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ABSTRACT: The spontaneous ordering of block polymers doped with ions
is affected by both selective solvation and long-range Coulombic interaction.
The mean-field treatment was recently shown to overestimate the solvation-
induced ordering, requiring a large solvation radius to fit experimental phase
diagrams, which may be relieved by including composition fluctuations.
Treating the composition fluctuations in such systems is challenging because
of the need of resolving heterogeneous dielectric profile that couples with the
ordering itself. Starting from a minimal model, we develop a Landau−
Brazovskii ̆ expansion for the free energy of salt-doped block polymer near the
ordering transition. It is found that the wavelength for typical composition
fluctuations first decreases with salt doping, due to Coulombic interaction, then increases due to ionic solvation. Two mechanisms
that weaken the solvation-enhanced ordering are identified: the Brazovskii-̆type composition fluctuation that stabilizes disordered
phase, and the coupling between mismatch in dispersion interaction and the dielectric permittivity through monomeric polarizability.

Salt-doped block polymer have been heavily investigated
over the past decades, owing to its promise for safer energy

storage and conversion.1−3 Among various changes in
morphological and transport behaviors, the susceptibility to a
tiny amount of salt addition is particularly striking.4−6 While
this provides a facile tool to tune the assembled structure, it
also calls for deeper theoretical understanding that is
incomplete.
Recent theoretical efforts5−7 have transcribed the mean-field

model of neat block polymers8−10 to ion-doped systems.
Selective ion-solvation and ionic correlation have been
identified as important features of dielectrically heterogeneous
copolymers. An unusual “chimney” channel for ordered phase
has been predicted for fully compatible blocks,5 which is
grossly consistent with existing experimental observations.5,6,11

Recent attempts6 further revealed a hidden, albeit narrow,
entropic regime that competes with solvation effects and
showed12 that selective ion solvation alone captures morpho-
logical behaviors.
Our work is motivated by two considerations. First, ion-

induced stabilization is expected to compete with the
destabilizing composition fluctuation near the ordering
transition.13 Indeed, recent attempts to map phase diagrams
from mean-field model with solvation treated at the Born level
to experiments require solvation radii about an order of
magnitude larger than physical ion size.12 As solvation energy
is inversely proportional to ion radius,7,14 a large solvation
radius essentially reduces the Born solvation effect. Several
factors may compromise solvation effects, such as ion pair (or
cluster) formation4,15 and composition fluctuations beyond the
mean-field level. We focus here on the more universal

fluctuation effects while leaving the ion-specific pairing or
clustering correction to future studies.
Second, many current models treated the dispersion

interaction described by the Flory−Huggins parameter and
dielectric permittivity, two properties that both correlate to
monomeric polarizabilities, independently, which is concep-
tually inconsistent. Motivated by recent work on polarizable
field theory,16 we shall reparameterize the dispersion
interaction and the dielectric permittivity consistently using
the monomeric polarizability, reassess the competition
between solvation and composition fluctuation, and show
that the “chimney” behavior is absent.
We use the “free” ion model developed recently for salt-

doped polymers.6,12 The mean-field critical points have been
identified, and a mode-expansion in the weak-segregation
regime is possible. The system contains nC neutral AB diblock
copolymer doped with monovalent salts. All polymer chains
have N segments, among which Nf segments are of type A, and
N(1 − f) are of type B. The molar ratios between cations and
type A segments are r. Measured in kBT, the system
Hamiltonian is id FH B C= + + + , where the
ideal chain term id and the Flory−Huggins term FH are
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standard.6 The additional terms are the Born solvation B and
the two-body Coulombic energy C,
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The microscopic volume fractions ϕ̂α (α = A,B,+,−) contain
four components. Here l0 ≡ e2/(4πϵ0kBT) is the Bjerrum
length for vacuum, with e being the elementary charge and ϵ0
the vacuum dielectric permittivity. The relative dielectric
permittivity ϵr(r) is derived from polymer compositions. The
relative volume in reference to a common factor v0, and bead
radii are denoted ṽα and aα, respectively. Without loss of
generality, we assume ϵA > ϵB and a+ < a−. Although the
physics is generic, we use parameters corresponding to PS−
PEO doped with LiTFSI because of the relevance to
experiments.6 We use v0 = 1 nm3 and calculate the statistical
segment length b from the packing length p = 0.4 nm as
b v p( / ) 1.58nm0

1/2= = . This gives an invariant degree of

polymerization N Nb v/ 6226
0
2̅ ≡ = for the largest value N =

40 we use, which overlaps with the range of N̅ values used in
experiments.12 The charge density fields are given by

v v/ /ρ ϕ ϕ̂ ≡ ̂ ̃ − ̂ ̃+ + − −. The kernel for coulombic interaction
g(r, r′) is obtained by inverting Poisson’s equation with
heterogeneous dielectric profile. More details of the Hamil-
tonian are available in the SI.
The role of electrostatics in microphase separation has been

known in polyelectrolytes systems,17−25 where electrostatic
interaction drives microphase separation. In our system,
however, electrostatic interaction only plays an auxiliary,
modulating role for the self-assembly of block polymers.
The free energy is derived from the Hamiltonian by

following the standard procedure.26 At the mean-field level,
it only depends on the average density profi les

r r r r r( ) ( ), ( ), ( ), ( )A Bϕ ϕ ϕ ϕ ϕ= [ ]+ − , and contains two terms,

0 Iϕ ϕ ϕ[ ] = [ ] + [ ]. Here, 0 ϕ[ ] is from an ideal mixture
with the same density profile as the interacting system, and
I ϕ[ ] is the interaction term that is formally identical to the

Hamiltonian.
An expansion of free energy in composition fluctuation is

justified near the critical points shown in Figure 1.6 For
composition deviations from the mean-field values ϕ̅α,

r r( ) ( )δϕ ϕ ϕ≡ − ̅α α α, the free energy cost expanded to the
quartic order reads

q

q q

q q q

1
2

d

1
3

d d

1
4

d d d

q q q

q q q q q q

q q q q q q q q

(2)

1 2 , ,
(3)

1 2 3 , , ,
(4)

1 2 3 1 2 3

1 2 3 4 1 2 3 4

∫

∫ ∫

∫ ∫ ∫

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

Δ = Γ

+
!

Γ

+
!

Γ

−

(2)

Here the expansion is around the homogeneous phase. The
density fields are given in Fourier modes. By our convention,
the Fourier integral includes a factor (2π)−3, i.e.,

qd qd
(2 )3

∫ ∫=
π

, and the summation of wavenumbers in each

term vanishes due to translational invariance. The coefficients

Γ(2), Γ(3), and Γ(4) are vertex functions that include
contributions from both the ideal free energy 0

27 and the
interaction term I. The Flory−Huggins interaction only
contributes to Γ(2). The ion solvation and coulombic
interaction contribute to all the higher-order terms. Explicit
expressions of these coefficients are provided in the SI.
Generally, Γ(3) and Γ(4) are dependent on the angles between
wave vectors. However, it has been shown that the angle
dependence of vertex functions only weakly modifies the phase
behavior, at least at the Hartree level.28,29 Therefore, we
neglect the angle-dependence following the treatments of neat
diblock polymers.13

The density waves ϕ have four components: A-block, B-
block, cation, and anion; the summation over these
components are implicit in eq 2. In the incompressible melts
of interest, the sum of density fluctuations vanish, i.e.,
∑αδϕα(q) = 0. The relevant composition fluctuation δϕ =
(δϕA, δϕB, δϕ+, δϕ−) is orthogonal to the compression mode ε
= (1,1,1,1)/2 and can be expanded by any complete basis set
that spans the subspace orthogonal to ε.6,30 We choose the set
of the solvation mode e(1) = (1,−1,1,−1)/2, antisolvation
mode e(2) = (1,−1,−1,1)/2, and salting-out mode e(3) = (1,1,−
1,−1)/2. The solvation mode drives smaller cations in-phase
with more polar component A, while the antisolvation mode
resists such trend. The salting-out mode drives salt out of
polymers. An arbitrary composition fluctuation can be
expanded as δϕ = δψ1e

(1) + δψ2e
(2) + δψ3e

(3).
Within the incompressible subspace, the vertex functions are

reduced by contraction with ei. For instance, the contraction of

Γ(2) with e(i) gives a 3 × 3 array, q q e e( ) ( )ij i j
(2) (2) ( ) ( )γ ̂ = Γαβ

α β .

Because the coefficients are evaluated in the disordered state,
γ̂(2) only depends on the magnitude of wavevector, q = |q|.
The spectra of γ̂(2) dictates the weight of composition

fluctuations. Inside the disordered phase, all the eigenvalues of
γ̂(2) are positive. At the spinodal, the smallest eigenvalue
vanishes, with a corresponding eigenvector denoted by v(q*),
where q* is the wavenumber of this critical mode. Close to the
spinodal, the instability of the disordered phase is dominated
by composition fluctuations proportional to V = (e(1), e(2),
e(3)) ·v. For incompressible neat diblock copolymer, v ∝ (1, 1,
0), giving rise to a composition mode V ∝ (1,−1,0,0), as
expected.
The behavior of critical mode v is similar in solvation

(Figure 2a) and entropy regimes. The difference between

Figure 1. Mean-field phase diagram and spinodals from weak
segregation theory (WST), for N = 20 in (a) entropy regime with
l0 = 1 nm, and (b) solvation regime with l0 = 3 nm. Solid lines: phase
diagram of neat diblock. Dashed lines: spinodals from mean-field
structure factor. Phase labels: L for lamellar, C for cylindrical, S for
spherical.

ACS Macro Letters pubs.acs.org/macroletters Letter

https://doi.org/10.1021/acsmacrolett.1c00107
ACS Macro Lett. 2021, 10, 545−550

546

http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.1c00107/suppl_file/mz1c00107_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.1c00107/suppl_file/mz1c00107_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00107?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00107?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00107?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00107?fig=fig1&ref=pdf
pubs.acs.org/macroletters?ref=pdf
https://doi.org/10.1021/acsmacrolett.1c00107?rel=cite-as&ref=PDF&jav=VoR


solvation and entropic regimes amounts to the degree of
changes in v upon doping, where vi varies more slowly in
entropic regime. The contribution from solvation mode
decreases with elevated doping degree as the absolute value
of v1 decreases. This is because, usually ṽ+<ṽ−, upon equal
molar doping of both ions, volume increases due to lithium ion
addition is smaller. The contributions from both antisolvation
(v2) and salting-out (v3) modes increase as the doping amount
increases.
The second-, third-, and fourth-order vertex functions for

composition fluctuations along mode v are obtained by

contrac t ion , i . e . , vvij i j
(2) (2)γ γ= ̂ , vv vijk i j k

(3) (3)γ γ= ̂ , and

vv v vijkl i j k l
(4) (4)γ γ= ̂ . The critical point is identified by γ(2) = γ(3)

= 0.30 In particular, the quadratic coefficient γ(2) reads

q
F qR

N
A A r

A
q

r( )
( )

2 ( )(2) g
0 s

c
2

2γ χ= − + + +
(3)

The first term is from polymer configurational and mixing
entropy. The second term is Flory−Huggins interaction. The
third term is derived from the translational entropy (A0) and
Born solvation free energy (As) of ions; they both scale linearly
with r. The fourth term is from two-body Coulombic
interaction (Supporting Information (SI)).
In the dilute limit, we expect the critical mode v to deviate

from (1,1,0) by a correction proportional to r and have verified
(SI,Figure S1) that v ≈ (1 + η12r, 1 − η12r, −η3r), with
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. The expressions to A0, As, and Ac are obtained

by contraction and given explicitly by ( )A v2
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l
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2
0 0

2

= −π η
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. All these coefficients depend on η0
2,

and vanish for ϵA = ϵB, signifying the importance of selective
solvation.
The ion translational entropy term A0 is always positive,

stabilizing the disordered phase, which shifts the spinodal
upward. Its dependence on l0 originates from the selective
solvation, without which the ions are distributed uniformly. In
this case, ions act as nonselective solvents, and higher-order
wavevectors are needed to capture their localization at
interfaces.31 The coefficient As is positive for weak solvation
but changes sign for strong solvation. In the latter case, its
effect on spinodal is opposite to A0, implying a competition
between solvation and entropy, an effect first identified in
polymer blends7 and recently verified in copolymers.6 The
two-body Coulombic term is always positive because the local
charge separation always induces a positive interaction energy.
Two terms in eq 3 vary with q. The configurational term

F(qRg) has a minimum at a nonzero wavenumber q0*, which
depends on both composition and the mode vector v. In the
dilute limit (r → 0), the mode vector v → (1,1,0), and q0*
reduces to that given by Leibler. With tiny amount of salt
addition, the coulombic term Acr

2/q2 shifts the position of the
minimum to a larger q at q*>q0*, by a factor of order 2AcN

3/2r2.
The variation of peak positions at the critical points in both
entropy and solvation regimes are shown in Figure 2b. The
shift due to variation in critical composition is shown as dashed
curve, and its departure from the solid curve highlights the
contribution of Coulombic interaction.
A nonmonotonic variation of q* with r is found at fA = 0.5

over a range of N values, as shown in Figure 2c. In the dilute
limit, q* increases with r and follows the scaling derived above,
q q A N r( ) 20 c

3/2 2* − * ∼ ; the Figure 2c inset shows the
collapse of data for (q*−q0*)N−3/2 at small r. Previously,
predicted increment in q* was conjectured to result from ion
solvation and neglect of ion volume;15 here we see it originates
from the Coulombic interaction, which in turn is triggered by
charge separation due to ion solvation. More interesting is the
decrease in q* at higher salt doping, which can be rationalized
by examining the contributions from different composition
modes because the ideal term F is a weighted sum of these
contributions. The contraction of the second vertex function
with three independent composition modes are shown in
Figure 2d. The contraction with the solvation mode e(1) and
the antisolvation mode e(2) are equivalent to that for neat
diblock polymers apart from an shift of order r and
independent of q; these are related to ion translational
entropy. In contrast, the contraction with e(3) increases with
q, which suggests that the decrease in q* is favored by the
salting-out mode.
The increase of q* with r in the dilute regime has been

found in previous theoretical studies.15,32 At higher doping
level, while most experiments33−39 and simulation40 found q*
decreases with r, there are a few situations where q*
increases36,41 or changes nonmonotonically42−44 with r. It
should be noted that our analysis about critical wavevector is

Figure 2. Variation of composition mode at the critical point for N =
20: (a) mode vector v in the solvation regime (l0 = 3 nm); (b)
wavenumber q* (solid) and q0* (dashed) in both entropy and
solvation regimes. Variation of (c) peak wavenumber and (d)
contributions to γ(2),id from different composition modes, at χN =
10.495, fA = 0.5, and l0 = 3 nm. The inset in (c) rescales q* − q0* with
N−3/2. (d) All curves are shifted with respect to the value at (qRg)

2 =
4 0 ; t h e o t h e r t e r m s a r e n o t s h o w n b e c a u s e

e e e e e e(2)
2
id (2) (1)

2
id (1) (1)

2
id (2)·Γ · = ·Γ · ≈ ·Γ · a n d

e e e e(1)
2
id (3) (2)

2
id (3)·Γ · ≈ ·Γ · .
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still based on mean-field treatment. The method we used here
to include fluctuations does not consider its effect on shift in a
critical wavevector. The trend found here may be masked by
composition fluctuations,29,45,46 which we will investigate in
the future.
Near the critical point, the transition is weakly discontin-

uous. The ordered phases are described by composition
fluctuation that is proportional to mode vector V and that can
be expanded using a superposition of plane waves

a i ir Q r Q r( ) exp( ) exp( )n k
n

k k1ϕ∼ = ∑ [ · + − · ]= , where ± Qi, i
= 1, ..., n are wavevectors with the magnitude q*, and with
orientations specified by the symmetry of the phase.27 We only
consider three classical phases (lamellar, hexagonal, and BCC)
that can be described by the first harmonics. For other phases,
such as lamellar-catenoid, contributions from higher harmonics
must be included.47,48 The free energy is obtained by
substituting the density wave into eq 2, followed by
minimization with respect to the amplitude of density wave
an.

13,27 The phase diagram generated by this analysis compares
quantitatively to the iPSCF calculations,6 as demonstrated in
SI, Figure S2. For regions far from the critical point, the
discontinuity in phase transition becomes more severe, and the
contributions from higher harmonics are important.28,29,48 For
this reason, we do not expect our theory to be accurate far
from the critical point, although the agreement between our
analytical calculation and numerical iPSCF is still satisfactory.
To examine the fluctuation effects, we map the free energy

onto the Brazovskii ̆ form by expanding γ(2) around q* as

q c q qv v( ) 2 ( ) ( )(2)
A B s

2 2γ χ χ= − + − * , where c2 = 1/2
∂
2γ(2)(q*)/∂q2 is related to the curvature of γ(2) at q*, and χs
is the spinodal χ-value. The fluctuation-corrected phase
diagrams obtained by an approach similar to ref 13 are
compared to the mean-field predictions in Figure 3 for N = 20

and in SI, Figures S3 and S4, for N = 10 and 40, respectively.
In both entropy and solvation regimes, the fluctuation
correction destabilizes the ordered phase and shifts the phase
diagram upward. In the entropy regime, the extra shift is
several times stronger than the effect due to entropy alone. In
the experimentally more relevant solvation regime, the effect
competes with solvation. In particular, the upper-shift in the
ordering transition into the lamellar phase is quite pronounced.
The other known effects in the Fredrickson−Helfand theory,13

such as the direct ordering transition into the hexagonal phase,
are maintained.
The above theory treated χ and ϵr independently which,

although commonly adopted, is conceptually inconsistent. The
dielectric permittivity can be approximately related to the
monomeric polarizability through the Clausius−Mossotti

relation by
1
2

r

r
α=ϵ −

ϵ + . The average dielectric permittivity of

monomeric mixtures can be estimated using the Maxwell−
Garnett mixing rule,

v i i i
1
2

1r

r
ϕα= ∑ϵ −

ϵ + , where 1/v is the average

density. Meanwhile, it is known that the Flory−Huggins
parameter can be related to monomeric polarizability through
the cohesive energy density,16 χ = cχ(αA − αB)

2, where cχ is a
parameter that is related to the volume and charge distribution
of the monomers.
The new and consistent parametrization with polarizabilities

brings remarkable changes in the phase behavior. Figure 4a

shows that, as r increases, the spinodal line in the χ−f plane
shifts downward. Unlike the case in previous parametrization,
we found no chimney behavior. Instead, the spinodal
converges to a limiting one above χ = 0 as r increases. This
is because, as the incompatibility between two polymer blocks
diminishes (χ → 0), αA and αB becomes similar and the
dielectric constant between two blocks diminishes.
By fixing αA and αB from polymer permittivity, we generate

both mean-field and fluctuation-corrected phase diagrams,
shown in Figure 4b. It is found that the wide lamellar window
is replaced by the hexagonal phase when the fluctuation
correction is turned on, and the amount of salt needed to
induce ordering is nearly doubled.
In summary, we showed the weakening of solvation-

enhanced ordering due to the composition fluctuation and
the coupling between dispersion interaction and dielectric
screening. Several relevant physics have been neglected. For
instance, ion pairing or clustering and liquid-state correlation

Figure 3. Mean-field (a) and fluctuation-corrected (b) phase
diagrams in the entropy regime with l0 = 1 nm. Corresponding
phase diagrams (c,d) in the solvation regime with l0 = 3 nm. Red
dashed line: spinodal from mean-field structure factor. All panels: N =
20, r = 0.02. See SI for results at N = 10 and N = 40.

Figure 4. Spinodal and phase diagrams from polarizability-based
parametrization. (a) Spinodals against fA and αB for different r, at N =
20, αA = 0.70, cχ = 2.0, l0 = 3 nm. (b) Mean-field phase diagram at N =
20, αA = 0.70, αB = 0.32, cχ = 0.5, and l0 = 3 nm, and fluctuation-
corrected phase diagram (inset); red dashed line, spinodal from mean-
field structure factor
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may be particularly relevant at high doping-level; the
fluctuation correction to the scattering function itself may
lead to further reduction in q* as was evident in the neutral
diblock polymers.29,45,46 Nevertheless, our work is a minimum
treatment of composition fluctuation in ion-doped polymers,
which provides the basis for future generalization and
comparison to polarizable field theoretical calculations.16,49,50
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