters.

A supervised learning-based solution is naturally applicable

to the problem at hand. In [4], [5], a DL-based approach

for sparse antenna selection is developed by treating it as a

classification problem, which is solved using a convolutional

neural network (CNN). The network is trained with inputs

as signals from a full array and output-labels as the desired

sparse array. This DL based method was shown to be efficient

compared with a random selection strategy. The method does

not require a priori knowledge of DOAs and works directly

with the measurements. However, a bottleneck of the DL-

based method lies in the generation of the training data. In [4],

[5], the labels are generated by minimizing the CRLB through

an exhaustive search method. For large arrays, this approach

is impractical. The process of training data generation is

equivalent to solving antenna subset selection problem for

known DOAs. In this paper, we propose the use of an efficient

subset selection method for training data generation.

Prior Art on Subset Selection: Antenna selection is a

combinatorial problem where the goal is to select K out of N
antenna elements. The selection is achieved via minimizing

a predefined cost function that is a measure of accuracy of

DOA estimation from the sparse array measurements. In [6]–

[8], switching matrix-based array selection method is proposed

that minimizes a lower bound on DOA estimation by using a

combinatorial search. However, the combinatorial search based

methods are not always scalable. For example, for N = 64
and K = 32, the number of searches required is of the order

of 1018.

The selection problem can also be written as a Boolean-

convex problem, where the objective function is a measure

of estimation accuracy and the constrains are Boolean (can

be either one or zero). Joshi and Boyd [9] consider log-

determinant of the Cramér-Rao lower bound (CRLB) as the

objective function. They proposed a convex relaxation of978-1-7281-8942-0/20/$31.00 c©2020 IEEE



the optimization problem where the Boolean constraints are

relaxed to convex constraints (can take values between zero

and one). The relaxed problem is efficiently solved by off-

the-shelf optimizer such as interior point methods. Chepuri

and Leus [10] considered different functions of the CRLB,

such as log-determinant, maximum eigenvalue, and trace, as

the objective functions and proposed a relaxed optimization

technique that is solved in polynomial time.

Convex relaxation methods may suffer from gradient com-

putation step during each iteration and may not converge in

finite amount of iterations. In order to improve the computa-

tional aspect, greedy algorithms have been proposed. These

approaches takes finite number of iterations for a given size

of the ground set and subset and also does not require the

gradient computation. In greedy approaches, at each iteration,

a new antenna element is added to already chosen elements

such that it minimizes a given cost function. Godrich et al.

[11] proposed a greedy algorithm for sensor selection where

the Cramér-Rao lower bound (CRLB) is used as a performance

metric.

Nemhauser et al. [12] showed that the greedy method results

in a solution that is closer to the solution by an exhaustive

search. In particular, they showed that the value of cost

function for a greedy solution is
(
1− e−1

)
of the value of the

cost function of an exhaustive search, where e is the Euler’s

number, provided that the cost function is submodular [13]. A

submodular function is a set function that exhibits diminishing

marginal gains, that is, adding additional elements results in

diminishing benefits. A greedy optimization method with a

submodular cost function is called submodular optimization.

Not surprisingly, submodular optimization has found many

applications in wireless networking. For instance, several

submodular optimization-based sensor selection methods have

been proposed in [14]–[19]. The primary difference between

these methods is the choice of the cost functions: [14], [15],

[18] use a mutual information (MI)-based cost function, [17]

uses frame-potential (FP) of linear measurements, [16] uses

maximum a posterior (MAP)-based cost, and [19] uses log-

determinant of CRLB.

Contributions: In this paper, we propose an efficient data

generation approach for training of the CNN in [4], [5].

To generate the training data, starting from the ground-truth

DOAs, we first construct measurements corresponding to the

full array which act as an input to the CNN. The computation

of the output labels, that is, the sparse arrays, is a sensor

selection problem for a given DOA. To this end, we consider

a submodular optimization method to estimate the subsets that

are subsequently used to train the CNN. Hence, the approach

is a combination of submodular optimization and DL, where

explicit knowledge of the unknown DOAs is used for training.

Once trained, the network can be used to estimate subarrays

for any unseen measurements without knowing the DOAs.

We compare different submodular cost functions for the DOA

estimation problem and show that the log-determinant of

CRLB [19] results in a minimum error in estimation of DOAs

from the sparse array. We show that the performance of the

resulting subarray is comparable to the performance of the

CNN that is trained through an exhaustive search. Moreover,

for selecting 10 antennas out of 16, the proposed training

approach is shown to be 10 times faster than the approach

in [4].

The paper is organized as follows. In the next section, we

introduce the signal model for DOA estimation and formally

define the problem statement. In Section III, we give a

brief introduction to submodular optimization and present the

proposed fast data labeling approach. Simulation results are

presented in Section IV followed by conclusions.

Throughout the paper, we reserve boldface lowercase, bold-

face uppercase, and calligraphic letters for vectors, matrices,

and index sets, respectively. We denote the transpose and

Hermitian by (·)T and (·)H, respectively. The number of

ways K elements are chosen from N elements is denoted

by

(
N
K

)
= N !

K!(N−K)! . The expectation operator is denoted

by E. The real, imaginary, and angle of any complex numbers

are written as Re(·), Im(·), and ∠(·), respectively.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

Consider an N element antenna linear array system along

the x-axis. The position of the n-th element is pxn. Assume

L targets in the far-field region with respect to the antenna

array. The angle of arrival of the signal from the �-th target is

denoted by θ�. We assume that the targets lie on a grid with

M points where M � L.

The n-th array element receives the signal yn(t). For this

setting, the signal received at the full antenna array is given

by

y(t) = Ax(t) +w(t), (1)

where y(t) = [y1(t), y2(t), · · · , yN (t)]T. The matrix A ∈
C

N×M is the array steering matrix whose nm-th entry is

given by e−j 2πλ px
n sin(θm). The functions x(t) has L nonzero

values for each t ∈ R. The non-zero entries of x(t) determines

the DOAs. In particular, if the support of x(t) is denoted

by a set of integers {m�}L�=1 then the DOAs of the sources

are {θm�
}L�=1. The corresponding signals in x(t), give as

{xm�
(t)}L�=1, are narrow band deterministic signals that are

transmitted by the source at a wavelength λ. The term w(t)
denotes measurement noise whose samples are assumed to

be spatially (across sensors) and temporally, independent and

identically distributed, and are circular complex Gaussian

random variables with zero mean and variance σ2
w.

B. Problem Formulation

For simplicity, we omit the time index t from the measure-

ment model (1) and hence write

y = Ax+w. (2)



The DOA estimation problem is equivalent to estimating the

support of the sparse vector x,

Sx = support(x). (3)

As discussed earlier, it is desirable to estimate Sx from a

subset of measurements of y. Let K be a subset of the set

N = {1, 2, · · · , N} with cardinality |K| = K. Then yK
denotes K subsamples of y that are indexed by K.

The objective is to choose the best subset K out of Q =
(
N
K

)
possible choices such that the error in estimating Sx from

yK is minimized. This amounts to solving the following

optimization problem

KOpt
Sx

= argmin
K∈N

C(Sx, Ŝx,K) s. t. |K| = K, (4)

where Ŝx is an estimation of Sx from yK. The cost function

C() is a real-valued function that measures the reconstruction

error. The mean-squared error (MSE) E‖Sx − Ŝx‖22 is one

possible choice of the cost function.

The goal is to solve (4) in order to generate the training

data for DL methods.

III. A FAST-LEARNING SPARSE ARRAY

We employ a CNN-based deep network classifier for sparse

antenna selection [4]. We train the CNN to find the best sparse

array from the covariance matrix of the received signal as

in [4], [5]. For fast-training the CNN, we propose to solve

(4) by using a submodular-optimization based data generation

method.

A. Submodular Function and Greedy Approach

The cost function in (4) depends on the reconstruction

algorithm, the ground-truth, Sx, and the subset K. Hence, for

a fixed reconstruction algorithm and a given Sx, it is a set

function that maps any subset of N to a real number. The

function C(Sx, Ŝx,K) is submodular if it satisfies the prop-

erty of decreasing marginals. Mathematically, C(Sx, Ŝx,K) is

submodular if for every K1 ⊆ K2 ⊆ N the cost satisfies the

following inequality

C(Sx, Ŝx,K1 ∪ {i}) ≥ C(Sx, Ŝx,K2 ∪ {i}), ∀i ∈ N\K2.

Further, the cost is monotonic if for every K1 ⊆ K2 ⊆ N ,

C(Sx, Ŝx,K1) ≤ C(Sx, Ŝx,K2). (5)

In [12], it is shown that if C(Sx, Ŝx,K) is a monotonic

submodular function, then the optimization problem in (4) can

be solved in a near-optimal sense by applying a K-step greedy

method. Algorithm 1 summarizes this procedure. The MSE is

a preferred cost function, however, MSE is not submodular in

general [17]. One alternative is to minimize a scalar function

of the CRLB that denotes a lower bound on the variance

of unbiased estimators. Let Cr(Sx,K) denote the CRLB in

estimation of Sx from yK. Then the cost function

log det(Cr(Sx,K)) (6)

Algorithm 1 Greedy Algorithm for Submodular Optimization

Initialize: K = ∅

for k = 1 to K do
[S1] i∗ = max

i∈N\K
− C

(
Sx, Ŝx,K ∪ {i}

)

[S2] K ← K ∪ {i∗}
end for

is submodular and monotone provided that K �= ∅ [19, Theo-

rem VI.2]. Through simulations, we show that the submodular

cost function in (6) results in a lower MSE in estimation of

DOAs compared with the other choices of submodular costs.

B. A Fast-Training Data Generation

Selection of a K-element sparse subarray from an N -

element full array among Q =

(
N
K

)
possible choices is

analogous to a classification problem with Q classes. Here

each class represents a different choice of subarray. A CNN

is trained to achieve this classification [4].

The input to the CNN is an autocorrelation matrix that

is computed from the signals received from a full array.

Starting from P snapshots of the measurements, {y(tp)}Pp=1,

we construct a sample autocorrelation matrix

R =
1

P

P∑
p=1

y(tp)y
H(tp) ∈ C

N×N , (7)

where we assume that the targets are not changing their

directions over the snapshots. In other words, the vectors

{x(tp)}Pp=1 have common support. The matrices Re(R),
Im(R), and ∠(R) act as input to the CNN and it outputs

an estimate of the subset K.

In [4], [5], the output label K is selected by minimizing

the mean CRLB that is computed by averaging the CRLBs of

DOAs for the L targets. Minimization is achieved by an ex-

haustive search over all possible subsets. Then, by using a set

of training features-label pairs ((Re(R), Im(R),∠(R)),K) a

network is learned that can be used to solve the optimization

problem in (4).

A submodular-cost based data labeling approach is scalable

to any array size. We use the cost function in (6) and

then by applying Algorithm 1 estimate a subset for a given

Sx. Then the CNN is trained with the input-output pairs

((Re(R), Im(R),∠(R)),Kgreedy), where Kgreedy denotes the

subset estimated by submodular optimization. During train-

ing, we assume that x is not changing across snapshots.

We summarize the steps for generating the training data in

Algorithm 2. The training steps are the same as in [4] except

for the Step-3. The proposed sparse array selection approach

is generic and is applicable to any linear and non-linear

measurement model.

The design of the CNN layers is similar to that in [4], [5].

We recall the CNN structure for the sake of completion. The

CNN consists of nine layers. The input layer of CNN accepts



Algorithm 2 Fast training data generation for sparse array

selection.
Input: Number of antennas N , number of targets L,

sparse subarray size K, number of data realizations T ,

number of DOA angles S, number of snapshots P and

σ2
w.

Output: Training data: Input-output pairs consisting of

sample covariances R(s,i) and output labels K(s,i) for s =
1, . . . , S and i = 1, . . . , T .

1: Select a set of L-sparse target DOAs and corresponding

amplitudes {x(s)}Ss=1.

2: For each x(s), generate P snapshots of the data by using

(1) and then compute the autocorrelation matrix R(s) by

using (7).

3: For each x(s), compute the subarrays K(s) by using the

cost function (6) and Algorithm 1.

4: Repeat steps 1 to 3 for T times by chaining the am-

plitudes of each x(s) and generate the input-output pairs

(R(s,i),K(s,i)) for s = 1, · · · , S and i = 1, · · · , T .

the two-dimensional inputs (Re(R), Im(R),∠(R)) in three

real-valued channels. The second, fourth and sixth layers are

convolutional layers with 64 filters of size 2 × 2. To reduce

the dimensions, the third and fifth layers are designed as max-

pooling that reduce the dimension by half. The next two layers

are fully connected layers with 512 units whose 50% are

randomly dropped out to minimize overfitting during training.

Each convolutional and fully-connected layers are followed

by rectified linear units (ReLU) where ReLU(a) = max(a, 0).
The dimension of the output layer is equal to the number of

classes. As shown in [4], the actual number of classes is much

smaller than Q.

To train the network, we collect data for S target instances

and for T realizations that results in ST data samples. We

train the proposed network in MATLAB on a PC with Intel

Core i7-6700 CPU. During the training process, 10% of the

training data is used for validation. We used the stochastic

gradient descent algorithm with momentum for updating the

network parameters with learning rate of 0.05 and mini-batch

size of 500 samples for 200 epochs.

IV. SIMULATION RESULTS

We evaluate the performance of the proposed data labeling

method and resulting DOA estimation. First, we access the

performance of greedy approaches and justify the use of cost

function in (6). Then we compare the results of CNNs with

different training methods.

Throughout the simulations, we consider one-dimensional

linear arrays. The signal-to-noise ratio (SNR) is defined as

10 log10(‖x‖2/Mσ2
w). Once the subsets are computed, orthog-

onal matching pursuit (OMP) is applied to estimate x from

the measurements from the selected subsets. The normalized

MSE ‖x− x̂‖2/‖x‖2 is used as performance measure that is

averaged over 500 independent realizations for a given SNR.
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Fig. 1. A comparison of various submodular cost functions in terms of MSE
in estimating DOAs from the selected subarrays. CRLB-based cost functions
have 1 to 2 dB lower MSE compared to other methods for SNR ≥ 20 dB. Both
standard (exhaustive) and greedy CRLB methods have comparable errors.

TABLE I
A COMPARISON OF AVERAGE COMPUTATION TIME AND MSE FOR 20 dB

SNR

Method Time (in msec.) MSE (in dB)

FP [17] 63.1 -6.66

MAP [16] 41.2 -6.98

MI [14], [15] 17.5 -6.82

CRLB Exhaustive [4] 510 -9.27

CRLB Greedy [19] 51 -9.18

Random 0.3 -6.56

DL [4], [5] 430 -8.66

DL greedy (proposed) 430 -8.58

Full - -11.50

with N = 16 elements. The objective is to choose K = 10
elements for L = 3 targets with M = 100.

A. Comparison of Submodular Methods

There are several choices of submodular cost functions

such as MI, FP, MAP-based, and CRLB-greedy as in (6).

In Fig. 1, we compare the performances of these methods

for different SNRs. The objective is to choose K = 10
elements from N = 16 element array for L = 3 targets with

M = 100. We also compared the error for a full array and

an exhaustive search method that minimizes (6). The latter

approach is termed as CRLB Exhaustive. It is observed that,

among different submodular cost functions, CRLB greedy

has the lowest MSE. In Table 1, a comparison of the MSE

and computation time is presented for different methods.

For CRLB cost, performances of both exhaustive search and

greedy method are similar for different SNRs. However, the

CRLB greedy method is 10 times faster than CRLB Exhaustive

in the present settings.
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Fig. 2. A comparison of DL-based methods with two different training
approaches. Both standard DL method and DL greedy method, trained by
using submodualr optimization, have similar errors. DL-based methods are
adaptive and perform better than the random selection method.
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Fig. 3. A comparison of DL-based methods for closely spaced targets. DL-
based methods are adaptive and perform better than the random selection
method.

B. Comparison of DL-based methods

We consider a full array with N = 16 elements, with

an objective to choose K = 10 elements. The grid size is

M = 100. We train the proposed CNN structure for L = 3
targets whose DOAs are selected uniformly at random. We

select S = 5000 different target locations and T = 100 data

realizations with 100 data snapshots. The SNR for training

is set to be 20 dB. Two different CNNs are trained. The first

network is trained as in [4] where an exhaustive search is used

for data labeling. The second network is trained by the data

generation process described in Algorithm 1. Once trained,

the sparse subsets are estimated for different measurements

and subsequently, OMP is applied to estimate the DOAs and

corresponding amplitudes from the subsamples.

In Fig. 2, we compare the performance of DL based methods

with a random selection method and CRLB Exhaustive. The
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Fig. 4. A comparison of DL-based methods for 10 targets. DL-based methods
are adaptive and perform better than the random selection method.

performance of the DL based technique is similar for both

exhaustive and greedy training methods. The latter is compu-

tationally efficient and practical for larger arrays. We observe

that data-based DL approaches perform better than a random

selection strategy. For high SNRs (≥ 20dB), CRLB Exhaustive

method results in a 2 dB less error compared with the DL-

based methods. In terms of the computation time (See Table 1),

the DL based methods are slower compared with the greedy

methods. However, both the CRLB Exhaustive method and

greedy approaches requires explicit knowledge of the DOAs to

estimate the subsets whereas DL-based methods do not require

that.

C. Comparison of DL-based methods for closely-spaced tar-
gets

In this simulation, we consider two closely spaced targets

with N = 16, K = 10, and M = 100. Specifically, we

consider the DOAs θm1 and θm2 such that | sin(θm1) −
sin(θm2)| ≤ 1/N . In other words, the spatial frequencies cor-

respond to DOAs are smaller than the Fourier resolution limit.

In Fig. 3, we compare the performance of DL based methods

with a random selection method, CRLB Exhaustive, and the

full array. By using fewer antenna elements, the accuracy of

the DL-based methods is reduced by 2 dB compared with

the full array. The DL-based methods have 1 dB less error

compared with the random selection.

D. Comparison of DL-based methods for a large array

We compare the performance for subset selection methods

for a large array and a large number of targets. Specifically,

we consider selection of K = 30 antennas from N = 64. The

number of targets is L = 10 and we consider a grid size of

M = 200. A CRLB-exhaustive method for the training data

generation amounts to search over choice of the order of 1018

and hence can not be used. Hence we compare only the greedy

methods that are salable to large arrays. In Fig 4, we compare

the performance of the DL-greedy and CRLB-greedy methods



with the full and random array. We observe that both CRLB-

greedy and DL-greedy methods perform similarly and the DL-

greedy method performs better than the random selection.

V. CONCLUSION

In this paper, we have proposed a submodular optimization-

based data generation approach to train a CNN that performs

the task of subset selection. Our hybrid approach uses a

CRLB-based submodular cost function that is minimized by

a computationally efficient greedy algorithm. The resulting

sparse arrays are used as output labels to train a CNN

with the sample covariance matrix of the received signal as

input. DOAs are estimated from the partial measurements by

applying the OMP algorithm. The training of the resulting

network is 10 times faster than conventional network without

any performance degradation.
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S. Brüggenwirth, “Adaptive channel selection for DOA estimation
in MIMO radar,” in Int. Workshop on Comput. Adv. in Multi-Sensor
Adaptive Process. (CAMSAP), 2017.

[8] K. V. Mishra, Y. C. Eldar, E. Shoshan, M. Namer, and M. Meltsin,
“A cognitive sub-Nyquist MIMO radar prototype,” IEEE Trans. Aerosp.
Electron. Sys., vol. 56, no. 2, pp. 937–955, 2019.

[9] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE
Trans. Signal Process., vol. 57, no. 2, pp. 451–462, 2009.

[10] S. P. Chepuri and G. Leus, “Sparsity-promoting sensor selection for
non-linear measurement models,” IEEE Trans. Signal Process., vol. 63,
no. 3, pp. 684–698, 2015.

[11] H. Godrich, A. P. Petropulu, and H. V. Poor, “Sensor selection in
distributed multiple-radar architectures for localization: A knapsack
problem formulation,” IEEE Trans. Signal Process., vol. 60, no. 1, pp.
247–260, 2012.

[12] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions — I,” Math.
Program., vol. 14, no. 1, pp. 265–294, 1978.

[13] S. Fujishige, Submodular Functions and Optimization, ser. ISSN. El-
sevier Science, 2005.

[14] G. Shulkind, S. Jegelka, and G. W. Wornell, “Sensor array design
through submodular optimization,” IEEE Trans Info. Theory, vol. 65,
no. 1, pp. 664–675, 2019.

[15] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements
in Gaussian processes: Theory, efficient algorithms and empirical stud-
ies,” J. Mach. Learn. Res., vol. 9, p. 235–284, Jun. 2008.

[16] M. Shamaiah, S. Banerjee, and H. Vikalo, “Greedy sensor selection:
Leveraging submodularity,” in IEEE Conf. Decision and Control (CDC),
2010, pp. 2572–2577.

[17] J. Ranieri, A. Chebira, and M. Vetterli, “Near-optimal sensor placement
for linear inverse problems,” IEEE Tran Signal Process., vol. 62, no. 5,
pp. 1135–1146, 2014.

[18] M. Naeem, S. Xue, and D. C. Lee, “Cross-entropy optimization for
sensor selection problems,” in Int. Symp. Commun. and Info. Tech., 2009,
pp. 396–401.

[19] E. Tohidi, M. Coutino, S. P. Chepuri, H. Behroozi, M. M. Nayebi,
and G. Leus, “Sparse antenna and pulse placement for colocated mimo
radar,” IEEE Tran. Signal Process., vol. 67, no. 3, pp. 579–593, 2019.


