

Predicting CaO-(MgO)-Al₂O₃-SiO₂ glass reactivity in alkaline environments from force field molecular dynamics simulations

Kai Gong^{1,2}, Claire E. White^{1,*}

¹Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States

²Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States (current address)

* Corresponding author: Phone: +1 609 258 6263, Fax: +1 609 258 2799, Email: whitece@princeton.edu

Postal address: Department of Civil and Environmental Engineering, Princeton University,
Princeton NJ 08544, USA

13

14 Keywords: Molecular Dynamics Simulations; Amorphous Aluminosilicate; Structural Descriptors;
15 Glass Reactivity; X-ray Scattering; Neutron Scattering; Granulated Blast-Furnace Slag

16

17

18

19 **Abstract**

20 In this investigation, force field-based molecular dynamics (MD) simulations have been employed
21 to generate detailed structural representations for a range of amorphous quaternary CaO-MgO-
22 Al₂O₃-SiO₂ (CMAS) and ternary CaO-Al₂O₃-SiO₂ (CAS) glasses. Comparison of the simulation
23 results with select experimental X-ray and neutron total scattering and literature data reveals that
24 the MD-generated structures have captured the key structural features of these CMAS and CAS
25 glasses. Based on the MD-generated structural representations, we have developed two structural
26 descriptors, specifically (i) average metal oxide dissociation energy (AMODE) and (ii) average
27 self-diffusion coefficient (ASDC) of all the atoms at melting. Both structural descriptors are seen
28 to more accurately predict the relative glass reactivity than the commonly used degree of
29 depolymerization parameter, especially for the eight synthetic CAS glasses that span a wide
30 compositional range. Hence these descriptors hold great promise for predicting CMAS and CAS
31 glass reactivity in alkaline environments from compositional information.

32

33

34 **1 Introduction**

35 Amorphous aluminosilicates are of significant interest to many technologically important fields
36 and applications, including geology, glass science, metallurgical process, nuclear waste
37 encapsulation and sustainable cement production. In particular, various amorphous
38 aluminosilicates have been used as precursor sources to synthesize the so-called alkali-activated
39 materials (AAMs), an important class of low-CO₂ cement-based binder [1, 2]. Alternatively,

40 amorphous aluminosilicates are commonly used as supplementary cementitious materials (SCMs)
41 in blended cement to partially replace Portland cement [3, 4] and hence lower the carbon footprint
42 of the cement industry (currently responsible for 8-9% of global anthropogenic CO₂ emissions)
43 [5]. Most of the commonly used amorphous aluminosilicates for the above two applications are
44 industrial by-products (e.g., ground granulated blast-furnace slag (GGBS) and coal-derived fly
45 ash), although other sources of amorphous aluminosilicates are being actively explored, especially
46 calcined clays, which are attractive due to the extremely large clay reserves [6].

47 The chemical composition, mineralogy and particle size of these precursor materials and SCMs
48 can vary considerably depending on their type, source location and processing parameters. Even
49 for GGBSs, which have relatively small chemical variability compared to fly ash, their main oxide
50 components do vary, consisting of CaO (30– 50 wt.%), SiO₂ (28–38 wt.%), Al₂O₃ (8–24 wt.%)
51 and MgO (1–18 wt.%) along with the presence of other trace elements (e.g., S, Ti, Na, K, Mn and
52 Fe) as well as crystalline impurities (e.g., merwinite, gehlenite, åkermanite, calcite and quartz) [4,
53 7-11]. These inherent variabilities can have a dramatic impact on precursor/SCM reactivity in both
54 AAM and blended Portland cement systems, as well as the resulting pore structure and engineering
55 properties of the final cementitious product [1, 3, 7, 8, 11-13]. The impact of Ca content is
56 particularly profound. First, Ca is a known network modifier and tends to increase the framework
57 disorder and the degree of depolymerization (and hence the reactivity) of the glassy aluminosilicate
58 precursor [14]. Recent investigations on synthetic glasses have shown that Ca-rich aluminosilicate
59 glass exhibits a significantly higher reactivity than Si-rich counterparts [15-18]. This is a major
60 reason why Ca-rich GGBS can achieve a higher replacement ratio in blended Portland cements [4]
61 and be activated using (i) a much lower alkali content in sodium hydroxide or sodium silicate

62 activators or (ii) weak activators (e.g., Na_2CO_3 and Na_2SO_4) for AAM applications, as compared
63 with low-Ca precursors (e.g., class F fly ash and metakaolin) [1].

64 Calcium is also important when it comes to the atomic structure, transport properties and long-
65 term durability of the precipitated binder gel in AAMs [1, 19]. At low Ca content (i.e., class F fly
66 ash and metakaolin), the alkali activation reaction results in a three-dimensional alkali-alumino-
67 silicate-hydrate gel (N-A-S-H gel if sodium is the alkali) with predominately Q^4 silicate units (Q^n
68 denotes n bridging oxygens) [1, 2]. In contrast, for AAMs based on a Ca-rich precursor (e.g.,
69 GGBS and class C fly ash), the resulting binder gel is an alkali-containing calcium-alumino-
70 silicate-hydrate gel (C-(N)-A-S-H gel if sodium is the alkali) dominated by a depolymerized chain-
71 like silicate structure [2, 20-23], similar to the calcium-silicate-hydrate (C-S-H) and calcium-
72 alumino-silicate-hydrate (C-A-S-H) gel in Portland cement and blended Portland cement systems
73 containing aluminum. This difference in the binder gel is linked with noticeable differences in pore
74 structures [24-27], transport properties [25, 26, 28, 29] and chemical stability [26, 28].

75 The impact of alumina content on the reactivity of amorphous aluminosilicates and the engineering
76 properties of the resulting AAM and blended Portland cements has also been investigated [11, 15].
77 In a 2014 review article, Provis and Bernal suggested that high Al content is beneficial to the
78 strength development of fly ash-based AAMs, similar to the impact of the network modifier (e.g.,
79 alkali and alkali earth metal) content [2]. A recent investigation on synthetic calcium
80 aluminosilicate (CAS) glasses showed that an increasing Al content (at fixed Ca content) leads to
81 a higher extent of reaction in a blended mixture of portlandite, limestone and sodium hydroxide
82 [15]. In contrast, an earlier investigation on the reaction kinetics of NaOH - and Na_2SiO_3 -activated

83 GGBSs showed that GGBS with a higher Al_2O_3 content leads to slower reaction kinetics and lower
84 compressive strength during the early stages of reaction [11].

85 Magnesium has also been investigated, specifically regarding its impact on the reactivity of
86 amorphous aluminosilicates. Ben Haha *et al.* examined three GGBS sources with different MgO
87 content (8-13 wt. %) and found that a higher MgO content accelerates the early stage of reaction
88 for alkali-activated GGBS (more apparent when Na_2SiO_3 activator was used) and increases
89 compressive strength [12]. This is consistent with another investigation on Na_2CO_3 -activated
90 GGBS [8], where GGBS with a higher MgO content was seen to exhibit much faster reaction
91 kinetics as evaluated using isothermal conduction calorimetry (ICC). The beneficial impact of
92 MgO on compressive strength observed by Ben Haha *et al.* was also in agreement with an earlier
93 investigation by Douglas *et al.* [30], which showed that the 28-day compressive strength of
94 silicate-activated GGBS triples when the MgO content of GGBS increases from 9 to 18 wt. %. In
95 contrast, another investigation on Na_2SiO_3 -activated GGBS showed that GGBS with a lower MgO
96 content reacts faster during the early stages of reaction [9]. As suggested in ref. [9], this
97 inconsistency associated with the impact of MgO content on the reaction kinetics is related to the
98 differences in the Al_2O_3 content of the GGBSs. Dissolution experiments on synthetic quaternary
99 $\text{CaO}-\text{MgO}-\text{Al}_2\text{O}_3-\text{SiO}_2$ (CMAS) glasses showed that increasing the Mg/Ca ratio whilst
100 maintaining a relatively fixed Si and Al content leads to a higher dissolution rate in aqueous
101 solutions with pH of up to ~ 12 (especially in acid conditions) [16]. [Another recent study on the](#)
102 [pozzolanic reactivity of CMAS glasses \[31\]](#) showed that replacing Ca with Mg in the glass (i.e.,
103 [increasing Mg/Ca ratio](#)) leads to a slightly higher extent of reaction for the glass in a lime solution
104 ([estimated from the \$^{27}\text{Al}\$ MAS NMR spectra](#)). This observation [of a higher reactivity with a higher](#)
105 [Mg/Ca ratio](#) for CMAS glass is inconsistent with silicate mineral dissolution experiments [where it](#)

106 is generally shown that the dissolution rate of dimagnesium silicate is several orders of magnitude
107 lower than that of dicalcium silicate (the extreme case of replacing Ca with Mg) [32, 33]. The
108 difference in the impact of increasing Mg/Ca ratio (or replacing Ca with Mg) on the reactivity of
109 (i) CMAS glasses and (ii) silicate minerals could be associated with the formation of highly
110 reactive free oxygen (FO) sites (defined as oxygen not bonded to any network formers, i.e., Si or
111 Al atoms, in its nearest coordination shell) in CMAS glasses. It has been suggested that Mg atoms
112 in the CMAS glasses promote the formation of highly reactive FO sites [34, 35], and hence it is
113 possible that increasing Mg/Ca ratio leads to a higher FO content and, as a result, a higher reactivity
114 for the CMAS glass. However, these highly reactive FO sites are not present in both dimagnesium
115 and dicalcium silicate minerals.

116 Despite it being clear that the composition of an amorphous calcium/magnesium aluminosilicate
117 has a significant impact on (i) its reactivity as an SCM in blended Portland cements or a precursor
118 material for AAMs, and (ii) the final properties of the cementitious product, there have only been
119 a limited number of investigations on the composition-structure-properties relationship for these
120 amorphous aluminosilicates. Many investigations (including refs. [8, 9, 11, 12] discussed above)
121 focus on describing the composition-properties relationship using individual oxide components or
122 empirical reactivity index (e.g., $(\text{CaO} + \text{MgO})/\text{SiO}_2$ from European Standard for slag cement) [36,
123 37]. Several recent investigations [15, 17, 38] have used the degree of depolymerization (i.e., the
124 number of non-bridging oxygen (NBO) per network former T (NBO/T), where T = Si and Al atoms
125 in IV-fold coordination) of the glassy phase as a structural descriptor, which is commonly used in
126 the glass community and can be estimated from the chemical composition based on classical glass
127 theory [39]. NBO is defined as an oxygen atom bonded to only one network former T. These
128 investigations [15, 17] have generally showed a positive correlation between the degree of

129 depolymerization (or NBO/T) of the glass and its reactivity in an alkaline environment. However,
130 several investigations have suggested that NBO/T is not always a reliable indicator of glass
131 reactivity [15, 40]. For instance, in ref. [15], a decrease of reactivity with increasing NBO/T has
132 been observed for several synthetic CAS glass compositions relevant to fly ash. NBO/T has also
133 been used to describe mineral dissolution, where a generally positive trend (between NBO/T and
134 dissolution rate) has been observed [32]. However, it has also been shown for alkali earth metal
135 silicate minerals that the dissolution rate can vary several orders of magnitude for minerals with
136 the same level of NBO/T [32, 33].

137 The inability for individual oxide components (e.g., Al_2O_3 and MgO) or the commonly used
138 NBO/T parameter to accurately predict GGBS or C(M)AS glass reactivity in AAMs and blended
139 cements shows that there is a need to develop more reliable structural descriptors to connect the
140 composition of these amorphous aluminosilicates to their reactivity and associated final properties
141 of the cement-based materials. Although it is challenging to obtain structural information on
142 amorphous aluminosilicates, several experimental techniques have been shown to be extremely
143 valuable, including nuclear magnetic resonance (NMR) [15, 41, 42], and X-ray and neutron total
144 scattering [7, 34, 43-45]. On the other hand, atomistic modeling techniques, including force field-
145 based molecular dynamics (MD) simulations [35, 44, 46, 47] and quantum mechanics-based
146 density functional theory (DFT) calculations [48, 49], have been successfully used to generate
147 detailed and realistic structural representations for aluminosilicate glasses, including when
148 combined with X-ray and neutron scattering experiments [34]. Furthermore, MD simulations have
149 been recently employed in the glass community to derive structural information that connects glass
150 composition and molecular features to glass properties, including Young's modulus, density,
151 viscosity, glass transition temperature, and leaching and chemical durability [50, 51]. However,

152 similar MD investigations linking composition-structure-properties for quaternary CMAS and
153 ternary CAS glasses that are representative of SCMs and AAM precursors are rare.

154 In this investigation, force field MD simulations have been employed to generate detailed
155 structural representations for 18 CMAS and CAS glasses with a wide range of compositions related
156 to GGBSs/glasses that were previously studied in four high-quality experimental investigations [8,
157 11, 12, 15]. Detailed analysis of MD-derived structures has been carried out to determine their
158 structural attributes (including the nearest interatomic distances, coordination numbers (CNs) and
159 the degree of depolymerization), which were subsequently compared with (i) our X-ray and
160 neutron total scattering data collected on select GGBS compositions, (ii) literature data, and/or (iii)
161 theoretical estimation, to ensure that the structural representations generated were reasonable.

162 Based on the MD simulation results, two structural descriptors have been derived, i.e., (i) the
163 average metal oxide dissociation energy (AMODE) and (ii) average self-diffusion coefficient
164 (ASDC) of all the atoms at melting, and their performance in predicting the reactivity data from
165 the experimental investigation has been evaluated, in comparison with the commonly used NBO/T
166 parameter (i.e., the degree of depolymerization) also derived from MD simulations. This
167 investigation serves as a crucial step forward in establishing the important composition-structure-
168 reactivity relationship for amorphous aluminosilicates in alkaline environments relevant to
169 blended Portland cements and AAMs.

170

171

172 **2 Methodology**

173 **2.1 Glass compositions**

174 We selected ten GGBSs composed of predominantly CMAS glassy phases and eight synthetic
175 CAS glasses with a range of chemical compositions from four separate high-quality investigations
176 [8, 11, 12, 15], where each investigation experimentally investigated the impact of glass
177 composition on the reactivity in alkaline conditions. The chemical compositions and physical
178 properties of the CMAS and CAS glasses from these investigations are summarized in Table 1.
179 All the GGBSs (Group A-C in Table 1) are predominately amorphous (as evidenced by the X-ray
180 diffraction (XRD) data in each investigation) with ~94-96 wt. % of CMAS glass and 3-5 wt. % of
181 other minor oxide phases (e.g., SO₃, K₂O, Na₂O, TiO₂ and Mn₂O₃) [8, 11, 12]. All the GGBSs
182 contain ~34-43 wt. % CaO, ~31-42 wt. % SiO₂, ~7-17 wt.% Al₂O₃ and ~1-14% wt.% MgO.
183 Although the compositional variation is relatively small, especially for the two major oxide
184 components (CaO and SiO₂), significant differences in reactivity have been observed in the
185 experimental investigations, especially in ref. [8], where the impact of MgO content was studied
186 (Group A in Table 1). The two other investigations focused on the impact of MgO (Group B in
187 Table 1) [12] and Al₂O₃ content (Group C in Table 1) [11] in the GGBSs on their reactivity during
188 alkaline activation, however, the quantities of the different oxide components in each group (A-C)
189 appear to be interconnected as illustrated in Figure 1. It is clear from Figure 1 that CaO, MgO and
190 Al₂O₃ content are strongly correlated with the SiO₂ content, especially for the GGBSs in Group B
191 and C (R^2 values close to 1.00 for linear fits). Similarly, strong correlations are observed between
192 the CaO content and MgO and Al₂O₃ content for these GGBSs, with ~1-4 wt. % Fe₂O₃ the results
193 shown in Figure S1 of the Supplementary Material. In fact, in our previous investigation on seven
194 GGBSs from different origins, we also observed that the main compositions of these GGBSs are

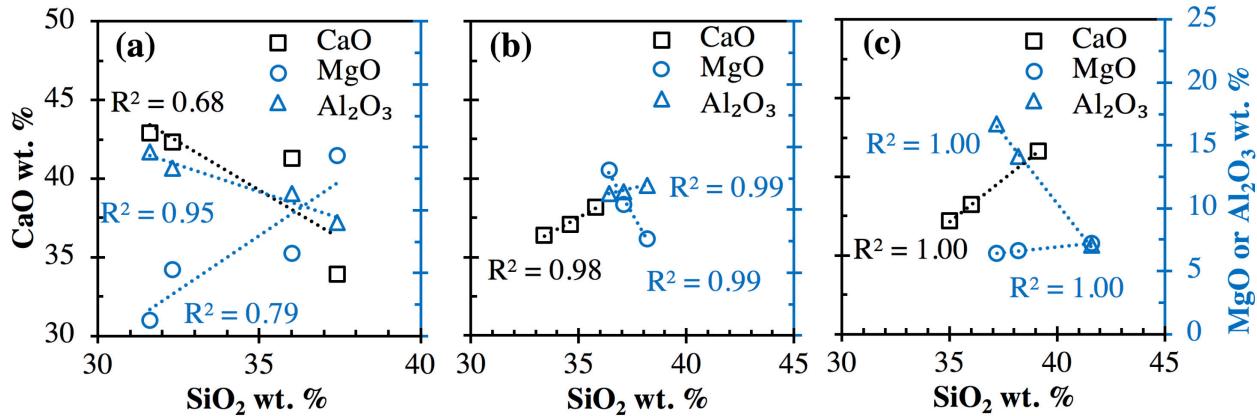
195 interconnected [7]. Therefore, the different levels of reactivity in each group of GGBSs, as
196 observed in refs. [8, 11, 12], should not be simply attributed to their compositional difference in
197 one oxide component (e.g., MgO or Al₂O₃). For a more accurate description of composition-
198 reactivity relationship for these GGBSs, it is necessary to first obtain detailed atomic structural
199 information, as has been carried out in this study.

200

201

202 Table 1. The chemical composition of the main oxides (in weight percentage), particle surface area
203 and density of the different GGBSs and synthetic glasses from refs. [8, 11, 12, 15]. Note that the
204 uncertainty associated with surface area data was only reported for the GGBSs in Group A.

ID #	CaO	MgO	SiO ₂	Al ₂ O ₃	Surface area		Notes and sources
					(cm ² /g)		
A1_1Mg	42.9	1.2	31.6	14.6	4012 ± 49		Investigated the impact of GGBS Mg content on its reactivity during
A2_5Mg	42.3	5.2	32.3	13.3	4435 ± 109		Na ₂ CO ₃ activation [8]
A3_7Mg	41.3	6.5	36.0	11.3	5056 ± 22		
A4_14Mg	33.9	14.3	37.4	9.0	4794 ± 44		
B1_8Mg	35.8	7.7	38.2	12.0	4990		Investigated the impact of GGBS Mg content on its reactivity during
B2_11Mg	34.6	10.5	37.1	11.5	5070		NaOH and Na ₂ SiO ₃ activation [12]
C1_7Al	39.1	7.2	41.6	7.0	5021		
C2_14Al	36.0	6.6	38.2	14.1	4963		


C3_17Al 35.0 6.4 37.2 16.7 4985

Investigated the impact of GGBS Al content on its reactivity during NaOH and Na_2SiO_3 activation [11]

D1	4.7	0.0	78.5	16.8	4720	Investigated the impact of CAS
D2	4.7	0.0	69.1	26.3	4810	synthetic glass composition on its
D3	4.3	0.0	60.6	35.1	4800	reactivity in a mixture of $\text{Ca}(\text{OH})_2$,
D4	13.9	0.0	59.4	26.7	4550	NaOH, and limestone [15]
D5	21.4	0.0	62.0	16.6	4630	
D6	24.1	0.0	49.8	26.1	4680	
D7	24.0	0.0	39.7	36.3	4220	
D8	49.9	0.0	34.8	15.3	3960	

205

206

207

208 Figure 1. Comparison of SiO_2 content and CaO , MgO and Al_2O_3 content for the GGBS
209 compositions in (a) Group A, (b) Group B and (c) Group C (see Table 1 for the compositions). R^2
210 values for linear fits are given in the figure.

211

212

213 The eight CAS compositions in Group D are for synthetic glasses selected from another
214 investigation [15] that span a wider compositional range (~4-50 wt. % CaO, ~35-79 wt. % SiO₂
215 and ~15-36 wt. % Al₂O₃) than the CMAS glasses in Group A-C. Simple analysis shows that the
216 correlation between CaO content and SiO₂ and Al₂O₃ content in this group (R^2 values of 0.78 and
217 0.13, respectively; see Figure S2 in Supplementary Material for details) is much weaker than those
218 in Group A-C. In the original investigation, these CAS glass compositions were designed to
219 uncover the impact of Al₂O₃ at two CaO levels, i.e., D1-3 and D5-7 glasses with targeted CaO
220 content of 5.0 and 25.0 wt. %, respectively (the values in Table 1 are the experimentally obtained
221 composition data). The former three compositions (i.e., D1-3) are relevant to Si-rich fly ash (e.g.,
222 class F), while the latter three (i.e., D5-7) are relevant to Ca-rich fly ash (e.g., class C). The D8
223 glass was designed to represent a GGBS composition without MgO. D2, D4 and D6 compositions
224 were designed to investigate the impact of Ca/Si ratio at fixed Al₂O₃ content (i.e., ~26 wt. %). The
225 XRD patterns in ref. [15] show that these synthetic CAS glasses are predominantly amorphous.

226 Table 1 also includes specific surface area data for all the glasses, which exhibit ~2-20% difference
227 within each group, although efforts have been made in each experimental investigation to ensure
228 similar particle size distributions [8, 11, 12, 15]. This difference in the specific surface area needs
229 to be considered when evaluating glass reactivity; for example, a recent investigation has shown
230 that the reactivity of GGBS glasses in alkaline environments (based on ICC measurements)
231 increases almost linearly with specific surface area (R^2 values of 0.97-1.00 for linear fits) [37].

232 Hence, the reactivity data extracted from refs. [8, 11, 12, 15] have been normalized by the particle
233 surface area of each glass prior to evaluation of the relative glass reactivity within each group.

234

235

236 **2.2 Computational details**

237 Force field MD simulations have been used in this investigation to generate amorphous structural
238 representations for all the CMAS and CAS glass compositions shown in Table 1. The force field
239 parameters developed by Guillot for crystals and melts of the CaO-MgO-Al₂O₃-SiO₂ system were
240 used for all the simulations [52]. The Guillot force field is expressed using Equation 1:

241

$$U_{ij}(r_{ij}) = \frac{z_i z_j}{r_{ij}} + B_{ij} e^{-\frac{r_{ij}}{\rho_{ij}}} - \frac{C_{ij}}{r_{ij}^6} \quad (1)$$

242 where z_i is the effective charge associated with atom i , r_{ij} is the distance between atom pair $i-j$,
243 and B_{ij} , ρ_{ij} and C_{ij} are the energy parameters obtained by refinement against experimental data
244 that were collected on 11 natural silicate melts covering a large compositional range [52]. The
245 three terms in Equation 1 represent the Coulomb, repulsion, and van der Waals interactions,
246 respectively, and the last two terms constitute the commonly used pairwise Buckingham potential.
247 The force field parameters adopted are given in Table S1 in the Supplementary Material. The
248 simulations were performed using the ATK-Forcefield module in the QuantumATK NanoLab
249 software package [53, 54] following the commonly used melt-and-quench approach, similar to the
250 MD simulation section in our previous work on a CMAS glass [34].

251 Several previous studies [55, 56] on the impact of system size on the structure and properties of
252 silicate-based glasses have shown that most structural properties of these glasses have converged
253 by ~2000 atoms. Given that this investigation is focused on structural properties (as opposed to
254 other material properties, e.g., elastic modulus, which have been shown to converge only at larger
255 system sizes [56]), we have used a simulation cell consisting of ~2000 atoms for all the glasses.
256 To assess whether this relatively small system size leads to large statistical fluctuations of the
257 structural properties associated with smaller models, we have repeated the simulations over several
258 independent runs for each glass composition in Table 1, as suggested by Tilocca [55]. Furthermore,
259 we have verified our results using a larger system size (~16,000 atoms) for one glass composition
260 (A2_5Mg) where the properties of interest (i.e., nearest interatomic distances, CNs and self-
261 diffusion coefficients at 2000 K) are found to be similar to those obtained based on ~2000 atoms
262 (see Figure S3 and Table S2 of the Supplementary Material).

263 Specifically, we started with initial structures in cubic cells with the same CMAS or CAS
264 composition as the experimental data in Table 1 (elemental compositions are shown in Table 2).
265 These initial structures were created using the Amorphous Prebuilder provided by the
266 QuantumATK NanoLab software [53, 54], where the atoms are randomly placed at the vertices of
267 the grid that subdivides the unit cell such that they are not overlapping with each other (see Figure
268 S4 in the Supplementary Material for an example). For each structure, the density of the unit cell
269 was initially set at a value estimated for CMAS glass at a temperature of 5000 K. The value was
270 estimated using a similar method adopted in our previous investigation [34], and detailed
271 calculations are given in Section 5 of the Supplementary Material. The structure was firstly
272 equilibrated at 5000 K for 1 ns to ensure the loss of the memory of the initial configuration. It was
273 then quenched from 5000 to 2000 K over 3 ns followed by equilibration at 2000 K for 1 ns, before

274 being further quenched from 2000 to 300 K over 3 ns and equilibrated at 300 K for 1 ns. The MD
275 quenching rates of 1.0 and 0.57 K/ps were adopted here because the structural properties of the
276 silicate glasses (such as the radial distribution functions (RDFs), bond angles and CNs) have been
277 shown to approach convergence in MD simulations when the quenching rates are slower than 1
278 K/ps [47, 56].

279 The canonical *NVT* ensemble with the Nosé Hoover thermostat and a time step of 1 fs were used
280 for all the MD simulation steps mentioned above, while the density of the unit cell (i.e., volume)
281 was adjusted to numerically estimated or experimental values (as shown in Table 2) at the start of
282 each equilibration step. The *NVT* ensemble was selected (as opposed to the *NPT* ensemble) due to
283 several reasons. First, experimental density values at room temperature are available for some of
284 the glass samples investigated here [8, 11, 12, 15] (see Table 2), and therefore the *NVT* ensemble
285 allows these glasses to be equilibrated to the experimental densities at 300 K. Second, we observed
286 that the Guillot force field with the *NPT* ensemble (using the Martyna Tobias Klein thermostat
287 [57]) tends to overestimate the density of CMAS glasses by ~ 5% (for example, a density of 3.04
288 cm³/g was obtained for the A2_5Mg glass composition; see Figure S5 of the Supplementary
289 Material for more details). Since the same modeling approach has been adopted for all the
290 simulations, the selection of *NPT* or *NVT* should not change the general trends or findings in this
291 study, as previously suggested by Deng and Du for sodium borosilicate glasses [56]. For the
292 GGBSs that do not have room temperature density values and the higher temperature densities that
293 are not available for all the glasses, we used a numerical method for the estimation, as described
294 in Section 5 of the Supplementary Material. In summary, the estimated densities of the final
295 structures at 300 K for the CMAS glasses (~2.81-2.88 g/cm³; shown in Table 2) are within ~3%

296 of the experimental values of GGBSs with similar CaO-MgO-Al₂O₃-SiO₂ compositions (~2.87-
297 2.94 g/cm³) [11, 12].

298 Two configurations during the last 500 ps of the MD equilibration step at 300 K (separated by 500
299 ps) were extracted, and the whole process was repeated three times to generate six structural
300 representations for each of the eighteen CMAS and CAS compositions given in Table 2. These
301 structural representations were further analyzed to obtain the proportion of different oxygen
302 species (including NBO and FO). For three GGBSs in Group A with available experimental PDF
303 data (experimental details outlined in the next section), the corresponding structural
304 representations were used to generate simulated PDFs for comparison with the experimental data.
305 Note that all the GGBSs also contain trace amounts of minor oxides (< 3-5 wt. %), which were not
306 included in the simulation due to their relatively small quantities, as explained in more detail in
307 our previous investigation [34].

308

309 Table 2. The number of atoms in each simulation box (corresponding to the oxide composition of
310 each GGBS or synthetic glass shown in Table 1) along with the numerically estimated or
311 experimentally determined cell density (labeled with *) used at each equilibration temperature
312 during the MD simulations. The numerical calculation method for the density values at different
313 temperatures is given in Section 5 of the Supplementary Material. The theoretical degree of
314 depolymerization (i.e., NBO/T) has been calculated based on simple stoichiometric considerations
315 [39], as explained in detail in Section 7 of the Supplementary Material.

Glass ID	Number of atoms in the simulation box						Density (g/cm ³) at given temperature (K)			Theoretical NBO/T
	#						300	2000	5000	
		Ca	Mg	Si	Al	O	Total			
A1_1Mg	394	15	271	148	1173	2001	2.86	2.69	2.39	2.20
A2_5Mg	375	65	267	130	1169	2006	2.87	2.70	2.40	1.89
A3_7Mg	355	78	290	106	1172	2001	2.86	2.69	2.39	1.92
A4_14Mg	286	169	294	82	1166	1997	2.85	2.68	2.38	1.60
B1_8Mg	307	93	306	114	1183	2003	2.82	2.65	2.35	1.63
B2_11Mg	296	126	296	108	1176	2002	2.83	2.66	2.36	1.82
B3_13Mg	282	156	287	104	1168	1997	2.84	2.67	2.37	1.97
C1_7Al	334	86	332	66	1183	2001	2.81	2.64	2.34	1.94
C2_14Al	305	78	302	132	1185	2002	2.82	2.65	2.35	1.46
C3_17Al	294	75	292	154	1184	1999	2.82	2.65	2.35	1.31
D1	34	0	532	134	1299	1999	2.49 [*]	2.31	2.00	-0.10 [!]
D2	34	0	469	210	1287	2000	2.59 [*]	2.35	2.05	-0.2 [!]
D3	31	0	412	280	1275	1998	2.56 [*]	2.39	2.09	-0.32 [!]
D4	104	0	414	220	1262	2000	2.61 [*]	2.43	2.13	-0.02
D5	163	0	442	140	1257	2002	2.72 [*]	2.44	2.14	0.32
D6	186	0	358	222	1235	2001	2.85 [*]	2.51	2.21	0.26
D7	185	0	286	308	1219	1998	2.85 [*]	2.57	2.27	0.10
D8	417	0	272	140	1171	2000	2.93 [*]	2.70	2.34	1.68

316 * Experimental density values from ref. [15].

317 ¹Peraluminous region with no NBO in theory. The negative values indicate that there are
318 insufficient Ca cations to charge balance all the Al atoms, assuming all Al atoms are in IV-fold
319 coordination. A more negative value indicates a greater Ca cation deficiency.

320

321

322 **2.3 Experimental details**

323 X-ray and neutron total scattering data have been collected on several GGBS compositions in
324 Group A, specifically Al_1Mg, Al_5Mg and Al_14Mg in Table 1. The data for Al_5Mg GGBS
325 have already been presented in our previous study [34]. The X-ray total scattering data were
326 collected at room temperature using the 11-ID-B beam line [58] at the Advanced Photon Source,
327 Argonne National Laboratory, while neutron total scattering data were collected at the Lujan
328 Neutron Scattering Center, Los Alamos National Laboratory, using the NPDF instrument [59].
329 The data collection and processing procedures for the total scattering data are similar to those
330 adopted in our previous investigations [7, 34, 60]. Briefly, the pair distribution function (PDF),
331 $G(r)$, was calculated by taking a sine Fourier transform of the measured total scattering function,
332 $S(Q)$, where Q is the momentum transfer, as outlined by Egami and Billinge [61]. More details on
333 the calculation of the PDF are given in Section 8 of the Supplementary Material. The X-ray PDF
334 data were generated following a standard data reduction procedure using PDFgetX3 [62], with a
335 Q_{max} of 20 \AA^{-1} . X-ray instrument parameters ($Q_{broad} = 0.016 \text{ \AA}^{-1}$ and $Q_{damp} = 0.035 \text{ \AA}^{-1}$) were
336 obtained by using the calibration material (nickel, Sigma-Aldrich) and the refinement program
337 PDFgui [63]. The PDFgetN software [64] and a Q_{max} of 20 \AA^{-1} were used for the generation of the

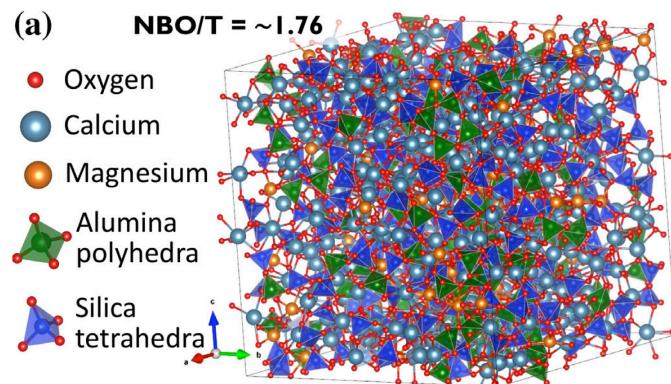
338 neutron PDF, where a background subtraction to remove incoherent scattering has been carried
339 out [65]. The neutron instrument parameters ($Q_{broad} = 0.00201 \text{ \AA}^{-1}$ and $Q_{damp} = 0.00623 \text{ \AA}^{-1}$) were
340 obtained using a silicon calibration material and the refinement program PDFgui [63]. These
341 instrument parameters were used in PDFgui to compute the simulated PDFs based on the MD-
342 generated structural representations for comparison with the corresponding experimental X-ray
343 and neutron PDF data.

344

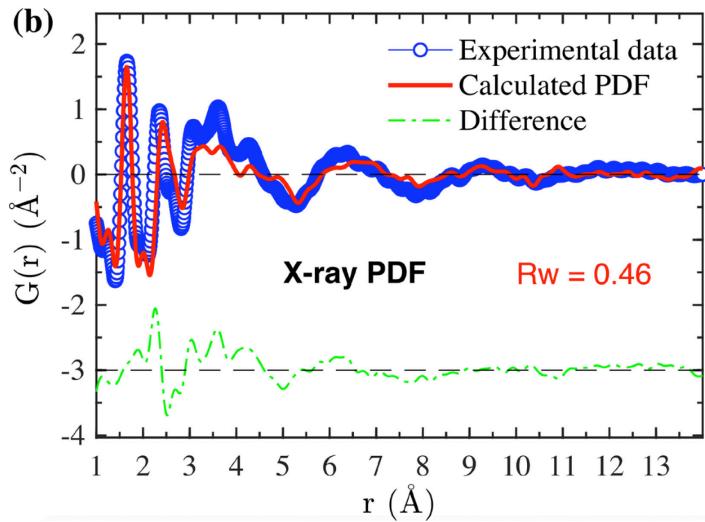
345

346 **3 Results and Discussion**

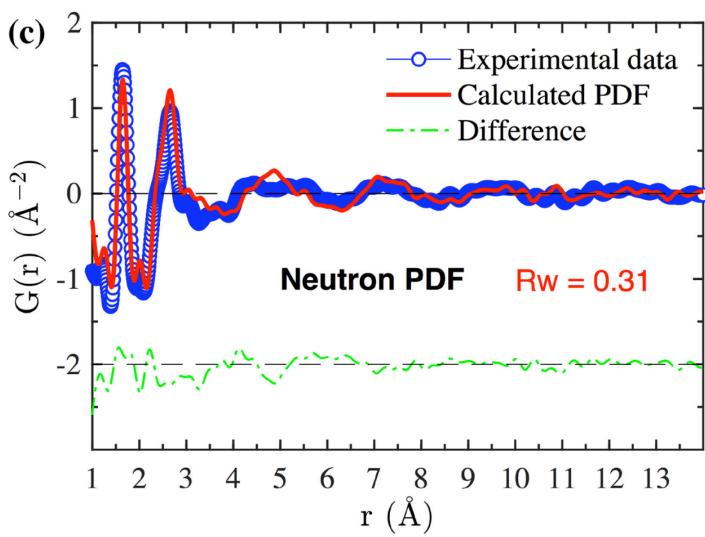
347 **3.1 Comparison of structural representations with experimental data**


348 The feasibility of the atomic structural representations obtained using the simulated melt-quench
349 method with force field MD simulations (as outlined in Section 2.2) is highly dependent on the
350 accuracy of the adopted force field. Although the force field used in this study was parameterized
351 to cover silicate crystals and melts, including the CaO-MgO-Al₂O₃-SiO₂ system [52], it is
352 necessary to assess whether the obtained structural representations can reasonably capture the
353 structural features in the experimental data, given that there are obvious discrepancies between
354 simulation and experimental synthesis conditions (i.e., quenching rates, as will be briefly discussed
355 in this section).

356 3.1.1 CMAS glasses (Group A-C)


357 The ten CMAS glasses in Group A-C (shown in Tables 1 and 2) represent the level of chemical
358 variation of the main glassy phase found in amorphous GGBS, which generally resides in the
359 highly percalcic region $((\text{CaO}+\text{MgO})/\text{Al}_2\text{O}_3 > 1)$. In this region, there is a high proportion of excess
360 modifier cations (i.e., Ca and Mg cations) available to create NBO species (defined as an O atom
361 bonded with only one network former, Si or Al atom, within its first coordination shell) beyond
362 those required to charge-balance the negative charges associated with 4-fold alumina (i.e.,
363 $[\text{Al}(\text{O}_{1/2})_4]^{-1}$). Due to the high modifier content in Group A-C, these CMAS glasses have a
364 relatively high extent of depolymerization (NBO/T of ~ 1.6 to 2.2 shown in Table 2), estimated
365 from simple stoichiometric considerations [39] (Section 7 of the Supplementary Material for more
366 details) that include: (i) both Si and Al atoms are network formers in IV-fold coordination, and (ii)
367 each excess alkaline earth cation creates two NBOs (as each NBO receive one electron from the
368 network former and hence has a charge of -1 in theory). Figure 2a shows a typical atomic structural
369 representation for a CMAS glass (i.e., A2_5Mg CMAS composition in Table 1) which is clearly a
370 highly disordered aluminosilicate network structure. Analysis of this structure gives an NBO/T
371 value of ~ 1.76 (stdev ≈ 0.007 , based on the six structural representations for this composition),
372 which is reasonably close to the theoretical estimation from simple stoichiometric considerations
373 (i.e., 1.89, as shown in Table 2) [39] and that obtained from DFT-optimized structures for the same
374 CMAS composition in our previous study (i.e., 1.80) [34].

375 The simulated X-ray and neutron PDFs obtained using the structural representation in Figure 2a
376 are compared with the corresponding experimental X-ray and neutron PDF data in Figure 2b and
377 2c, respectively, where the experimental data were collected on an amorphous GGBS with the


378 same CMAS composition. It is clear from this figure that the structure generated using MD
 379 simulations can capture reasonably well (i) the amorphous nature of the CMAS glass (as evidenced
 380 by the absence of noticeable ordering above ~ 10 Å), and (ii) the short-range ($< \sim 3$ Å) and mid-
 381 range (~ 3 -10 Å) ordering. The level of agreement achieved with the X-ray PDF data (as indicated
 382 by the R_w value; 0.46) is not as good as that achieved with DFT calculations in our previous study
 383 on the same CMAS glass composition (R_w of 0.35). **The R_w value** (as defined in PDFgui software
 384 [63]; detailed calculation of R_w value is given in Section 8 of the Supplementary Material) **is a**
 385 **measure of the weighted sum of the differences between experimental and simulated PDFs relative**
 386 **to the experimental PDF, with** a smaller R_w value implies better agreement. On the other hand, the
 387 MD-generated structure gives slightly better agreement with the neutron PDF data ($R_w = 0.31$)
 388 than the DFT-optimized structure ($R_w = 0.35$) due to the slight over-estimation of the nearest O-O
 389 interatomic distance from the PBE exchange-correlation functional used in the DFT calculations
 390 [34].

392

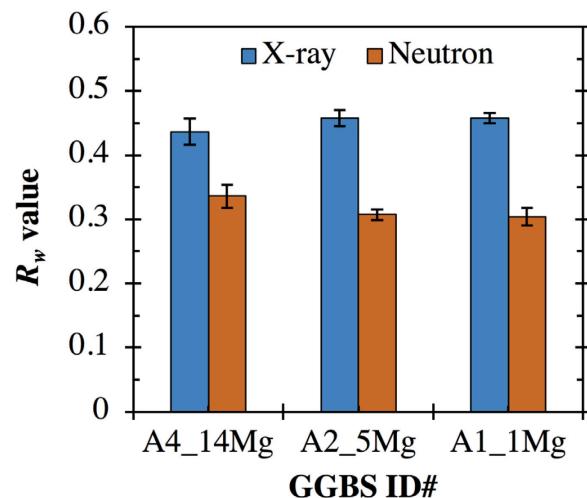
393

394 Figure 2. (a) A typical atomic structural representation obtained for a CMAS glass (i.e., A2_5Mg
 395 CMAS in Table 2), and the comparison between the simulated PDFs from an MD-generated
 396 atomic structural representation (shown in (a)) and the experimental (b) X-ray and (c) neutron PDF
 397 data of the corresponding GGBS with the same CMAS composition. NBO/T in (a) is the average
 398 number of non-bridging oxygen (NBO) species per network former T (T = Si and Al) calculated
 399 from the six structural representations of A2_5Mg CMAS. The level of agreement, as gauged by

400 the R_w values (refer to Section 8 in Supplementary Material for the calculation of R_w), is shown in
401 (b) and (c).

402

403


404 We used force field MD simulations here (as opposed to more accurate DFT calculations) because
405 the MD simulations allow for exploration of larger structures at a much lower computational cost
406 while still capturing the key features of the CMAS glass structure (as evidenced in Figure 2b-c).

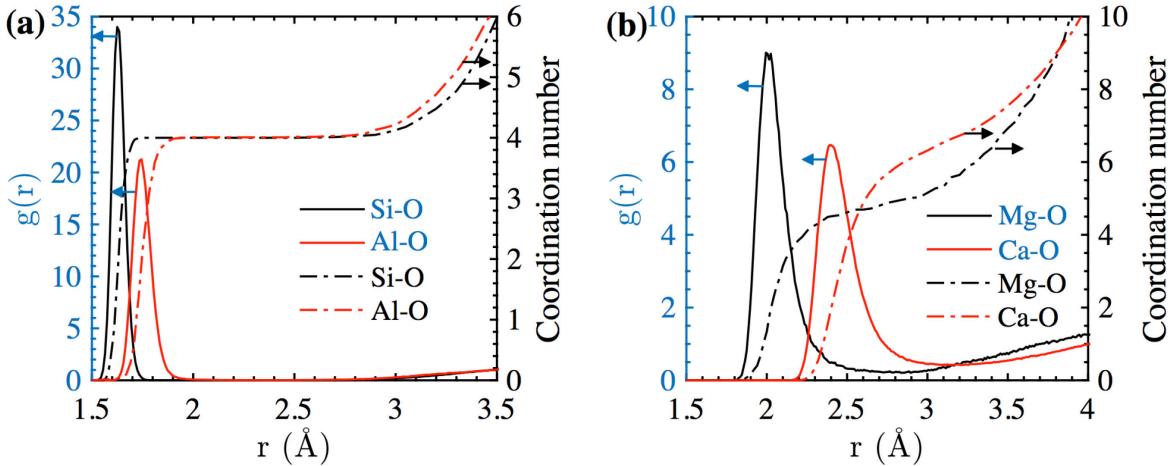
407 We achieved similar levels of agreement with X-ray and neutron PDF data for two other CMAS
408 glasses (i.e., A1_1Mg and A4_14Mg in Table 1), with the corresponding R_w values summarized
409 in Figure 3. Direct comparison of the simulated and experimental PDF data (X-ray and neutron),
410 similar to Figure 2b-c, is given in Figure S6 of the Supplementary Material. The R_w values for all
411 the three samples are in the range of 0.44-0.47 and 0.30-0.32 for X-ray and neutron PDF data
412 (Figure 3), respectively, indicating that the level of agreement between the experimental and
413 simulated PDFs is similar to those shown in Figure 2b-c. The level of agreement is also comparable
414 with several previous investigations on the modeling of the atomic structure of amorphous GGBS
415 (0.35 for X-ray and 0.36 for neutron data) [34], iron-rich slag (0.38 for X-ray and 0.31 for neutron
416 data) [44], magnesium carbonate ($R_w \approx 0.48$) [66] and metakaolin ($R_w \approx 0.77$) [43].

417 Nevertheless, similar to previous modeling investigations [34, 43, 44, 66], we can still clearly see
418 differences between the simulated and experimental PDFs ([especially below ~5 Å](#)) in Figure 2b-c
419 and Figure S6 of the Supplementary Material. These discrepancies are attributed to a number of
420 common limitations associated with force field MD simulations: (i) potential inaccuracy of the

421 empirically derived force field parameters used in the MD simulations, (ii) the relatively small size
422 of the simulation cell (i.e., $\sim 30 \times 30 \times 30 \text{ \AA}^3$) as compared with real samples, and (iii) the
423 significantly faster cooling rates adopted in typical MD simulations ($\sim 10^{12} \text{ K/s}$) as compared with
424 a typical experimental condition (1-100 K/s [47]). Another contributing factor is the presence of
425 small crystalline impurities and trace elements (e.g., Fe, Ti and S) in the experimental samples that
426 are not considered in the MD simulations [34].

427

428


429 Figure 3. Agreement between experimental X-ray and neutron PDFs and simulated PDFs based
430 on MD-generated structures for three CMAS compositions in Group A (Table 1), evaluated by the
431 R_w values (discussed in Section 8 of the Supplementary Material). The values reported in the figure
432 are averages based on analysis of six MD-generated structural representations for each CMAS
433 composition, with the error bars indicating one standard deviation.

434

435

436 Based on the MD trajectory of the last 500 ps of equilibration at 300K (500 structural snapshots),
437 we calculated the partial RDFs for the nearest atom-atom pairs (i.e., Si-O, Al-O, Mg-O, and Ca-
438 O), with the calculation details given in Section 8 of the Supplementary Material. The nearest
439 interatomic distances for these atom-atom pairs are then determined from these partial RDFs (peak
440 of each curve), as illustrated in Figure 4, where the typical partial RDFs for the atom-atom pairs
441 (Si-O, Al-O, Mg-O and Ca-O) in a Group A glass (i.e., the A3_7Mg composition in Table 2) are
442 given. The results for the nearest interatomic distances for all the CMAS glasses in Group A-C are
443 summarized in Table 3, where it is clear that the moderate compositional variations of the CMAS
444 glasses studied here have negligible impact on these nearest interatomic distances. However, we
445 do observe obvious differences in the peak intensity of these partial RDF curves for the different
446 glass compositions, as illustrated in Figure S7 of the Supplementary Material. These interatomic
447 distances agree reasonably well with the corresponding experimental values for Si-O (~1.63 Å),
448 Al-O (~1.75 Å), Mg-O (~2.00 Å), Ca-O (~2.35 Å) and O-O (~2.67 Å) in aluminosilicate glasses
449 [34, 67, 68], with the differences smaller than ~3%. The largest deviation is seen for the Ca-O
450 distance, where the MD-generated structures give an overestimation of ~0.07 Å. This
451 overestimation of Ca-O distance is likely due to the Guillot force field [52] used here, where a
452 similar overestimation has been previously reported in the literature for a comparable force field
453 (e.g., Matsui [69]) [34].

454

455

456 Figure 4. Partial radial distribution function (RDF) (left axis) and evolution of coordination
 457 numbers (CNs) (right axis) for (a) Si-O and Al-O pairs and (b) Mg-O and Ca-O pairs of the
 458 A3_7Mg glass composition.

459

460 Figure 4 also shows the evolution of coordination number (CN) as a function of distance, which
 461 can be calculated via integration of the partial RDFs (calculation method is given in Section 8 of
 462 the Supplementary Material). It is clear from Figure 4a that Si and Al atoms have well-defined
 463 oxygen coordination shells since evident plateaus have been reached for the CNs above 1.8 and
 464 2.0 Å, respectively. In contrast, Figure 4b shows that the CNs of Ca and Mg atoms change
 465 continuously with increasing distances (without obvious plateaus), suggesting that the first
 466 coordination shells of Ca and Mg atoms are less well-defined (compared with Si and Al atoms).
 467 Both observations are consistent with the literature data on CMAS glasses [34], and can be
 468 attributed to the higher field strength (defined as Z/d^2 , where d is the ionic distance between the
 469 cation and oxygen and Z is the valence of the cation) of Si and Al atoms (~1.57 and ~0.84-0.96,
 470 respectively) compared with Ca and Mg atoms (~0.46-0.53 and ~0.36, respectively) [70, 71]. Table

471 3 also summarizes the average CN for the different atom-atom pairs using the cutoff distances of
472 2.2 Å, 2.5 Å, 2.9 Å and 3.2 Å for Si-O, Al-O, Mg-O and Ca-O correlations, respectively. These
473 cutoff distances have been determined from the first minima in the partial RDFs ([commonly used](#)
474 [method in the glass literature \[44, 48, 55, 72\]](#)) and were kept the same for analysis of all the data
475 (including the CAS glasses in the next section) for consistency and ease of comparison. The results
476 show that the Si atoms in all the CMAS glasses investigated here are in IV-fold coordination,
477 which is consistent with ^{29}Si NMR data [41] and atomistic simulations [34, 46] on similar CMAS
478 glasses. Al atoms are seen to be dominated by IV-fold coordination with a small percent of V-fold
479 coordination (~0-7%, refer to the CN distributions for Al atoms in Figure S8a in the Supplementary
480 Material). Based on classical glass theory [39], there should not be any V-fold Al in the CMAS
481 glasses investigated here due to the large proportion of excess Ca and Mg cations beyond that
482 required to charge-balance IV-fold alumina sites (i.e., $[\text{Al}(\text{O}_{1/2})_4]^{-1}$). However, many experimental
483 and simulation findings [73-77] have challenged this classical view of the glass model by revealing
484 the formation of a small proportion of high-coordination alumina sites (mainly V-fold) in
485 peralkaline or peralkaline earth aluminosilicate glasses.

486 The Ca cations in the CMAS glasses are seen to have an average CN of ~6.7-6.8 (Table 3), and
487 the CN distributions in Figure S8b of the Supplementary Material reveal the dominance of VI- and
488 VII-fold coordination for all the CMAS glasses investigated here along with the presence of V-,
489 VIII- and IX-fold CN, which is consistent with previous investigations on similar aluminosilicate
490 glasses [34, 41, 46, 67, 78, 79]. The Mg cations have a smaller average CN (~4.9-5.2) than that of
491 the Ca cations, with the CN distributions dominated by V-fold coordination and the simultaneous
492 presence of IV- and VI-fold for all the CMAS glasses (Figure S8c of the Supplementary Material),
493 which is also consistent with literature data on Mg coordination in Mg-containing silicate glasses

494 [67, 78] (a brief summary has been given in ref. [34]). Overall, the results in Table 3 suggest that
 495 the MD-generated structural representations are able to capture the local atomic structure of CMAS
 496 glasses. Moreover, the compositional variation studied here has a moderate impact on the CN of
 497 Ca and Mg cations, and to a lesser extent, the Al atom, yet as expected, its impact on the CN of Si
 498 atoms and the nearest interatomic distances is negligible.

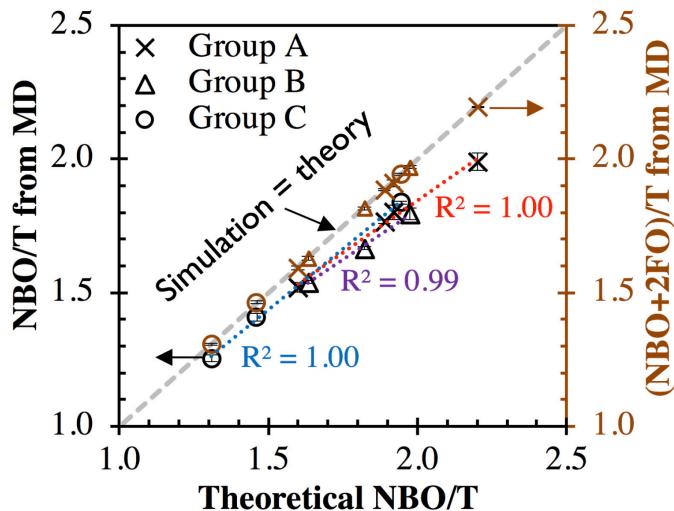
499

500 Table 3. Nearest atom-atom interatomic distances and the coordination numbers (CNs) in the first
 501 coordination shell of Ca, Mg, Al and Si atoms for the different GGBS compositions in Groups A,
 502 B and C. The nearest atom-atom interatomic distances were obtained from the peak positions of
 503 the partial RDFs (as shown in Figure 4), while the CNs were calculated using cutoff distances of
 504 2.2 Å, 2.5 Å, 2.9 Å and 3.2 Å for Si-O, Al-O, Mg-O and Ca-O pairs, respectively. The interatomic
 505 distance and CN values in the table are averages based on three separate partial RDFs (from the
 506 three MD trajectories), with one standard deviation given in the brackets (the values have been
 507 rounded to two decimal places).

ID #	Calculated NBO/T ¹	Nearest interatomic distance (Å)					Average coordination number			
		Si-O	Al-O	Mg-O	Ca-O	O-O	Si	Al	Mg	Ca
A1_1Mg	1.52 (0.02)	1.63 (0.00)	1.75 (0.00)	2.04 (0.02)	2.42 (0.00)	2.69 (0.00)	4.00 (0.00)	4.03 (0.01)	4.99 (0.07)	6.75 (0.02)
A2_5Mg	1.77 (0.01)	1.63 (0.00)	1.75 (0.00)	2.03 (0.01)	2.42 (0.00)	2.69 (0.00)	4.00 (0.00)	4.02 (0.01)	5.07 (0.10)	6.76 (0.05)
A3_7Mg	1.80 (0.03)	1.63 (0.00)	1.75 (0.00)	2.03 (0.01)	2.43 (0.00)	2.68 (0.00)	4.00 (0.00)	4.03 (0.01)	5.17 (0.05)	6.75 (0.01)
A4_14Mg	1.99 (0.03)	1.63 (0.00)	1.75 (0.00)	2.04 (0.00)	2.43 (0.00)	2.68 (0.00)	4.00 (0.00)	4.04 (0.02)	5.13 (0.02)	6.80 (0.01)
B1_8Mg	1.54 (0.00)	1.63 (0.00)	1.75 (0.00)	2.03 (0.01)	2.43 (0.00)	2.68 (0.00)	4.00 (0.00)	4.04 (0.03)	5.09 (0.06)	6.74 (0.02)
B2_10Mg	1.67 (0.01)	1.63 (0.00)	1.75 (0.00)	2.04 (0.01)	2.43 (0.01)	2.69 (0.00)	4.00 (0.00)	4.03 (0.01)	5.15 (0.09)	6.78 (0.06)

B3_14Mg	1.79 (0.02)	1.63 (0.00)	1.75 (0.00)	2.04 (0.01)	2.43 (0.00)	2.69 (0.00)	4.00 (0.00)	4.03 (0.01)	5.19 (0.05)	6.83 (0.02)
C1_7Al	1.25 (0.01)	1.63 (0.00)	1.75 (0.00)	2.03 (0.01)	2.43 (0.00)	2.67 (0.00)	4.00 (0.00)	4.02 (0.01)	5.04 (0.06)	6.73 (0.01)
C2_14Al	1.41 (0.02)	1.63 (0.00)	1.75 (0.00)	2.04 (0.01)	2.42 (0.00)	2.69 (0.00)	4.00 (0.00)	4.02 (0.03)	5.04 (0.09)	6.72 (0.02)
C3_17Al	1.84 (0.00)	1.63 (0.00)	1.75 (0.00)	2.04 (0.01)	2.42 (0.00)	2.69 (0.00)	4.00 (0.00)	4.03 (0.00)	5.14 (0.12)	6.77 (0.03)

508 ! Average NBO/T value based on analysis of six structural representations from the MD
 509 simulations, with one standard deviation given in the bracket.


510

511

512 In contrast to the relatively small variation in the nearest interatomic distances and CNs for the
 513 CMAS glasses (Group A-C), the degree of depolymerization (NBO/T, calculated from the MD-
 514 generated structural representations) varies considerably depending on the composition, as also
 515 shown in Table 3. These calculated NBO/T values are compared with the theoretical NBO/T ratio
 516 estimated from simple stoichiometric arguments [39] in Figure 5, which shows that the calculated
 517 values are close to the theoretical estimations, with R^2 values of 0.99-1.00 for linear fits for each
 518 group (i.e., Group A, B and C). It is also seen that our simulations generally give slightly lower
 519 NBO/T values (up to ~10% difference) than the theory [39], which is consistent with our previous
 520 DFT calculations [34] as well as MD simulations in the literature on percalcic aluminosilicate
 521 glasses [79]. The likely reason for these lower NBO/T values is the formation of a small proportion
 522 of FO species not connected to any network formers (i.e., Si and Al) in our structural
 523 representations and the literature MD simulations, which are not accounted for in the classical
 524 glass theory (only considers NBO and bridging oxygen (BO), with the latter defined as oxygen
 525 bonded to two network formers in the first coordination shell) [39]. One possible formation

526 reaction for FO species in highly percalcic aluminosilicate glasses, as suggested in ref. [80], is
 527 $2NBO \rightleftharpoons FO + BO$, which indicates that the formation of one FO consumes two NBOs. When
 528 taking into account the consumption of NBO species via the above reaction, the calculated
 529 $(NBO+2FO)/T$ becomes exactly the same as the theoretical NBO/T, as illustrated in Figure 5. Note
 530 that all the values from the MD simulations in Figure 5 have very small standard deviations.

531 Finally, from such MD simulations, atom-atom intermixing of network formers and clustering of
 532 cations can be assessed via a detailed structural analysis. Although not performed here due to the
 533 scope of the current study, we have previously explored these attributes in a DFT-optimized
 534 CMAS glass structure (with a composition similar to the A2_5Mg glass in Table 1), which revealed
 535 (i) the preferential intermixing of Si and Al (over Si and Si), (ii) the formation of a few percent of
 536 Al-O-Al species, (iii) the slight preference of Ca atoms as charge compensators and Mg atoms as
 537 network modifiers, (iv) the proximity of Mg atoms to FO sites (compared with Ca atoms), and (v)
 538 small scale clustering of Mg atoms [34].

539

540 Figure 5. Comparison of the calculated NBO/T (left axis) and $(NBO+2FO)/T$ (right axis) from
 541 MD-generated structural representations with the corresponding theoretical NBO/T values

542 obtained from simple stoichiometric arguments [39]. NBO = non-bridging oxygen; FO = free
543 oxygen. The error bars are one standard deviation based on the analysis of six structural
544 representations. The R^2 values for the linear fits (red, purple and blue dotted lines for Group A, B
545 and C, respectively) of the calculated NBO/T for each group of CMAS glasses are shown in the
546 figure.

547

548

549 3.1.2 CAS glasses (Group D)

550 In contrast to Group A-C glasses which are representative of GGBS compositions with a relatively
551 high degree of depolymerization (theoretical NBO/T = ~ 1.3 to 2.2, Table 3) and low compositional
552 variation, the CAS glasses in Group D cover a much wider compositional range. Specifically, D1-
553 4 reside in the peraluminous region ($\text{CaO}/\text{Al}_2\text{O}_3 < 1$), where there are insufficient modifier cations
554 (i.e., Ca^{2+}) to charge-balance the negatively charged alumina tetrahedra (i.e., $[\text{Al}(\text{O}_{1/2})_4]^{-1}$), and
555 hence D1-4 are expected to be fully polymerized according to the stoichiometric argument (NBO/T
556 = 0) [39]. D5-7 are slightly percalcic glasses ($\text{CaO}/\text{Al}_2\text{O}_3 > 1$) with theoretical NBO/T = ~ 0.1 to
557 0.32 and are expected to be slightly depolymerized. D8 is highly percalcic with a theoretical
558 NBO/T of ~1.68, representing a highly depolymerized structure similar to the CMAS glasses in
559 Group A-C. While D1-4 compositions are relevant to class F fly ash, D5-7 and D8 compositions
560 are more representative of class C fly ash and GGBS compositions, respectively.

561 Table 4 summarizes the nearest interatomic distances and the average CN for the eight CAS glasses
562 determined from the MD-generated structural representations. It is clear that the interatomic

563 distances are similar to each other among the eight CAS glasses and are also similar to those of
564 the CMAS glasses in Table 3. As expected, all the Si atoms are 100% IV-coordinated, while the
565 Al CN is slightly higher than 4.0, indicative of a small proportion of Al in higher coordination.
566 Compared with the CMAS glasses, the CAS glasses exhibit a larger variation in the average CN
567 of Al atoms (~4.02-4.11 in Table 4 as compared to ~4.02-4.04 in Table 3) owing to the larger
568 extent of compositional variation. A larger variation in the Ca CN is also seen in Table 4 (~6.69-
569 7.19) as compared to ~6.72-6.83 for the CMAS glasses in Table 3. The CN distribution for the Ca
570 cations in the CAS glasses is seen to be dominated by VII-fold coordination with a considerable
571 amount of VI- and VIII-fold except for the most peraluminous glass, i.e., D3, which is dominated
572 by VI-fold coordination (see Figure S9 of the Supplementary Material). These results are similar
573 to the CMAS glasses (Figure S8b of the Supplementary Material) and are generally consistent with
574 literature data on calcium aluminosilicate glasses [81, 82].

575 It appears from Figure 6 that the average Al CN is, in general, inversely correlated with the
576 theoretical NBO/T (negative value indicating insufficient modifier content for charge-balancing),
577 with a lower theoretical NBO/T value generally leading to a higher average Al CN. This general
578 trend is consistent with literature data [39] which show that the formation of high-coordination Al
579 in CAS glasses increases in the highly peraluminous region ($\text{CaO}/\text{Al}_2\text{O}_3 < 1$). This is because there
580 is a greater need for charging balancing in the highly peraluminous regions as there are insufficient
581 charge-balancing cations (e.g., Ca), and the formation of high-coordination Al and tri-cluster
582 oxygen are two postulated mechanisms for local charge-balancing in aluminosilicate glasses [83].
583 However, it is also seen in the intermediate region (theoretical NBO/T = -0.1 to 0.32; D1, D4, D5,
584 D6 and D7) that there is an increasing trend of Al CN with increasing theoretical NBO/T value
585 (the gray region in Figure 6), which seems to contradict the overall trend (black dashed line in

586 Figure 6). A closer examination of the data in this intermediate region reveals an increasing trend
 587 of Al CN with an increasing amount of Ca cations, as highlighted by the light blue region in Figure
 588 6. This deviation from the global trend in the intermediate region could be attributed to the
 589 increasing Ca content, since it has been shown in the literature that high strength modifier cations
 590 (e.g., Ca over Na) favor the formation of high-coordination Al [39]. [Nevertheless, more research](#)
 591 [is needed to consolidate the above observations, given that the CN in Figure 6 is within a very](#)
 592 [narrow range and the dispersion of the data points is high.](#)

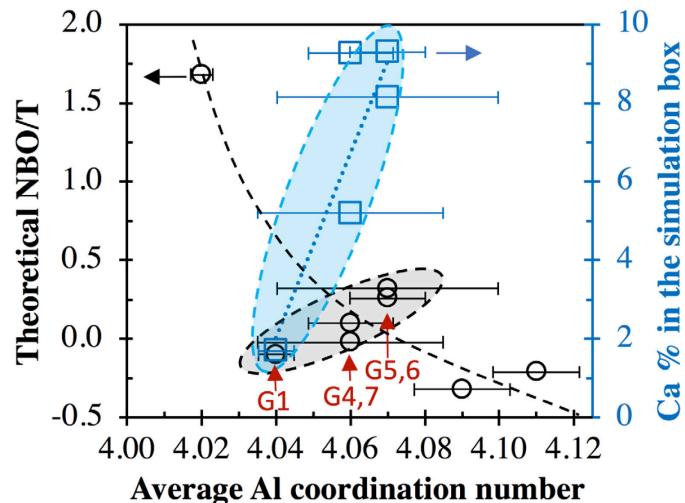
593

594

595 Table 4. The nearest interatomic distances and the coordination numbers (CNs) in the first
 596 coordination shell of Ca, Al and Si atoms for the different CAS glass compositions in Group D.
 597 The nearest atom-atom interatomic distances were obtained from analysis of partial RDFs, while
 598 the coordination numbers were calculated using the same cutoff distances adopted for Group A-C.
 599 The interatomic distance and CN values in the table are averages based on three separate partial
 600 RDFs (from the three MD trajectories), with one standard deviation given in the brackets (the
 601 values have been rounded to two decimal places).

ID #	Theoretical NBO/T ¹	Nearest interatomic distance (Å)				Average coordination number		
		Si-O	Al-O	Ca-O	O-O	Si	Al	Ca
D1	-0.10*	1.63 (0.00)	1.75 (0.00)	2.45 (0.01)	2.67 (0.00)	4.00 (0.00)	4.04 (0.005)	6.69 (0.01)
D2	-0.21*	1.63 (0.00)	1.75 (0.00)	2.44 (0.01)	2.68 (0.01)	4.00 (0.00)	4.11 (0.01)	7.00 (0.09)
D3	-0.32*	1.63 (0.00)	1.76 (0.00)	2.44 (0.01)	2.68 (0.00)	4.00 (0.00)	4.09 (0.01)	6.49 (0.04)
D4	-0.02*	1.63 (0.00)	1.75 (0.00)	2.44 (0.01)	2.68 (0.00)	4.00 (0.00)	4.06 (0.02)	6.77 (0.08)

D5	0.32	1.63 (0.00)	1.75 (0.00)	2.43 (0.01)	2.67 (0.00)	4.00 (0.00)	4.07 (0.03)	7.00 (0.07)
D6	0.26	1.63 (0.00)	1.74 (0.00)	2.43 (0.01)	2.69 (0.00)	4.00 (0.00)	4.07 (0.01)	7.19 (0.03)
D7	0.10	1.63 (0.00)	1.75 (0.00)	2.43 (0.01)	2.71 (0.00)	4.00 (0.00)	4.06 (0.01)	7.11 (0.02)
D8	1.68	1.63 (0.00)	1.74 (0.00)	2.42 (0.00)	2.69 (0.00)	4.00 (0.00)	4.02 (0.00)	6.82 (0.02)


602 [†]Theoretical NBO/T determined from chemical composition using simple stoichiometric argument

603 [39], with the details given in Section 7 of the Supplementary Material.

604 * Peraluminous region with no NBO in theory. The negative values indicate that there are
605 insufficient Ca cations to charge balance all the Al atoms, assuming all Al atoms are in IV-fold
606 coordination. A more negative value indicates a greater Ca cation deficiency.

607

608

609

610 Figure 6. Comparison of theoretical NBO/T and the average Al CN calculated from MD
611 simulations (black circle). The correlation between the average Al CN and Ca content (molar
612 percentage) from the MD structural representations is also shown in the figure using blue squares

613 (right axis). All the values are averages based on the analysis of six different structural
614 representations, with one standard deviation shown in the figure. The dashed lines and shaded
615 circles are given to guide the eye.

616

617

618 The CN distribution of Al atoms from the MD simulations is compared with the corresponding
619 ^{27}Al NMR data obtained from ref. [15] in Table 5. The simulation results are seen to agree
620 reasonably well with the experimental data in the percalcic region (theoretical NBO/T $>\sim 0.0$, i.e.,
621 D5-8), as shown in Table 5 and Figure 7a. Also, both the experiment and simulation show that the
622 CAS glass compositions in this region are dominated by IV-fold coordinated Al with less than
623 $\sim 10\%$ V-fold and negligible VI-fold, which is consistent with other investigations on percalcic
624 aluminosilicate glasses [39]. However, in the peraluminous region (theoretical NBO/T $<\sim 0.0$; D1-
625 D4), the proportion of higher coordination Al (V- and VI-fold) is much lower in the simulation
626 ($\sim 5\text{-}10\%$) than the corresponding experimental results ($\sim 9\text{-}33\%$), although the general Al
627 coordination trend has been captured by the simulations as evidenced by the positive correlation
628 between experiment and simulation for both IV- and V-fold coordination (R^2 values of 0.58-0.62
629 for linear fits, shown in Figure 7a). The discrepancies are especially large in the highly
630 peraluminous region (e.g., D2 and D3), which can be partially attributed to the selected cutoff
631 distance used during the calculation of CNs. As illustrated in Figure 7a, the proportion of IV- and
632 V-fold Al atoms significantly decrease and increase, respectively, when a cutoff distance of 2.8 Å
633 is used (as opposed to 2.5 Å). However, this increased cutoff distance also leads to an increase of
634 V-fold and a decrease of IV-fold Al for the percalcic CAS glasses in Figure 7a. Hence, the root

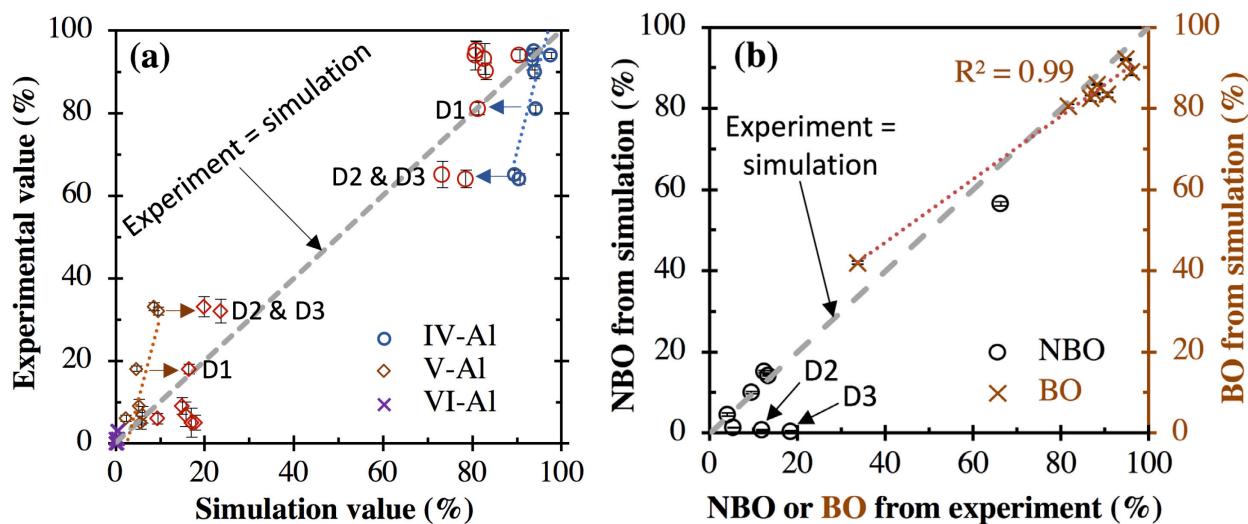
635 cause of this large discrepancy in the highly peraluminous region is likely the accuracy of force
636 field adopted here for predicting Al coordination in this region, although several other limitations
637 associated with MD simulations (as has been briefly outlined in Section 3.1.1) might have also
638 contributed to the difference. Development of a force field that can accurately capture the Al
639 coordination characteristics in both highly peraluminous and percalcic regions of CAS and CMAS
640 glasses is outside the scope of the current investigation but is worth exploring in the future.

641

642

643 Table 5. Comparison of Al CN distribution with ^{27}Al NMR results from ref. [15] for Group D
644 glasses (CAS).

ID #	This study (in %)				NMR results from ref. [15] (in %)		
	III Al	IV Al	V Al	VI Al	IV Al	V Al	VI Al
D1	1.0 (0.4)	94.2 (1.0)	4.7 (0.7)	0.0 (0.005)	81	18	1
D2	0.3 (0.3)	89.5 (1.1)	9.5 (1.1)	0.7 (0.4)	65	32	3
D3	0.3 (0.2)	90.6 (1.3)	8.6 (1.0)	0.5 (0.7)	64	33	3
D4	0.3 (0.2)	94.0 (1.7)	5.2 (1.7)	0.5 (0.4)	90	9	1
D5	0.0 (0.0)	93.5 (2.5)	6.0 (2.0)	0.5 (0.5)	93	7	0
D6	0.0 (0.0)	93.5 (1.2)	5.8 (1.7)	0.7 (0.6)	94	5	1
D7	0.0 (0.0)	93.9 (0.8)	5.8 (0.6)	0.3 (0.3)	95	5	0
D8	0.0 (0.0)	98.0 (0.3)	2.0 (0.3)	0.0 (0.0)	94	6	0


645

647 Comparison of the proportion of BO and NBO species from the MD simulations with those
648 calculated from NMR data available in ref. [15] is given in Figure 7b. It is clear that the BO content
649 from the simulations and experiments agrees reasonably well, with the **absolute** differences **in BO**
650 **content** smaller than ~8% for **all** the glasses. A strong linear correlation is also seen between the
651 simulated and experimental BO content, with an R^2 value of 0.99, as shown in Figure 7b. Moreover,
652 the simulated NBO content agrees reasonably well with the experimental NBO, except for the two
653 highly peraluminous glasses (i.e., D2 and D3), where the simulations show that the quantities of
654 NBO species are negligible (~0.5-1%), as would be expected for highly peraluminous glasses. In
655 contrast, the experimental data indicate that a considerable amount of NBO species (~12-18%) has
656 formed in these two glasses. In the CAS glass literature, ~3-6% of NBO species are often observed
657 in tectosilicate compositions ($\text{CaO}/\text{Al}_2\text{O}_3 = 1$, and theoretical NBO/T of 0) with ^{17}O NMR
658 measurements [39, 84], which is close to our MD simulation results (~5%) and the calculated NBO
659 content from NMR data for D1 [15] (close to the tectosilicate composition with a theoretical
660 NBO/T of ~ -0.02). However, ^{17}O NMR data on peraluminous CAS glasses [39] show that the
661 proportion of NBO species decreases as the CAS glass becomes increasingly peraluminous and
662 become undetectable (< 0.5%) at theoretical NBO/T values of ~ -0.18 to 0.24. This inconsistency
663 between our simulation-derived NBO content and the experimental NBO content obtained from
664 the modeling of ^{29}Si NMR spectra in the peraluminous region suggests possible inaccuracies
665 associated with the fitting of the NMR data [15] given the overlapping spectra from different Q
666 species. In fact, we can clearly see differences between simulated and experimental ^{29}Si NMR
667 spectra in ref. [15], especially for the highly peraluminous glasses (i.e., D2 and D3), which has
668 been attributed to several simplified assumptions in the model (as discussed in ref. [15]). In

669 addition to the clear discrepancies found in the NMR fitted spectra, limitations associated with
 670 MD simulations could also contribute to the differences seen between experimental and simulation
 671 results in Figure 7b. This includes the accuracy of the adopted force field and several other factors
 672 that have been briefly outlined in Section 3.1.1. In spite of these limitations, here the MD
 673 simulations have adequately captured the major structural features (i.e., the nearest interatomic
 674 distance, CNs and oxygen speciation) along with the anticipated composition-structure
 675 relationships for these CAS glasses.

676

677

678

679 Figure 7. Comparison between experimental and simulation results for (a) different Al
 680 coordination and (b) BO and NBO content of the Group D CAS glasses (experimental results from
 681 ref. [15]). Linear fits of the IV- and V-fold Al contents are shown in (a) using dotted lines, with R^2
 682 values of ~ 0.60 . The impact of increasing cutoff distance from 2.5 to 2.8 Å on the simulation-
 683 derived proportion of IV- and V-fold Al in the CAS glasses is also shown in (a) using red squares

684 and circles, respectively. A linear fit of the BO content is given in (b) using a dotted line, with the
685 R^2 value given in the figure. All the simulation results are averaged based on six structural
686 representations, with one standard deviation given in the figure.

687

688

689 **3.2 Structural descriptors for CMAS and CAS glass reactivity**

690 The reactivity of CMAS and CAS glasses is important for their applications as SCMs in blended
691 Portland cements and as precursor materials in AAM systems, yet the atomic origin controlling
692 their reactivity is not well understood, as was briefly discussed in the Introduction. The chemical
693 composition and atomic structure of these glassy phases have been seen to significantly impact
694 their reactivity in the above applications, although other factors such as the particle size
695 distribution, degree of amorphicity, solution chemistry and curing conditions can also have a
696 profound impact on reactivity [1-3, 10, 37, 85]. In this investigation, we focus on understanding
697 how the CMAS and CAS glass reactivity is influenced by the atomic structural attributes of the
698 glass. Specifically, in the following section, we evaluate how several structural descriptors derived
699 from structural analysis (i.e., average metal oxide dissociation energy and degree of
700 depolymerization) and dynamics analysis (i.e., average self-diffusion coefficient at melting) of the
701 MD-generated structural representations from Section 3.1 correlate with different reactivity data
702 obtained from the four literature investigations outlined in Table 1 (i.e., the corresponding CMAS
703 and CAS glasses in Group A-D) [8, 11, 12, 15].

704

705

706 3.2.1 Average metal oxide dissociation energy (AMODE)

707 The dissolution of the CMAS and CAS glasses requires the breaking of different metal-oxygen
 708 bonds (i.e., Si-O, Al-O, Mg-O and Ca-O) [33]. Given the oxygen CN number for each type of
 709 atom (i.e., Ca, Mg, Al and Si) from the MD simulations in Section 3.1 and single metal-oxygen
 710 bond strength from literature data, it is possible to derive a parameter that provides an overall
 711 estimate of the energy required to break/dissolve the oxide glass. This parameter, denoted as the
 712 average metal oxide dissociation energy (AMODE), is defined as follows (Equation 2):

$$713 \quad AMODE = \frac{\sum N_M \cdot CN_M \cdot BS_{M-O}}{\sum N_M} \quad (2)$$

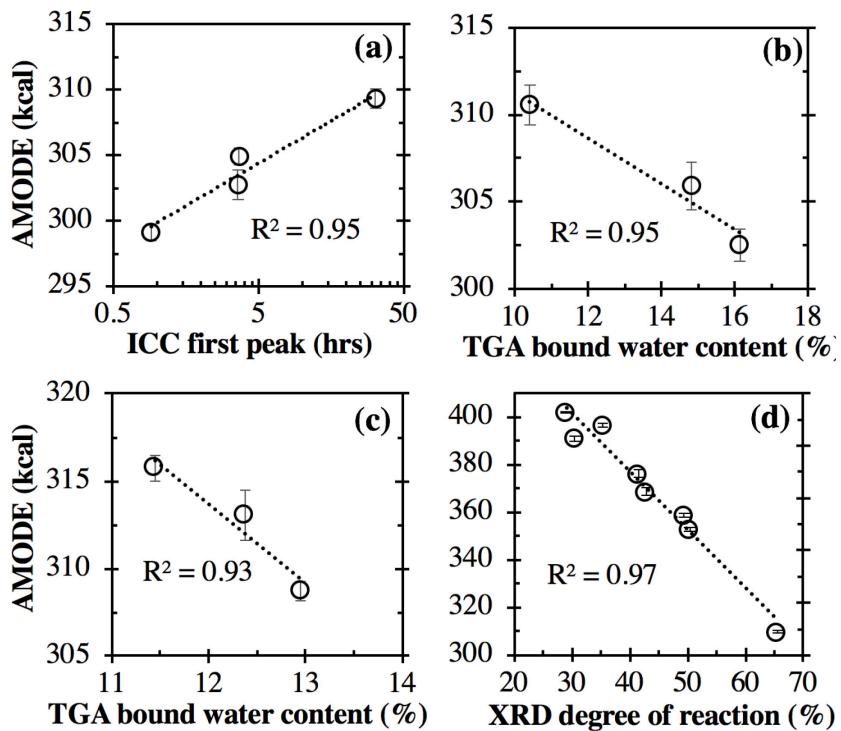
714 where N_M is the number of each type of metal cation ($M = \text{Ca, Mg, Al, or Si}$) in the oxide glass,
 715 CN_M and BS_{M-O} are the average coordination number and the average metal-oxygen single bond
 716 strength (BS) for each type of atom M , respectively. [A similar idea has been explored previously](#)
 717 [to derive a theoretical structural descriptor \(\$F_{net}\$ \) to predict the early stage reactivity of](#)
 718 [ZrO₂-containing soda-lime borosilicate glasses \[51\] and bioactive phospho-silicate glasses \[86\].](#)
 719 The CN_M values are calculated from the MD simulations (Tables 3 and 4), while the BS_{M-O} values
 720 can be obtained from the literature. The BS of the single Si-O, Mg-O and Ca-O bonds in IV-, VI-
 721 and VI-fold coordination are ~106, ~37 and ~32 kilocalories, respectively [87]. The BS of the Al-
 722 O single bond depends highly on the Al CN: IV-fold Al has a BS of 79-101 kilocalories (the
 723 average value of 90 is taken here) while VI-fold Al has a BS of 53-67 kilocalories (the average of
 724 60 is taken) [87]. The average BS of the single Al-O bond is calculated by assuming that the BS
 725 of V-fold Al-O is the average of IV- and VI-fold Al-O (i.e., $(90+60)/2 = 75$ kilocalories).

726 According to Figure S8 and S9 in the Supplementary Material, both Ca and Mg cations in the
727 CMAS and CAS glasses have a distribution of CNs (with average values of ~6.7-7.5 and ~4.9-5.2,
728 respectively, Tables 3 and 4), so the actual average BS for Ca-O and Mg-O bonds will be slightly
729 different from those adopted here for VI-fold Ca and Mg (i.e., ~37 and ~32 kilocalories). However,
730 their impact should be relatively small due to the significantly lower BS of Ca-O and Mg-O single
731 bonds (as compared to Al-O and Si-O bonds).

732 Figure 8a-d shows how this AMODE parameter derived using Equation 2 correlates with the
733 different reactivity data from refs. [8, 11, 12, 15] for Group A, B, C and D glasses, respectively.
734 Although efforts were made in those experimental investigations to ensure similar particle sizes
735 for each group, there is still ~2-20% difference in particle surface area within a group. A recent
736 investigation on GGBS reactivity in alkaline environments showed that the reactivity (based on
737 ICC [cumulative heat](#)) increases linearly as a function of particle specific surface area (R^2 values of
738 0.97-1.00 for linear fits) [37]. [Another study on the impact of filler surface area on cementitious](#)
739 [reaction rates showed that increasing the surface area of limestone or quartz leads to a decrease of](#)
740 [the time to reach the ICC heat flow peak for blended cements \[88\]. Furthermore, in the literature](#)
741 [on glass dissolution, it is common to normalize the dissolution rate data with respect to glass](#)
742 [surface area when evaluating glass reactivity \[89\].](#) Hence, all the experimental data presented in
743 Figure 8 (and thereafter) have been normalized by the particle surface area within each group ([refer](#)
744 [to Section 12 and Figure S10 of the Supplementary Material for details on the normalization](#)
745 [process\).](#)

746 It is clear from Figure 8a that the AMODE of the four CMAS glasses in Group A is strongly and
747 positively correlated with the time to reach the first reaction peak in the ICC data collected on

748 Na₂CO₃-activated GGBSs (with an R^2 value of 0.95). A logarithmic scale of ICC time is used for
749 the x-axis (as opposed to a linear scale adopted for other reactivity data in Figure 8b-d) because
750 the extent of reaction (or ICC cumulative heat curve) is approximately a logarithmic function with
751 time, as illustrated in Figure S11 of the Supplementary Material. Figure 8a shows that a ~3.3%
752 increase in the AMODE value leads to a dramatic delay (over 30 hours) for the appearance of the
753 first ICC peak. For the Na₂CO₃-activated GGBS system, the first ICC reaction peak is mainly
754 associated with the formation of the initial reaction products (e.g., calcite and gaylussite) between
755 the dissolved species from the neat GGBS (e.g., Ca species) and the carbonate species in the
756 activator solution [8]. Hence, this suggests that the GGBS with a higher AMODE experiences
757 significantly slower GGBS dissolution (e.g., the release of Ca species) in these systems. This is
758 consistent with our expectation since a higher AMODE value means that, on average more energy
759 is required to break/dissolve an oxide glass.


760 Figure 8b shows the correlation between the AMODE parameter for the CMAS glasses in Group
761 B and the bound water content in the resulting Na₂SiO₃-activated GGBS obtained from
762 thermogravimetric analysis (TGA), which is a reflection of the degree of reaction of GGBSs,
763 defined as the percentage weight loss between 30 and 650 °C [12]. The bound water content data
764 in Figure 8b (and thereafter) have been averaged over five data sets collected at different curing
765 times to increase robustness, and this does not change the overall trend seen among individual data
766 set as illustrated in Figure S12 of the Supplementary Material. It is clear from Figure 8b that the
767 bound water content in the Na₂SiO₃-activated GGBS is strongly and inversely correlated with the
768 AMODE value of the CMAS glassy phase in the GGBS (with an R^2 value of 0.95 for a linear fit).
769 A decrease in AMODE is seen to lead to a higher degree of reaction and hence a higher reactivity,

770 which is consistent with the results in Figure 8a. A similar trend is seen for alkali-activated GGBSs
771 based on the CMAS glass compositions in Group C (Figure 8c, with an R^2 value of 0.93).

772 Figure 8d shows the relationship between the AMODE parameter of the eight synthetic CAS
773 glasses in Group D and the extent of reaction of these glasses in a blended mixture of NaOH,
774 Ca(OH)₂ and CaCO₃ (reacted for 180 days), obtained from quantitative XRD analysis [15]. Due
775 to the larger compositional range in Group D, these glasses exhibit a wider range of AMODE
776 values (i.e., ~320-400) than the CMAS glasses in Group A-C (i.e., ~300-315). Despite the wider
777 compositional range of Group D glasses, the AMODE parameter is seen to be almost linearly and
778 inversely correlated with the extent of reaction data from quantitative XRD analysis, possessing
779 an R^2 value of 0.97 for a linear fit (Figure 8d). The CAS glass with a lower AMODE value is seen
780 to exhibit a substantially higher degree of reaction after 180 days and hence a higher reactivity in
781 the blended Portland alkaline environment. This trend is also consistent with the results for the
782 CMAS glasses in Group A-C (Figure 8a-c).

783

784

785

786 Figure 8. Comparison of the average metal oxide dissociation energy (AMODE) parameter (in
 787 kcal) of the CMAS and CAS glasses and the reactivity data collected for the corresponding
 788 aluminosilicate glasses [8, 11, 12, 15] for (a) Group A, (b) Group B, (c) Group C and (d) Group
 789 D. The isothermal conduction calorimetry (ICC) data (time to reach the first ICC peak) were
 790 obtained from ref. [8] based on Na_2CO_3 -activated GGBS with the same chemical composition as
 791 the CMAS glasses in Group A. The thermogravimetric analysis (TGA) bound water content data
 792 in (b) and (c) were obtained from refs. [12] and [11] on Na_2SiO_3 -activated GGBS with Group B
 793 and C chemical compositions, respectively. The extent of reaction data in (d) were obtained from
 794 ref. [15] based on quantitative X-ray diffraction (XRD) analysis of synthetic CAS glasses in Group
 795 D activated by a blended mixture of NaOH , $\text{Ca}(\text{OH})_2$ and CaCO_3 . A linear fit between the AMODE
 796 parameter and the reactivity data (dotted line) is given in each figure (note that the x-axis for (a) is
 797 logarithmic), with the R^2 value (goodness of fit) also given. The error bars are one standard

798 deviation based on the analysis of six structural representations from three independent MD
799 production runs.

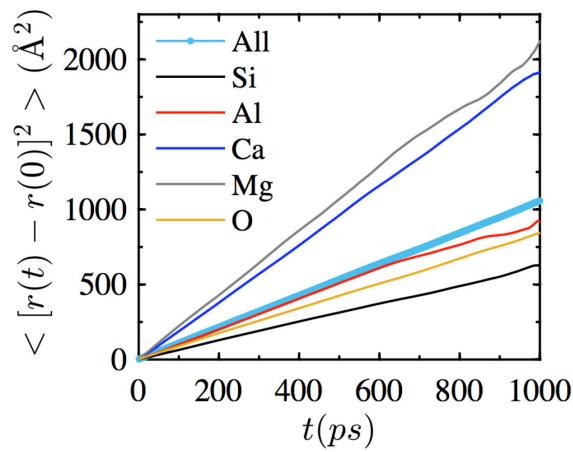
800

801

802 Overall, the results in Figure 8 show that the AMODE parameter gives an accurate description of
803 the relative reactivity of the CMAS and CAS glasses when exposed to alkaline environments. We
804 have also used this AMODE parameter to correlate with other reactivity data (specifically the
805 extent of reaction from NMR and/or thermodynamic modeling, compressive strength data, and
806 TGA bound water data collected for NaOH-activated samples) available in refs. [8, 11, 12, 15].
807 The results are presented in Figure S13 of the Supplementary Material, and the level of agreement
808 as evaluated by the R^2 values are generally comparable with those presented in Figure 8 for each
809 group of glass. The performance of the AMODE parameter is encouraging, particularly given the
810 inherent uncertainty of the experimental measurements and data analysis process (e.g., XRD phase
811 quantification), along with several limitations associated with the calculations of the AMODE
812 parameter: (i) the potential deviation of the actual average BS of the single Mg-O and Ca-O bonds
813 from those adopted here for VI-fold Mg and Ca cations, (ii) the approximation made with the BS
814 of Al-O in Al polyhedra (in particular, V-fold Al), and (iii) the potential inaccuracies of the
815 estimated CNs from MD simulations especially for Al atoms in the highly peraluminous region as
816 discussed in Section 3.1.2. The ability for AMODE to predict relative reactivity for the synthetic
817 CAS glasses in Group D is especially noteworthy since this group span a much wider
818 compositional range and does not exhibit obvious compositional inter-correlation as seen for the
819 CMAS glasses in Group A-C (see Figure 1 and Figures S1 and S2 of the Supplementary Material).

820 Furthermore, AMODE is seen to perform much better than the NBO/T for describing CAS glass
821 reactivity (NBO/T shown in ref. [15]), where the NBO/T is determined by considering V- and VI-
822 fold Al (quantified from ^{27}Al NMR data) as network modifiers (more details have been given in
823 ref. [15]).

824


825

826 **3.2.2 Self-diffusion coefficient at melting**

827 At temperatures above the melting point of the CMAS and CAS glasses, the mobility of atoms
828 increases dramatically due to ongoing making and breaking of metal-oxygen bonds in the melt, in
829 a sense similar to the metal-oxygen bond-breaking process during glass dissolution. With this in
830 mind, we have calculated the mean square displacement (MSD) of the different elements in each
831 glass at 2000 K as a function of time using the MD trajectories from the *NVT* equilibration step at
832 2000 K. The MSD results for a typical CMAS glass melt are shown in Figure 9, which clearly
833 reveal that the two modifier cations (i.e., Ca and Mg) exhibit much higher mobility (larger MSD
834 values at a given time) than the network formers (i.e., Si and Al atoms). This is expected as the
835 Al-O and Si-O bonds are much stronger (hence harder to break) than the Ca-O and Mg-O bonds
836 (as shown in Section 3.2.1). We also see that the MSD (i.e., mobility) of the Al is noticeably higher
837 than that of Si, which is also attributed to the lower average BS of the Al-O bond compared with
838 Si-O bond, as discussed in Section 3.2.1. In contrast, the Mg cation is seen to exhibit slightly higher
839 mobility than the Ca cation, although the BS of the Mg-O bond (~ 37 kcal) is slightly higher than
840 that of Ca-O in VI-fold coordination (~ 32 kcal). This could be attributed to the higher average

841 coordination of Ca cation that requires breaking of more Ca-O bonds for a Ca cation to move
842 around, as compared to the case of an Mg cation. Furthermore, the smaller size of Mg²⁺ (~0.80 Å
843 for V-fold [90]) compared with Ca²⁺ (~1.14-1.20 Å for VI- and VII-fold [90]) may contribute to
844 the higher mobility of the Mg cation since a smaller size makes diffusion easier.

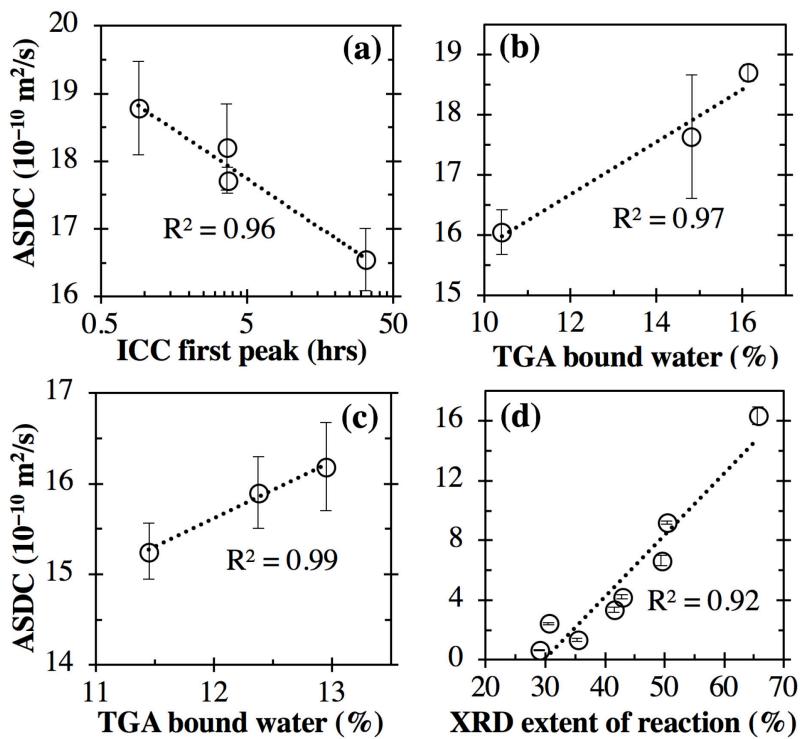
845

846

847 Figure 9. Mean square displacement (MSD) of each element along with the average of all atoms
848 denoted as “All” in a typical CMAS glass (i.e., A3_7Mg) as a function of time during the 1 ns of
849 MD equilibration step at 2000 K.

850

851


852 Based on the MSD results, we can calculate the average self-diffusion coefficient (ASDC) for all
853 the atoms in each glass using Einstein’s equation (Equation 3):

854
$$D = \frac{\langle [r(t) - r(0)]^2 \rangle}{6t} \quad (3)$$

855 where D is the self-diffusion coefficient, t is the simulation time, and $\langle [r(t) - r(0)]^2 \rangle$ is the MSD
856 between time t and 0. Hence, D is related to the slope of the MSD curve. To improve accuracy,
857 we have chosen the most linear portion of the data for all the calculations (i.e., 50-700ps).

858 The ASDC parameter is a measure of the average atomic mobility of all the atoms in each glass
859 simulated at 2000 K and hence, in a sense, reflects the ease of bond-breaking in the glass (i.e.,
860 higher mobility \approx easier to break bonds and dissolve glass). Although there are some similarities
861 between the ASDC and AMODE parameters, a major difference is that calculation of ASDC does
862 not involve any assumptions with BS for the different metal-oxygen bonds whereas the AMODE
863 parameter is dependent on the accuracy of the BS values from the literature. The second difference
864 between ASDC and AMODE is that ASDC is an indirect measure of bond-breaking and thus
865 reactivity while AMODE directly reports the ease of bond-breaking. It is also important to mention
866 that the ASDC parameter does not take into account the thermal history and the differences
867 between the structures at 2000 K and 300 K.

868 Figure 10 illustrates how the ASDC parameter correlates with the different reactivity data for the
869 CMAS and CAS glasses investigated here (same experimental data as reported in Section 3.2.1,
870 obtained from refs. [8, 11, 12, 15]). It is clear that a high degree of correlation is achieved using
871 this ASDC parameter for the different reactivity data, with R^2 values of 0.92-0.99. The trends in
872 Figure 10 are opposite to those shown in Figure 8, with a higher ASDC value exhibiting a higher
873 reactivity, as expected. The similar R^2 values suggest a similar level of predictive performance for
874 both parameters. In fact, we see from Figure S14 in the Supplementary Material that the ASDC
875 parameter is almost linearly correlated with the AMODE parameter for all the glass compositions
876 studied here, with an R^2 value of 0.99 using a linear fit.

879 Figure 10. Comparison of the average self-diffusion coefficient (ASDC) of all the atoms in each
 880 CMAS and CAS glass at a temperature of 2000 K and reactivity data for the corresponding
 881 aluminosilicate glasses from (a) Group A, (b) Group B, (c) Group C and (d) Group D. Details
 882 about these experimental data [8, 11, 12, 15] have been given in the caption of Figure 8. The error
 883 bars are one standard deviation based on the analysis of six structural representations from three
 884 independent MD production runs.

886 We have also examined the degree of correlation of this ASDC parameter with other experimental
 887 data collected on the CMAS and CAS glasses in refs. [8, 11, 12, 15], including the extent of
 888 reaction from NMR and/or thermodynamic modeling results, compressive strength data, and TGA

889 bound water data collected for NaOH-activated samples. The results are shown in Figure S15 of
890 the Supplementary Material, where a linear correlation similar to that in Figure 10 is observed for
891 most of the data. These additional analyses in the Supplementary Material (including Figures S13
892 and S15) reinforce the observations that both the AMODE and ASDC parameters give an accurate
893 indication of relative reactivity for the CMAS and CAS glasses studied here. Furthermore, we have
894 performed additional simulations and analysis for the Group D glasses to further confirm the
895 validity of the correlation between ASDC and reactivity, including calculation of the ASDC at
896 3000 K and the impact of multiple quench-reheat cycles on the ASDC parameter. The
897 corresponding results are presented in Figures S16 and S17 of the Supplementary Material,
898 respectively, which show that a similar level of correlation is observed for the ASDC obtained (i)
899 at 3000 K and (ii) after thermal cycling compared with the correlation given in Figure 10d (to
900 within one standard deviation of the independent production runs seen in the figure). Therefore,
901 there is minimal impact of thermal history on ASDC value. A comprehensive test of the validity
902 of the ASDC parameter for predicting relative glass reactivity is outside the scope of this article
903 but is worth exploring in the future.

904 Finally, the performance of the commonly used degree of polymerization (i.e., NBO/T) and the
905 modified (NBO+2FO)/T (both NBO and FO are directly calculated from MD simulations results)
906 has also been evaluated with respect to the experimental data for Group A-D, with the findings
907 presented in Figures S18-20 of the Supplementary Material. The level of correlation for the four
908 data sets in Figure S18 achieved using NBO/T and (NBO+2FO)/T are compared with those of the
909 AMODE and ASDC parameters in Table 6. For the CMAS glasses in Group A-C, the R^2 values
910 achieved with NBO/T and (NBO+2FO)/T (0.83-0.99) are comparable with, or only slightly lower
911 than, those obtained using the AMODE (0.93-0.95) and ASDC (0.96-0.99) parameters. However,

912 the R^2 value achieved with NBO/T (0.74) for the CAS glasses in Group D is much lower than the
913 other two parameters (0.97 and 0.92 for AMODE and ASDC, respectively). The generally poorer
914 performance of NBO/T and (NBO+2FO)/T is attributed to the fact that these two parameters do
915 not distinguish between the type of network former (i.e., IV-fold Al versus Si atoms) and the type
916 of network modifier (i.e., Ca versus Mg cations) with respect to reactivity. In contrast, these
917 potential differences between former/modifier types have been explicitly (and implicitly)
918 accounted for by the AMODE (and ASDC) parameter introduced in the previous sections. The
919 observation that the NBO/T and (NBO+2FO)/T parameters perform better for the CMAS glasses
920 in Group A-C (as compared to Group D) may be partially attributed to the fact that the oxide
921 compositions within each group of CMAS glass are highly correlated with each other as shown in
922 Figure 1 and Figure S1 of the Supplementary Material. [Another possible contributing factor to this](#)
923 [observation is the better statistics \(more data points\) for Group D glasses than Group A-C glasses.](#)
924 A more detailed discussion of the performance of NBO/T and (NBO+2FO)/T parameters is given
925 in Section 18 of the Supplementary Material.

926

927

928 Table 6. Summary of the level of agreement (R^2 values) achieved for a linear regression between
929 the NBO/T or (NBO+2FO)/T parameter and the four experimental data sets associated with Group
930 A-D (see Figure S18 in the Supplementary Material for linear fits), in comparison with the
931 AMODE and ASDC parameters and their associated level of agreement (see Figures 8 and 10,
932 respectively).

Parameter	R^2 value for linear regression			
	Group A	Group B	Group C	Group D
NBO/T	0.99	0.91	0.85	0.74
(NBO+2FO)/T	0.98	0.94	0.83	0.73
AMODE	0.95	0.95	0.93	0.97
ASDC	0.96	0.97	0.99	0.92

933

934

935

936 **3.3 Broader impact & limitations**937 **3.3.1 Broader impact**

938 The development of accurate structural descriptors that are able to connect CAS and CMAS glass
 939 compositions with reactivity (and other properties) is critical to a number of important industrial
 940 applications, including blended Portland cements and AAMs. In this investigation, we developed
 941 two structural descriptors based on force field MD simulations, which exhibit superior
 942 performance for describing a range of reactivity data collected for a variety of CMAS and CAS
 943 compositions (as compared to the commonly used degree of depolymerization parameter). On one
 944 hand, this method can be readily extended to cover more complex aluminosilicate glasses,
 945 including those containing Fe_2O_3 , K_2O , Na_2O , MnO and TiO_2 . This would allow the impact of all
 946 the oxide components to be explicitly or implicitly incorporated into these two structural
 947 descriptors for a more holistic description of the reactivity behavior of these highly complex glassy

948 materials. On the other hand, this method may also be extended to describe the chemical durability
949 and reactivity of other types of glasses or minerals, including those utilized in nuclear waste
950 encapsulation, bioglass dissolution and carbon mineralization. Nevertheless, the limitations
951 associated with the application of this method need to be carefully considered, as outlined in the
952 next section.

953

954 [3.3.2 Limitations](#)

955 Several limitations associated with this investigation warrant discussion. First, the reactivity of
956 amorphous aluminosilicates in alkaline environments is highly complex and a number of other
957 factors (in addition to the composition and structure discussed in this investigation) could have a
958 large impact on reactivity, such as activator solution chemistry, particle size distribution, degree
959 of amorphicity, curing conditions, and phase segregation in the original glass [1-3, 10, 37, 85]. The
960 complexity further increases for many SCMs used in blended cements and precursor materials
961 used for AAM synthesis (e.g., coal-derived fly ash), which are often more heterogeneous and
962 complex in composition and mineralogy than those presented in this investigation (which are either
963 pure synthetic glasses or GGBSs with a high level of amorphicity). The potential phase segregation
964 in the glassy phases of the SCMs (or precursor materials), as has been shown to be the case for fly
965 ash [17, 91], could have a dramatic impact on the reactivity of SCMs (or precursor materials) in
966 alkaline environments. Hence, the above factors need to be taken into account when applying the
967 structural descriptors proposed in this investigation.

968 Second, the accuracy of force field MD simulations is highly dependent on the force field used,
969 hence a large portion of this investigation focused on evaluating the performance of the Guillot
970 force field [52] and specifically its ability to capture the structural features of CAS and CMAS
971 glasses seen in experiments. As seen in Section 3.1, although this force field can capture many of
972 the structural features, it is not able to give an accurate prediction of Al coordination in highly
973 peraluminous regions (albeit the general trend is captured). This necessitates future development
974 or optimization of force field parameters to provide a more accurate description of Al coordination
975 in both percalcic and peraluminous regions. In addition, MD simulations bear several common
976 limitations that have been briefly discussed in this investigation, including fast cooling rate and
977 limited cell size (as compared to real samples). Finally, as already discussed in Section 3.2.1, the
978 calculation of the AMODE parameter relies on several assumptions on the bond strength of
979 individual metal-oxygen bonds, especially the Al-O bonds for IV-, V- and VI-fold Al. More
980 accurate prediction of the bond strength of the different metal-oxygen bonds for a range of
981 coordination states would be helpful for future investigations.

982

983 **4 Conclusions**

984 The composition-structure-property relationships for amorphous aluminosilicates in alkaline
985 environments are important for many industrial applications, including blended cements and
986 alkali-activated materials. In this investigation, we employed force field-based molecular
987 dynamics (MD) simulations to generate detailed structural representations for CaO-MgO-SiO₂-
988 Al₂O₃ (CMAS) and CaO-SiO₂-Al₂O₃ (CAS) glasses with compositions similar to ten GGBSs and
989 eight synthetic glasses reported in the literature. We showed that the glass structural

990 representations obtained using the MD simulations agree reasonably well with our experimental
991 X-ray and neutron pair distribution function (PDF) data of select CMAS compositions, as well as
992 literature data, in terms of the nearest interatomic distance, coordination number (CN), and degree
993 of depolymerization. Based on the structural analysis results, we developed two new structural
994 descriptors and evaluated their ability to predict relative reactivity for the CMAS/CAS glass
995 compositions, specifically (i) the average metal oxide dissociation energy (AMODE), an estimate
996 of the average energy (in kcal) required to break/dissolve all the metal-oxygen bonds in the glass,
997 and (ii) the average self-diffusion coefficient (ASDC) for all the atoms in the glass melt at 2000
998 K, which is a reflection of the overall atomic mobility and hence easiness to break metal-oxygen
999 bonds.

1000 Connecting these structural descriptors with different reactivity data from four literature
1001 investigations, including isothermal conduction calorimetry (ICC), bound water content from
1002 thermogravimetric analysis (TGA), and the extent of reaction from quantitative X-ray diffraction
1003 analysis, shows that the two parameters exhibit strong correlations with almost all the experimental
1004 data for the CMAS glass compositions studied here with R^2 values close to or higher than 0.90.
1005 For the CAS glasses, which span a wider compositional range than the CMAS glasses considered
1006 here, the AMODE and ASDC parameters exhibit much stronger correlations with the
1007 corresponding reactivity data than the degree of depolymerization (NBO/T) parameter. This
1008 behavior is attributed to the fact that the AMODE (and ASDC) parameter has explicitly (and
1009 implicitly) taken into account the differences in the ease of breaking the various metal-oxygen
1010 bonds in the glasses, which is not considered by the commonly used NBO/T parameter. The results
1011 strongly suggest that the AMODE and ASDC parameters are promising structural descriptors that
1012 connect CMAS and CAS glass compositions with their reactivity in alkaline environments, and,

1013 therefore, this investigation serves as a crucial step forward in establishing the important
1014 composition-structure-reactivity relationships for amorphous aluminosilicates in alkaline
1015 environments, relevant to AAMs and blended Portland cements.

1016 **5 Supplementary Material**

1017 Correlation between the different oxide content of the GGBSs and synthetic CAS glasses; Force
1018 field parameters used; Structural and dynamic properties of a 16000-atom CMAS glass; Typical
1019 initial structure generated using the Amorphous Prebuilder; Estimation of the CMAS glass density
1020 at different temperatures; Density of NPT-quenched CMAS glass; Theoretical estimation of
1021 NBO/T; Calculation of PDFs, partial RDFs, and R_w ; Comparison of simulated and experimental
1022 PDFs; Comparison of the partial RDFs; CN distributions for the CMAS and CAS glasses;
1023 Normalization of reactivity data based on surface area; Evolution of select reactivity data as a
1024 function of reaction time; Correlation between the AMODE parameter and the additional
1025 experimental data; Correlation between the AMODE parameter and the average self-diffusion
1026 coefficient (ASDC) at melting; Correlation between the ASDC at melting and the additional
1027 experimental data; ASDC at 3000 K and the impact of thermal history; Performance of the degree
1028 of depolymerization.

1029

1030 **6 Acknowledgments**

1031 This material is based on work supported by ARPA-E under Grant No. DE-AR0001145 and the
1032 National Science Foundation under Grant No. 1362039. K.G. was partially supported by a
1033 Charlotte Elizabeth Proctor Fellowship from the Princeton Graduate School. The MD simulations

1034 were performed on computational resources supported by the Princeton Institute for
1035 Computational Science and Engineering (PICSciE) and the Office of Information Technology's
1036 High Performance Computing Center and Visualization Laboratory at Princeton University. The
1037 11-ID-B beam line is located at the Advanced Photon Source, an Office of Science User Facility
1038 operated for the U.S. DOE Office of Science by Argonne National Laboratory, under U.S. DOE
1039 Contract No. DE-AC02-06CH11357. The NPDF instrument is located at Los Alamos Neutron
1040 Science Center, previously funded by DOE Office of Basic Energy Sciences. Los Alamos National
1041 Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-
1042 06NA25396. The upgrade of NPDF was funded by the NSF through grant DMR 00-76488.

1043

1044 **7 References**

1045 1. J.L. Provis and J.S.J. van Deventer, eds. *Alkali activated materials: state-of-the-art report*,
1046 *RILEM TC 224-AAM*. 2014, Springer/RILEM: Dordrecht.

1047 2. J.L. Provis and S.A. Bernal, Geopolymers and related alkali-activated materials, *Annu.*
1048 *Rev. Mater. Res.*, 2014. **44**: p. 299-327.

1049 3. J. Skibsted and R. Snellings, Reactivity of supplementary cementitious materials (SCMs)
1050 in cement blends, *Cem. Concr. Res.*, 2019. **124**(105799): p. 1-16.

1051 4. R. Snellings, G. Mertens, and J. Elsen, Supplementary cementitious materials, *Rev.*
1052 *Mineral. Geochem.*, 2012. **74**(1): p. 211-278.

1053 5. P.J.M. Monteiro, S.A. Miller, and A. Horvath, Towards sustainable concrete, *Nat. Mater.*,
1054 2017. **16**(7): p. 698-699.

1055 6. K.L. Scrivener, V.M. John, and E.M. Gartner, Eco-efficient cements: Potential
1056 economically viable solutions for a low-CO₂ cement-based materials industry, *Cem. Concr.*
1057 *Res.*, 2018. **114**: p. 2-26.

1058 7. K. Gong and C.E. White, Impact of chemical variability of ground granulated blast-furnace
1059 slag on the phase formation in alkali-activated slag pastes, *Cem. Concr. Res.*, 2016. **89**: p.
1060 310-319

1061 8. X. Ke, S.A. Bernal, and J.L. Provis, Controlling the reaction kinetics of sodium carbonate-
1062 activated slag cements using calcined layered double hydroxides, *Cem. Concr. Res.*, 2016.
1063 **81**: p. 24-37.

1064 9. S.A. Bernal, R. San Nicolas, R.J. Myers, R.M. de Gutiérrez, et al., MgO content of slag
1065 controls phase evolution and structural changes induced by accelerated carbonation in
1066 alkali-activated binders, *Cem. Concr. Res.*, 2014. **57**: p. 33-43.

1067 10. M. Ben Haha, G. Le Saout, F. Winnefeld, and B. Lothenbach, Influence of activator type
1068 on hydration kinetics, hydrate assemblage and microstructural development of alkali
1069 activated blast-furnace slags, *Cem. Concr. Res.*, 2011. **41**(3): p. 301-310.

1070 11. M. Ben Haha, B. Lothenbach, G. Le Saout, and F. Winnefeld, Influence of slag chemistry
1071 on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al₂O₃, *Cem.*
1072 *Concr. Res.*, 2012. **42**(1): p. 74-83.

1073 12. M. Ben Haha, B. Lothenbach, G. Le Saout, and F. Winnefeld, Influence of slag chemistry
1074 on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO, *Cem. Concr.*
1075 *Res.*, 2011. **41**(9): p. 955-963.

1076 13. P.Z. Wang, R. Trettin, and V. Rudert, Effect of fineness and particle size distribution of
1077 granulated blast-furnace slag on the hydraulic reactivity in cement systems, *Adv. Cem.*
1078 *Res.*, 2005. **17**(4): p. 161-167.

1079 14. B.O. Mysen and P. Richet, *Silicate glasses and melts*. 2nd ed. 2018, Amsterdam,
1080 Netherlands: Elsevier.

1081 15. S. Kucharczyk, M. Zajac, C. Stabler, R.M. Thomsen, et al., Structure and reactivity of
1082 synthetic CaO-Al₂O₃-SiO₂ glasses, *Cem. Concr. Res.*, 2019. **120**: p. 77-91.

1083 16. R. Snellings, Surface chemistry of calcium aluminosilicate glasses, *J. Am. Ceram. Soc.*,
1084 2015. **98**(1): p. 303-314.

1085 17. P.T. Durdziński, R. Snellings, C.F. Dunant, M. Ben Haha, et al., Fly ash as an assemblage
1086 of model Ca–Mg–Na-aluminosilicate glasses, *Cem. Concr. Res.*, 2015. **78**: p. 263-272.

1087 18. Y. Feng, Q. Yang, Q. Chen, J. Kero, et al., Characterization and evaluation of the
1088 pozzolanic activity of granulated copper slag modified with CaO, *J. Clean. Prod.*, 2019.
1089 **232**: p. 1112-1120.

1090 19. J.S.J. van Deventer, C.E. White, and R.J. Myers, A Roadmap for Production of Cement
1091 and Concrete with Low-CO₂ Emissions, *Waste Biomass Valor.*, 2020: p. 1-31.

1092 20. F. Bonk, J. Schneider, M.A. Cincotto, and H. Panepucci, Characterization by multinuclear
1093 high-resolution NMR of hydration products in activated blast-furnace slag pastes, *J. Am.*
1094 *Ceram. Soc.*, 2003. **86**(10): p. 1712-1719.

1095 21. A. Fernandez-Jimenez, F. Puertas, I. Sobrados, and J. Sanz, Structure of calcium silicate
1096 hydrates formed in alkaline-activated slag: influence of the type of alkaline activator, *J.*
1097 *Am. Ceram. Soc.*, 2003. **86**(8): p. 1389-1394.

1098 22. F. Puertas, M. Palacios, H. Manzano, J.S. Dolado, et al., A model for the C-A-S-H gel
1099 formed in alkali-activated slag cements, *J. Eur. Ceram. Soc.*, 2011. **31**(12): p. 2043-2056.

1100 23. R.J. Myers, S.A. Bernal, J.D. Gehman, J.S.J. van Deventer, et al., The role of Al in cross-
1101 linking of alkali-activated slag cements, *J. Am. Ceram. Soc.*, 2015. **98**(3): p. 996-1004.

1102 24. K. Yang and C.E. White, Multiscale pore structure determination of cement paste via
1103 simulation and experiment: The case of alkali-activated metakaolin, *Cem. Concr. Res.*,
1104 2020. **137**: p. 106212.

1105 25. A. Blyth, C.A. Eiben, G.W. Scherer, and C.E. White, Impact of activator chemistry on
1106 permeability of alkali-activated slags, *J. Am. Ceram. Soc.*, 2017. **100**: p. 1-12.

1107 26. J. Osio-Norgaard, J.P. Gevau dan, and W.V. Srubar III, A review of chloride transport in
1108 alkali-activated cement paste, mortar, and concrete, *Constr. Build. Mater.*, 2018. **186**: p.
1109 191-206.

1110 27. J.L. Provis, R.J. Myers, C.E. White, V. Rose, et al., X-ray microtomography shows pore
1111 structure and tortuosity in alkali-activated binders, *Cem. Concr. Res.*, 2012. **42**(6): p. 855-
1112 864.

1113 28. J. Zhang, C. Shi, Z. Zhang, and Z. Ou, Durability of alkali-activated materials in aggressive
1114 environments: A review on recent studies, *Constr. Build. Mater.*, 2017. **152**: p. 598-613.

1115 29. S.A. Bernal and J.L. Provis, Durability of alkali-activated materials: Progress and
1116 perspectives, *J. Am. Ceram. Soc.*, 2014. **97**(4): p. 997-1008.

1117 30. E. Douglas and J. Brandstetr, A preliminary study on the alkali activation of ground
1118 granulated blast-furnace slag, *Cem. Concr. Res.*, 1990. **20**(5): p. 746-756.

1119 31. S. Nie, R.M. Thomsen, and J. Skibsted, Impact of Mg substitution on the structure and
1120 pozzolanic reactivity of calcium aluminosilicate (CaO-Al₂O₃-SiO₂) glasses, *Cem. Concr.*
1121 *Res.*, 2020. **138**: p. 106231.

1122 32. S.L. Brantley, *Kinetics of mineral dissolution*, in *Kinetics of water-rock interaction*. 2008,
1123 Springer. p. 151-210.

1124 33. E.H. Oelkers, General kinetic description of multioxide silicate mineral and glass
1125 dissolution, *Geochim. Cosmochim. Ac.*, 2001. **65**(21): p. 3703-3719.

1126 34. K. Gong, O.V. Özçelik, K. Yang, and C.E. White, Density functional modeling and total
1127 scattering analysis of the atomic structure of a quaternary CaO-MgO-Al₂O₃-SiO₂ (CMAS)
1128 glass: Uncovering the local environment of calcium and magnesium, *Phys. Rev. Mater.*,
1129 2021. **5**(1).

1130 35. C. Jiang, K. Li, J. Zhang, Q. Qin, et al., The effect of CaO(MgO) on the structure and
1131 properties of aluminosilicate system by molecular dynamics simulation, *J. Mol. Liq.*, 2018.
1132 **268**: p. 762-769.

1133 36. C. Shi, D. Roy, and P. Krivenko, *Alkali-activated cements and concretes*. 2006, Abingdon,
1134 UK: Taylor & Francis.

1135 37. S. Blotevogel, A. Ehrenberg, L. Steger, L. Doussang, et al., Ability of the R3 test to
1136 evaluate differences in early age reactivity of 16 industrial ground granulated blast furnace
1137 slags (GGBS), *Cem. Concr. Res.*, 2020. **130**: p. 105998.

1138 38. K. Aughenbaugh, T. Williamson, and M. Juenger, Critical evaluation of strength prediction
1139 methods for alkali-activated fly ash, *Mater. Struct.*, 2015. **48**(3): p. 607-620.

1140 39. L.M. Thompson and J.F. Stebbins, Non-bridging oxygen and high-coordinated aluminum
1141 in metaluminous and peraluminous calcium and potassium aluminosilicate glasses: High-
1142 resolution ¹⁷O and ²⁷Al MAS NMR results, *Am. Mineral.*, 2011. **96**(5-6): p. 841-853.

1143 40. I. Pignatelli, A. Kumar, M. Bauchy, and G. Sant, Topological control on silicates'
1144 dissolution kinetics, *Langmuir*, 2016. **32**(18): p. 4434-4439.

1145 41. K. Shimoda, Y. Tobe, K. Kanehashi, T. Nemoto, et al., Total understanding of the local
1146 structures of an amorphous slag: perspective from multi-nuclear (²⁹Si, ²⁷Al, ¹⁷O, ²⁵Mg, and
1147 ⁴³Ca) solid-state NMR, *J. Non-Cryst. Solids*, 2008. **354**(10): p. 1036-1043.

1148 42. D.R. Neuville, L. Cormier, and D. Massiot, Al coordination and speciation in calcium
1149 aluminosilicate glasses: Effects of composition determined by ²⁷Al MQ-MAS NMR and
1150 Raman spectroscopy, *Chem. Geol.*, 2006. **229**(1): p. 173-185.

1151 43. C.E. White, J.L. Provis, T. Proffen, D.P. Riley, et al., Combining density functional theory
1152 (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable
1153 materials: the case of metakaolin, *Phys. Chem. Chem. Phys.*, 2010. **12**(13): p. 3239-3245.

1154 44. C. Siakati, R. Macchieraldo, B. Kirchner, F. Tielens, et al., Unraveling the nano-structure
1155 of a glassy CaO-FeO-SiO₂ slag by molecular dynamics simulations, *J. Non-Cryst. Solids*,
1156 2020. **528**: p. 119771.

1157 45. A. Peys, C.E. White, D. Olds, H. Rahier, et al., Molecular structure of CaO–FeO_x–SiO₂
1158 glassy slags and resultant inorganic polymer binders, *J. Am. Ceram. Soc.*, 2018. **101**(12):
1159 p. 5846–5857.

1160 46. K. Shimoda and K. Saito, Detailed structure elucidation of the blast furnace slag by
1161 molecular dynamics simulation, *ISIJ Int.*, 2007. **47**(9): p. 1275–1279.

1162 47. X. Li, W. Song, K. Yang, N.M.A. Krishnan, et al., Cooling rate effects in sodium silicate
1163 glasses: Bridging the gap between molecular dynamics simulations and experiments, *J.*
1164 *Chem. Phys.*, 2017. **147**(7): p. 074501.

1165 48. N. Jakse, M. Bouhadja, J. Kozaily, J.W.E. Drewitt, et al., Interplay between non-bridging
1166 oxygen, triclusters, and fivefold Al coordination in low silica content calcium
1167 aluminosilicate melts, *Appl. Phys. Lett.*, 2012. **101**(20): p. 201903.

1168 49. K. Baral, A. Li, and W.-Y. Ching, Ab initio molecular dynamics simulation of Na-doped
1169 aluminosilicate glasses and glass–water interaction, *AIP Adv.*, 2019. **9**(7): p. 075218.

1170 50. A. Pedone and M.C. Menziani, *Computational modeling of silicate glasses: a quantitative*
1171 *structure–property relationship perspective*, in *Molecular Dynamics Simulations of*
1172 *Disordered Materials*. 2015, Springer. p. 113–135.

1173 51. X. Lu, L. Deng, S.p. Gin, and J. Du, Quantitative structure–property relationship (QSPR)
1174 analysis of ZrO₂-containing soda-lime borosilicate glasses, *J. Phys. Chem. B*, 2019. **123**(6):
1175 p. 1412–1422.

1176 52. B. Guillot and N. Sator, A computer simulation study of natural silicate melts. Part I: Low
1177 pressure properties, *Geochim. Cosmochim. Ac.*, 2007. **71**(5): p. 1249–1265.

1178 53. QuantumATK version P-2019.03. *QuantumWise A/S*. Synopsys QuantumATK
1179 (<https://www.synopsys.com/silicon/quantumatk.html>) 2019 [cited 2020].

1180 54. J. Schneider, J. Hamaekers, S.T. Chill, S. Smidstrup, et al., ATK-ForceField: a new
1181 generation molecular dynamics software package, *Model. Simul. Mater. Sc.*, 2017. **25**(8):
1182 p. 085007.

1183 55. A. Tilocca, Cooling rate and size effects on the medium-range structure of multicomponent
1184 oxide glasses simulated by molecular dynamics, *J. Chem. Phys.*, 2013. **139**(11): p. 114501.

1185 56. L. Deng and J. Du, Effects of system size and cooling rate on the structure and properties
1186 of sodium borosilicate glasses from molecular dynamics simulations, *J. Chem. Phys.*, 2018.
1187 **148**(2): p. 024504.

1188 57. G.J. Martyna, D.J. Tobias, and M.L. Klein, Constant pressure molecular dynamics
1189 algorithms, *J. Chem. Phys.*, 1994. **101**(5): p. 4177–4189.

1190 58. P.J. Chupas, K.W. Chapman, and P.L. Lee, Applications of an amorphous silicon-based
1191 area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution
1192 function measurements, *J. Appl. Crystallogr.*, 2007. **40**(3): p. 463-470.

1193 59. T. Proffen, T. Egami, S.J.L. Billinge, A.K. Cheetham, et al., Building a high resolution
1194 total scattering powder diffractometer—upgrade of NPD at MLNSC, *Appl. Phys. A-Mater.*,
1195 2002. **74**(1): p. s163-s165.

1196 60. K. Gong and C.E. White, Nanoscale chemical degradation mechanisms of sulfate attack in
1197 alkali-activated slag, *J. Phys. Chem. C*, 2018. **122**(11): p. 5992–6004.

1198 61. T. Egami and S.J.L. Billinge, *Underneath the Bragg peaks: Structural analysis of complex*
1199 *materials*. 2003, Elmsford, NY: Pergamon.

1200 62. P. Juhás, T. Davis, C.L. Farrow, and S.J.L. Billinge, PDFgetX3: a rapid and highly
1201 automatable program for processing powder diffraction data into total scattering pair
1202 distribution functions, *J. Appl. Cryst.*, 2013. **46**(2): p. 560-566.

1203 63. C.L. Farrow, P. Juhas, J.W. Liu, D. Bryndin, et al., PDFfit2 and PDFgui: Computer
1204 programs for studying nanostructure in crystals, *J. Phys.: Condens. Matter*, 2007. **19**(33):
1205 p. 335219.

1206 64. P.F. Peterson, M. Gutmann, T. Proffen, and S.J.L. Billinge, PDFgetN: a user-friendly
1207 program to extract the total scattering structure factor and the pair distribution function
1208 from neutron powder diffraction data, *J. Appl. Crystallogr.*, 2000. **33**(4): p. 1192-1192.

1209 65. K. Page, C.E. White, E.G. Estell, R.B. Neder, et al., Treatment of hydrogen background in
1210 bulk and nanocrystalline neutron total scattering experiments, *J. Appl. Crystallogr.*, 2011.
1211 **44**(3): p. 532-539.

1212 66. C.E. White, N.J. Henson, L.L. Daemen, M. Hartl, et al., Uncovering the true atomic
1213 structure of disordered materials: The structure of a hydrated amorphous magnesium
1214 carbonate ($MgCO_3 \cdot 3D_2O$), *Chem. Mater.*, 2014. **26**(8): p. 2693-2702.

1215 67. M. Guignard and L. Cormier, Environments of Mg and Al in $MgO-Al_2O_3-SiO_2$ glasses: A
1216 study coupling neutron and X-ray diffraction and reverse Monte Carlo modeling, *Chem.*
1217 *Geol.*, 2008. **256**(3-4): p. 111-118.

1218 68. L. Cormier, D.R. Neuville, and G. Calas, Structure and properties of low-silica calcium
1219 aluminosilicate glasses, *J. Non-Cryst. Solids*, 2000. **274**(1-3): p. 110-114.

1220 69. M. Matsui, A transferable interatomic potential model for crystals and melts in the system
1221 $CaO-MgO-Al_2O_3-SiO_2$, *Mineral. Mag.*, 1994. **58**: p. 571-572.

1222 70. K. Shimoda, Y. Tobe, M. Hatakeyama, T. Nemoto, et al., Structural investigation of Mg
1223 local environments in silicate glasses by ultra-high field ^{25}Mg 3QMAS NMR spectroscopy,
1224 *Am. Mineral.*, 2007. **92**(4): p. 695-698.

1225 71. W. Vogel, *Glass chemistry*. 2012: Springer Science & Business Media.

1226 72. P. Ganster, M. Benoit, W. Kob, and J.-M. Delaye, Structural properties of a calcium
1227 aluminosilicate glass from molecular-dynamics simulations: A finite size effects study, *J.*
1228 *Chem. Phys.*, 2004. **120**(21): p. 10172-10181.

1229 73. D.R. Neuville, L. Cormier, V. Montouillout, P. Florian, et al., Amorphous materials:
1230 Properties, structure, and durability: Structure of Mg-and Mg/Ca aluminosilicate glasses:
1231 ^{27}Al NMR and Raman spectroscopy investigations, *Am. Mineral.*, 2008. **93**(11-12): p.
1232 1721-1731.

1233 74. S.K. Lee, G.D. Cody, and B.O. Mysen, Structure and the extent of disorder in quaternary
1234 (Ca-Mg and Ca-Na) aluminosilicate glasses and melts, *Am. Mineral.*, 2005. **90**(8-9): p.
1235 1393-1401.

1236 75. M.J. Toplis, S.C. Kohn, M.E. Smith, and I.J.F. Poplett, Fivefold-coordinated aluminum in
1237 tectosilicate glasses observed by triple quantum MAS NMR, *Am. Mineral.*, 2000. **85**(10):
1238 p. 1556-1560.

1239 76. S.K. Lee, H.-I. Kim, E.J. Kim, K.Y. Mun, et al., Extent of disorder in magnesium
1240 aluminosilicate glasses: insights from ^{27}Al and ^{17}O NMR, *J. Phys. Chem. C*, 2015. **120**(1):
1241 p. 737-749.

1242 77. M. Ren, J.Y. Cheng, S.P. Jaccani, S. Kapoor, et al., Composition-structure-property
1243 relationships in alkali aluminosilicate glasses: A combined experimental-computational
1244 approach towards designing functional glasses, *J. Non-Cryst. Solids*, 2019. **505**: p. 144-
1245 153.

1246 78. N. Trcera, D. Cabaret, S. Rossano, F. Farges, et al., Experimental and theoretical study of
1247 the structural environment of magnesium in minerals and silicate glasses using X-ray
1248 absorption near-edge structure, *Phys. Chem. Miner.*, 2009. **36**(5): p. 241-257.

1249 79. L. Mongalo, A.S. Lopis, and G.A. Venter, Molecular dynamics simulations of the
1250 structural properties and electrical conductivities of CaO-MgO-Al₂O₃-SiO₂ melts, *J. Non-*
1251 *Cryst. Solids*, 2016. **452**: p. 194-202.

1252 80. H.W. Nesbitt, G.S. Henderson, G.M. Bancroft, R. Sawyer, et al., Bridging oxygen
1253 speciation and free oxygen (O^{2-}) in K-silicate glasses: Implications for spectroscopic
1254 studies and glass structure, *Chem. Geol.*, 2017. **461**: p. 13-22.

1255 81. D.R. Neuville, L. Cormier, A.-M. Flank, V. Briois, et al., Al speciation and Ca environment
1256 in calcium aluminosilicate glasses and crystals by Al and Ca K-edge X-ray absorption
1257 spectroscopy, *Chem. Geol.*, 2004. **213**(1-3): p. 153-163.

1258 82. L. Cormier and D.R. Neuville, Ca and Na environments in $\text{Na}_2\text{O}-\text{CaO}-\text{Al}_2\text{O}_3-\text{SiO}_2$ glasses:
1259 influence of cation mixing and cation-network interactions, *Chem. Geol.*, 2004. **213**(1-3):
1260 p. 103-113.

1261 83. T. Charpentier, K. Okhotnikov, A.N. Novikov, L. Hennet, et al., Structure of strontium
1262 aluminosilicate glasses from molecular dynamics simulation, neutron diffraction, and
1263 nuclear magnetic resonance studies, *J. Phys. Chem. B*, 2018. **122**(41): p. 9567-9583.

1264 84. J.F. Stebbins and Z. Xu, NMR evidence for excess non-bridging oxygen in an
1265 aluminosilicate glass, *Nature*, 1997. **390**(6655): p. 60.

1266 85. K. Gong, Y. Cheng, L.L. Daemen, and C.E. White, *In situ* quasi-elastic neutron scattering
1267 study on the water dynamics and reaction mechanisms in alkali-activated slags, *Phys.*
1268 *Chem. Chem. Phys.*, 2019(21): p. 10277-10292.

1269 86. G. Lusvardi, G. Malavasi, F. Tarsitano, L. Menabue, et al., Quantitative structure– property
1270 relationships of potentially bioactive fluoro phospho-silicate glasses, *J. Phys. Chem. B*,
1271 2009. **113**(30): p. 10331-10338.

1272 87. K.H. Sun, Fundamental condition of glass formation, *J. Am. Ceram. Soc.*, 1947. **30**(9): p.
1273 277-281.

1274 88. T. Oey, A. Kumar, J.W. Bullard, N. Neithalath, et al., The filler effect: the influence of
1275 filler content and surface area on cementitious reaction rates, *J. Am. Ceram. Soc.*, 2013.
1276 **96**(6): p. 1978-1990.

1277 89. D. Wolff-Boenisch, S.R. Gislason, E.H. Oelkers, and C.V. Putnis, The dissolution rates of
1278 natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from
1279 25 to 74 C, *Geochim. Cosmochim. Ac.*, 2004. **68**(23): p. 4843-4858.

1280 90. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances
1281 in halides and chalcogenides, *Acta Crystall. A-Crys.*, 1976. **32**(5): p. 751-767.

1282 91. P.T. Durdziński, C.F. Dunant, M. Ben Haha, and K.L. Scrivener, A new quantification
1283 method based on SEM-EDS to assess fly ash composition and study the reaction of its
1284 individual components in hydrating cement paste, *Cem. Concr. Res.*, 2015. **73**: p. 111-122.

1285