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Abstract

Polyelectrolytes may adopt rod- or coil-like conformations depending on the strength

of intrachain repulsion and the effective charge density. The charge density of poly-

electrolytes is influenced not only by the binding of small ions, but also by the binding

with oppositely charged chains. We introduce a coupled variational approach that

treats reversible ion binding, adaptive chain structure, and electrostatic correlations

simultaneously. This approach captures the swelling and deswelling of single poly-

electrolyte chains, and the competition between interchain cross-linking and ion

binding in mixtures of polyelectrolytes. Applying our theory to study polyelectrolyte

coacervation, we identify two distinct regimes. In the weak binding regime, the

charge density is high and the solution properties are dependent on the conforma-

tions of polyelectrolytes. In the strong binding regime, this dependence is weakened

and the solution thermodynamics are dominated by the short-range ion-binding

equilibrium.

1 | INTRODUCTION

Mixtures of oppositely charged polyelectrolytes in aqueous solution

can undergo an associative, liquid–liquid phase separation, yielding a

polymer-rich complex in coexistence with a dilute supernatant. The

complexes show a continuum of morphological features, ranging from

viscous liquid-like fluids, known as coacervates, to solid-like

aggregates,1–3 and may contain microstructured domains.4–7 Since its

initial experimental observation,8 the concentrated coacervates have

found applications as therapeutic delivery devices,9,10 advanced adhe-

sives and coatings,11,12 and food processing additives.13,14 More

recently, this liquid-phase instability has been recognized as an under-

lying mechanism that orchestrates intracellular compartmentalization,

cellular metabolism, and disease pathogenesis.15–17 In this context,

understanding the interplay between the specific molecular properties

and the stability of polyelectrolyte complexation is necessary.

Polyelectrolyte complexation is governed by a myriad of long-

and short-range interactions. Long-range electrostatic interactions

lead to favorable spatial correlations between oppositely charged

species,18 which give rise to the characteristic scattering peak in poly-

electrolyte solutions.19 However, electrostatic effects alone do not

account for polyelectrolyte complexation in real systems. Recent calo-

rimetric measurements suggest that the driving force for complexa-

tion is entropic, due to the release of bound counterions as ion pairs

form between polycations and polyanions.20–22 A few models for ion

binding have been developed that either treat binding explicitly as

reversible chemical reactions,23–26 use the transfer matrix to account

for cooperativity between bound sites,27,28 or embed the binding

equilibrium at the scaling level.29 These models can in practice be

adapted to treat local effects other than ionic association, including

acid–base equilibria for weakly dissociating polyelectrolytes,30

hydrogen-bonding, and π�π stacking.6,17,31

The degree of ion binding depends on the conformational prop-

erties of polymers. Unlike simple dilute electrolyte solutions where

Debye–Hückel theory is applicable, the spatial extent of polyelec-

trolyte chains introduces new length scales and modifies the

concentration-dependence of the electrostatic screening length.32

One way of describing such connectivity effects is to consider weak

composition fluctuations, which depend on polymer conformational

statistics, and evaluate the resulting electrostatic free energy using

the random phase approximation (RPA).33–35 The RPA expression to

the free energy explicitly depends on the chain structure factor, and
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has a distinct concentration dependence for chains adopting rod-

like conformations, coil-like conformations, or conformations with

alternative fractal dimensions.35 This leads to different degrees of

ion binding for different conformational statistics. We have shown

that explicitly accounting for the self-energy of ions is needed for a

coherent treatment of chain structure and ion binding, and that

more flexible, compact conformations result in a greater degree of

ion binding.25

Although the standard RPA approach yields results consistent

with prevailing scaling arguments,36 it neglects the variation of

chain conformations with concentration, a salient feature of poly-

electrolyte solutions. Polyelectrolytes are rod like in dilute solu-

tions, owing to strong self-repulsions and weak screening, and are

coil like in the semidilute and concentrated solutions. Using a

fixed, coil-like structure factor in the RPA expression is known to

overestimate the electrostatic correlation free energy, which

results in vanishingly small supernatant concentrations in coacerva-

tion phase diagrams.37

Earlier theories have considered adaptive structures in polyelec-

trolyte solutions. The “double-screening” theory allows chain struc-

ture to respond to both screened electrostatic and excluded volume

interactions,38 and has been used to study counterion adsorption in

single-phase solutions.39–41 It, however, does not describe the

interchain binding in solutions containing oppositely charged polyelec-

trolytes. More recent studies used the variational approach to study

polyelectrolyte solution.42–44 The renormalized Gaussian fluctuation

(RGF) model self-consistently determines the persistence length in the

presence of both polyelectrolyte and salt screening,43 and has been

applied to study coacervation.44 What is missing is the simultaneous

treatment of adaptive chain structure and short-range ion binding.

The significance of ion binding in regulating the charge density of

polyelectrolytes, and in turn their conformational properties, has been

stressed in a recent review.32

In this work, our previous theory on reversible ion binding24,25

is combined with the RGF model43 to describe the adaptive chain

stiffness and coacervation behavior. Inspired by Reference 43, we

introduce a coupled variational approach that allows for self-

consistent determination of the extents of ion binding and the effec-

tive chain stiffness, both dictated by electrostatic interactions

among charged species. Where applicable, we highlight the role of

adaptive chain flexibility by comparison to chains with fixed rod- or

coil-like structures.

This article is organized as follows. In Section 2, we develop the

model for solutions of a single type of polyion. The coupled variational

approach for both ion binding and chain flexibility is presented, and its

implications on solution structure are explored. In Section 3, we

extend the approach to study polyelectrolyte complex coacervation in

solutions of oppositely charged polyions. Interchain binding between

polyanions and polycations is explicitly treated. Coacervation phase

diagrams are presented for different chain structures, and conditions

under which long-range electrostatics or short-range binding domi-

nate coacervation behavior are identified. Our main findings are sum-

marized in Section 4.

2 | SINGLE-POLYELECTROLYTE
SOLUTIONS

We begin by studying simple polyelectrolyte solutions containing

counterions and added salt. By incorporating the treatment of adap-

tive chain structure into our previous work25 on ion binding, we show

how chain stiffness and solution properties vary with the degree of

ion binding, composition, and strength of electrostatic interactions.

2.1 | Free energy for associative polyelectrolyte
solutions

We consider an aqueous solution of polyanions of length NA in the

presence of counterions and coions. The numbers of polyanions, cat-

ions, and anions are nA, nþ, and n�, and the volume fractions are ϕA,

ϕþ, and ϕ�, respectively. For simplicity, we assume that all polyanion

monomers can be ionized, and monomers, cations, and anions are

monovalent. To facilitate unit conversion, a common reference vol-

ume v0 ¼30Å
3
is chosen for monomers and ions. The molecular vol-

umes vi (i¼A, þ, and �) are normalized as ωi ¼ vi=v0. A common

length unit l0 ¼ v1=30 is also used in the following. For bulk solutions,

electroneutrality requires that nþ ¼ nANA in the absence of added salt

or, equivalently, ϕþ ¼ϕAωþ=ωA. If the composition of added salt is ϕS,

the volume fractions of cations and anions are ϕþ ¼ϕAωþ=ωAþϕS

and ϕ� ¼ϕS.

At any given composition, a fraction of cations α are bound to

polyanions and neutralize their charges. The number of polyanion

monomers harboring bound cations is nAþ ¼ αnANA, the charge den-

sity on polyanions is σA ¼1�α, the volume fraction of bound ions is

ϕb
þ ¼ αϕAωþ=ωA, and the fraction of free cations is ϕf

þ ¼ϕþ�ϕb
þ. Ion

binding can be conceived as a reversible reaction of the form24,26

Að Þþ þð Þ Ð
ΔGeff

Aþ
Aþð Þ, ð1Þ

where ΔGeff
Aþ is an effective free energy governing the binding equilib-

rium. It contains a local contribution denoted ΔGAþ and a nonlocal

contribution due to electrostatic interactions.

The explicit expression for ΔGeff
Aþ is derived from the solution free

energy density f which consists of four additive terms in our model,

f� v0F
VkBT

¼ ftransþ fcombþ fbindþ fel: ð2Þ

The first term ftrans is the mixing entropy for all species that can be

freely “translated,”

ftrans ¼ ϕA

ωANA
ln ϕAð Þþϕf

þ
ωþ

ln ϕf
þ

� �þϕ�
ω�

ln ϕ�ð ÞþϕWln ϕWð Þ, ð3Þ

where ϕW ¼1�ϕA�ϕþ�ϕ� is the volume fraction of solvent that

enforces the incompressibility constraint. The second term fcomb is a
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combinatorial factor accounting for the number of ways to pair cat-

ions with unbound monomers, which reads25,34,39

fcomb ¼ ϕA

ωA
αln αð Þþ 1�αð Þln 1�αð Þ½ �: ð4Þ

The third term fbind is the total local binding free energy, given by the

product between ΔGAþ and the fraction of bound ions,

fbind ¼ αϕA

ωA
ΔGAþ: ð5Þ

This local term captures the short-range interactions that contribute

to the equilibrium of ion binding.24–26 It may be attributed to pertur-

bations in water solvation shells upon binding, the local permittivity

around bound charge centers,39 or the chemical details of polyanions

and cations.45 For our purpose, it suffices to treat ΔGAþ as a model

parameter with value of order kBT.

The fourth term fel is the electrostatic interaction of the fluctu-

ating charge density, which is treated at the level of RPA.25,34,35

The procedure for deriving it is discussed in Appendix S1, and the

result is

fel ¼ 1
4π2

ð∞

0
dqq2ln 1þκ2 qð Þ

q2

� �
, ð6Þ

κ2 qð Þ�4πlB eΩ� qð Þþ eΩf
þ qð Þþσ2A eΩA qð Þ

� �
: ð7Þ

Here, the integration is performed over the dimensionless

wavenumber q. The dimensionless Bjerrum length is defined as

lB � e2= 4πεkBTl0ð Þ, which defaults to lB ¼2:29 for an aqueous solution

at room temperature. The term κ qð Þ may be interpreted as the inverse

of a wavenumber-dependent screening length.

The factors eΩi qð Þ are the ideal intramolecular correlation func-

tions for anions, unbound cations, and polyanions, given by

eΩ� qð Þ¼ϕ�
ω�

Γ̂2
� qð Þ, ð8Þ

eΩf
þ qð Þ¼ϕf

þ
ωþ

Γ̂2
þ qð Þ, ð9Þ

eΩA qð Þ¼ ϕA

ωA
NAgA qð ÞΓ̂2

A qð Þ: ð10Þ

The terms Γ̂i qð Þ¼ exp �q2a2i =2
� �

(i¼A, þ, and �) are the Fourier

transforms of Gaussian smearing functions for point-like charges, with

ai being the smearing width. The smearing functions regularize the

high-q divergence of the electrostatic interaction between over-

lapping point-like charges.25,43,46–48 For nonassociating systems, such

smearing can be avoided by absorbing the divergence into the self-

energy of ions, which represents the free energy cost for transferring

isolated ions into the solution.35 For associating systems, explicit

inclusion of smearing functions is essential because, not knowing the

charge density of each species a priori, removal of the self-energy is

impossible.25 Larger values of the smearing widths weaken electro-

static interactions, altering the quantitative results from the model;

throughout this work, we set ai to the radius of the mono-

mers, ai ¼ω1=3
i =2.

The polyanion correlation function eΩA qð Þ describes the conforma-

tional properties of the ideal chains through the form factor gA qð Þ. For
Gaussian coils, the form factor is the Debye function

gD xð Þ¼ 2
x2 x�1þe�xð Þ, with x¼ q2R2

g and Rg being the radius of gyra-

tion.49,50 For rod-like chains, the form factor is the Neugebauer func-

tion gN xð Þ¼ 2
x

Ð x
0dt

sin tð Þ
t � 1�cos xð Þ

x

� �
with x¼ qL and L being the

backbone length.51 More general cases for chains with arbitrary inter-

nal connectivity have been considered.35

In this work, to allow for adaptive chain structures in response to

varying degrees of ion binding, we model the polymers as worm-like

chains (WLC). Although the exact WLC form factor is known,52,53 to

avoid cumbersome algebra, we adopt a form that interpolates the

rod- and coil-like behaviors in the short- and long-chain limits,

respectively,42,43

gA q;ℓAð Þ¼ e�qℓA=2

1þq2NAbAℓA=6
þ 1�e�qℓA=2

1þqNAbA=π
: ð11Þ

Here, bA is the segment length for the polyanions and is set to l0 in

this work. The effective persistence length ℓA is a model parameter,

which controls the crossover between rod- and coil-like behaviors.

Equation (11) reduces to coil-like scaling for small ℓA, and to rod-like

scaling for large ℓA. The value of ℓA is found by minimizing the free

energy of a single chain subject to screened electrostatic interactions,

as described below.

2.2 | Self-consistent treatment of ion binding and
chain structure

The two model parameters α and ℓA are coupled. The degree of ion

binding α depends on the electrostatic contribution to the free energy,

which in turn depends on ℓA. Reversely, the effective persistence

length ℓA depends on the strength of intrachain repulsion,43,54,55

which in turn depends on charge density or, identically, α. We thus

need to fix these two parameters simultaneously by minimizing the

total solution free energy.

Minimizing Equation (2) by setting ∂f=∂α¼0 yields a law of mass

action governing the ion binding equilibrium23–26,34,39,56

KAþ � α

1�αð Þϕf
þ
¼ e�ΔGAþ�μelAþþ1, ð12Þ

in which KAþ is the equilibrium constant. This condition amounts to

equating the chemical potentials of the free and the bound ions.26

The sum ΔGAþ þμelAþ�1 is precisely the effective binding free energy
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ΔGeff
Aþ introduced in Equation (1). It contains the local contribution

ΔGA, and the nonlocal contribution μelAþ defined by

μelAþ �ωA

ϕA

∂fel
∂α

¼� 1
4π2

ð∞

0
dqq2 eG qð Þ Γ̂2

þ qð Þþ2σANAgA q;ℓAÞΓ̂2
A qð Þ

� �
,

�
ð13Þ

where the screened interaction eG qð Þ is defined as eG qð Þ� 4πlB
q2þκ2 qð Þ,

and κ qð Þ is given by Equation (7). Equation (13) depends on the

solution composition, Bjerrum length, degree of ion binding, and

chain length and stiffness. It is equal to the difference in the excess

chemical potentials of the bound and the free ions,26 and can be

referred to as the electrostatic exchange chemical potential. This

term measures the free energy cost of ion binding due to screened

electrostatic interactions, or alternatively, the reduction in the

self-energy of ions.25 The structure of the chains influences μelAþ
through κ2. More flexible, compact chains, corresponding to larger NA,

smaller bA, or smaller ℓA, exhibit greater (more negative) values of

μelAþ, particularly in the dilute regime when charges are weakly

screened.25

Equation (12) gives α for a fixed chain structure. To optimize the

chain structure, we adopt the main result of the RGF theory,43,44

which expresses the single chain free energy in terms of a sum of

the entropic work of deforming the chain Fent, and the screened

electrostatic interactions Fint. Since both contributions depend on

the persistence length ℓA, we can obtain the optimal value by

minimization43

min
ℓA

FentþFint½ �: ð14Þ

However, unlike the original RGF treatment,43 the optimization over ℓA is

coupled to the degree of ion binding through the dependence of Fint

on α. The entropic part in the single-chain free energy was deduced

from force-extension relations of semiflexible polymers43,57–59

Fent ¼�3
2
NAln 1� γ2A

NA

� �
�3ln γAð Þ: ð15Þ

Here, γA is the swelling ratio for the mean-squared end-to-end dis-

tance defined as γ2A ¼
R2
Ah i

R2
A,0h i¼2ℓA

bA
1� ℓA

NAbA
1�e�NAbA=ℓA
� �h i

. The value

of γA ranges from unity at small ℓA, corresponding to the ideal, coil-

like limit, to N1=2
A at infinitely large ℓA, for fully extended, rod-like

chains. The interaction term accounts for the screened intrachain

electrostatic interactions, and has the form43

Fint ¼ 1
4π2

ð∞

0
dqq2σ2A eΩA q;ℓAð ÞeG qð Þ, ð16Þ

which can be derived by integrating the gA-dependent term in Equa-

tion (13) over α, that is, through a charging process.

Equations (12) and (14) are coupled, and must be solved self-

consistently to determine the optimal values of α and ℓA, which are

then plugged into the solution free energy, Equation (2), to investigate

the thermodynamic behavior.

2.3 | Coupling between ion binding and chain
swelling

We demonstrate the coupling between ion binding and chain confor-

mation by exploring the effects of polymer concentration and Bjerrum

length. For simplicity, in the following, we set the volumes of ions and

monomers to v0, and use ωi ¼1. Although the local binding free

energy ΔGAþ is independent of molecular weight, the electrostatic

exchange potential Equation (13) is proportional to NA. Similarly, the

RGF self-interaction energy Equation (16) depends on chain length

and scales as NAln NAð Þ in the rod-like limit.43

Figure 1 shows the variation of the optimal binding fraction and

the swelling ratio with polymer concentration for a range of chain

(A) (B)

F IGURE 1 Variation of (A) the fraction of bound ions α and (B) the chain expansion factor γA with polymer composition and chain length in
salt-free solutions. The expansion factor plateaus in the dilute limit. The scaling of the plateau value with molecular weight is shown in the inset
of panel (B). Parameters: ϕS ¼0, ΔGAþ ¼�3, bA ¼1
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lengths. Although no extra salt is added (ϕS ¼0), counterions are pre-

sent in the solution to maintain charge neutrality. The binding fraction

α increases with ϕA, consistent with the requirement of Le Chatelier's

principle. The swelling ratio γA decreases with polymer concentration

due to electrostatic screening. Both properties are independent of

molecular weight for ϕA > 10
�4. In this regime, the ratio γA approaches

the Gaussian coil limit γA ¼1, and α approaches the asymptotic behav-

ior α≈1� ϕþe1�ΔGAþ
� ��1=2

, since μelAþ is small when the binding frac-

tion is large (Equation (12)).

The effects of molecular weight are pronounced at low

concentrations. The binding fraction drops to zero at sufficient

dilution, and the crossover concentration is higher for smaller NA

values. The swelling ratio increases with the degree of dilution,

and eventually plateaus to an NA-dependent value. The concentration

at which the swelling ratio plateaus is higher for smaller NA, and

is close to the crossover concentration when the binding fraction

nearly vanishes. In this limit, chains are fully charged and adopt

rod-like conformations. The plateau value of the chain expansion

factor γ*A is plotted against molecular weight in the inset of Figure 1B.

The scaling γ*A �N1=2
A affirms rod-like conformations of the chains

(RA �NA).

To further illustrate the coupling between chain expansion

and ion binding, we examine the effects of Bjerrum length. A

nonmonotonic swelling behavior has been observed in salt-free

polyelectrolyte solutions suggesting that,39,60–62 with increasing

lB, flexible polyelectrolytes initially expand due to intrachain repul-

sions, then collapse at high lB values when a large fraction of ions

become bound. This behavior is captured by our model, as shown

in Figure 2, for different values of ΔGAþ. The initial expansion as

lB increases is expected. The collapse for lB≳3 is caused by the

increase in ion binding, as clearly shown in the inset. This type

of swelling and deswelling behaviors has been identified in the previ-

ous work.32,39

2.4 | Osmotic pressure

We present results on the osmotic coefficient in this section. To high-

light the effects of structural adaptation, we also calculate this prop-

erty for chains with fixed rod- or coil-like structures. For consistency,

we use the interpolated structure factor, Equation (11), for these two

reference cases, instead of the Debye or Neugebauer functions. The

persistence length ℓA is set to NAbA for rod-like chains, and to bA=2

for coil-like chains.43

The osmotic pressure of a multicomponent solution is derived

from the exchange chemical potentials of solutes fi ¼ ∂f=∂ϕi as

Π¼P
iϕif i� f ¼�μW, where f is the solution free energy and μW is

the chemical potential of the solvent. The osmotic coefficient is the

ratio of Π to the prediction of van't Hoff's law,

Φ¼ ΠP
i
ϕi
Ni

, ð17Þ

In the dilute limit, if the excess chemical potential of the solvent is

regular, the osmotic coefficient approaches unity. However, due to

ion-binding, the osmotic coefficient depends on the binding fraction

α.63 If we assume the excess chemical potentials μexi and μexW decay to

zero sufficiently rapidly in the dilute regime, the osmotic pressure can

be written Π¼ϕA=NAþϕf
þ. In a salt free solution with ϕþ ¼ϕA, we

have Φ¼1� αNA
1þNA

, or Φ¼1�α for long chains. It then follows that the

binding free energy and treatment of chain structure affect the limit-

ing value of Φ by modulating the value of α.

The behavior of the osmotic coefficient at higher concentrations

has been subject of much discussion. Treating polyelectrolytes as flex-

ible chains at the RPA level produces excessively strong composition

fluctuations, resulting in a negative osmotic pressure and thermody-

namic instability.19 Simulations have found that the osmotic coeffi-

cient reaches a plateau less than one, and attributed that behavior to

the binding of counterions on polymers.64,65 Similar behavior has also

been predicted by the RGF theory in absence of ion binding, and was

rationalized based on the correlation free energy of semidilute rod-

like chains.43

Figure 3A shows our results for chains of length NA ¼10 and

NA ¼106 respectively. The results for the rod-like and adaptive chains

are essentially identical, suggesting that the adaptive chains are

adopting rod-like conformations in this concentration range. Further,

consistent with previous work,19 a dip is found near ϕA ¼0:01, which

is more pronounced for the coil-like case and even becomes negative

for NA ¼106. In the dilute limit (within the range explored), the result

for Φ for short chains approaches unity, whereas that for the long

chains approaches a plateau value less than one.

The plateauing behavior has been reported previously43,64,65 and,

within our model, may be understood by explicitly considering the degree

of ion binding (Figure 3B). For concentrations ϕA > 10
�4, the binding

fraction α strongly depends on the value of ϕA and the strength of

electrostatic interactions.25 At lower concentrations, α reaches the

limiting values that depend on both chain length and conformation.

A positive binding fraction implies that the number of free ions is less

F IGURE 2 Variation of the chain expansion factor γA with the
Bjerrum length lB, for different values of binding strength ΔGAþ. The
degree of ion binding α over the same range of Bjerrum lengths is
shown in the inset. Parameters: ϕA ¼10�5, ϕS ¼0, NA ¼100, bA ¼1
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than the stoichiometric value ϕþ, which lowers the value of osmotic

coefficient. Therefore, a negative correlation is expected between the

osmotic coefficient and the binding fraction. For NA ¼10, the binding

fraction α!0 implies a limiting value of Φ¼1. For NA ¼106 and a

coil-like structure, the binding fraction α!1 implies a limiting value

of Φ¼0. For NA ¼106 with rod-like or adaptive structures, which are

nearly indistinguishable, a finite value is found for both α and Φ. The

plateau value for the osmotic coefficient is less than the limit Φ¼
1�α≈0:7 expected based on van't Hoff's law, which may be attrib-

uted to the correlation energy for stiff chains.43

2.5 | Collective structure factor

A notable feature of polyelectrolyte solutions is a scattering

peak at a nonzero wavenumber19,32,66 in the collective structure

function at dilute and semidilute concentrations. This feature is

tied to electrostatic correlations, and the peak wavenumber

qm increases with concentration until disappearing in the concen-

trated regime. By coupling the optimized structure factor with the

standard RPA treatment for composition fluctuations, we obtained

the collective solution structure factor for all pairs of species

among ions, polyions, and the solvent (Appendix S1). Here, only

the result on the polymer density–density correlation function,

SA qð Þ¼ δρA qð ÞδρA �qð Þh i, is presented, which exhibits the salient

scattering peak.

Figure 4A shows the results for long chains (NA ¼106) in the

weak binding (ΔGAþ ¼0) limit, treated using different structural

models. Solid, dashed, and dotted lines are results at dilute, intermedi-

ate, and concentrated concentrations. Similar to the case of the

osmotic coefficient, the results for rod-like and adaptive structures

are nearly identical. We focus on the location of the scattering peak,

(A) (B)

F IGURE 3 Variation of (A) osmotic coefficient Φ and (B) bound ion fraction α with polymer concentration for rod-like, coil-like, and adaptive
structures. Solid lines: NA ¼10; dashed lines: NA ¼106. Parameters: ϕS ¼0, ΔGAþ ¼0, bA ¼1, ωA ¼ωþ ¼ω� ¼1

(A) (B)

F IGURE 4 Structure factor in salt-free polyelectrolyte solution: (A) variation of polymer–polymer density correlation function SA with
wavenumber q, and (B) variation of peak position qm with polymer concentration, for rod-like, coil-like, and adaptive structures. In panel (A): ϕA ¼
10�8 (solid lines), ϕA ¼10�5 (dashed lines), and ϕA ¼10�2 (dotted lines). Parameters: ϕS ¼0, ΔGAþ ¼0, NA ¼106, bA ¼1, ωA ¼ωþ ¼ω� ¼1
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while noting that the peak intensity is higher for the coil-like case and

decreases as concentration increases.

The peak position increases with concentration, as shown in

Figure 4B. The previous work has suggested that qm �ϕν
A with vari-

able scaling exponent ν: ν¼1=3 in the dilute regime, ν¼1=2 in the

intermediate regime, and ν¼1=4 in the concentrated regime.19 The

exponent ν¼1=3 is related the interchain distance. The other two

scales have been extensively discussed.19 Our results for coil-like

chains obey these scaling relations quite well, though with a slightly

smaller exponent at intermediate concentrations. However, no clear

crossover between dilute and concentrated scalings is observed for

rod-like chains. We posit that this difference in the scaling behavior is

related to a general trend we observed, that is, flexible, coil-like chain

structures produce too strong an electrostatic correlation at low con-

centrations. We would expect stiffer chains to thus transition from

concentrated scaling to dilute scaling quicker, as their interactions are

weaker at low concentration.

3 | COACERVATION OF ADAPTIVE
CHAINS

In this section, we extend our model to mixtures of polyanions and

polycations, and study how adaptive chain structure affects the coac-

ervation of polyions. The treatment of structural adaptation is analo-

gous to that for solutions of single polyelectrolytes. However, since

we allow for ion pairing between polyanions and polycations, the

combinatorial and electrostatic free energies are different.

3.1 | Free energy with polyanion-polycation
binding

We consider a solution consisting of polyanions, polycations, cation,

and anions, denoted A, C, þð Þ and �ð Þ, respectively. The volume frac-

tions are ϕA, ϕC, ϕ�, and ϕþ, and the ratios of the volumes of mono-

mers and ions and the common reference are ωA, ωC, ωþ, and ω�.

Similar to the previous section, both polyanions and polycations are

assumed to be fully ionized. Three types of ion binding are considered,

symbolized as24,26

Að Þþ þð Þ Ð
ΔGeff

Aþ
Aþð Þ,

Cð Þþ �ð Þ Ð
ΔGeff

C�
C�ð Þ,

Að Þþ Cð Þ Ð
ΔGeff

AC

ACð Þ:

ð18Þ

In full analogy with Equation (1), the first two lines of the above refer

to the binding of polymers with their respective counterions, and the

third line refers to the formation of interchain ion pairs between

oppositely charged polyions.

The fractions of polyanion or polycation monomer units harbor-

ing bound cation or anion are denoted αAþ and αC�. The fractions of

polyion monomers that are not bound to small ions but form

interchain ion pairs are denoted βA and βC. The net charge densities

of the polyions are related to the degrees of ion binding as σA ¼
1�αAþð Þ 1�βAð Þ and σC ¼ 1�αC�ð Þ 1�βCð Þ. The fractions of the

bound ions are given as ϕb
þ ¼ αAþϕAωþ=ωA and ϕb

� ¼ αC�ϕCω�=ωC.

Those of the free ions are then obtained from ϕf
þ ¼ϕþ�ϕb

þ and

ϕf
� ¼ϕ� �ϕb

�. The values of αAþ, αC�, βA and βC are determined

from the equilibrium conditions of the “reactions” in Equation (18),

which in turn are governed by a set of reaction free energy

changes ΔGeff
Aþ, ΔGeff

C�, and ΔGeff
AC. Similar to Equation (1), these

free energy terms contain both local and long-range electrostatic

contributions.

The solution free energy density depends on the stoichiometric

composition and the degree of ion binding, and is a sum of four addi-

tive terms

f¼ ftransþ fcombþ fbindþ fel: ð19Þ

This decomposition is identical to Equation (2) and is reproduced here

for convenience. In general, if the quality of the solvent is needed to

fit experimental data,67,68 a Flory–Huggins free energy term can be

added. The first term ftrans accounts for the mixing entropy, and is

given by

ftrans ¼ ϕA

ωANA
ln ϕAð Þþ ϕC

ωCNC
ln ϕCð Þþϕf

þ
ωþ

ln ϕf
þ

� �þϕ�
ω�

ln ϕ�ð Þ
þϕWln ϕWð Þ, ð20Þ

in which ϕW ¼1�ϕA�ϕC�ϕþ �ϕ� is the volume fraction of solvent.

The second term fcomb includes the entropy of arranging both

bound small ions and interchain cross-links among monomers on the

polyions, and can be further decomposed into three terms,

fcomb ¼ fAþþ fC�þ fAC. Here, fAþ and fC� describe cation binding

along the polyanion and anion binding along the polycation,

fAþ ¼ϕA

ωA
αAþln αAþð Þþ 1�αAþð Þln 1�αAþð Þ½ �: ð21Þ

fC� ¼ϕC

ωC
αC�ln αC�ð Þþ 1�αC�ð Þln 1�αC�ð Þ½ �: ð22Þ

The term fAC arises from the arrangement of ion pairs between

the polyelectrolytes and the probability of forming ion pairs,

given by,24,56

fAC ¼ 1�αAþð ÞϕA

ωA
βAln βAð Þþ 1�βAð Þln 1�βAð Þ½ �

þ 1�αC�ð ÞϕC

ωC
βCln βCð Þþ 1�βCð Þln 1�βCð Þ½ �

�βC 1�αC�ð ÞϕC

ωC
ln βC 1�αC�ð ÞϕC

ωAþωC

ωC

� �� �
:

ð23Þ

The first two lines on the right-hand side describe the arrangement of

pair-sites on polymers, while the last term accounts for the binding

probability.
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The third term fbind incorporates specific binding free energies of

the reversible charge association reactions, scaled by the fractions of

bound ions and respective volume fractions of polyelectrolytes, which

is given by

fbind ¼ αAþϕA

ωA
ΔGAþ þαC�ϕC

ωC
ΔGC�þ 1�αC�ð ÞβCϕC

ωC
ΔGAC: ð24Þ

We stress that while each binding free energy above (ΔGAþ, ΔGC�, or

ΔGAC) captures the local interactions around bound charges, the

extents of association reactions also depend on the long-range, partic-

ularly electrostatic, interactions.

The final contribution to the free energy, fel, is due to long-range

electrostatic correlations, and again treated at the RPA level. This is

given as

fel ¼ 1
4π2

ð∞

0
dq q2ln 1þκ2 qð Þ

q2

� �
, ð25Þ

and is formally identical to Equation (6), although the inverse screen-

ing length κ qð Þ now contains the structure factor contribution eΩC from

the polycations. Both polyanions and polycations are described by

interpolated WLC form factors, Equation (11), with respective persis-

tence lengths ℓA and ℓC. The dependence on the interchain ion

pairing in fel is solely through the effective charge density of the

chains. Intermolecular correlations that depend on the network struc-

ture of cross-linked polymers23,69 are neglected.

3.2 | Coupled binding equilibrium and adaptive
chain structures

The variables capturing the degrees of ion binding, αAþ, αC�, βA,

and βC, and those capturing the stiffness of chains, ℓA and ℓC,

are determined following a procedure similar to Section 2. If we

mandate that ion pairing occurs under 1:1 stoichiometry, βA and βC

are related by

ϕA

ωA
1�αAþð ÞβA ¼

ϕC

ωC
1�αC�ð ÞβC: ð26Þ

Minimizing the free energy with respect to the binding variables, sub-

ject to the above constraint, yields a set of coupled laws of mass

action:

KAþ � αAþ
1�βAð Þ 1�αAþð Þϕf

þ
¼ e�ΔGAþ�μelAþþ1, ð27Þ

KC� � αC�
1�βCð Þ 1�αC�ð Þϕf

�
¼ e�ΔGC��μelC�þ1, ð28Þ

KAC � βAωC

1�βAð Þ 1�βCð Þ 1�αC�ð ÞϕC ωAþωCð Þ¼ e�ΔGAC�μelACþ1: ð29Þ

Above, KAþ, KC� and KAC are analogous to Equation (12). The

interchain binding constant KAC is expressed in terms of ϕC, which

can be equivalently written in terms of ϕA using the stoichiometry

constraint, Equation (26). The electrostatic exchange potentials appe-

aring in Equations (27)–(29) are operationally defined as

μelAþ ¼ωA

ϕA

∂fel
∂αAþ

, ð30Þ

μelC� ¼ωC

ϕC

∂fel
∂αC�

, ð31Þ

μelAC ¼
ωC

ϕC

∂fel
∂βC

: ð32Þ

The full expressions are given in Appendix S1. Their contributions to

the binding equilibrium are included in the “effective” binding free

energies introduced in Equation (18), that is, ΔGeff
i �ΔGiþμeli �1

for i¼ Aþð Þ, C�ð Þ, ACð Þ.
The laws of mass action defined above can be solved directly for

chains with fixed structure in order to determine ion binding extents

and calculate coacervation phase diagrams.24,26,68 To incorporate

adaptive chain stiffness, we use the same variational approach as in

Section 2. The optimal persistence lengths for the polyanions and

polycations are obtained by minimizing the chain deformation free

energies, that is,

min
ℓA

Fent,AþFint,A½ �, ð33Þ

min
ℓC

Fent,CþFint,C½ �: ð34Þ

Here, the entropic and interaction contributions are identical to Equa-

tion (15) and Equation (16), once the appropriate molecular parame-

ters for polyanions and polycations are substituted.

The above laws of mass action (Equations (27–29)), the condi-

tions for optimal chain persistence length (Equations (33) and (34)),

and the ion pairing stoichiometry constraint represent six coupled,

nonlinear equations to be solved self-consistently for any given

composition and model parameters. The same feedback between

ion binding and chain flexibility discussed in Section 2 is expected

here—coulombic interactions drive chain expansion through Fint,A and

Fint,C, and promotes ion binding through the electrostatic exchange

potentials μeli . The resulting interplay of these effects is explored

below.

3.3 | Coacervation phase diagrams

We follow the literature70,71 to determine the coexistence condition

between the supernatant phase, denoted phase 1, and the polymer-

rich coacervate phase, denoted phase 2. It amounts to equating the

osmotic pressure and the exchange electrochemical potentials of the
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cations, anions, polycations, and polyanions, that is, Π 1ð Þ ¼Π 2ð Þ and

f 1ð Þ
i ¼ f 2ð Þ

i þσiΨ=ωi, (i¼A,C, þ ,�). Here fi � ∂f=∂ϕi, and Ψ is the Gal-

vani potential needed to ensure charge neutrality.70 This approach is

equivalent to the standard common-tangent construction.

To specify the compositions of the two coexisting phases for a

given bulk composition ϕ 0ð Þ
i , 10 variables must be fixed: 8 composi-

tions, ϕ 1ð Þ
i and ϕ 2ð Þ

i , the Galvani potential Ψ, and mass ratio of the two

phases ν. The 10 equations needed include five conditions on the

osmotic pressure and the exchange electrochemical potentials intro-

duced above, two charge neutrality conditions in both phases, and

three independent mass-balance conditions, ϕ 0ð Þ
i ¼ 1�νð Þϕ 1ð Þ

i þνϕ 2ð Þ
i .

These equations are solved using Newton's method. Mapping out the

coexisting compositions while screening the amount of added salt,

analogous to the procedures used in experiment,68 generates the

binodal diagrams.

The additional challenge in our model is that the laws of mass

action, Equations (27)–(29), need to be solved to determine the bind-

ing parameters αAþ, αC�, βA, and βC, and that the chain deformation

free energies, Equations (33) and (34), need to be minimized to deter-

mine the persistence lengths ℓA and ℓC. These inner optimizations are

embedded into the free energy calculations for both the supernantant

and coacervate phases, allowing for simultaneous determination of

binding equilibrium, chain flexibility, and phase coexistence.

To highlight the effects of the ion binding equilibrium and adap-

tive chain structure on coacervation behavior, we consider solutions

that are symmetric in cations and anions, and in polycations and

polyanions. Figure 5 shows the binodal diagrams for solutions with

NA ¼NC ¼100, ωA ¼ωC ¼5, and ωþ ¼ω� ¼1, over a range of binding

free energies. The segment lengths are set to bA ¼ω1=3
A and bC ¼ω1=3

C .

The reference curves with fixed structures are obtained with constant

persistence lengths ℓi ¼Nibi and ℓi ¼ bi=2 (i¼A,C) for rod- and coil-

like chains. The values of binding free energies are given in the figure

caption. In all cases, we set ΔGAþ þΔGC� ¼ΔGAC, which does not

penalize or promote interchain binding at the cost of small ion bind-

ing.1,22,26,45 Evidently, this set of symmetric parameters implies that

α¼ αAþ ¼ αC�, β¼ βA ¼ βC and, consequently, σ¼ σA ¼ σC.

In the weak binding case, the binodal curves in Figure 5A show a

clear dependence on chain conformation. The results for the adaptive

and rod-like chains are nearly indistinguishable, whereas those for the

coil-like chains show a wider two-phase window, in accordance with

our results in Section 2 and with the literature.44 The inset shows that,

for the coil-like chains, the polymer concentration in the supernantant

is orders of magnitude lower than the rod-like counterparts, which is

consistent with predictions of the RPA theory.37 However, the poly-

mer concentrations in the supernatant phase calculated for coil-like,

rod-like, or adaptive chains are far lower than experimental

values.67,68

As the binding strength is increased, the two-phase window

widens and, more interestingly, the differences in binodal curves cal-

culated using the three chain structures diminish, as shown in

Figure 5B,C. To understand this behavior, we examine the degree of

ion binding α and interchain ion pairing β along the coexistence cur-

ves. The results for the adaptive chains, calculated using the same set

of binding parameters as in Figure 5, are plotted against the concen-

tration of the added salt in Figure 6. Similar results for the rod- and

coil-like chains are shown in Figure S1. We find that overall the

degree of binding increases as the binding strength increases, and that

the values of α are greater in the supernatant than the coacervate,

whereas the reverse is true for the interchain binding fraction β.

Moreover, α progressively increases with increasing salt concentration

while β decreases, implying that interchain cross-links are displaced

with adsorbed small ions.1,45

From the binding curves shown in Figure 6, the charge density of

the polyelectrolytes can be calculated using σ¼ 1�αð Þ 1�βð Þ. The
results are shown in Figure 7 for the model with adaptive chains (the

results for rod-like and coil-like chains can be found in Figure S2).

With weak binding energies, the charge densities fall in the range of

σ ≈0:5�0:8 for both phases. With stronger binding energies, the

charge densities decrease and drop to nearly zero eventually, regard-

less of chain structure. As the charge density decreases, the electro-

static contribution to the free energy Equation (25) also decreases,

which further reduces the electrostatic contribution to the binding

equilibrium (Figure S3). On the other hand, the local binding contribu-

tion Equation (24) scales with the binding energies. Therefore, in the

strong binding regime, the solution free energy is dominated by the

local binding contributions, the electrostatic correlation term dimin-

ishes, and the chain conformational properties become irrelevant, as

shown in Figure 5C.

(A) (B) (C)

F IGURE 5 Coacervation phase diagrams for symmetric solutions in the salt (y axis) vs. polymer (x axis) plane. The binding parameters are
chosen such that ΔGAþ ¼ΔGC� and ΔGAþþΔGC� ¼ΔGAC, with (A) ΔGAC ¼�2, (B) ΔGAC ¼�4, and (C) ΔGAC ¼�8. Parameters: NA ¼NC ¼100,
ωA ¼ωC ¼5, ωþ ¼ω� ¼1
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The above argument is further corroborated by examining the

swelling behavior of polymers. Figure 8 shows the expansion factors

(γ¼ γA ¼ γC) for different binding strengths. In all cases, the expansion

factor is higher in the supernatant phase because it is more dilute, in

agreement with prior results from the RGF theory.44 For weak bind-

ing, it is clear that chains are strongly expanded in both phases. With

increasing binding strength, the chain expansion factor decreases, and

approaches unity in the strongly binding limit, particularly in the coac-

ervate branch at high salt concentrations. This is a result of the greatly

reduced charge density and electrostatic intrachain repulsion.

4 | CONCLUSIONS

We introduced a model for polyelectrolyte solutions that treats ion

binding, interchain binding, and adaptive chain structure simulta-

neously. The model captures chain expansion in dilute solutions and

the nonmonotonic dependence on the Bjerrum length, in accordance

with the previous theoretical results.39,43 We found that, over a wide

range of solution compositions, the behavior of polyelectrolytes with

adaptive chain structures is similar to those with fixed rod-like struc-

tures, including the osmotic coefficient (Figure 3), the collective struc-

ture factor (Figure 4), and the coacervation phase diagrams (Figure 5).

It suggests that the rod-like theory can be used in place of the adap-

tive theory for practical calculation, especially for long chains.

Two regimes in coacervation behavior were identified, depending

on the strength of local ion binding. In the weak binding regime, the

charge density of the polyelectrolytes is high, resulting in strong elec-

trostatic interactions. The width of the coacervation window for more

flexible, coil-like chains is wider than for stiff, rod-like chains. In the

strong binding regime, polyelectrolytes tend to be neutralized by

either counterions or chains carrying opposite charges, resulting in

weak electrostatic correlations and a minor dependence on chain

structure. This regime is similar to that predicted by transfer matrix

formalism for strongly correlated, short-range binding.27,28 The simul-

taneous treatment of ion-binding and interchain binding allows us to

(A) (B)

F IGURE 6 Degree of (A) small ion adsorption and (B) interchain ion pairing for chains with adaptive structures along the supernatant branch
(dashed lines) and coacervate branch (solid lines) of the phase diagrams shown in Figure 5

F IGURE 7 Effective charge density for chains with adaptive
structures along the supernatant branch (dashed lines) and
coacervate branch (solid lines) of the phase diagrams shown in
Figure 5

F IGURE 8 Expansion factor for chains with adaptive structures
along the supernatant branch (dashed lines) and coacervate branch
(solid lines) of the phase diagrams shown in Figure 5
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examine the competitive charge association, which supports the

importance of ion-release mechanism, but also points to the impor-

tance of interchain crosslinking.

Several approximations are made in our model. The single chain

structure is described using an interpolated form factor, Equation (11).

The exact WLC structure factor52,53 may be used, but is not expected

to change the qualitative conclusions. More severe is the neglect of

the structural correlations of cross-linked polymers (i.e., clusters),

which may in part be responsible for the significant under-predic-

tion32,37,44 of the polymer concentration in the supernatant

phase.67,68 We will expand our theory by incorporating these effects

in the future.
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