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Abstract: This paper considers the use of a post metadata-based approach to identifying intentionally
deceptive online content. It presents the use of an inherently explainable artificial intelligence
technique, which utilizes machine learning to train an expert system, for this purpose. It considers
the role of three factors (textual context, speaker background, and emotion) in fake news detection
analysis and evaluates the efficacy of using key factors, but not the inherently subjective processing
of post text itself, to identify deceptive online content. This paper presents initial work on a potential
deceptive content detection tool and also, through the networks that it presents for this purpose,
considers the interrelationships of factors that can be used to determine whether a post is deceptive
content or not and their comparative importance.

Keywords: intentionally deceptive online content; fake news; message characteristics; machine
learning trained expert system; social media

1. Introduction

Online social media interconnects the public, allowing personal news, photos, videos,
and other content to be easily shared with friends, family, and anyone else who cares to
read it. The reach of each individual’s or organization’s content is based on who chooses
to read it directly and who chooses to re-share it. In this regard, social media sites have
democratized news content. In the process, they have removed the filter of news media
organizations—allowing content to flow unimpeded (and, in some cases, unedited and
un-fact-checked) from writer to reader almost instantly.

This person-to-person communications capability allows for social progress. It facili-
tates members of the public banding together to demand the righting of wrongs. Events
like the “Arab Spring” uprisings have demonstrated the power of social media coordi-
nation [1,2] (though some have minimized its role [3] or suggested social media use was
a product of protests instead of a cause for them [4]). However, it has also provided a
platform for those who seek to distribute misinformation. Some misinformation can be
attributed to benign causes, such as different perspectives on an event or posting users
themselves believing inaccurate information. In other cases, individuals and organizations
post content knowing that it is wrong and do so with the intent to manipulate readers.
Large-scale “misinformation network[s]” have been blamed for interference with the 2016
U.S. presidential election [5]. Misinformation has also been linked to the New Jersey
“Bridge Gate” event [6] and even contributed to an armed standoff in the “Pizza Gate”
incident [6,7].

Amongst its many consequences, Ognyanova, et al. [8] note that deceptive online
content can reduce the public’s trust in traditional media and galvanize trust in political
institutions based on readers political predispositions. A variety of potential solutions for
responding to so-called “fake news” and mitigating the impact of intentionally deceptive
online content have been proposed, ranging from ratings systems to warnings to blocking
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it [9]. However, these systems require a method to identify the deceptive content, in
order to take whatever mitigation action that they propose. Strategies such as textual
analysis [10,11], article characteristics analysis [12], and network analysis [13] have been
proposed.

In many cases, neural networks [14] have been used as part of this analysis. However,
this is problematic in its own right, as neural networks have been shown to produce inac-
curate results [15], in some circumstances, and to be susceptible to targeted attacks against
their decision-making logic [16,17]. Various “explainable artificial intelligence” (XAI) ef-
forts have been proposed [15] to try to help humans understand, mitigate, and respond
to these issues; however, explainability falls short of accuracy in decision-making. Artifi-
cial intelligence-based deceptive content identification techniques, thus, may themselves
become a source of online misinformation.

In [18], a neural-network-like technique for training a network whose pathways are
pre-defined (and, thus, not susceptible to learning non-causal or inaccurate associations)
was proposed. In [18] (and further development presented in [19]), randomly generated
networks, rules, and facts were utilized to demonstrate the technique and characterize its
efficacy in a generalizable manner (as described in [20]).

This paper extends on this prior work by presenting the initial work in the application
of this technology to an application area: the challenge of intentionally deceptive online
content detection. Its contributions, thus, include that it presents work using the machine
learning-trained expert system [18] technology in a particular application area and that it
evaluates the efficacy of a particular approach, of using only certain message metadata, to
identify deceptive online content.

This paper continues, in Section 2, with a review of prior work that provides a
foundation for the work presented herein. Sections 3 and 4 present the design of the
system used for testing and the study methodology, respectively. Sections 5 and 6 discuss
and analyze the different network configurations that were used for deceptive content
identification and their results. Section 7 compares the results of the techniques used herein
to prior work and Section 8 discusses system limitations, before the paper concludes (in
Section 9) and discusses key areas of potential future work.

2. Background

This section presents prior work in several areas that provide the foundation for the
work presented herein. First, the issues related to deceptive content and fake news are
reviewed. Next, Sections 2.2–2.5 present different strategies for identifying deceptive online
content. Section 2.6 discusses the issues with using artificial intelligence techniques in this
analysis. Finally, Section 2.7 presents the machine learning trained expert system that is
used for the work presented herein.

2.1. The Danger of Fake News

Social media has removed limits of physical distance, increased convenience, and
facilitated global communications. Twitter, in particular, has become a channel for news
distribution for many traditional media outlets due to its short message format and ease of
registration and use. It is also used for business promotion and political campaigning [12].

Because of these advantages, though, Twitter has been used to spread rumors and
shape public opinion. In the 2020 election, for example, fake news messaging has been
alleged to have led many voters to believe false statements, reducing their confidence in
the American democratic system. An Indiana University survey indicated that more than
43 percent of respondents believed that counting machines overcounted Biden’s votes, and
about 49 percent believed that mail-in ballots contributed to voter fraud [21].

The dangers of intentionally deceptive social media posts are not just political in
nature. A recent attack on several celebrities’ Twitter accounts resulted in false posts,
pretending to be the celebrities, which were used to steal $120,000 from their followers [22].
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2.2. Preventing the Spread of Intentionally Deceptive Online Content

Multiple methods have been devised to identify intentionally deceptive online content
and limit its spread. Techniques have been proposed for several types of false information
content including propaganda, conspiracy theories, and hoaxes [23]. Preventing the spread
of misinformation first requires its identification. Three prevailing strategies have found
frequent use for this purpose: manual verification, web-based approaches, and semantic
approaches. Manual verification may have accuracy benefits; however, because of the
proliferation of fake news, manual verification mechanisms lack the capacity to keep up
with the deceptive content, in most circumstances.

Because of this, several automated approaches have been proposed. To effectively
automate fake news detection, it is first necessary to understand how social media spreads
on the web. According to Shu, et al. [24] there are three main dimensions to the spread of the
Web on social media: the “content dimension”, the “social dimension”, and the “temporal
dimension”. The content dimension, which Shu, et al. [24] call the “what” of the news
article or post, is the association between different articles, posts and other media regarding
the specific content of news posts [24]. The social dimension, which Shu, et al. [24] call the
“who” of the news article or post, is the relationship between the publisher, distributor, and
consumers of the news post [24]. Finally, the temporal dimension, which Shu, et al. [24]
call the “when” of the news article or post, is the behavior of users in their posting and
commenting over time [24]. Combining these three dimensions allows the different factors
that are associated with media spread to be characterized. For media to spread rapidly
and widely, it needs to cover a topic of interest to a community (or the general public)
and be read and spread by users in the interested community. This process must happen
rapidly for the content to gain a wide audience while it is still relevant and of interest to
the community or general public.

2.3. Network Analysis

Network analysis, specifically, is a method of detecting fake news based on the
properties of social networks. According to Shu, et al. [24], several properties make social
networks a breeding ground for fake news. First, on social networks, it is easy to find
people with similar views, so they are likely to form echo chambers. Second, there is
the presence of individuals who are persuasive and those who gullible users reinforce
the collective impressions of the community. Social identity theory [24,25] explains this
phenomenon. This makes dispelling fake news even more difficult. Third, because social
networks stratify users based on their interests, this can create a filter bubble. Finally,
malicious accounts, some of which are “bots”, can influence users’ perspectives through
frequent automated messaging.

Shu, et al. [24] used these dimensions to develop network representations of “mutual
relations and dependencies” that were used to identify deceptive content. The social and
temporal dimensions, in particular, form the basis of network analysis techniques. Key
to this analysis and most types of analysis from a social dimension perspective is posting
user identification (both whether the posting user is an automated bot or not and, in the
case of a human posting user, who the individual is). To this end, Chu [12] proposes a
method to determine whether posting users are humans, bots, or human-assisted bots. This
approach is based on the analysis of three characteristics: the interval and periodicity of
posts, whether posts contain “spam or malicious content”, and the posting user’s account
properties. Additionally, several techniques have been proposed for detecting fake and bot-
operated accounts. Cresci, et al., for example, have developed an optimized classifier [26],
a DNA-based modeling “spambot group” identifier [27], and adversarial model spambot
detector [28].

While posting user identification is helpful, it is not a complete solution to deceptive
content identification. Several other network analysis-related techniques have been pro-
posed for this. A technique proposed by Conroy, Rubin, and Chen [13] compares the text
content of posts with a database to verify its truthfulness. Databases used for this purpose
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include public knowledge repositories such as DBpedia ontology and the Google Relation
Extraction Corpus, as well as newly emerging fact-checking sites.

A second approach analyzes the authenticity of posts based on the known author
of the post or the user information associated with it. Rathore [29] uses a web analysis
technique that considers the user’s domain name and psychological factors to achieve an
80% accuracy rate at deceptive content detection. Others, such as Gadek, et al. [30], have
combined the use of a knowledge base with the analysis of posting user information.

2.4. Text Body Analysis

Another approach is to analyze the text itself, without comparison to an external news
source, to determine its accuracy. Numerous techniques for textual analysis have been
proposed [31]. These approaches are aligned with Shu, et al.’s [24] “content dimension”.

A key advantage of this style of approach is that databases of content are not required
for verification purposes. The lack of comparison searching also facilitates fast analysis.
Known truthful and deceptive text are analyzed to identify linguistic patterns (such as word
usage, n-gram and syntactic structure, semantic similarities, and rhetorical relationships
between linguistic elements) associated with deceptive content [10]. Hancock’s method of
analyzing individual words and n-grams (referred to as the “bags of words” technique) is
very straightforward. The inflections and tenses used in the text are analyzed to determine
whether the text is deceptive [11].

A number of text analysis approaches have been proposed—many of which incorpo-
rate artificial intelligence techniques. Smitha, et al. [32] compared the use of naive Bayes
classifiers, convolutional neural networks, and support vector machine algorithms and
concluded that neural networks and support vector machines were the most effective.
Mahabub [33], similarly, compared eleven different methods, including naive Bayes clas-
sifiers, the k-nearest neighbors algorithm, the random forest algorithm, artificial neural
networks, and logistic regression and identified three as performing the best: the multi-
layer perception algorithm, logistic regression, and X-gradient boosting.

Aldwairi and Alwahedi [34] compared Bayesian networks, logistic regression, naïve
Bayes, and random tree algorithms and found that logistic regression performed the best,
in terms of precision and tied with the random tree algorithm as best performing in terms
of recall and the f-measure metric. However, the two Bayesian techniques performed best
in terms of the receiver operating characteristic metric.

Kudarvalli and Fiaidhi [35] concluded that the logistic regression and support vector
machine algorithms worked the best (with logistic regression outperforming support vector
machines by 1%) out of the four they compared. The two outperformed naïve Bayesian
classifiers and the long short-term memory technique.

Singh [36] compared three different types of neural networks’ (basic artificial neural
networks, convolutional neural networks, and recurrent neural networks) performance
with the LIAR and Kaggle datasets using four different vector space representations. They
found that the recurrent neural networks outperformed in many, but not all, cases.

Albahr and Albahar [37] compared random forest algorithms, naïve Bayesian classi-
fiers, neural networks, and decision trees and concluded that the naïve Bayes approach
worked the best. Ahmad and Ramasamy [38], alternately, compared neural networks,
support vector machines, naïve Bayesian classifiers, and gradient descent and found that
neural networks performed the best.

While no single best text analysis approach algorithm has been identified, several
promising results have been demonstrated. Techniques that combine multiple algorithms,
such as Bonsu’s [39] combination of seven algorithms including logistic regression, support
vector machines and decision trees, have also been proposed. This type of approach,
through, suffers from limitations as it focuses on the usage of individual words as opposed
to the overall semantics. Rubin [40] went beyond many of these techniques, by proposing a
method called RST-VSM, which is based on analysis of rhetorical structures and discourse.
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2.5. Sentiment Analysis

An alternate approach, which goes beyond basic text analysis, is sentiment analysis.
This approach focuses on the emotions of the text. The theoretical basis of this approach is
that fake news authors often intentionally arouse the emotions of the readers to drive the
success of their articles [10].

Sentiment analysis determines the type and intensity of the emotions expressed in
text [10]. It is a branch of natural language processing which seeks to determine whether a
text conveys objective or subjective information. If subjective information is identified, it
is further assessed to determine whether it is presented in a positive, neutral, or negative
manner, and whether it is expressed strongly or weekly. This technique is also referred to
as opinion mining [10].

Sentiment analysis can provide additional information beyond what basic text analysis
approaches are able to. Sharma, et al. [40], for example, note that positive sentiment tends
to be exaggerated in positive fake comments as compared to real comments. Alternately,
responses to fake news on social media tend to have negative sentiment. Given these
patterns, sentiment analysis can be useful for detecting fake news. Anoop, et al. [41]
showed how sentiment analysis could be valuable. They added sentiment analysis to
a system designed to classify health news articles as true or false, which resulted in
improved performance.

2.6. Artificial Intelligence Limitations and Explainability

Several of the previous subsections have described how artificial intelligence tech-
niques, including a number of forms of neural networks, have been used perform fake
news analysis. In addition to the overall accuracy numbers for each technique, a key
consideration is whether techniques may suffer acute failures in terms of particular cases.
For learning algorithms, like neural networks, this may be due to the algorithm learning
invalid, non-causal associations. While certain associations may be true in many cases, they
may not hold in all cases and thus cause bad assessments to be made in cases where they are
inaccurate. Upadhayay and Behzadan [42] noted one issue with the LIAR dataset, which
they corrected in the Sentimental LIAR dataset that is used for this work. The original
included authors’ names, which could have resulted in the system forming truthfulness
biases to certain particular names or names with similar characteristics. This could have
resulted in prospective ethnic, gender, and other biases. Other potential biasing factors
could also exist in data. For machine learning techniques that operate opaquely, exactly
what is being learned by the system is unknown.

Transparency issues and system bias and learning concerns are known [43] to cause
humans anxiety and have led to a number of groups raising concerns about automated
decision making [44]. Concerns about their impact on vulnerable groups have led to some
systems being poignantly termed “algorithms of oppression” by Noble [45] and “weapons
of math destruction” by O’Neil [46]. Particularly problematic is a demonstrated correlation
between strong performing AI systems and low explainability [47], though this correlation
has not been shown to be causal. XAI techniques have been proposed in response to
these problems. They are designed to help humans understand how systems are making
decisions [47]. Fundamentally, XAI seeks to bring machine learning from being an opaque
process to a fully transparent “glass box” [48].

2.7. Gradient Descent Trained Expert Systems

In response to the issues discussed in the previous subsection, a technique was pro-
posed that goes beyond merely XAI. This technique, machine learning trained expert
systems, which was introduced in [18,19], is used for the analysis performed in this paper.
The technique is fundamentally different from the traditional neural network, in structure,
though it provides conceptually similar machine learning capabilities. While neural net-
works are comprised of layers where each node in each layer is connected to each node in
its neighboring layers, the machine learning trained expert system starts with the logical
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structure of a domain application-based rule-fact network and then performs machine
learning to optimize the relationships (rule input contribution weights) between fact nodes.

Facts store fractional values between 0 and 1, indicating the level of applicability of the
fact statement. Rules have weights for their inputs (also between 0 and 1 and summing to 1)
that determine the comparative impact of input rule values on the output rule. The system
uses a specialized implementation of the gradient descent backpropagation technique to
optimize the rule weightings based on a comparison of the output value of the system in
its current form and the goal output value supplied during training. More details about
the system used for this work are provided in Section 3. The network designs used are
discussed in Sections 5 and 6.

3. Experimental System Design

The experiments that are described in this paper were performed using a system
derived from the one used for the experimentation presented in [18,19]. Unlike those
papers, which used an ideal system (in some cases with perturbations) to train and test
the gradient descent-trained expert system (as described in [20]), the work presented in
this paper uses real world data from the Sentimental LIAR dataset [42] for supervised
training (in place of the ideal system) and performance evaluation. However, the data
storage and network implementation system used for the work herein is the same as was
used in [18,19] as are the training and presentation-for-evaluation mechanisms.

The training process that was used is presented in Figure 1. An initial network design
was created for each test (twelve designs, in total, were evaluated). These designs are
described in Section 5. The network was then trained using the process depicted in Figure 1,
which determines the difference between the results of the network-under-training and
the target result from the training data and distributes a portion of the difference to each
rule that contributes to the output fact’s value (which is indicated with the dashed line in
Figure 1). The training process is run for a given number of training records and epochs of
training and the amount of difference that is distributed to the rules during each iteration
is based on a specified velocity value.

After the velocity value is used to determine the amount of the difference to distribute,
the level of contribution of each rule to the output fact must be determined, as the difference
correction is distributed proportionately to the contribution of each rule. The contribution
of each rule, Ci, to the target fact, is determined using the equation [18]:

Ci = Wi × ∏
{APT}

WR(m,h) (1)

where Wi is the weighting for rule i, WR(m,h) is each rule’s weighting (m represents the rule
and h represents the given weight value) and {APT} is the set of all of the rules that are
passed through for the contribution. Note that rules that only the highest value will be
used for a rule that is part of multiple rule-fact chains to the output fact.
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Figure 1. Training Process Using SLIAR Dataset (modified from [18]).

The difference value that is applied to a given rule weighting, Di, is determined by
dividing the contribution of the rule is by the sum of all rules’ contributions. This is
multiplied by the velocity value and the amount of difference that is being distributed. It is
computed with the equation (modified from [19]):

Di =
Ci

∑{AC} Ci
×V × |RDS − RT |

MAX(RP, RT)
(2)

where {AC} is the set of all rules that contribute to the output fact, RDS is the result from
the training dataset, RT is the result from the network-under-training, V is the velocity
and MAX is a function which returns the largest of the values passed to it. The process for
applying the difference is depicted in Figure 2.
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Figure 2. Node Change Determination Algorithm [18].

4. Methodology

This section describes the methodology used for the experimentation which is pre-
sented herein. Section 4.1 introduces the Sentimental LIAR dataset. Section 4.2 describes
the data pre-processing that was performed to place the data in the correct format for use in
the gradient descent-trained expert system. Section 4.3 describes the pre-processing used
to correct errors and omissions in the data. Finally, Section 4.4 discusses the evaluation
process that was used.

4.1. Sentimental LIAR Dataset

For direct interpersonal communications, a variety of signals can indicate deception
such as unnaturally concealing one’s emotions, shrugging and indifference [49]. With
text-based online content, these signals of deception don’t exist, making the identification
of deception more difficult, as it must be ascertained from the text and characteristics of
the message itself.

To facilitate research regarding using emotional characteristics for deceptive content
detection, Upadhayay and Behzadan [42] created the Sentimental LIAR dataset, based
upon the older LIAR dataset [50]. Sentimental LIAR extended the LIAR dataset by using
the Google and IBM Watson natural language processing technologies. The Google API
was used to determine the overall “attitude of the text”, while the IBM API [51] was used
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to analyze the emotional characteristics of texts and assign a value to each of five emotions:
anger, fear, joy, disgust, and sadness.

Sentimental LIAR was initially created by Upadhayay and Behzadan [42] for classify-
ing fake claims. In [42], they used a variety of techniques to attempt to identify deceptive
content. Values from the original LIAR dataset and values computed from those values
were used. These values were augmented with the IBM and Google API data. In addi-
tion to the natural language processing APIs, they also used the Bidirectional Encoder
Representations from Transformer (BERT) system. In the current work, six values derived
from this dataset (credibility score, sentiment score, emotion score, macroscopic score, five
emotions, and three intermediate facts) are used to train the expert system to predict the
truth or falsity of presented statements. The pre-computed values from the Google and
IBM natural language processing APIs, which are included in the dataset, are used, but the
BERT system is not.

The networks that were developed for the current work, which are discussed in more
detail in Section 6, utilize a number of values calculated from the SLIAR dataset.

The credibility score, for example, is a percentage of untruthfulness, based on the past
statements of the author.It is calculated by dividing the number of mostly_true_counts for
the author by the sum of the values of the five statement count variables: barely_true_counts,
false_counts, half_true_counts, mostly_true_counts, and pants_on_fire_counts.

The sentiment score is designed to reflect the polarity of the text, with positive val-
ues showing positivity and negative values showing negativity. The sentiment value is
computed from the five emotion values that were previously discussed.

4.2. Data Processing

The data format requirements of gradient descent trained expert system require that
the data in the Sentimental LIAR dataset be processed before it can be used. In some cases,
the required format change is simply a change to data presentation: for example, the scores
for the five emotions (anger, fear, joy, disgust and sad) must be formatted into a 000.000
format. Additionally, since the system does not accept negative numbers and there are
positive and negative sentiment scores, it was necessary to scale the sentiment scores so
that they are all greater than or equal to zero. A method of scaling all numbers to the
interval 0 to 1 is used, based on the equation:

y =
x−min

max−min
(3)

where y is the scaled score, x is the sentiment score in the dataset, and min and max represent
the minimum and maximum sentiment scores, respectively.

Variables in the dataset that are text-based must also be converted into computable
system-compatible numeric values. The label column, for example, is converted from six
options (pants_fire, false, half-true, barely_true, mostly_true and true) to the values of 0.0,
0.1, 0.5, 0.6, 0.75, and 1.0.

These values are used to assign values to other plain text variables. For each variable,
each particular variable value is assigned the score (described above) of the average of all
data records with that value. Variable values with less than 20 instances are assigned to the
average of all records to avoid being overly influenced by potential outliers.

4.3. Data Cleaning

Like many datasets, the Sentimental LIAR dataset had a number of flaws. The pre-
processing used to correct these issues discussed in Sections 4.3.1 and 4.3.2.

4.3.1. Incomplete/Blank Statistics

There are many blank values in the dataset (though these represent a small fraction—only
about 6%—of the total data elements). The processing system is not designed to deal
with missing input data, so it is necessary to preprocess the dataset to correct for missing
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values. A simple method for this correction was used where the mean of the values for the
variable, in the entire data set, is used in place of missing values. This provides a neutral
value for the facts (as using 1 or 0 would indicate data at an extreme and 0.5, while in the
middle of the scale range, may deviate from the actual middle of the range of the data itself)
that minimizes the impact of the missing data on the system’s decision making. Notably,
this has a higher computational cost than using a pre-set value, as the average must be
computed, and the ability to bypass missing data may be a valuable feature in a future
version of the machine learning trained expert system software.

It is worth noting that the formula for the credibility score (which will be discussed in
more detail in Section 5) uses the sum of all emotion scores as its denominator. Thus, cases
where all emotion scores sum to zero are treated as blanks and processed in this manner.

4.3.2. Corrective Processing

A few minor corrections were required to correct issues with some individual variables.
Different expressions for the same state were consolidated. For example, “Washington
D.C.”, “Washington, D.C.”, “District of Columbia”, “Washington DC”, and similar were
consolidated (in this case, replaced with “DC”). Similarly, instances of capitalization
differences and misspellings were corrected manually. Records with a blank value or a
value of “None” were classified as “Unknown”.

4.4. Evaluation Techniques

This section presents the two evaluation methods used in this work. First, a method
based on snapping is discussed. Then, a method based on thresholds is explained.

4.4.1. Snapping Technique

The first form of evaluation was used to see how accurate the overall processing
process is. This approach, in an ideal environment, would have data that was presented
produce an output value that matched with its precise classification. For this to work, the
data would need to not have significant errors or deviations in it (i.e., the training process
would have to be able to operate effectively) and the rule-fact network would need to be
normalized such that data is not shifted by passing through it. No attempt to normalize
the network was made prior to this assessment. Thus, a high level of accuracy was not
expected. Nonetheless, this assessment serves to illustrate the level corrective measures
that are needed.

The Sentimental LIAR dataset had five classifications for statements: pants_on_fire,
false, barely_true, half_true, mostly_true, and true. Each statement was assigned a target
value of 0.0, 0.1, 0.5, 0.6, 0.75, or 1.0, respectively, based on its categorization. To assess the
uncorrected performance of the system, the system output value was compared to these
values and “snapped” to the value that is closest to it (i.e., it is assigned the value that has
the least level of difference to the true value). The snapped value was compared to the
target value from the dataset and the percentage correct was recorded.

4.4.2. Threshold Method

This method is based on the approach used by Upadhayay and Behzadan [42] to
assess the performance of several techniques they proposed for predicting the truthfulness
of data in the Sentimental Liar dataset. They assigned each record in the data set a true
or false value: “[1,0]” was used to indicate true and “[0,1]” was used to indicate false.
The more granular classifications were placed into the true (true, mostly-true) and false
(false, pants-fire, barely-true, half-true) classifications. Predictions were then assessed to
see if they generated the correct true or false classification, since the other more granular
classifications were inherently subjective.
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To perform a similar analysis, a threshold between what is assessed to be true versus
false must be determined. As was mentioned in the previous sub-section, the system
is not expected to produce values that match the original scale, in all cases, without
normalization. Given this, simply using 0.5 (as the half-way point on the scale) or 0.675
(half-way between 0.6 for barely-true and 0.75 for mostly-true) would not be expected to
produce optimal results.

To determine the optimal threshold value, all values between 0.0 and 1.0 were assessed
(at 0.01 increments), using the training data. The value with the highest accuracy for the
training data was selected and used for processing (generation classification predictions
for) the testing data set.

5. Network Design

This section presents the design and development of the rule-fact networks that were
trained and used to classify the statements in the Sentimental LIAR dataset. The networks
represent different logical configurations of the inputs for a phenomenon for which the
exact logical relationships are not fully understood. Thus, through this exploration, not
only is the best performing network identified for use, but a better understanding of the
underlying phenomena is gained.

5.1. Network Inputs and Facts

All of the networks use the same 12 inputs from the Sentimental LIAR dataset: anger,
fear, joy, disgust, sad, subject, context, sentiment, state, party, credibility, and job. As the
training process can effectively discount a given input, if needed, by reducing the weight
given to it by the initial rule that processes it, subset combinations of inputs were not used.
Additionally, due to their association with each other, the anger, fear, joy, disgust, and
sad inputs are, in most cases, combined, early in the network, collectively becoming an
emotion fact. Note that this emotion fact is different from the sentiment input, as the latter
indicates the overall positivity or negativity reflected in the text. Table 1 discusses each of
the 12 inputs and its relationship to deceptive online content identification. Table 2 presents
sample data (note that the presented data are examples, not all possible values) from fields
that have text-based data.

Table 1. Network Inputs (input names are from the Sentimental LIAR dataset [42]).

Input Description Rationale

subject the subject of the statement (such as various
important and common political issues) provides background information of the statement

context the platform where the statement was
delivered and the type of statement provides background information of the statement

sentiment score indicates the polarity of the statement,
whether it is positive, negative, or neutral characterizes the text itself

state U.S. state that the speaker is from provides background information on the speaker
party affiliation speaker’s party affiliation provides background information on the speaker

credibility score reflects how likely the speaker is to tell the
truth based on past statements provides background information on the speaker

speaker job the job held by the speaker provides background information on the speaker
anger the proportion of anger in the statement characterizes the text itself
fear the proportion of fear in the statement characterizes the text itself
joy the proportion of joy in the statement characterizes the text itself

disgust the proportion of disgust in the statement characterizes the text itself
sad the proportion of sad in the statement characterizes the text itself
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Table 2. Example Data (input names and example data from the Sentimental LIAR dataset [42]).

Input Example Data

subject
abortion
energy

health-care

context
a news release

an interview on CNN
a tweet

state
Texas

Virginia
Illinois

party affiliation
Republican
Democrat

independent

speaker job
state representative

state delegate
president

Beyond the input facts, intermediate facts are used to represent the resulting data from
different relationships that have been created using the rule set. In several cases, multiple
rules have been utilized to implement a complex rule, as the system only supports rules
having two inputs. In these cases, the intermediate facts are used for processing purposes
only. Though they have a specific meaning (i.e., the combination of their input elements),
they are not necessarily results that could be separately analyzed and compared to a real-
world phenomenon. The groupings’ output facts (such as the emotion fact described above)
are designed to be potentially independently useful from the processing network and align
with a real-world phenomenon (which may or may not be measurable, in each given case).

5.2. Network Rules

Rules define the relationships between the input facts, internal facts, and the fact
or facts that serve as system outputs. The rule-fact networks (and, thus, the rules) are
designed to associate logically related data. Rules are defined to associate inputs into
summarizing facts (such as the previously described emotion fact) and to associate these
summarizing facts with each other. When defining a network, it is important to note that
oversimplification may be problematic, as it may prevent the ability to capture associations
between different input or summarizing facts that are logical, but not exactly as expected.
For example, it could be that one or several emotions are more associated with an output
or are associated with an output along with another non-emotion fact. A larger and more
nuanced rule network could more accurately capture a complex relationship like this.

Thus, while a goal of the machine learning trained expert system is to ensure that
rules represent logical, valid and causal relationships, this does not equate to networks
that are necessarily very simple. Just like with neural networks, where performance can
be significantly impacted by the number and configuration of the hidden layers, the rule
network design is integral to system performance. Given the ability to include intermediate
facts, there are literally an infinite number of networks that can be created. Potentially, this
number could be constrained through the evaluation of inputs relative to each other. Inputs
that are shown to act the same in all cases (presuming a complete set of use cases existed
for an application) can be quickly grouped within the network design process, reducing the
number of possible network designs significantly. Testing that shows a lack of correlating
behavior or certain types of correlating behaviors could also be used to reduce the number
of possible network implementations.

6. Network Implementations, Data Collection, and Analysis

Each of the following subsections describes a particular approach to the design of
the rule-fact network and describes its performance in terms of the metrics discussed



Sensors 2021, 21, 7083 13 of 31

in Section 4. Following this, in Section 6.13, the performance of the different networks
is compared. Then, in Section 6.14, the specific design processes used are discussed.
Section 7 compares the networks’ performance to prior work with the LIAR and Sentimen-
tal LIAR datasets.

6.1. First Network Implementation and Results

The first network configuration groups together the subject, context, and sentiment
inputs, in one branch. The state and party inputs are grouped together in a second branch
and the credibility and job inputs are grouped together in a third. The five emotion inputs
are also used, separately, to compute the emotion score. The fact result of the emotion
inputs, the emotion score, and the fact result of the other inputs, the macroscopic score, are
then combined together by rule 11 to produce the truth output fact. This first network is
presented in Figure 3. Note that this network makes use of intermediate facts. These facts
are used to combine together multiple related facts that could logically serve as the inputs
to a single rule, using several rules (as rules can have only two facts as inputs).

Figure 3. Depiction of Rule-Fact Network 1.

The network was trained with both 1 and 100 training epochs. As the results of the
two levels of training are quite similar in most cases, the 100 training epochs results are
discussed in Section 5.1. With 1 epoch of training (using the entire training portion of the
80% of the 12,836 Sentimental LIAR designated as the training subset), the first 1000 data
records in the training subset were used to evaluate the normalization of the network. Of
these, only 20.1% were matched to the correct one of the six categories without threshold
normalization. The applicable threshold value was computed to be 0.11, using the data
from the training dataset. With this threshold, it accurately classified 63.2% of the records
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in the training data subset. When this network and threshold were used with the testing
data subset, it had an accuracy of 62.4%.

6.2. Second Network Implementation and Results

The second network places the emotion value (which is produced from the five
component inputs) and the sentiment inputs together into one group related to the language
understanding of the statement. The job, subject, and credibility inputs are then grouped
together into a second professionalism group and the state, party, and context inputs are
grouped together into a third inclination group. Through the use of an intermediate fact,
the three are then brought together to produce the output truthfulness value. This second
network is depicted in Figure 4.

Figure 4. Depiction of Rule-Fact Network 2.

As was performed with the first network, the second network was trained with both
1 and 100 training epochs, and the 1 epoch of training results (using the entire training
portion of the 80% of the 12,836 Sentimental LIAR designated as the training subset) are
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now discussed. With the first 1000 data records in the training subset, the normalization
was again evaluated. In this case, 21.3% were matched to the correct one of the six categories
without threshold normalization. The applicable threshold value was again computed
to be 0.11, using the data from the training dataset. With this threshold, it accurately
classified 60.1% of the records in the training data subset. When this network and threshold
were used with the testing data subset, it had an accuracy of 59.9%. Notably, this second
network has a higher non-normalized matching accuracy; however, the performance with
the threshold was lower than with the first network.

6.3. Third Network Implementation and Results

In the third network, shown in Figure 5, the emotion value, calculated from the five
emotion-related inputs and the sentiment input are grouped together. The job, credibility,
party, and state inputs are also grouped together. Finally, the context and subject are
grouped together. This network investigates several groupings that do not have clear
definitions to seek to identify relationships that may not be obvious to the network designer.

Figure 5. Depiction of Rule-Fact Network 3.

As was performed with the first three networks, the third network was trained with
both 1 and 100 training epochs, and the 1 epoch of training results are now discussed. With
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the first 1000 data records in the training subset, the normalization was evaluated and 20.3%
were matched to the correct one of the six categories without threshold normalization. The
applicable threshold value was again computed to be 0.15, using the data from the training
dataset. With this threshold, it accurately classified 63.2% of the records in the training data
subset. When this network and threshold were used with the testing data subset, it had an
accuracy of 62.4%. Notably, while this third network had a slightly higher non-normalized
matching accuracy (20.3% versus 20.1%), the performance with the threshold was the same
as the first network, both for the training data and the testing data. This shows how, in
many cases, the training can optimize different networks to produce similar results, due to
the applicability of the transitive property of multiplication.

6.4. Forth Network Implementation and Results

In the fourth network, the emotion value (computed from the five emotion-related
inputs) and the sentiment, subject, and context inputs are grouped together. The job and
credibility and party, and (separately) state inputs are also grouped together. The fourth
network is presented in Figure 6.

Figure 6. Depiction of Rule-Fact Network 4.
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Like with the previous networks, the fourth network was trained with both 1 and
100 training epochs, and the 1 epoch of training results are now discussed. With the first
1000 data records in the training subset, the normalization was evaluated and 19.7% were
matched to the correct one of the six categories without threshold normalization. The
applicable threshold value was again computed to be 0.11, using the data from the training
dataset. With this threshold, it accurately classified 54.1% of the records in the training
data subset. When this network and threshold were used with the testing data subset,
it had an accuracy of 53.8%. This is the worst performing of the networks; it performed
8.5% worse (in absolute value), which is approximately 14% of the accuracy rate lower.
This demonstrates that network design has a direct impact on performance and that it can
produce issues that cannot be overcome by training (or, in some cases, may set training off
on a path to producing an inferior result).

6.5. Fifth Network Implementation and Results

In the fifth network, the emotion value (produced from the five emotion-related inputs)
and the subject, context, and sentiment inputs are grouped together. The job, credibility,
party, and state inputs are grouped together in a second group. The fifth network is
depicted in Figure 7.

Figure 7. Depiction of Rule-Fact Network 5.
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Like with the previous networks, the fifth network was trained with both 1 and 100
training epochs, and the 1 epoch of training results are now discussed. With the first
1000 data records in the training subset, the normalization was evaluated, and 20.5%
were matched to the correct one of the six categories without threshold normalization.
The applicable threshold value was again computed to be 0.11, using the data from the
training dataset. With this threshold, it accurately classified 60.7% of the records in the
training data subset. When this network and threshold were used with the testing data
subset, it had an accuracy of 60.3%. This result falls in between the best performance,
evidenced by networks 1 and 3 and several others (which are discussed subsequently) and
the worst overall performance, evidenced by network 4, demonstrating the responsiveness
of performance accuracy, in some cases (which are not able to be overcome by training), to
network design.

6.6. Sixth Network Implementation and Results

In the sixth network, the emotion value (from the five emotion-related inputs) and
the sentiment input are grouped together. The subject and context inputs are grouped
together in a second group and the job and credibility inputs are grouped together in a
third group. Finally, party and state are grouped together in a fourth group. The sixth
network is presented in Figure 8.

Figure 8. Depiction of Network 6.

The sixth network tied with networks 1 and 3 (and several subsequently discussed)
to produce the highest accuracy level of 62.4%. Like with the previous networks, it was
trained with both 1 and 100 training epochs, and the 1 epoch of training results are now
discussed. With the first 1000 data records in the training subset, the normalization was
evaluated and 21.7% were matched to the correct one of the six categories without threshold
normalization. The applicable threshold value was again computed to be 0.11, using the
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data from the training dataset. With this threshold, it accurately classified 63.2% of the
records in the training data subset. When this network and threshold were used with the
testing data subset, it had an accuracy of 62.4%, again showing how training can produce,
in some circumstances, similar optimization in different network designs.

6.7. Seventh Network Implementation and Results

In the seventh network, the job, credibility, party, state, and sentiment inputs are
grouped together, and the context and subject are (separately) grouped together. The
emotions value (based on the five emotion-related inputs) is brought together with these
other values at rule 11, which produces the truthfulness output value. This network is
presented in Figure 9.

Figure 9. Depiction of Network 7.

The seventh network tied with networks 1, 3 and 6 (and three more subsequently
discussed) to produce the highest accuracy level of 62.4%. Like with the previous networks,
it was trained with both 1 and 100 training epochs, and the 1 epoch of training results are
now discussed. With the first 1000 data records in the training subset, the normalization
was evaluated and 22.3% were matched to the correct one of the six categories without
threshold normalization. The applicable threshold value was again computed to be 0.14,
using the data from the training dataset. With this threshold, it accurately classified 63.2%
of the records in the training data subset. When this network and threshold were used
with the testing data subset, it had an accuracy of 62.4%, again showing how training can
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produce, in some circumstances, similar optimization in different network designs. This
network, in particular, demonstrates the importance of the threshold value for scaling, as it
shows how different network configurations can alter the magnitude of the output of the
truth value, while still producing similar logical results.

6.8. Eighth Network Implementation and Results

In the eighth network, the emotion value (from the five emotion-related inputs) and
the sentiment score input are grouped together. The remaining inputs (job, credibility, party,
state, context, and subject) are grouped together in a second group. The eighth network is
presented in Figure 10.

Figure 10. Depiction of Network 8.

The eight network, similarly, tied with networks 1, 3, 6 and 7 (and two more subse-
quently discussed) to produce the highest accuracy level of 62.4%. Like with the previous
networks, it was trained with both 1 and 100 training epochs, and the 1 epoch of training
results are now discussed. With the first 1000 data records in the training subset the nor-
malization was evaluated and 21.4% were matched to the correct one of the six categories
without threshold normalization. The applicable threshold value was again computed to
be 0.17, using the data from the training dataset. With this threshold, it accurately classified
63.2% of the records in the training data subset. When this network and threshold were
used with the testing data subset, it had an accuracy of 62.4%, again showing how training
can produce, in some circumstances, similar optimization in different network designs.
This network, like the previous one, demonstrates the importance of the threshold value
for scaling, as it shows how different network configurations can alter the magnitude of
the output of the truth value, while still producing a similar logical result.



Sensors 2021, 21, 7083 21 of 31

6.9. Ninth Network Implementation and Results

The ninth network groups the emotion value (based on the five emotion inputs) and
sentiment input together. The context and subject inputs are grouped together and the
job, credibility, party, and state inputs are also (separately) grouped together. The ninth
network is presented in Figure 11.

Figure 11. Depiction of Network 9.

The ninth network tied with network 5 to produce a mid-range result. Like with the
previous networks, it was trained with both 1 and 100 training epochs, and the 1 epoch of
training results are now discussed. With the first 1000 data records in the training subset
the normalization was evaluated and 20.5% were matched to the correct one of the six
categories without threshold normalization. The applicable threshold value was again
computed to be 0.11, using the data from the training dataset. With this threshold, it
accurately classified 60.7% of the records in the training data subset. When this network
and threshold were used with the testing data subset, it had an accuracy of 60.3%. Like
several of the other networks, this network is an example of how training can produce, in
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some circumstances, similar optimization in different network designs; however, not all
networks will be able to be optimized to the highest level of performance.

6.10. Tenth Network Implementation and Results

In the tenth network, presented in Figure 12, the emotion value (based on the five
emotion-related inputs) and the sentiment input are grouped together. The context and state
values are grouped together as are (separately) the job, credibility, party, and subject inputs.

Figure 12. Depiction of Network 10.

The tenth network, tied with networks 1, 3, 6, 7 and 8 (and one more subsequently
discussed) to produce the highest accuracy level of 62.4%. Like with the previous networks,
it was trained with both 1 and 100 training epochs, and the 1 epoch of training results are
now discussed. With the first 1000 data records in the training subset, the normalization
was evaluated and 21.7% were matched to the correct one of the six categories without
threshold normalization. The applicable threshold value was again computed to be 0.16,
using the data from the training dataset. With this threshold, it accurately classified 63.2%
of the records in the training data subset. When this network and threshold were used
with the testing data subset, it had an accuracy of 62.4%, again showing how training can
produce, in some circumstances, similar optimization in different network designs. Like
with network eight, this network further demonstrates the importance of the threshold
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value for scaling, as it shows how different network configurations can alter the magnitude
of the output of the truth value, while still producing a similar logical result.

6.11. Eleventh Network Implementation and Results

In this network, shown in Figure 13, the emotion score is combined, at the end of the
network, with all of the other inputs to produce the truthfulness output fact. The sentiment,
context, state, job, credibility, party, and subject inputs are grouped together.

Figure 13. Depiction of Network 11.

Like with the previous networks, the eleventh network was trained with both 1 and
100 training epochs, and the 1 epoch of training results are now discussed. With the first
1000 data records in the training subset, the normalization was evaluated and 21.0% were
matched to the correct one of the six categories without threshold normalization. The
applicable threshold value was again computed to be 0.11, using the data from the training
dataset. With this threshold, it accurately classified 62.0% of the records in the training data
subset. When this network and threshold were used with the testing data subset, it had
an accuracy of 58.8%. This is the second worst result of the twelve networks, making it
a demonstration of how network configuration clearly can impact performance and how
training cannot always overcome network design decisions.

6.12. Twelvth Network Implementation and Results

The twelfth network was designed quite similarly to the first one. However, in the
twelfth network, the emotion fact (which is based on the five emotion inputs) serves as
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an input to two rules. It contributes to an intermediate fact, along with the sentiment
score, and directly to the final rule that produces the output truthfulness fact. The gradient
descent trained expert system is designed to support facts serving as inputs to multiple
rules. Due to the limited number of inputs, this capability hasn’t been used much in
this study; however, this network demonstrates the capability. The development of more
complex networks serves as a key area of future work for the deceptive content detection
project, in addition to exploring the use of other textual analysis pre-processing techniques.
This network is an example of a slight increase in complexity. The twelfth network is
shown in Figure 14.

Figure 14. Depiction of Network 12.

The tenth network, tied with networks 1, 3, 6, 7, 8, and 10 to produce the highest
accuracy level of 62.4%. Like with the previous networks, it was trained with both 1
and 100 training epochs, and the 1 epoch of training results are now discussed. With the
first 1000 data records in the training subset, the normalization was evaluated and 22.1%
were matched to the correct one of the six categories without threshold normalization.
The applicable threshold value was again computed to be 0.14, using the data from the
training dataset. With this threshold, it accurately classified 63.2% of the records in the
training data subset. When this network and threshold were used with the testing data
subset, it had an accuracy of 62.4%, again showing—even with the additional complexity
of the use of the emotion fact as the input to two rules—how training can produce, in
some circumstances, similar optimization in different network designs. It once again
demonstrates the importance of the threshold value for scaling, as well.
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6.13. Analysis of Results

The previous sub-sections have presented and analyzed twelve rule-fact networks
that were developed for the purposes of deceptive content identification. Each section
presented the results from 1 epoch of training for the network, though it was noted that
the system was tested with 100 epochs of training, as well. Table 3 presents the result from
both 1 training epoch and 100 epochs for each of the twelve networks. As is obvious from
this table, the two levels of training performed very similarly, with only networks 2 and 11
showing a difference in results. As network 2’s performance decreases and network 1’s
performance increases with 100 epochs of training (as compared to 1 epoch), neither level
of training can be said to consistently outperform the other.

Table 3. Network accuracy results for 1 and 100 training epochs.

1 Epoch 100 Epochs

Network 1 62.4% 62.4%
Network 2 59.9% 57.2%
Network 3 62.4% 62.4%
Network 4 53.8% 53.8%
Network 5 60.3% 60.3%
Network 6 62.4% 62.4%
Network 7 62.4% 62.4%
Network 8 62.4% 62.4%
Network 9 60.3% 60.3%

Network 10 62.4% 62.4%
Network 11 58.8% 61.2%
Network 12 62.4% 62.4%

Similarly, Table 4 compares the thresholds selected, due to their superior performance,
for the 12 networks under 1 and 100 epochs of training. It also presents the performance
of the threshold for the training data for each network. It is notable that for all but one of
the 12 networks, the threshold value is the same for both the 1 and 100 epochs of training.
Further, for all of the networks, the performance with the training data was the same
between the 1 and 100 epochs of training. This is further evidence of the lack of additional
benefit produced by the additional training, for this particular application. Clearly, the use
of over 10,000 training records was, by itself, sufficient to train the network without the
need for multiple iterations of training with each record.

Table 4. Threshold values and performance with training data for 1 and 100 training epochs.

1 Epoch 100 Epochs

Threshold Train Data Threshold Train Data

Network 1 0.11 63.2% 0.25 63.2%
Network 2 0.11 60.1% 0.11 60.1%
Network 3 0.15 63.2% 0.15 63.2%
Network 4 0.11 54.1% 0.11 54.1%
Network 5 0.11 60.7% 0.11 60.7%
Network 6 0.11 63.2% 0.11 63.2%
Network 7 0.14 63.2% 0.14 63.2%
Network 8 0.17 63.2% 0.17 63.2%
Network 9 0.11 60.7% 0.11 60.7%

Network 10 0.16 63.2% 0.16 63.2%
Network 11 0.11 62.0% 0.11 62.0%
Network 12 0.14 63.2% 0.14 63.2%

The one difference between the two training levels, the threshold values for network
1, is indicative of there being two equivalent threshold levels (in terms of the results that
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they produce). This is supported by the equivalent results for performance with both the
training and actual testing data for the two levels of training.

Overall, the analysis of the twelve networks has demonstrated that network design
changes can have a notable impact on system performance, as the performance difference
between the best and worst performing networks was approximately 14%. However, it also
showed that, in some cases, changes to network design can be immaterial as the training
process can optimize them similarly to other networks.

The importance of the normalization threshold mechanism was also demonstrated, as
all of the networks tended to reduce the output values significantly from the normalized
target values. Notably, the output values ranged between 0.11 and 0.25, so the impact was
different on a network-by-network basis, even though the logical results were quite similar
(or the same) in many cases.

6.14. Network Implementation Design Process

While Sections 5.1 and 5.2 have presented the twelve networks that were evaluated
and described their particular characteristics, this section focuses, briefly, on the similarities
and differences between them. This, thus, facilitates a discussion of the design process that
was used in creating the networks. Figure 15 depicts this visually and states the differences
between adjacent networks designs. It also lists the accuracy level produced by each.

Figure 15. Network Changes and Results.

Multiple ideas for grouping the inputs were considered, as were discussed in
Sections 6.1–6.12. Since sentiment and emotion have conceptual similarities, they were
grouped together, in some circumstances. Another design concept was grouping the inputs
related to the text content together. This included the subject and context inputs, as well, in
some cases, as the sentiment and emotion values that were produced from textual analysis.
In some cases, speaker-related inputs were grouped. These included jobs, state, credibility,
and party affiliation. All of these groupings are included in several of the networks. No-
tably, the network that was first arrived at through logical analysis, network 1, was one of
the several networks which tied for producing top performance.

The analysis of the Figure 15 diagram reveals some patterns. The accuracy rate
decrease from network 1, going rightwards, suggests that the emotion inputs produce
higher accuracy when grouped. Another pattern of decreases suggests that accuracy
decreases when the person-related inputs are divided into two groups, suggesting that the
person-related inputs produce a higher level of accuracy when grouped together. However,
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comparing networks 2 and 8 suggests that grouping non-emotional factors together may
harm accuracy. This suggests that it is better to classify non-emotional factors as being
text-related or person-related. To evaluate whether putting all of the non-emotion related
variables together might produce higher accuracy, network 11 was tested; however, this
approach did not increase performance. Network 12 was designed to explore the impact
of having facts serve as inputs to multiple rules. Thus, in network 12, the emotion value
is included in a text-related grouping as well as being included at the end of the network
with the text- and person-related groups to produce the output fact. However, this did not
aid system performance.

Based on the foregoing, grouping the emotion and sentiment inputs together, grouping
all of the human-related inputs together and grouping all of the text-related inputs together
would be expected to result in the highest accuracy. This is the design foundation of
network 1. Given that network 1 was the network initially arrived at by the logical analysis
of the interrelationships between the inputs, the fact that the pattern of performance
between the different networks suggests that its characteristics should perform the best
serves to validate key design decisions.

7. Comparison to the Results of Prior Work

Comparing the performance of the system presented herein to prior work shows that
it outperforms several prior implementations, while underperforming others. Problemati-
cally, several prior studies that have used the LIAR dataset have failed to fully describe
their method of analysis, making a direct comparison problematic. Long, et al. [52] demon-
strated an accuracy of 27% using a convolutional neural network and reached 41.5% when
combining several techniques. It is not clear, from their paper, whether they are making a
true versus false classification or evaluating classification into the six truthfulness levels.
Yang, et al. [53] reported accuracy levels between 58.6% and 75.9% using techniques such
as “majority voting” and an “unsupervised fake news detection framework,” using only a
subset of 322 of the 12,800 LIAR records with particular characteristics.

Singh [36] obtains results ranging between 45.83% and 59.82% accuracy using four
different vector space representations and three different types of neural networks. Upad-
hayay and Behzadan [42] developed and used the additional sentiment fields in the Sen-
timental LIAR dataset, which are based on natural language processing, as well as a
“bidirectional encoder representations from transformer” system (which is not utilized in
this work) and achieved accuracy levels ranging from 55.46% to 70.00%.

The accuracy levels presented herein outperform many of the examples of prior
work (which are summarized in Table 5) and fall within the range of the performance
of Upadhayay and Behzadan’s system. Notably, this paper uses the same evaluation
mechanism as Upadhayay and Behzadan did, so this is the most direct comparison of those
discussed.

Table 5. Comparison of Different Prior Approaches.

Approach Best Accuracy *

Long, et al. [52]—Conventional Neural Network 27%
Long, et al. [52]—multiple techniques combined 41.5%

Yang, et al. [53] 75.9%
Singh [36] 59.82%

Upadhayay and Behzadan [42] 70%
System described herein 62.4%

* Due to ambiguities in reporting technique descriptions and limitations of study results descriptions, it is possible
that results may differ in terms accuracy calculation technique.

The system described herein, thus, is able to produce results that outperform one
of Upadhayay and Behzadan’s techniques, while underperforming or approximately
equivalently performing with several others without using the additional computationally
expensive “bidirectional encoder representations from transformer” system.
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These results are, thus, notable in comparison to prior work as they show that the
sentiment processing, by itself, can produce results close to those performed with the
additional “bidirectional encoder representations from transformer” system. Additionally,
the results demonstrate the efficacy of the gradient descent trained expert system, in one
of its first applications to a real-world problem. Unlike the neural networks and other
techniques used by many studies, the gradient descent trained expert system technique is
new and still being explored to identify how to best implement it across different problem
types and with data with different types of characteristics.

8. Limitations, Other Uses and Potential Enhancements

The technique used herein is inherently limited by the manual process of the creation of
the networks. To utilize the machine learning trained expert system for other applications,
it is necessary to gain an understanding of the application area and to design and validate
a logical network for the application. The work presented herein, in particular, has shown
that multiple similar implementations of an application’s logical interrelations may perform
differently, so it will likely actually be necessary to make several networks and evaluate
their comparative performance. The overall operational performance is limited by the
accuracy of the human-generated networks, and it is possible that an optimal network may
never be realized. The manual nature of the network creation is what protects against the
learning of invalid, potentially illegal and non-causal relationships; however, it makes the
process of implementation far more manually intensive and time consuming than the use
of a neural network for a given application.

Additionally, some logical constructs—particularly those that do not satisfy the tran-
sitive property of multiplication and division—cannot be effectively represented by the
network structures utilized with this technique. Potentially these could be implemented
through the implementation of multiple sub-systems whose networks are interrelated
outside of the machine learning trained expert system environment.

Future work can potentially enhance the system’s performance through the automa-
tion of network creation (while ensuring that human control is maintained to prevent
problematic associations being learned) and the implementation of other node relation-
ships beyond multiplication-based ones.

9. Conclusions and Future Work

Among the twelve networks, network 1 was the best performer, both in terms of
accuracy and in terms of the difference between predicted and actual values. Notably,
network 1 was the network that was initially created based on the most apparent logical
interrelationship between the different inputs.

Several patterns were also discussed in Section 6.14, providing some knowledge
about the application domain itself. It was shown that the emotion inputs produce higher
accuracy levels when placed into groups and that grouping the person-related inputs also
increases accuracy. Grouping all of non-emotional factors, conversely decreased accuracy.
These observations led to the conclusion that grouping emotion and sentiment together,
grouping all of the human-related inputs together, and grouping all of the text-related
inputs together will result in the highest accuracy rate, which provides a conceptual
explanation for the performance of network 1. Given that this grouping strategy makes
logical sense, it is a demonstration of the efficacy of the gradient descent trained expert
system approach.

The networks presented herein outperformed the results of several prior studies that
used the LIAR dataset (albeit, with some question regarding the exact evaluation procedure
used by these studies). They also performed within the range of performance of Upadhayay
and Behzadan’s [42] study, which introduced the Sentimental LIAR dataset. Notably, this
similar performance was without using the additional textual analysis from the “bidirec-
tional encoder representations from transformer” used by Upadhayay and Behzadan.
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Beyond the particular deceptive content identification performance of this system,
the perhaps more notable contribution of this paper is the demonstration of the efficacy
of the gradient descent trained expert systems technique to a real-world application. The
fact that the newly developed system performs similarly to more established and analyzed
techniques is a demonstrable validation of the new system. Additionally, the correlation
between the most logical network design and strongest performance is notable.

Clearly, there are a number of directions for future work. As a new technique, the
gradient descent trained expert system algorithm will benefit from further analysis and
potential refinement. The areas for enhancement mentioned in the previous section could
be pursued. Additionally, techniques for identifying and measuring relationships between
inputs without necessitating a network to be built and evaluated could enhance system
development speed and, thus, would be a useful future area of work. Also, building in
normalization mechanisms could be demonstrably beneficial.

In terms of this particular study, additional network designs could be evaluated.
Given that an infinite number of networks are possible, there are numerous additional ones
beyond the twelve discussed herein that could be explored. In particular, additional more
complex networks could be evaluated. The number of possible networks is constrained,
somewhat, by close associations between some variables; however, associations or cate-
gorization does not fundamentally alter the network structure and overreliance on this
simplification may result in error where these simplifications don’t hold true. The use of
additional inputs, such as the “bidirectional encoder representations from transformer”
used by Upadhayay and Behzadan, could also be evaluated to see what impact they may
have in enhancing system performance.
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