

A Parametric Study of Accelerated Carbonation in Alkali-activated Slag

Eric R. McCaslin^{1,2}, Claire E. White^{2,3*}

¹Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA

²Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA

³Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA

* Corresponding author: Phone: +1 609 258 6263, Fax: +1 609 258 2799, Email: whitece@princeton.edu

Postal address: Department of Civil and Environmental Engineering, Princeton University,
Princeton NJ 08544, USA

17 Keywords: Alkali-activated slag, accelerated carbonation, amorphous calcium carbonate, X-ray
18 diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis

1 **Abstract**

2 Resistance to carbonation is one important attribute that low-CO₂ cement alternatives must
3 possess, and is particularly crucial for cement alternatives subjected to aggressive CO₂
4 concentrations such as those used in construction of oil wells and wells for below ground carbon
5 sequestration. Here, a parametric study of alkali-activated slag (AAS) carbonation in aggressive
6 environments has been conducted to examine (i) calcium carbonate polymorphism using X-ray
7 diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy, and (i) the extent of
8 calcium carbonate formation and CO₂ adsorption using thermogravimetric analysis (TGA). A
9 range of AASs have been studied by varying the magnesium content of the slag, the activator type
10 (sodium hydroxide and sodium silicate), the activator concentration, and the curing time prior to
11 carbonation. It was uncovered that both (i) magnesium from the slag and (ii) silica from the
12 activating solution are needed to reduce the propensity for the sodium-containing calcium-
13 alumino-silicate-hydrate gel to undergo decalcification.

14

15

16 **Introduction**

17 Concrete is utilized more extensively around the world on a volume basis than any other
18 engineered material because of its vital role in construction. However, the production of ordinary
19 Portland cement (OPC) powder, the key constituent in concrete, accounts for approximately 5-8%
20 of all anthropogenic CO₂ emissions.^{1,2} Among the sustainable alternatives being explored as viable
21 replacements for OPC concrete, alkali-activated materials (AAMs) have emerged as key
22 contenders, especially due to the large-scale case studies around the world demonstrating their
23 performance.³ AAMs are manufactured by utilization of industrial by-products (such as blast
24 furnace slag and coal-derived fly ash) or thermally treated clays (such as metakaolin) and an alkali
25 activation process, whereby the aluminosilicate-rich precursor powders dissolve in the highly
26 alkaline environment, leading to precipitation of a mechanically-hard binder gel.³ The macroscopic
27 properties and microstructure of AAMs have been extensively characterized in the past,³⁻⁹
28 however uncertainties remain regarding long-term in-field performance which can be addressed
29 by discovering the underlying chemistry and physics controlling chemical and/or physical
30 degradation processes.

31

1 Carbonation is one of the main chemical degradation mechanisms of both AAM and OPC concrete.
2 From a chemistry perspective, OPC resists carbonation because it contains portlandite, which
3 buffers the pH of the pore solution at ~12.5.¹⁰ However, once all the portlandite has dissolved,
4 carbonation will lead to a lowering of the pore solution pH and therefore irreversible corrosion of
5 any reinforcing steel along with degradation of the main strength-giving phase, calcium-silicate-
6 hydrate (C-S-H gel).¹¹ In addition to the buffering effects of portlandite, it is also known that
7 carbonation can be mitigated via the development of concrete with low permeability.¹² It has been
8 shown that alkali-activated slag (AAS) pastes and mortars lose strength due to carbonation,
9 specifically for certain accelerated testing conditions where OPC performs favorably.¹³⁻¹⁵
10 However, as outlined by Bernal *et al.*, accelerated carbonation tests that are routinely used to
11 determine the carbonation resistance of OPC severely underestimate the service life of AAS,¹⁶ and
12 the magnesium content of slag has been shown mitigate the extent of carbonation.¹⁷⁻¹⁹

13
14 It has been demonstrated that alkali activation of slag with a significant magnesium content leads
15 to the formation of a hydrotalcite-like phase (a layered double hydroxide (LDH)).^{4,5,16,17}
16 Hydrotalcite and other Mg-Al LDH phases consist of magnesium and aluminum layers with
17 hydroxide groups on their surface. In between these layers are charge balancing anions, typically
18 carbonates.²⁰ The carbonates in the LDH interlayer have been shown to rapidly exchange with CO₂
19 in the air, and hydrotalcite can also preferentially adsorb CO₂.²¹ Some studies on the carbonation
20 of AAS attribute its carbonation resistance to this ability of the hydrotalcite-like LDH phase to act
21 as a CO₂ sink. Bernal *et al.* discovered that during accelerated carbonation of AAS containing
22 MgO, the carbonation depth decreased with increasing MgO content,¹⁷ where they attributed this
23 behavior to greater amounts of the hydrotalcite-like LDH phase. In another study, the presence of
24 high concentrations of sodium silicate was found to suppress the formation of the hydrotalcite-like
25 LDH phase (as determined using X-ray diffraction (XRD)), and correspondingly increase the
26 susceptibility of AAS to carbonation.¹⁸ However, in contrast to this finding Myers *et al.* showed,
27 using thermodynamic modeling, that the hydrotalcite-like LDH phase does extensively precipitate
28 in sodium silicate-activated slag²². Additional evidence of this phase in sodium silicate-activated
29 slag has been obtained using scanning electron microscopy - energy dispersive X-ray spectroscopy
30 (SEM-EDX), where the data revealed a fine intermixing of a hydrotalcite-like LDH phase with
31 sodium-containing calcium-alumino-silicate-hydrate (C-(N)-A-S-H) gel.⁵ Hence, complementary

1 experimental techniques, in addition to XRD, are required to accurately determine the phase
2 composition of AAMs.^{5,23-25}

3
4 There are several industries where cements are exposed to elevated CO₂ concentrations, including
5 cements used in wells for oil and gas operations and CO₂ sequestration.²⁶ Hence, the behavior of
6 sustainable cements, such as AAS, in such situations is an emerging area of research, where the
7 early-age carbonation behavior of cement-based materials is imperative to understand. In our
8 recent investigation of accelerated carbonation of AAS we used pair distribution function (PDF)
9 analysis to study *in situ* the carbonation mechanism.²⁷ We found the possible existence of an
10 amorphous calcium carbonate (ACC) that forms during carbonation of 24 hr old AAS paste in
11 100% CO₂. Slag with higher magnesium content was associated with a greater amount of ACC
12 and a lower extent of degradation of the C-(N)-A-S-H gel (main strength-giving phase). Therefore,
13 it appears that ACC plays a role in mitigating carbonation under accelerated conditions, and that
14 magnesium may stabilize ACC.^{28,29} Specifically, due to the metastability of AAC under ordinary
15 conditions, it has a higher solubility than the crystalline calcium carbonate phases that normally
16 form. Thus, the presence of ACC maintains a higher calcium concentration in the pore solution,
17 decreasing the driving force for decalcification of the C-(N)-A-S-H gel. If this is true, then it may
18 be possible to design highly carbonation resistant cements by doping with magnesium, leading to
19 cements that perform favorably in high CO₂ environments such as oil wells and during carbon
20 sequestration.

21
22 In this study we explore the influence of two levels of accelerated carbonation (exposure to 5 and
23 100% CO₂) on carbonate polymorph formation and CO₂ uptake by hydrotalcite-like LDH versus
24 C-(N)-A-S-H gel decalcification (CO₂ uptake studied for 5% CO₂). By employing XRD and
25 Fourier transform infrared spectroscopy (FTIR) we determine how the different parameters used
26 in preparing AAS samples affect the phases that form during carbonation. Moreover,
27 thermogravimetric analysis is used to understand how the MgO content affects the kinetics of the
28 carbonation reaction together with a qualitative assessment of CO₂ uptake by hydrotalcite-like
29 LDH versus carbonate formation (carbonates linked primarily to gel decalcification). From these
30 data we draw conclusions regarding the susceptibility of AAS to suffer degradation when exposed
31 to different CO₂ environments, and how the slag and activator chemistry can be augmented to

1 reduce the detrimental effects of CO₂ exposure. Finally, we present an updated mechanism which
2 we believe is responsible for the increase carbonation resistance of certain AASs when exposed to
3 elevated CO₂ conditions.

4

5 **Materials and Methods**

6 Two different sources of blast furnace slag were used with a high and low MgO content. These
7 slags were characterized in a previous study, and their compositions, determined by X-ray
8 fluorescence spectroscopy (XRF), are shown in Table 1.¹⁹ The slags were activated using either a
9 sodium silicate (prepared using anhydrous sodium metasilicate, Na₂SiO₃, Sigma-Aldrich, reagent
10 grade) or sodium hydroxide (NaOH, Sigma Aldrich, reagent grade) solution, each synthesized
11 using deionized water, where an allotted amount of solid material (sodium metasilicate or sodium
12 hydroxide) was dissolved in the water. After the sodium metasilicate was added to deionized water
13 it was left to mix using a magnetic stirrer bar for 24 hrs prior to use. Each type of activating solution
14 was prepared at a low-alkali concentration, with a 4% Na₂O to slag wt. ratio, and a high-alkali
15 concentration, where 7% Na₂O was used in the ratio. Paste samples were prepared by mixing the
16 slag with the designated solution for 2 minutes with mechanical stirring at 1500 rpm under
17 laboratory conditions, using a water to slag wt. ratio of 0.44. The pastes were then left to cure for
18 1, 2, and 7 days in sealed plastic cuvettes before further testing.

19

20 Table 1: Oxide composition (wt. %) of slag determined by XRF.¹⁹

Slag Source	CaO	SiO ₂	Al ₂ O ₃	MgO	SO ₃	Other
High-Mg	36.1	34.5	10.5	12.7	2.7	3.5
Low-Mg	42.5	34.5	11.7	7.3	1.7	2.3

21

22 The samples subjected to accelerated carbonation were first ground by hand in a mortar and pestle
23 after the prescribed curing time. The samples were ground finely (tens to hundreds of microns) so
24 that the effects of diffusion through a solid (i.e., transportation) were minimized, and therefore the
25 quantitative tests performed in this study will be dominated by the reaction kinetics of carbonation.
26 Accelerated carbonation was carried out in 5 and 100% CO₂ conditions. A CO₂ incubator was used
27 for carbonation at 5% CO₂, with a relative humidity of 67% and a temperature of 29 °C. For
28 carbonation at 100% CO₂, a custom carbonation chamber was set up to allow dry, industrial grade

1 CO₂ to flow over the sample with a low flow rate (<0.5 L/min) limited by a rotameter. The
2 carbonation chamber was set up in a fume hood and remained at ambient temperature. Samples
3 were exposed to 100% CO₂ for a duration of 24 hrs. Exposure of samples to 5% CO₂ was carried
4 out for a range of exposure times, as reported in the Results and Discussion section.

5
6 Samples analyzed using X-ray diffraction were firstly loaded into 1 mm outer diameter polyimide
7 capillaries, which were sealed at both ends with quick set epoxy. The capillaries were measured
8 on a Bruker D8 Advance XRD with a silver X-ray tube ($K\alpha_1$ wavelength of 0.55941 Å, $K\alpha_2$ of
9 0.56380 Å). The samples were scanned from 3° to 30° 2θ with a step size of 0.007°, and a 5s count
10 time per step. Phase identification was carried out using the Bruker Eva software and the IDCC
11 PDF-2 database. XRD patterns have been converted from 2θ to Q -space for plotting, where $Q =$
12 $4\pi \sin \theta / \lambda$. Phase identification by XRD was carried out for all combinations of slag type,
13 activator type and concentration, and curing time for accelerated carbonation in 100% CO₂.
14 Additionally, low-alkali silicate activated slags (both high- and low-Mg) were analyzed using
15 XRD after a curing time of 7 days followed by exposure to 5% CO₂ in the CO₂ incubator for up to
16 5 days.

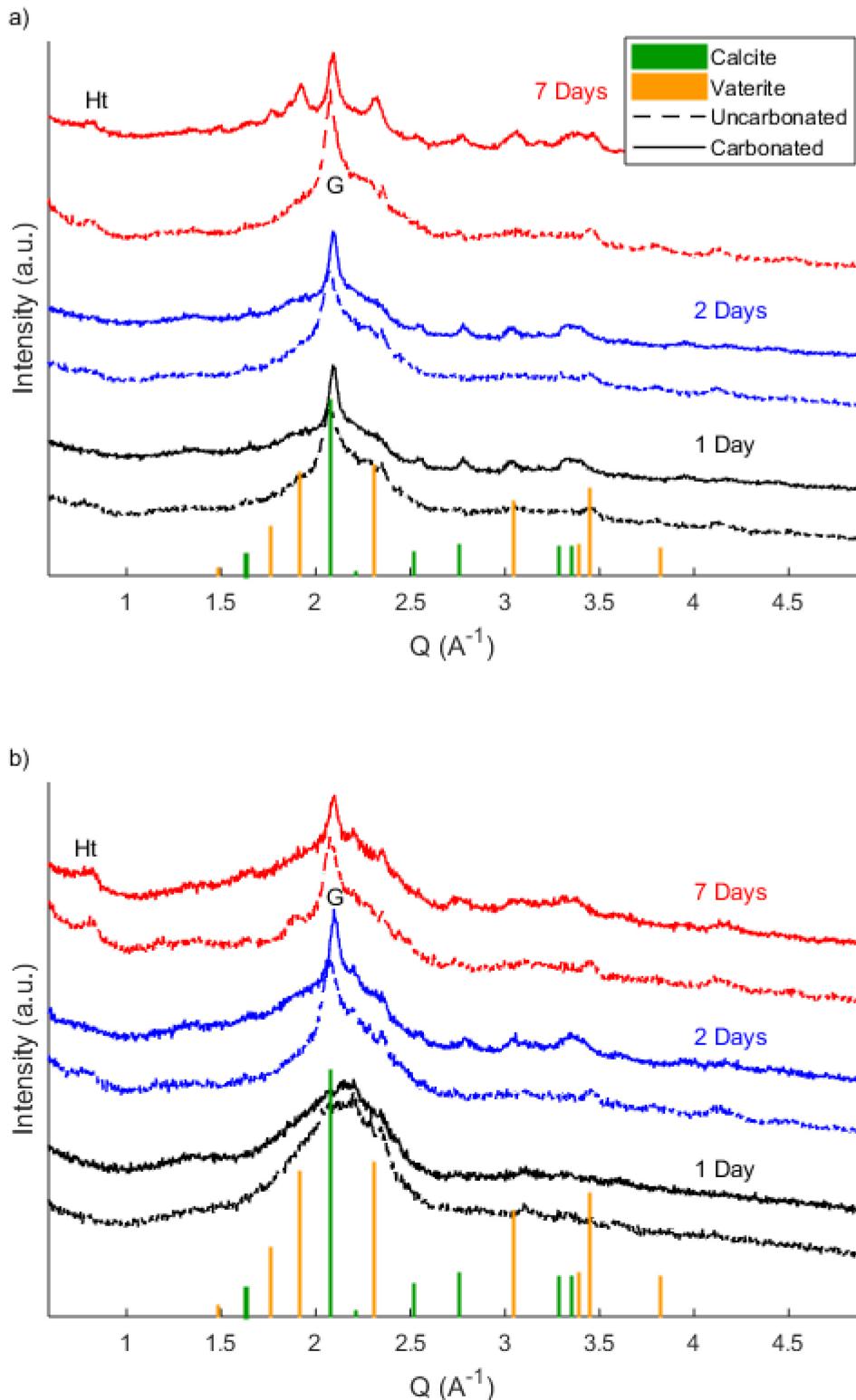
17
18 Silicate-activated slag samples that were carbonated in 100% CO₂ were also analyzed using
19 attenuated total reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR). Samples were
20 measured as powders using a Perkin Elmer Frontier FTIR instrument with a universal ATR
21 sampling accessory. For each measurement the instrument was purged with N₂ gas to eliminate
22 atmospheric H₂O and CO₂ contributions. 32 scans were taken for each sample, with a scan speed
23 of 1 cm/s, a resolution of 4 cm⁻¹ and the wavenumber ranging from 550 to 4000 cm⁻¹.

24
25 The extent of carbonation as a function of time was determined using thermogravimetric analysis
26 (TGA) for the AAS samples (synthesized using high- and low-Mg slags) cured for 7 day followed
27 by carbonation at 5% CO₂. This technique involved placing ~15 mg of the powder sample in a
28 platinum pan which was heated to 950 °C in a Perkin Elmer Pyris 1 TGA instrument, using a 10
29 °C/min heating rate and an N₂ environment. TGA was also conducted on non-carbonated samples
30 to determine the amount of binder gel prior to carbonation. FTIR analysis of the gaseous products
31 released during a TGA run was carried out using a TL 8000 transfer line and an IR cell (Perkin

1 Elmer) mounted on the Frontier FTIR instrument. For the transfer line, a flow rate of 20 mL/min
2 was used at a temperature of 300 °C. The IR cell was set at a temperature of 250 °C. The FTIR
3 instrument was purged with N₂ to avoid atmospheric H₂O and CO₂ contributions. FTIR data were
4 collected on the IR cell every 22 seconds for a single scan, using a scan speed of 1 cm/s, a
5 resolution of 4 cm⁻¹ and the wavenumber ranging from 550 to 4000 cm⁻¹.

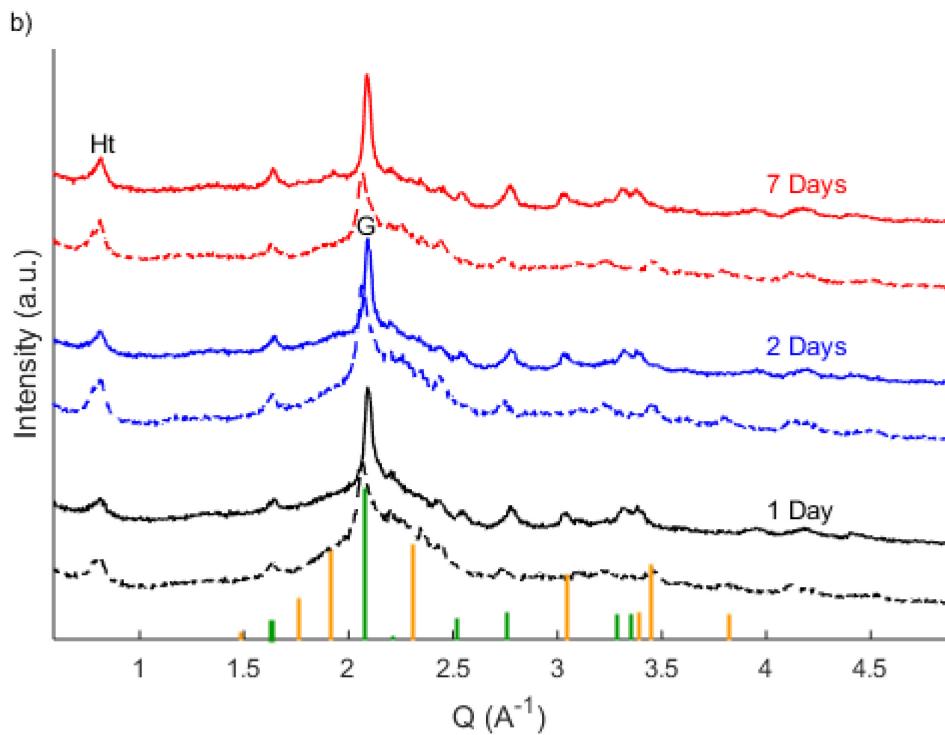
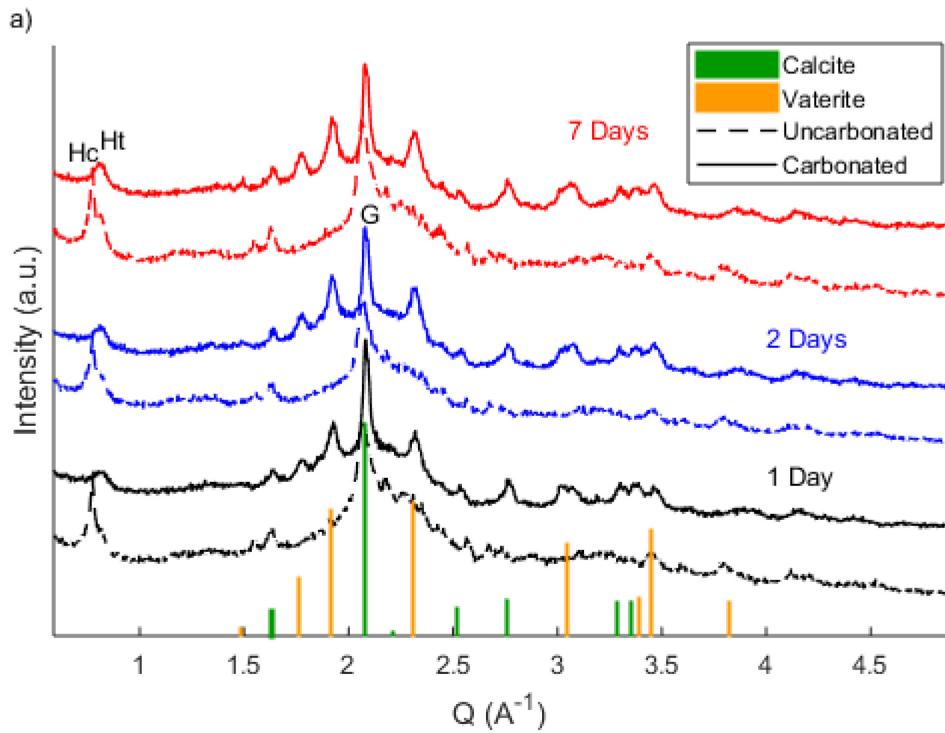
6

1 **Alkali Activation of Slag: Reaction Kinetics and Phase Formation**

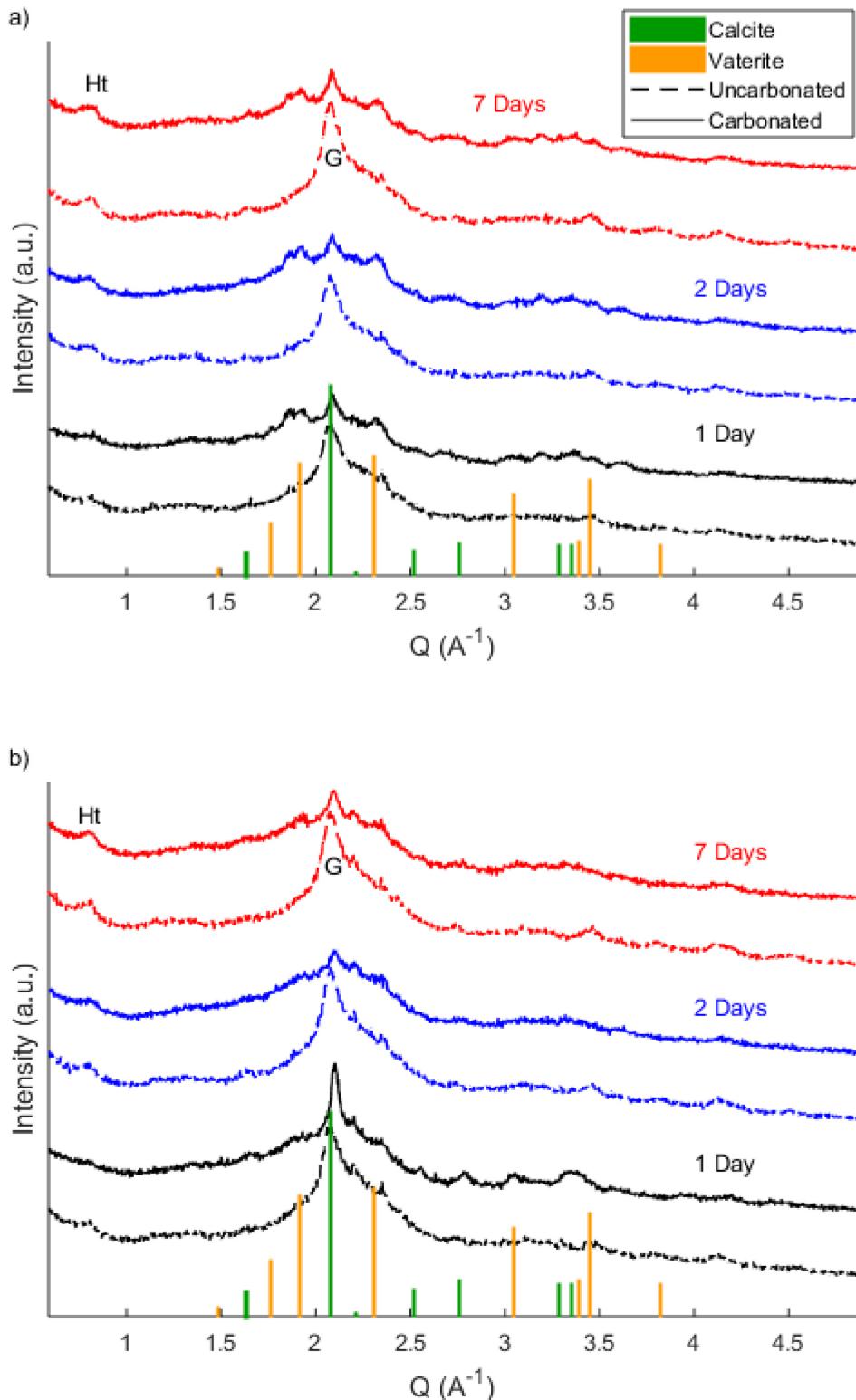

2 The XRD patterns of AAS at 1, 2 and 7 days prior to carbonation are depicted in Figures 1 to 4.
3 These figures show that different types of slag (low- and high-Mg) and different activating
4 solutions (silicate- and hydroxide-activated with 4% (low-alkali) or 7% (high-alkali) Na₂O) lead
5 to slight variations in the formation kinetics and resulting reaction products. As seen in Figure 1,
6 low-alkali silicate-activated high-Mg slag seems to activate slower than the equivalent low-Mg
7 slag sample, specifically via the evolution of the main C-(N)-A-S-H gel peak at a *Q* value of ~2.1
8 Å⁻¹. After 1 day of curing by the low-alkali silicate solution, this peak is not apparent in the high-
9 Mg slag (Figure 1b), while it has developed in the low-Mg slag (Figure 1a). This discrepancy
10 demonstrates that this high-Mg slag activates slower in the activating solution (low-alkali silicate-
11 activator) and has not formed sufficient C-(N)-A-S-H gel in the first 24 hrs to be detected by XRD.
12 The particle size distribution of both types of slag were measured and found to be similar (Figure
13 S1 in the Supplementary Material), so it is likely that the composition of the high-Mg slag leads
14 to this lower reactivity. Specifically, via analysis of the slag basicity (using oxide wt. % and the
15 equation CaO+MgO/SiO₂), it is found that the low-Mg slag has a higher basicity value (1.44)
16 compared with the high-Mg slag (1.41), and both these slags have higher basicity values than the
17 slags studied by Ben Haha *et al.*, where the behavior of the isothermal calorimetry data is aligned
18 with the calculated basicity values of the corresponding slags.²³ Nevertheless, it is important to
19 note that in this study, increasing the concentration of the silicate solution leads to faster formation
20 kinetics, as seen by the C-(N)-A-S-H peak that develops by 24 hrs in the high-alkali silicate-
21 activated high-Mg slag (Figure 3b, similar to the C-(N)-A-S-H peak in the high-alkali silicate-
22 activated low-Mg slag in Figure 3a).

23
24 In agreement with previous studies, the most prominent secondary phase formed in the silicate-
25 activated slags is a hydrotalcite-like LDH phase (see Figures 1 and 3).^{4,5,17} The primary peak
26 associated with this LDH, located at a *Q* value of ~0.8 Å⁻¹, appears as a relatively broad and low
27 intensity peak for the silicate-activated slags, indicating that this phase may be weakly crystalline.
28 The LDH peak increases in intensity from 1 to 7 days as it forms, and, as expected, appears to have
29 a higher intensity in the activated high-Mg slag due to the greater availability of magnesium.¹⁷

30



1 Figure 2 shows the XRD patterns of low- and high-Mg slag activated with low-alkali sodium
2 hydroxide. Compared to the silicate-activated slags, the hydroxide-activated slags have narrower
3 and more intensely scattering C-(N)-A-S-H peaks, indicating that the gel may be more
4 nanocrystalline in the hydroxide-activated samples (as directly visible from X-ray pair distribution
5 functions)³⁰. Furthermore, the low-alkali hydroxide-activated high-Mg slag XRD pattern contains
6 discernible C-(N)-A-S-H gel peaks by 24 hrs, in contrast to the silicate-activated slags with the
7 same Na₂O composition. The faster formation kinetics associated with hydroxide-activation is
8 likely due to the higher pH of the sodium hydroxide solution compared with sodium silicate with
9 the same Na₂O composition, and thus slag is initially more reactive in this environment.⁵ The
10 hydroxide-activated low-Mg slag (low- and high-alkali, Figures 2 and 4, respectively) also forms
11 an additional crystalline phase consistent with calcium hemicarboaluminate, another LDH that
12 tends to form in AAS systems synthesized using low-Mg slags.^{31,32}

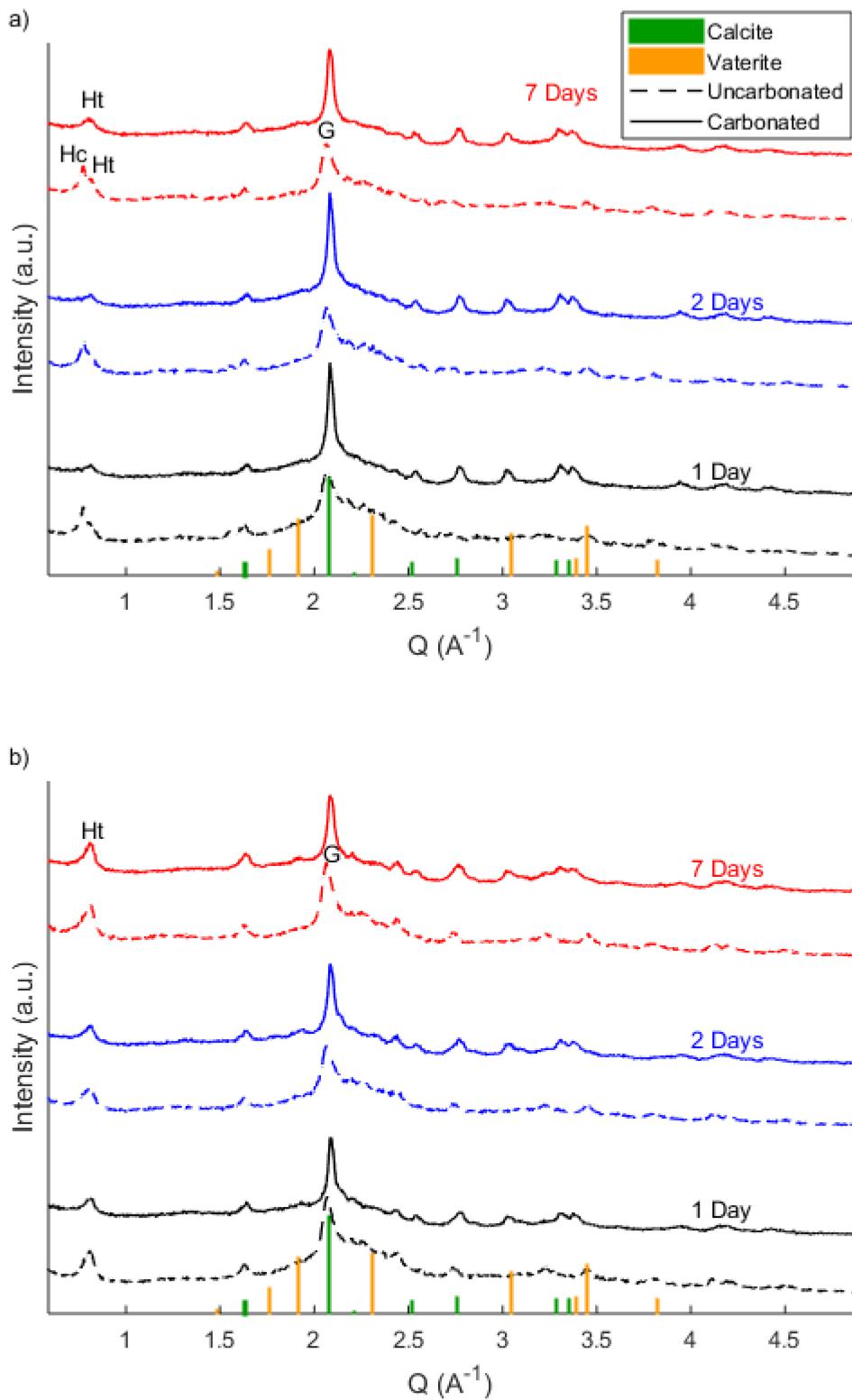
13


1

2 Figure 1: XRD patterns of low-alkali silicate-activated (a) low-Mg slag, and (b) high-Mg slag at 1, 2 and
 3 7 days of curing, before and after carbonation in 100% CO_2 for 24 hrs. Ht denotes the hydrotalcite-like
 4 LDH phase while G denotes C-(N)-A-S-H gel.

1

2 Figure 2: XRD patterns of low-alkali hydroxide-activated (a) low-Mg slag, and (b) high-Mg slag at 1, 2
 3 and 7 days of curing, before and after carbonation in 100% CO_2 for 24 hrs. Ht denotes the hydrotalcite-
 4 like LDH phase, Hc the calcium hemicarboaluminate phase, while G denotes C-(N)-A-S-H gel.



1

2 Figure 3: XRD patterns of high-alkali silicate-activated (a) low-Mg slag, and (b) high-Mg slag at 1, 2 and

3 7 days of curing, before and after carbonation in 100% CO_2 for 24 hrs. Ht denotes the hydrotalcite-like

4 LDH phase while G denotes C-(N)-A-S-H gel.

1

2 Figure 4: XRD patterns of high-alkali hydroxide-activated (a) low-Mg slag, and (b) high-Mg slag at 1, 2
3 and 7 days of curing, before and after carbonation in 100% CO_2 for 24 hrs. Ht denotes the hydrotalcite-
4 like LDH phase, Hc the calcium hemicarboaluminate phase, while G denotes C-(N)-A-S-H gel.

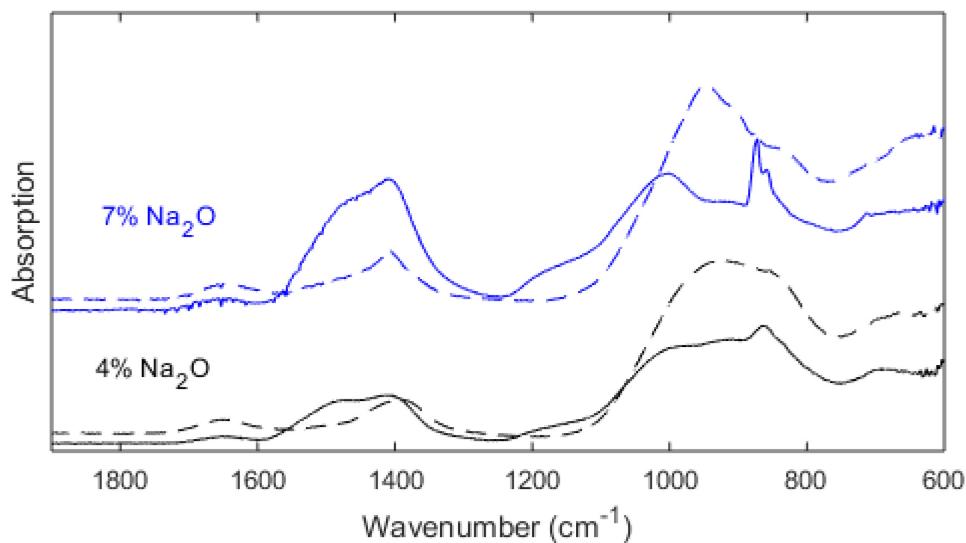
1

2 **Exposure to 100% CO₂: Impact of slag and activator chemistry**

3 As mentioned in the Introduction, accelerated carbonation of AASs leads to calcium leaching from
4 the C-(N)-A-S-H gel which then reacts with dissolved carbonate ions to form calcium carbonate,
5 primarily the calcite and vaterite polymorphs.^{16,27} Figures 1 through 4 show that the type of slag
6 and activator, as well as the curing time, affect the calcium carbonate phases that form due to 100%
7 CO₂ accelerated carbonation. Figure 1 displays the XRD patterns for low- and high-Mg slag
8 activated with low-alkali silicate and carbonated in 100% CO₂, where calcite is the predominant
9 crystalline phase that forms in the high-Mg slag samples (cured for 2 and 7 days in Figure 1b),
10 while a significant amount of vaterite forms in the low-Mg sample carbonated after 7 days of
11 curing (Figure 1a), which is consistent with previous studies.^{17,27} The main calcite peak is located
12 in the same *Q*-space region as the C-(N)-A-S-H gel peak, but is narrower and slightly shifted to
13 higher scattering angles, while additional Bragg peaks of calcite are also apparent at higher *Q*
14 values, as seen in Figures 1a and 1b. The low-Mg slag forms vaterite only after curing for seven
15 days, and therefore the curing age as well as slag chemical composition have an impact on which
16 calcium carbonate polymorphs form during carbonation. Finally, the high-Mg sample that did not
17 form a detectable gel phase after only one day of curing (Figure 1b) does not form a crystalline
18 calcium carbonate phase after exposure to 100% CO₂. Table 2 summarizes these findings for low-
19 and high-Mg slag activated with low-alkali silicate (XRD data shown in Figure 1) together with
20 the behavior of the other samples depicted in Figures 2, 3 and 4.

21

22


1 Table 2: Summary of calcium carbonate phases formed during carbonation of AAS in 100% CO₂
 2 (24 hrs of exposure) based on (i) curing time, (ii) activator type and concentration and (iii)
 3 magnesium content of slag. C – Calcite, V – Vaterite, Am – amorphous.

Curing time (days)	Low-Mg slag			
	Silicate-activated		Hydroxide-activated	
	4% Na ₂ O	7% Na ₂ O	4% Na ₂ O	7% Na ₂ O
1	C	C + V, near Am	C + V	C
2	C	C + V, near Am	C + V	C
7	C + V	C + V, near Am	C + V	C
High-Mg slag				
	Silicate-activated		Hydroxide-activated	
	4% Na ₂ O	7% Na ₂ O	4% Na ₂ O	7% Na ₂ O
	Am	C	C	C
1	Am	C	C	C
2	C	C, near Am	C	C
7	C	C, near Am	C	C

4
 5
 6 When the concentration of the sodium silicate activation solution is increased (Figure 3) the
 7 polymorphs of the calcium carbonate crystalline phases remain the same, however, their amounts
 8 change. The Bragg peaks attributed to the crystalline calcium carbonate polymorphs are broader
 9 and weaker in Figure 3 compared with Figure 1 (for the low-alkali silicate systems), indicating
 10 that the increased activator concentration has suppressed the formation of crystalline carbonation
 11 products, potentially due to the formation of ACC. However, crystalline calcite is seen to form
 12 after 1 day of curing in Figure 3b, which contrasts with a previous investigation that showed no
 13 formation of calcite or vaterite in the high-Mg silicate-activated slag when carbonated *in situ* with
 14 pure CO₂.¹⁹ The *ex situ* nature of the current study may explain this difference, since an ACC could
 15 be forming *in situ* but then crystallizes into calcite when exposed to atmospheric conditions (during
 16 capillary loading) prior to *ex situ* characterization using XRD. Nevertheless, the lower crystallinity
 17 of calcium carbonate in the high-alkali silicate-activated slag compared with the low-alkali system
 18 may be caused by the high concentration of silicate ions in the initial activator, where the

1 subsequent pore solution composition (high silicate concentration) possibility disrupts
2 crystallization of calcium carbonate as will be discussed in more detail later.³³

3
4 The impact of activator concentration on the carbonation process for high-Mg silicate-activated
5 slag has also been investigated using FTIR, where the results are shown in Figure 5. The low-alkali
6 silicate sample, which did not show crystalline calcite in the XRD after one day of curing (Figure
7 1b), does still show a change when carbonation occurs. In particular, the carbonate out-of-plane
8 bending mode at 865 cm^{-1} and the anti-symmetric stretching at $\sim 1400\text{ cm}^{-1}$ emerge after
9 carbonation, indicating that some form of carbonate still forms, even if it is not crystalline
10 calcite.^{14,34,35} This carbonate phase appears to be amorphous, as the peak at 865 cm^{-1} is broad in
11 comparison to the peak from the crystallized calcite in the high-alkali silicate sample.³⁶
12 Furthermore, unlike the low-alkali sample, the high-alkali sample in Figure 5 shows a strong shift
13 in the Si-O-T peak from 947 cm^{-1} to 1003 cm^{-1} (T denotes tetrahedral silica and alumina),
14 consistent with high degrees of polymerization of the (alumino)silica gel that forms via
15 decalcification of C-(N)-A-S-H gel.³⁷

16
17 Figure 5: FTIR spectra of low- and high-alkali high-Mg silicate-activated slag pastes cured for 1 day
18 followed by exposure to 100% CO_2 for 24 hrs. Before carbonation is shown by the dashed curves, and
19 after carbonation by the solid curves.
20
21

1 The slags activated with sodium hydroxide are seen to behave differently from sodium silicate-
2 activated slags when subjected to 100% CO₂ conditions. Specifically, carbonation of hydroxide-
3 activated slags (both low- and high-Mg slag) lead to the precipitation of more crystalline calcium
4 carbonate phases (narrower and more intense Bragg peaks in Figures 2 and 4) compared with
5 silicate-activated slags (Figures 1 and 3). As was the case for the low-alkali silicate-activated
6 samples, the low-alkali hydroxide-activated samples form specific crystalline calcium carbonate
7 phases according to the magnesium concentration of the slag, where low-Mg slag forms vaterite
8 and calcite while high-Mg slag only form calcite (see Table 2). However, when the concentration
9 of the hydroxide is increased (i.e., high-alkali samples), both types of slag form only calcite, with
10 no detectable amount of vaterite. Hence, the higher activator concentration for hydroxide activation
11 leads to the formation of the most stable calcium carbonate polymorph, crystalline calcite, while
12 increasing the concentration of the silicate activator favors less crystalline, and therefore less
13 stable, calcium carbonate phases. However, from the XRD data in this investigation it is difficult
14 to ascertain the amount of carbonation that has occurred. This aspect of the AAS carbonation will
15 be assessed below using TGA data for samples exposed to 5% CO₂. Finally, it is noted that in all
16 hydroxide-activated samples, the calcium hemicarboaluminate phase that forms during curing
17 disappears from the diffraction pattern after carbonation (Figures 2 and 4). This LDH phase
18 appears to be unstable and reacts readily with carbon dioxide.

19

20

1
2 **Exposure to 5% CO₂**

3 ***Magnesium Incorporation in Calcite***

4 Figure 6 shows that both the high- and low-Mg slags activated using low-alkali sodium silicate
5 form calcite and vaterite when subjected to moderate accelerated carbonation conditions (5% CO₂,
6 67% relative humidity). For the high-Mg sample (Figure 6b), the locations of the calcite peaks
7 shift to larger Q values than the literature suggests for pure calcite.³⁸ For example, the most
8 prominent calcite peak, the [1 0 4] reflection, occurs at 2.076 Å⁻¹ in the high-Mg sample, while
9 this reflection occurs at 2.068 Å⁻¹ in the literature (shift of 0.008 Å⁻¹ which corresponds to a shift
10 in d -spacing of ~0.01 Å). It appears that the greater availability of magnesium in this AAS leads
11 to incorporation of magnesium ions in the calcite unit cell. Since magnesium ions are smaller than
12 calcium ions, this leads to contraction of the unit cell and the observed peak shifts.³⁸ A qualitative
13 assessment of the extent of magnesium incorporation in calcite can be carried out by comparison
14 of the unit cell volume calculated from the XRD peak locations, with greater incorporation of
15 magnesium leading to a more contracted unit cell. The unit cell parameters a and c of calcite
16 (hexagonal) have been fit to equation 1 with a least-squares regression simultaneously using the
17 d -spacings of four or five Bragg's peaks from calcite along with their known h , k , l reflections.

18

$$\frac{1}{d^2} = \frac{4}{3} \frac{h^2 + hk + k^2}{a^2} + \frac{l^2}{c^2} \quad (1)$$

19
20 The unit cell volume of calcite as a function of slag MgO content and carbonation time is plotted
21 in Figure 7, where the individual fit results are given (i.e., the volume obtained from the a and c
22 parameters for a sample) along with the average unit cell volume for a given composition. For the
23 low-Mg AAS, the calcite unit cell has a volume consistent with the reference (pure) calcite from
24 the literature,³⁸ while the high-Mg AAS has a contracted calcite unit cell volume. Hence, this
25 contraction of the calcite unit cell for the high-Mg AAS sample is likely caused by the
26 incorporation of magnesium.^{19,29} Given that magnesium is seen to be incorporated into calcite, it
27 is highly likely that it is incorporated into other calcium carbonate polymorphs. When incorporated
28 into ACC, magnesium can have a stabilizing effect preventing crystallization and thus improving
29 carbonation resistance, as previously mentioned.

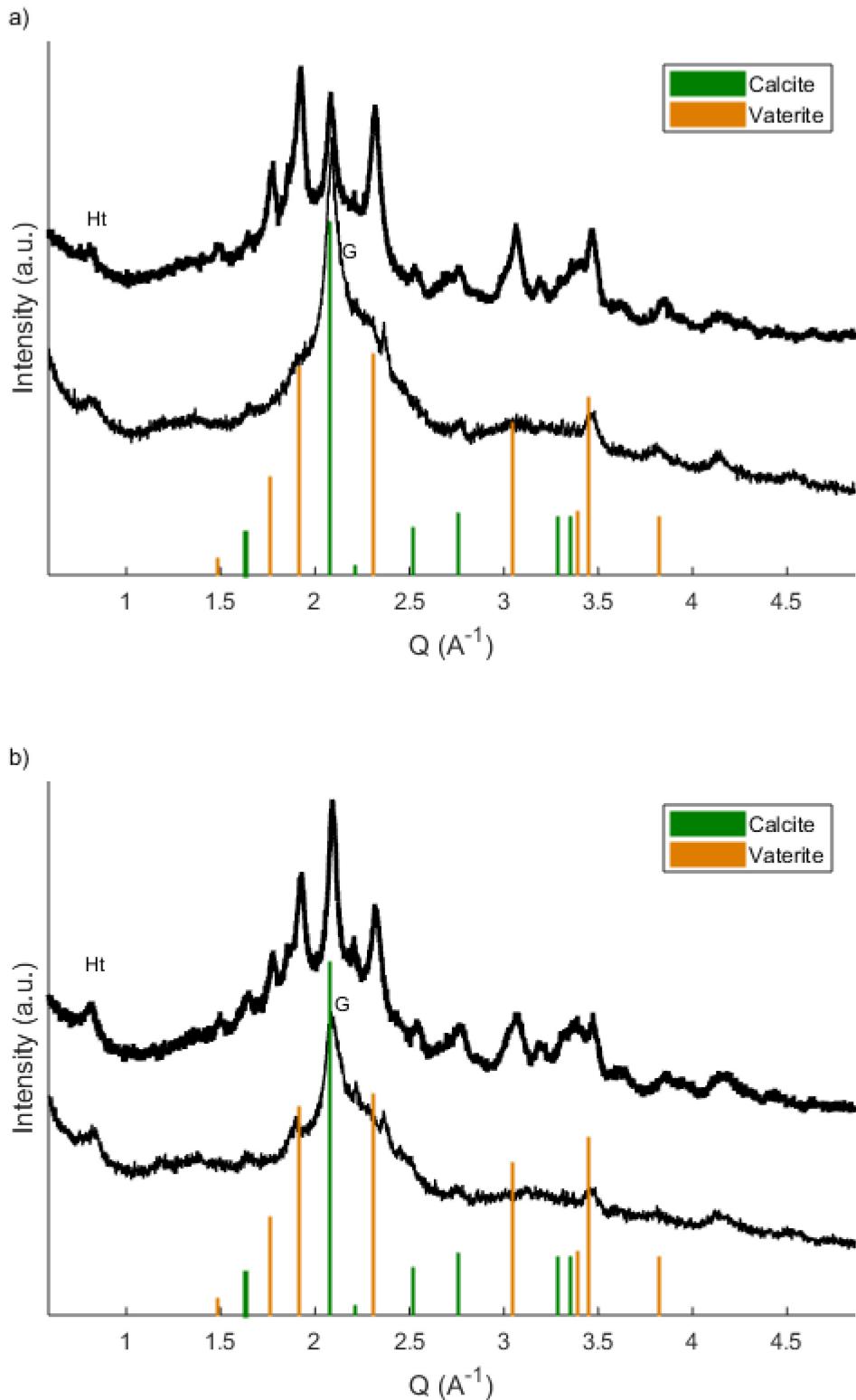


Figure 6: Low-alkali silicate-activated (a) low-Mg and (b) high-Mg slag after 7 days of curing, before and after carbonation in 5% CO_2 for 24 hrs (upper curve).

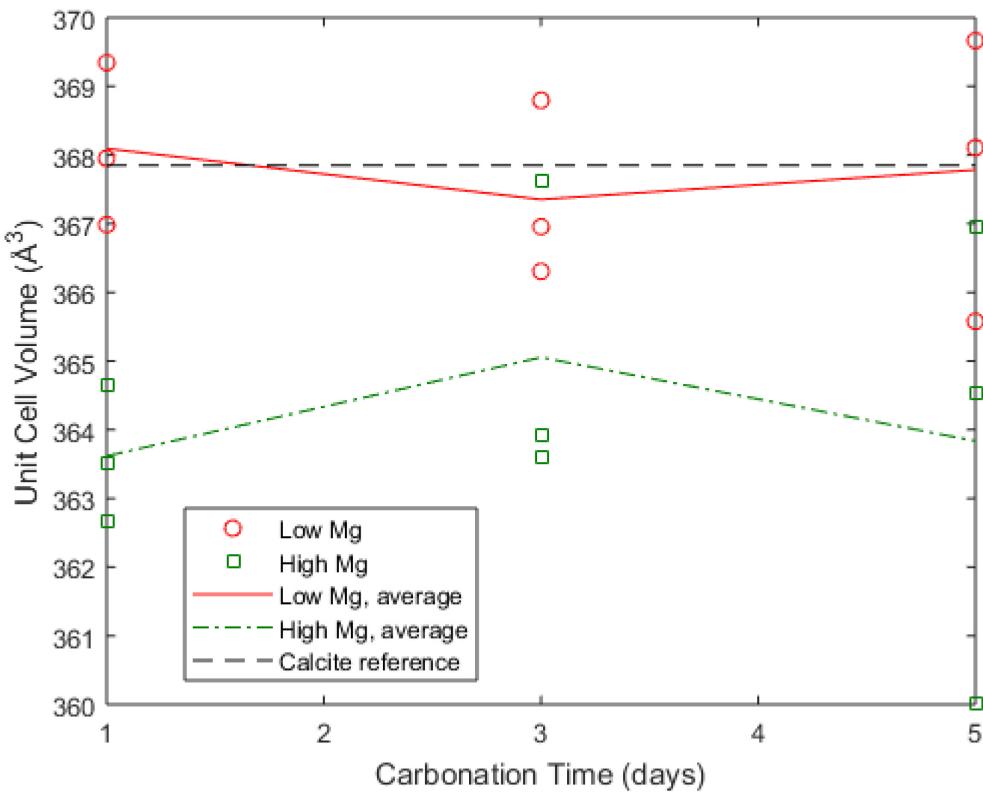
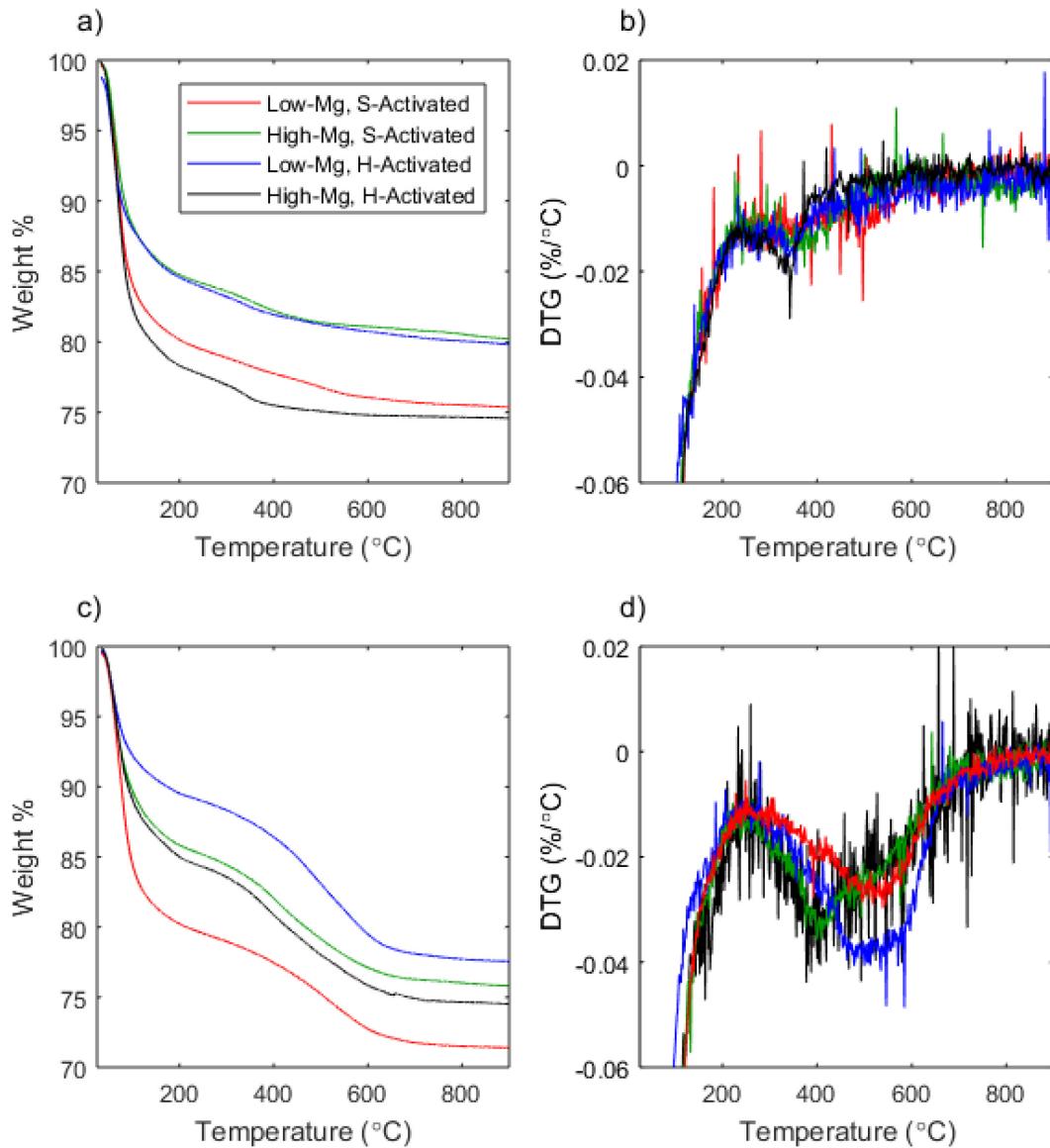


Figure 7: Unit cell volume of calcite in low-alkali silicate-activated slags (low- and high-Mg slags) that were subjected to 5% CO₂ for the designated carbonation time after 7 days of curing. Each marker in the figure is for a given sample while the lines were obtained by taking the average of the samples. The reference unit cell volume for calcium is from literature.³⁸


Kinetics of CO₂ Uptake

So far, this investigation has shown that phase formation in AAS due to carbonation in a 100% CO₂ environment is dependent on a number of factors, including activator type and activator concentration. Furthermore, the ability for magnesium to be incorporated into calcium carbonate phases (specifically calcite) has been assessed using XRD and quantification of Bragg peak locations. In this section, TGA is used to quantify the amount of CO₂ that reacts with AAS during carbonation.

The TGA curves for low-alkali AAS samples cured for 7 days before and after carbonation are shown in Figure 8 together with their derivative curves (DTG). For the non-carbonated samples, they all lose the most weight from the start of the measurement until around 200 °C, which corresponds to water lost from the pore space as well as dehydration of the reaction product, C-

1 (N)-A-S-H gel.⁵ These samples also show peaks in the DTG curves around 300 to 400 °C (see
2 Figure 8b) which are consistent with loss of hydroxyl units and carbonates from the decomposition
3 of the hydrotalcite-like LDH.^{5,39,40}

4

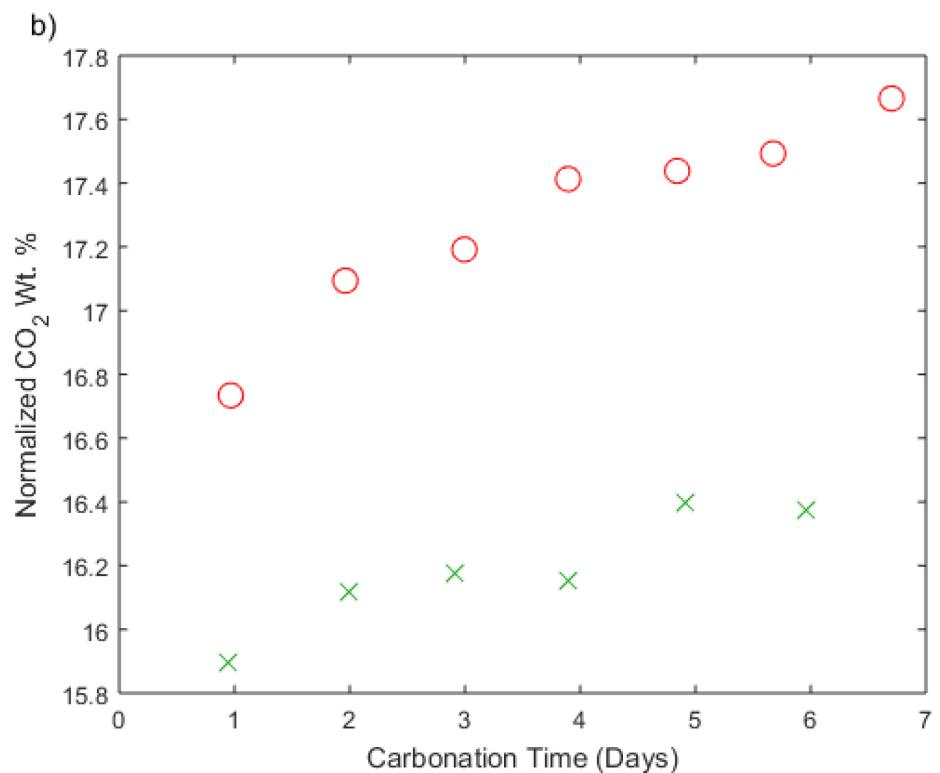
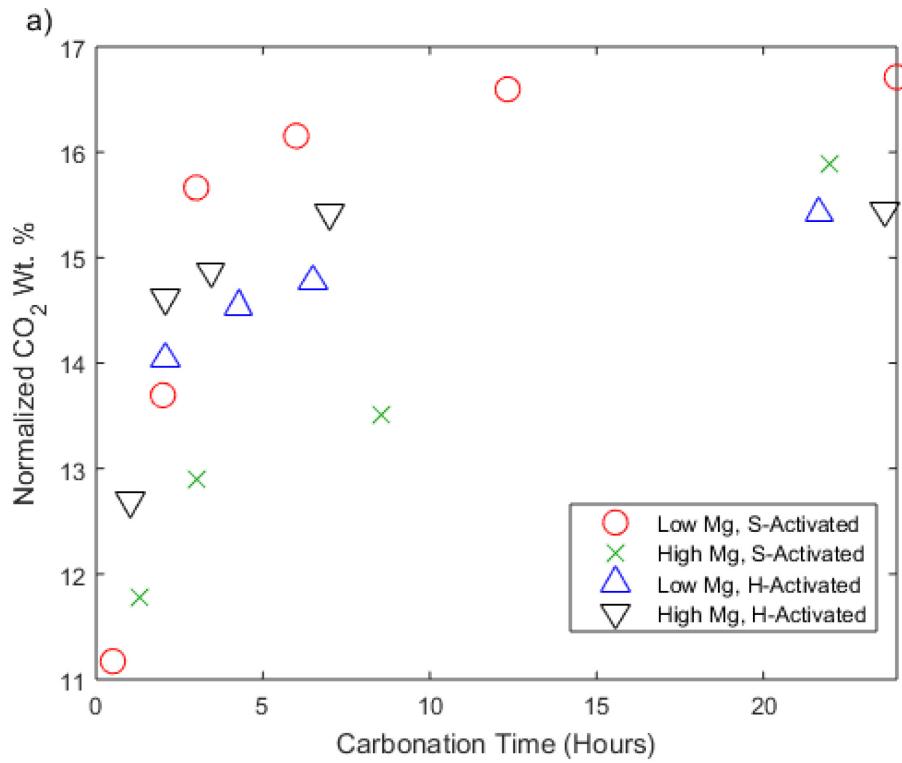
5
6 Figure 8: Example weight loss curves as a function of temperature and their derivatives (DTG) obtained
7 using TGA for low-alkali AAS cured for 7 days. (a) and (b) are the TGA and DTG curves, respectively, for
8 samples before carbonation, and (c) and (d) are the TGA and DTG curves, respectively, for samples
9 carbonated for 1 hr in 5% CO₂. Note that plotting of the DTG curves has been carried out to focus on the
10 hydrotalcite-like phase in the samples before carbonation, and the carbonate-containing phases after
11 carbonation. See Figure S2 in the Supplementary Material for the corresponding DTG curves for samples
12 carbonated for 24 hr in 5% CO₂.

1
2 After carbonation, the TGA data show a shift in weight loss to higher temperatures compared to
3 the non-carbonated AAS (Figure 8). Calcium carbonate, in the form of calcite or other polymorphs,
4 is expected to decompose into gaseous CO₂ and solid calcium oxide between 500 °C and
5 750 °C.^{34,41} Figure 8b shows that the carbonated samples lose CO₂ over a temperature range of
6 245 °C to 710 °C (confirmed by FTIR analysis of the gaseous products, see Figures S3 and S4 in
7 Supplementary Material for details). This CO₂ loss beginning at such low temperatures compared
8 to expected values for calcium carbonate decomposition suggests that the hydrotalcite-like LDH
9 phase has adsorbed a significant amount of CO₂ during the carbonation process.^{21,42} The lower
10 temperature weight loss can also be from desorption of CO₂ from other porous phases left after
11 carbonation, such as the decalcified alumino-silicate gel. Comparing the DTG data (Figures 8d
12 and S2) for the two silicate-activated slag samples, the low-Mg AAS has a narrower DTG peak at
13 around 500 °C, while the high-Mg AAS has a broader peak that reaches maximum weight loss rate
14 as low as 400 °C. Previous studies have shown that in carbonated AAS, the lower temperature
15 weight loss corresponds to decomposition of the hydrotalcite-like LDH phase, while the higher
16 temperature peak is due to the decomposition of calcium carbonate.^{14,15} Since the overall CO₂
17 weight loss peak is a combination of these two decomposition events, it can be qualitatively
18 evaluated that for the silicate-activated slag, a greater portion of the CO₂ weight loss in the high-
19 Mg slag can be attributed to LDH desorption compared to the low-Mg slag.
20

21 Figure 9 shows the total weight of CO₂ captured by the AAS samples (calculated by subtracting
22 sample weights at 245 °C and 710 °C) as a function of carbonation time, normalized to the sample
23 weight at 710 °C. This normalization is useful because for a given activator and slag combination,
24 the composition of the dry components remaining after 710 °C is roughly the same independent of
25 the amount of water and CO₂ present in the sample before the TGA run was started. Over the first
26 24 hrs of carbonation in Figure 9a, the low-Mg silicate AAS carbonates the fastest, the high-Mg
27 silicate AAS the slowest, and both the hydroxide-activated slags at about the same rate. Over an
28 extended carbonation time up to 7 days, the trend continues with the high-Mg AAS taking up less
29 CO₂ and at a slower rate compared with low-Mg AAS. Thus, for silicate-activated slag, a higher
30 magnesium concentration quantifiably resists carbonation by reducing the rate of gel
31 decalcification, and, as shown previously for 100% CO₂ conditions⁴³, also the total extent of gel

1 decalcification. These reductions in the silicate-activated high-Mg slag are a result of a reduced
2 driving force responsible for the removal of calcium ions from C-(N)-A-S-H gel, specifically due
3 to an elevated calcium concentration in the pore solution compared with silicate-activated low-Mg
4 slag during exposure to CO₂. This elevated calcium concentration in the silicate-activated high-
5 Mg slag system is caused by the prevalence of amorphous/low-crystallinity calcium carbonate
6 phases in contrast to the crystalline calcium carbonates in silicate-activated low-Mg slag (as seen
7 in XRD data in Figure 1 for samples exposed to 100% CO₂ and in Figure 6 for 5% CO₂). However,
8 in the hydroxide-activated slag pastes the opposite trend is seen, where a greater extent of
9 carbonation is observed for the high-Mg sample. Hence, it is likely that the propensity for
10 decalcification to occur is also controlled by the availability of silicate ions in the pore solution.
11 Previous research has revealed that silicate-activated slag has a higher silicon concentration in the
12 pore solution (on the order of 10,000 ppm) compared with hydroxide-activated slag (on the order
13 of 100 ppm) throughout the alkali-activation reaction (data from 1 day to 160 days).⁴⁴ Furthermore,
14 previous research on the synthesis of ACC has shown that silica has a stabilizing effect on
15 metastable ACC. Specifically, Kellermeier *et al.* explained that silica is coating the nanosized
16 ACC, thereby limiting the ability of ACC to transform into crystalline polymorphs.⁴⁵ At room
17 temperature and moderate silica concentrations (~5000 ppm), ACC is not sufficiently stabilized by
18 the silica, and therefore crystallization readily occurs.³³ Hence, the mechanism controlling
19 carbonation resistance of high-Mg alkali-activated slag appears to be more complex than first
20 thought, where the availability of both magnesium and silica are important for obtaining a higher
21 carbonation resistance paste when exposed to accelerated carbonation conditions ($\geq 5\%$ CO₂),
22 specifically by stabilization of the more soluble ACC phase compared with the lower solubility
23 crystalline calcium carbonate phase.

24
25 Previous research has reported the positive effects of high alkali dosage (8 wt. % Na₂O relative to
26 slag) and silicate modulus (activator SiO₂/Na₂O molar ratio of 2) on the short-term carbonation
27 resistance of alkali-activated slag (under accelerated conditions, after 7 days of exposure to 3%
28 CO₂ at 65% RH and 20 °C), attributing this positive behavior to the lower porosity and smaller
29 average pore size of the mortars that were characterized.⁴⁶ However, in addition to these positive
30 impacts on the pore structure, it cannot be discounted that the silicate oligomers associated with a
31 high silicate modulus also augment the carbonation mechanism via stabilization of the ACC phase



1 during exposure to CO₂. The use of powder samples in this investigation enabled the separation of
2 transport processes from the CO₂-induced chemical reactions.

3

4 In both silicate- and hydroxide-activated slags, the higher magnesium content allows for greater
5 adsorption of CO₂ (adsorption on surfaces and in the hydrotalcite-like LDH phase) as evidenced
6 by the more noticeable peaks in the DTG curves at ~400 °C in Figure 8b. Thus, the magnesium-
7 containing LDH phase that forms in these AAS systems plays a noticeable role in CO₂ uptake by
8 AAS, as identified by Bernal *et al.*¹⁷ Although the LDH was not directly quantified in the current
9 study, the greater availability of magnesium allows for greater amounts of this stable LDH to
10 form¹⁷ (in contrast to the calcium hemicarboaluminate phase that disappears on carbonation),
11 which, in turn, will lead to a greater amount of CO₂ adsorption (separate from CO₂ absorption via
12 gel decalcification and formation of calcium carbonate phases). What is unclear is whether there
13 is a mechanistic link between the extent of hydrotalcite-like LDH CO₂ adsorption and a reduction
14 in the extent of gel decalcification, as opposed to a correlation without causation. Here, we believe
15 that the two processes are independent of each other, however, additional research is required in
16 this domain.

17

18

3 Figure 9: Total weight percent lost over temperature range from 245 to 710 °C (relative to dry weight at
4 710 °C) in low-alkali AASs versus exposure time in 5% CO₂ after a curing duration of 7 days.
5 Carbonation time ranges up to (a) 24 hours and (b) 7 days.

1 Conclusions

2 In this study, alkali-activated slag (AAS) has been investigated under a range of accelerated
3 carbonation conditions (5 and 100% CO₂), with the aim of uncovering the main factors controlling
4 the extent of decalcification of the sodium-containing calcium-alumino-silicate-hydrate (C-(N)-A-
5 S-H) gel. The influence of activator concentration (4 and 7 wt. % Na₂O relative to slag) activator
6 type (hydroxide- and silicate-activator), slag MgO content (7 and 13 wt. %) and curing time on the
7 carbonation resistance were explored on powder samples using X-ray diffraction (XRD),
8 attenuated total reflectance – Fourier transform infrared (ATR-FTIR) spectroscopy,
9 thermogravimetric analysis (TGA) and FTIR-TGA (for analysis of the gaseous products during
10 heating). When samples were exposed to dry 100% CO₂ it was found that the higher activator
11 concentration (7 wt. % Na₂O) combined with silicate activation led to less extensive formation of
12 crystalline calcium carbonate phases. Furthermore, calcite was the only crystalline calcium
13 carbonate seen to form in carbonated high-Mg AAS pastes while calcite and vaterite were observed
14 in most carbonated low-Mg AAS pastes. TGA quantification of carbonated AAS revealed that for
15 silicate-activated slags, the high-Mg slag sample was associated with a lower extent of CO₂ uptake
16 and a slower rate of carbonation compared to the low-Mg slag sample. Moreover, a greater portion
17 of the CO₂ was attributed to adsorption to phases like LDH for the high-Mg slag sample. The low-
18 Mg silicate-activated slag sample was seen to have a greater portion of CO₂ associated with
19 calcium carbonate, which, along with the greater total CO₂ uptake, implies a greater extent of
20 decalcification of the C-(N)-A-S-H gel. Hence, these findings reveal that the chemical properties
21 of both the slag and the activating solution affect the behavior of AAS when exposed to elevated
22 CO₂ concentrations (5 and 100% CO₂).

23
24 An updated mechanism responsible for elevated carbonation resistance of alkali-activated high-
25 Mg slag has been proposed in this study. Specifically, incorporation of both magnesium and silica
26 in calcium carbonate appear to stabilize the ACC phase that initially forms on exposure to CO₂.
27 The stabilization of this phase means that the equilibrium concentration of calcium ions in the pore
28 solution is higher compared with the concentration for an equivalent system where calcite or calcite
29 and vaterite (i.e., crystalline calcium carbonate phases) are prevalent. This higher concentration
30 then leads to a lower driving force for C-(N)-A-S-H gel decalcification during carbonation. Hence,
31 for applications where resistance to accelerated carbonation is desired, such as carbon

1 sequestration or oil well cements, a high magnesium content slag alone may not be enough to limit
2 gel decalcification, since the appropriate activator must also be considered including the
3 availability of silicate ions or other entities that are known to help stabilize ACC.

4

5 **Acknowledgments**

6 This research was supported by a National Science Foundation grant, No. 1553607. The authors
7 acknowledge the use of Princeton's Imaging and Analysis Center, which is partially supported by
8 the Princeton Center for Complex Materials, a National Science Foundation (NSF)-MRSEC
9 program (DMR-1420541).

10

11 **Supplementary Material**

12 Particle size distribution of neat slags; Zoom of example derivative TGA curves (DTG curves);
13 Analysis of gaseous products during TGA measurement. Supplementary Material associated with
14 this article can be found in the online version.

15

1 **References**

2 1. Scrivener KL, Kirkpatrick RJ. Innovation in Use and Research on Cementitious Material.
3 *Cem Concr Res.* 2008;38(2):128-136. doi:10.1016/j.cemconres.2007.09.025

4 2. Le Quéré C, Andrew RM, Canadell JG, et al. Global Carbon Budget 2016. *Earth Syst Sci
5 Data.* 2016;8(2):605-649. doi:10.5194/essd-8-605-2016

6 3. Provis JL, van Deventer JSJ. *Alkali Activated Materials*. New York: Springer US; 2014.
7 doi:10.1007/978-94-007-7672-2

8 4. Burciaga-Diaz O, Escalante-Garcia JI. Structure, Mechanisms of Reaction, and Strength
9 of an Alkali-Activated Blast-Furnace Slag. *J Am Ceram Soc.* 2013;96(12):3939-3948.
10 doi:10.1111/jace.12620

11 5. Ben Haha M, Le Saout G, Winnefeld F, Lothenbach B. Influence of Activator Type on
12 Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali
13 Activated Blast-Furnace Slags. *Cem Concr Res.* 2011;41(3):301-310.
14 doi:10.1016/j.cemconres.2010.11.016

15 6. Bernal SA, Mejía De Gutiérrez R, Pedraza AL, Provis JL, Rodriguez ED, Delvasto S.
16 Effect of Binder Content on the Performance of Alkali-Activated Slag Concretes. *Cem
17 Concr Res.* 2011;41(1):1-8. doi:10.1016/j.cemconres.2010.08.017

18 7. Provis JL, Palomo A, Shi C. Advances in Understanding Alkali-Activated Materials. *Cem
19 Concr Res.* 2015;78:110-125. doi:10.1016/j.cemconres.2015.04.013

20 8. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ.
21 Understanding the Relationship Between Geopolymer Composition, Microstructure and
22 Mechanical Properties. *Colloids Surfaces A Physicochem Eng Asp.* 2005;269(1-3):47-58.
23 doi:10.1016/j.colsurfa.2005.06.060

24 9. Fernández-Jiménez A, Palomo A, Criado M. Microstructure Development of Alkali-
25 Activated Fly Ash Cement: A Descriptive Model. *Cem Concr Res.* 2005;35(6):1204-1209.
26 doi:10.1016/j.cemconres.2004.08.021

27 10. Neville AM. *Properties of Concrete*. 5th ed. London: Pearson; 2011.

1 11. Alonso C, Andrade C, González JA. Relation between Resistivity and Corrosion Rate of
2 Reinforcements in Carbonated Mortar Made with Several Cement Types. *Cem Concr Res.*
3 1988;18(5):687-698. doi:10.1016/0008-8846(88)90091-9

4 12. Glasser FP, Marchand J, Samson E. Durability of Concrete - Degradation Phenomena
5 Involving Detrimental Chemical Reactions. *Cem Concr Res.* 2008;38(2):226-246.
6 doi:10.1016/j.cemconres.2007.09.015

7 13. Bernal SA, de Gutierrez RM, Provis JL, Rose V. Effect of Silicate Modulus and
8 Metakaolin Incorporation on the Carbonation of Alkali Silicate-Activated Slags. *Cem*
9 *Concr Res.* 2010;40(6):898-907. doi:10.1016/j.cemconres.2010.02.003

10 14. Li N, Farzadnia N, Shi C. Microstructural Changes in Alkali-Activated Slag Mortars
11 Induced by Accelerated Carbonation. *Cem Concr Res.* 2017;100(2):214-226.
12 doi:10.1016/j.cemconres.2017.07.008

13 15. Palacios M, Puertas F. Effect of Carbonation on Alkali-Activated Slag Paste. *J Am Ceram*
14 *Soc.* 2006;89(10):3211-3221. doi:10.1111/j.1551-2916.2006.01214.x

15 16. Bernal SA, Provis JL, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ. Accelerated
16 Carbonation Testing of Alkali-Activated Binders Significantly Underestimates Service
17 Life : The Role of Pore Solution Chemistry. *Cem Concr Res.* 2012;42(10):1317-1326.
18 doi:10.1016/j.cemconres.2012.07.002

19 17. Bernal SA, San R, Myers RJ, et al. MgO Content of Slag Controls Phase Evolution and
20 Structural Changes Induced by Accelerated Carbonation in Alkali-Activated Binders. *Cem*
21 *Concr Res.* 2014;57:33-43. doi:10.1016/j.cemconres.2013.12.003

22 18. Khan MSH, Castel A. Effect of MgO and Na₂SiO₃ on the Carbonation Resistance of
23 Alkali Activated Slag Concrete. *Mag Concr Res.* 2018;70(13):685-692.
24 doi:10.1680/jmacr.17.00062

25 19. Morandeau AE, White CE. Role of Magnesium-Stabilized Amorphous Calcium
26 Carbonate in Mitigating the Extent of Carbonation in Alkali-Activated Slag. *Chem Mater.*
27 2015;27:6625-6634. doi:10.1021/acs.chemmater.5b02382

28 20. Meyn M, Beneke K, Lagaly G. Anion-Exchange Reactions of Layered Double

1 30. Garg N, Özçelik VO, Skibsted J, White CE. Nanoscale Ordering and Depolymerization of
2 Calcium Silicate Hydrates in the Presence of Alkalies. *J Phys Chem C*.
3 2019;123(40):24873-24883. doi:10.1021/acs.jpcc.9b06412

4 31. Whittaker M, Zajac M, Ben Haha M, Bullerjahn F, Black L. The Role of the Alumina
5 Content of Slag, Plus the Presence of Additional Sulfate on the Hydration and
6 Microstructure of Portland Cement-Slag Blends. *Cem Concr Res*. 2014;66:91-101.
7 doi:10.1016/j.cemconres.2014.07.018

8 32. Gong K, White CE. Nanoscale Chemical Degradation Mechanisms of Sulfate Attack in
9 Alkali-activated Slag. *J Phys Chem C*. 2018;122(11):5992-6004.
10 doi:10.1021/acs.jpcc.7b11270

11 33. Kellermeier M, Glaab F, Klein R, Melero-García E, Kunz W, García-Ruiz JM. The Effect
12 of Silica on Polymorphic Precipitation of Calcium Carbonate: An On-line Energy-
13 Dispersive X-Ray Diffraction (EDXRD) Study. *Nanoscale*. 2013;5(15):7054-7065.
14 doi:10.1039/c3nr00301a

15 34. Ashraf W, Olek J. Carbonation Behavior of Hydraulic and Non-Hydraulic Calcium
16 Silicates : Potential of Utilizing Low-Lime Calcium Silicates in Cement-Based Materials.
17 *J Mater Sci*. 2016;51(13):6173-6191. doi:10.1007/s10853-016-9909-4

18 35. Lam RSK, Charnock JM, Lennie A, Meldrum FC. Synthesis-Dependent Structural
19 Variations in Amorphous Calcium Carbonate. *CrystEngComm*. 2007;9(12):1226-1236.
20 doi:10.1039/b710974a

21 36. Gebauer D, Gunawidjaja PN, Ko JYP, et al. Proto-Calcite and Proto-Vaterite in
22 Amorphous Calcium Carbonates. *Angew Chemie Int Ed*. 2010;49:8889-8891.
23 doi:10.1002/anie.201003220

24 37. Bernal SA, Provis JL, Walkley B, et al. Gel Nanostructure in Alkali-Activated Binders
25 Based on Slag and Fly Ash, and Effects of Accelerated Carbonation. *Cem Concr Res*.
26 2013;53:127-144. doi:10.1016/j.cemconres.2013.06.007

27 38. Bischoff WD, Bishop FC, Mackenzie FT. Biogenically Produced Magnesian Calcite :
28 Inhomogeneities and Physical Properties; Comparison with Synthetic Phases. *Am Mineral*.

1 1983;68:1183-1188.

2 39. Miyata S. Physico-Chemical Properties of Synthetic Hydrotalcites in Relation to
3 Composition. *Clays Clay Miner.* 1980;28(1):50-56. doi:10.1346/CCMN.1980.0280107

4 40. Abdel-Gawwad HA, El-Aleem SABD. Effect of Reactive Magnesium Oxide on Properties
5 of Alkali Activated Slag Geopolymer Cement Pastes. *Ceram - Silikaty.* 2015;59(1):37-47.

6 41. Villain G, Thiery M, Platret G. Measurement Methods of Carbonation Profiles in
7 Concrete: Thermogravimetry, Chemical Analysis and Gammadensimetry. 2007;37:1182-
8 1192. doi:10.1016/j.cemconres.2007.04.015

9 42. Rey F, Fornés V, Rojo JM. Thermal Decomposition of Hydrotalcites. An Infrared and
10 Nuclear Magnetic Resonance Spectroscopic Study. *J Chem Soc Faraday Trans.*
11 1992;88(15):2233-2238. doi:10.1039/FT9928802233

12 43. Wang SY, McCaslin E, White CE. Effects of Magnesium Content and Carbonation on the
13 Multiscale Pore Structure of Alkali-Activated Slags. *Cem Concr Res.* 2020;130:105979.
14 doi:10.1016/j.cemconres.2020.105979

15 44. Puertas F, Fernández-Jiménez A, Blanco-Varela MT. Pore Solution in Alkali-Activated
16 Slag Cement Pastes. Relation to the Composition and Structure of Calcium Silicate
17 Hydrate. *Cem Concr Res.* 2004;34(1):139-148. doi:10.1016/S0008-8846(03)00254-0

18 45. Kellermeier M, Melero-García E, Glaab F, et al. Stabilization of amorphous Calcium
19 Carbonate in Inorganic Silica-Rich Environments. *J Am Chem Soc.* 2010;132(50):17859-
20 17866. doi:10.1021/ja106959p

21 46. Shi Z, Shi C, Wan S, Zhang Z. Effects of alkali dosage and silicate modulus on alkali-
22 silica reaction in alkali-activated slag mortars. *Cem Concr Res.* 2018;111(July):104-115.
23 doi:10.1016/j.cemconres.2018.06.005

24