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Abstract

Adverse weather conditions, including snow, rain, and
fog, pose a major challenge for both human and computer
vision. Handling these environmental conditions is essen-
tial for safe decision making, especially in autonomous ve-
hicles, robotics, and drones. Most of today’s supervised
imaging and vision approaches, however, rely on train-
ing data collected in the real world that is biased towards
good weather conditions, with dense fog, snow, and heavy
rain as outliers in these datasets. Without training data,
let alone paired data, existing autonomous vehicles often
limit themselves to good conditions and stop when dense
fog or snow is detected. In this work, we tackle the lack of
supervised training data by combining synthetic and indi-
rect supervision. We present ZeroScatter, a domain trans-
fer method for converting RGB-only captures taken in ad-
verse weather into clear daytime scenes. ZeroScatter ex-
ploits model-based, temporal, multi-view, multi-modal, and
adversarial cues in a joint fashion, allowing us to train
on unpaired, biased data. We assess the proposed method
on in-the-wild captures, and the proposed method outper-
forms existing monocular descattering approaches by 2.8
dB PSNR on controlled fog chamber measurements.

1. Introduction
In the presence of a scattering medium, such as fog or

snow, photons no longer propagate along a straight path but
instead are redirected by particles, potentially many times,
until arriving at the camera. This includes forward scattered
light emitted from sources in the scene, e.g., an oncoming
vehicle headlight, captured as a passive component by an
RGB camera or human eye, and backward scattering ob-
served when actively illuminating the scene, e.g., in auto-
motive lidar or with the ego-vehicle headlights. While ad-
verse weather conditions that include severe scattering are
heavily underrepresented in existing training and evaluation
datasets [45, 13, 9], these rare scenarios are a significant
contributing factor for fatal automotive accidents [4], as a
direct result of vision impairment for human drivers.

Supervised imaging and vision approaches are also fun-
damentally limited in adverse weather conditions. Adverse

*indicates equal contribution.

weather conditions follow a long-tail distribution where
such environments are rarely encountered during day-to-
day driving, making data collection, training, and evalua-
tion challenging [37]. As a result, critical computer vision
tasks such as object detection and tracking are often trained
on clear day inputs and fail to generalize when the input
scene is perturbed by adverse effects from scattering me-
dia. Even if adverse weather data is available, the scatter-
ing media would still affect the quality of human annota-
tions used for supervision. Furthermore, supervised dehaz-
ing and defogging methods are restricted by the difficulty
of acquiring paired perturbed and clear data, which is in-
feasible due to the dynamic nature of real-world automo-
tive scenes. As such, supervised training on real-world data
has been a fundamental challenge for imaging and vision in
harsh weather conditions. To tackle this problem, existing
approaches attempt to solve a domain transfer problem us-
ing simulated scattering media [35, 36, 42, 18]. However,
these simulation models do not adequately simulate the ef-
fects that are observed in the wild. Unsupervised learning
approaches have demonstrated impressive ability for image
domain transfer but remain restricted to a single domain,
e.g. faces, and small image resolutions [57, 24].

Researchers have also adopted alternative sensing
modalities beyond conventional intensity imaging, e.g. lidar
and radar, in robotic and automotive applications. However,
they do not offer a solution in backscatter-limited weather
scenarios. Specifically, pulsed lidar sensors that record the
round-trip time of the first response fail to extract meaning-
ful scene surfaces in severe snow and fog, fundamentally
limited by backscatter [5], and indeed trail the performance
of RGB stereo depth methods [16] in dense fog. While the
mm-wavelengths of radar systems penetrate dense fog, ex-
isting radar systems are limited to low angular resolution,
and hence do not allow for scene understanding tasks be-
yond the detection and tracking of objects with a large radar
cross-section [27]. At the same time, RGB intensity cam-
eras have become a ubiquitous sensor technology because
of their low-cost and high spatial resolutions up to 250 MPix
in modern commodity sensors [38], deployed across appli-
cation domains from miniature smartphone cameras to au-
tomotive imaging systems. As such, in this work, we ad-
dress the task of imaging through scattering media using
conventional RGB cameras.
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Figure 1: Scattering stemming from snow, rain, or fog significantly reduces the perceptible quality of RGB captures and
impact downstream computer vision tasks such as object detection. The proposed method, which we dub “ZeroScatter”,
reliably removes these scattering effects for unseen automotive scenes.

We tackle this challenge by proposing ZeroScatter, a
novel domain transfer method that converts RGB images
corrupted by adverse weather effects into clear day scenes.
To do this, we exploit a variety of training signals in order to
achieve robust descattering performance on real-world ex-
amples. First, we employ a synthetic weather model us-
ing cycle consistency training. Second, we employ tem-
poral and multi-view consistency to ensure stable model
performance and to eliminate spurious adverse weather ef-
fects such as snowflakes, leveraging an adverse weather
dataset [5]. Third, we employ multi-modal supervision us-
ing auxiliary data acquired by gated imagers [17]. Gated
imaging is an emerging time-of-flight imaging technology
that records photons with specific return times which allows
it to image objects at select distances. This imaging modal-
ity is less susceptible to path lengths and provides higher
contrast training signal for ZeroScatter. All of these train-
ing cues enable ZeroScatter to reliably reconstruct RGB
captures that have been corrupted by adverse weather. For
quantitative evaluation, we evaluated ZeroScatter on scenes
with synthetically generated and laboratory generated ad-
verse weather where we demonstrate 2.8 dB PSNR im-
provement over state-of-the-art methods.

Specifically, we make the following contributions:

• We propose a novel domain adaptation method which
we call ZeroScatter for eliminating scattering media
from conventional RGB captures, operating at real-
time frame rates of 20 FPS.

• We employ a novel combination of synthetic and real-
world data to train ZeroScatter with unpaired, biased
datasets. To this end, we incorporate model-based cues
jointly with multi-modal, multi-view, temporal and ad-
versarial cues.

• In addition to qualitative improvements on real-world
captures, we outperform state-of-the-art methods in
controlled fog-chamber evaluation. Our method also
outperforms state-of-the-art object detection in harsh
weather at long distances.

2. Related Work
Descattering A variety of image descattering techniques
have been proposed in recent years. Several works have
been proposed for single dedicated tasks such as dehaz-
ing [8, 29, 35, 36, 40], removing rain [21, 11, 53, 39, 52, 56,
48], removing snow [34], and translating night to day [56].

Earlier descattering approaches that employed convolu-
tional neural networks (CNNs) [8, 36] learned the scatter-
ing effects as a residual image by separately estimating the
airlight and the transmission. However, this disjoint learn-
ing approach can amplify prediction errors. Li et al. [29]
proposes to learn both parameters in an end-to-end fash-
ion by inverting the image formation model. Similar ap-
proaches have been proposed for removing rain [11, 48].
These methods demonstrate strong performance through
their explicit image formation models., but are difficult
to apply to other adverse weather types. Recent meth-
ods [35, 21] directly learn the desired descattering without
a prescribed image formation model. These methods are
trained entirely using synthetically simulated weather con-
ditions, and therefore struggle with real-world scenes.

Domain Adaptation The recent development of GAN ar-
chitectures [51, 40] has demonstrated impressive results for
image translation. However, most of these methods require
paired simulated data consisting of full pixel-wise ground
truth images for supervised training.

Methods that do not require paired ground truth [10, 55,
50] are based on CycleGAN [57]. While this allows for
better training stability, it is difficult to learn both directions
of the cycle, specifically the descattering and re-scattering
processes. We alleviate these limitations for ZeroScatter by
employing a novel cycle training approach where we train
the descatterer but utilize a fixed adverse weather simula-
tor for the reverse direction of the cycle. Furthermore, our
use of temporal, multi-view, and multi-modal supervision
improves ZeroScatter’s generalization to real-world inputs
over methods that do not utilize additional cues.

Weather Simulation and Datasets Adverse weather
simulation techniques have been developed for snow-
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fall [34], rainfall [19, 18], blur [28], fog [31, 12, 43],
night driving [44, 32], and raindrops on the windshield
[47]. Most datasets [43, 46, 1, 54, 31, 30] are based on
Koschmieder’s physical model [26]. These techniques over-
lay clear weather images with one type of adverse weather
perturbation to create paired examples for supervised train-
ing. Very few datasets contain real-world adverse weather
scenes [2, 3, 30, 16]. RESIDE [30] contains 4322 real
foggy scenes obtained from the internet, along with their
annotated object detection labels to enable task-driven de-
hazing. The O-HAZE [3] and I-HAZE [2] datasets con-
tain real outdoor and indoor hazy scenes respectively which
were generated with professional haze machines. However,
the datasets are very small with only 45 outdoor and 35 in-
door image pairs. Gruber et al. [16] provides a recent depth
benchmark dataset with four scenes under different condi-
tions that, as such, is too small for training purposes. In
order to provide a variety of training cues for ZeroScatter,
we utilize an adverse weather dataset containing real-world
automotive captures from northern Europe [5]. In addition
to RGB captures, the dataset consists of multi-modal data in
the form of gated images [15], multi-view stereo data, and
temporal sequences.

3. Domain Transfer with ZeroScatter
3.1. Formulation

To train a reconstruction network G without super-
vised training data available, we employ cues from adverse
weather simulation, multi-modal cues that other sensors can
provide, multi-view cues, and temporal consistency cues.
Specifically, let X be the domain of raw RGB images, Y
be the (unpaired) domain of processed daytime RGB im-
ages, and S be the (unpaired) domain of RGB images with
scattering present. We train the mapping G : X ∩ S →
Y \ S, which itself is composed of a translation block
GT : X ∩ S → Y \ S for image domain transfer and a
consistency block GC : Y \ S → Y \ S for minimizing
temporal and spatial jitter. As illustrated in Figure 2, we
employ several auxiliary mapping functions to facilitate our
learning scheme.

The model-based learning cycles utilize a user-defined
ISP processing function FProc : X → Y and an adverse
weather simulator FSyn : Sc → S. These mappings en-
able two training cycles, one involving clear daytime im-
ages, which we call “Clear to Scatter to Clear”:

Iin → FSyn(Iin)→ GT(FSyn(Iin)) ≈ FProc(Iin), (1)

where Iin ∈ X \ S is clear daytime images; and another
involving scatter corrupted daytime images which we call
“Scatter to Clear to Scatter”:

Iin → GT(Iin)→ FSyn(GT(Iin)) ≈ FProc(Iin), (2)

where Iin ∈ X ∩ S is scatter corrupted daytime images.

Indirect supervision with multi-modal data is performed
using gated images, as it is less affected by scatters. We pre-
train a neural network FRGB2Gated : Y \S → Z for inferring
gated images Z from processed clear daytime scenes. We
then use it with the real captured gated images Igated:

Iin → FRGB2Gated(GT(Iin)) ≈ Igated (3)

where Iin ∈ X ∩ S is scatter corrupted daytime images.
Lastly, we utilize temporal and multi-view data as learning
cues. This indirect supervision is facilitated by a temporal
warper FTempWarp : X(t+ε) → X(t) which warps temporally
adjacent frames to the current frame and a stereo warper
FStereoWarp : X(r) → X(l) which warps the right stereo im-
age X(r) = X ∩ R onto the left viewpoint X(l) = X ∩ L.
We feed the warped images in addition to the current left
capture through GT and then we train GC to complete the
following training paths:

I
(l,t)
in → GC(GT(I

(l,t)
in )) ≈ GT(FTempWarp(I

(l,t+ε)
in )), (4)

and

I
(l,t)
in → GC(GT(I

(l,t)
in )) ≈ GT(FStereoWarp(I

(r,t)
in )). (5)

In the following, we first describe each of these training
components in more detail before discussing the generator
architecture we employ for GC(GT(·)).

3.2. Model-Based Synthetic Supervision

Our model-based training scheme has two training cy-
cles called “Clear to Scatter to Clear” (C2C) and “Scat-
ter to Clear to Scatter” (S2S). We employ a fixed adverse
weather simulator FSyn : Sc → S that applies simulated
adverse weather to RGB images, based on haze estimation
following Koschmieder’s model [26] with several modifica-
tions that promote generalization to real-world scenes. This
ensures ZeroScatter is able to handle various-intensity and
depth-dependent scatter effects. As many computer vision
applications consume ISP processed images instead of raw
camera captures, we also employ a post-processing function
FProc : X → Y . This function can be arbitrarily defined by
the user, for this work we define FProc to be a raw capture
to daytime RGB mapping. These two functions are applied
in a cyclic manner to the output of the generator translation
block GT : X ∩S → Y \S as shown in Figure 2. For more
detail on FSyn and FProc please refer to the Supplemental
Document.

Our model-based supervision aims to minimize

LModel = LC2C + LS2S. (6)

For the C2C cycle we compute the loss using the input clear
weather image Iin ∈ X \ S :

LC2C = (L1 + Lperc + Lgrad + Ladv)(IT, Itarget), (7)

where IT = GT(FSyn(Iin)) and Itarget = FProc(Iin) is the
processed target image, L1 is the Mean Absolute Error loss,
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Figure 2: Overview of the proposed method. We train our generator using a novel combination of training cues that promote
high-contrast, scatter-free, jitter-free results on unseen real-world scenes. We employ model-based supervision using cycle
training which is facilitated by a robust adverse weather model, multi-modal supervision in the form of gated images for
training on real heavy weather scenes, and consistency supervision in the form of temporal and stereo losses.

Lperc is a VGG-19 based perceptual loss [23], Lgrad is an
image gradient loss, and Ladv is a GAN based adversarial
loss [14].

For the S2S cycle we compute the loss using the input
adverse weather image Iin ∈ X ∩ S as

LS2S = Ladv(FProc(Iin), FSyn(GT(Iin))). (8)

Since there are a wide variety of plausible adverse scatter
effects, we avoid using L1, Lgrad and Lperc in the S2S cycle
and instead use only an adversarial loss.

3.3. Multi-Modal Indirect Supervision

We employ a multi-modal indirect supervision approach
to facilitate training on data captured in-the-wild, which
makes use of emerging gated imagers [15, 17, 5] that uses
active flash illumination to acquire high contrast images by
temporally gating out scattering components.

As such, gated images are less affected by adverse
weather than RGB cameras [6]. However, they cannot be
directly used for training supervision due to the domain shift
between gated images and RGB images, e.g. gated images
lack color information, see Fig. 2. To overcome this do-
main shift, we train an RGB2Gated network FRGB2Gated :
Y \ S → Z, where Z is the domain of gated images. This
network predicts the gated image corresponding to a pro-
cessed clear day RGB capture. By training our RGB2Gated
network only on clear day images, we teach the network to

predict the gated image in the absence of scattering media.
We apply FRGB2Gated to the RGB output of GT, which then
allows us to compute a loss with respect to the actual gated
image. As a result, our gated supervision loss encourages
our generator to remove adverse weather effects to match
the underlying image with scattering removed. For details
on the RGB2Gated network architecture and training pro-
cedure please see the Supplemental Document.

During training we apply FRGB2Gated to IT = GT(Iin),
Iin ∈ X ∩ S, and compare the resulting image I ′gated to the
corresponding real gated image Igated. To filter out areas
that contain insufficient information due to extreme long
distance and overly strong reflections from retroreflectors,
we apply a mask Ment based on the local entropy of the
real gated capture. The multi-modal supervision loss is ex-
pressed as

LMulti-Modal = Lperc(Ment � Igated,Ment � I ′gated), (9)

where � is point-wise multiplication.

We emphasize that we only use gated images for training
supervision and that the generator only requires RGB inputs
at test time. Our multi-modal loss provides a better training
signal for the proposed ZeroScatter method but does not re-
quire the specialized gated imaging system at test time.
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3.4. Temporal and Stereo Consistency

We employ an indirect consistency supervision to ensure
a temporally and stereo consistent output. To do this, we
align the multi-view and temporal outputs of our network
with respect to the current left viewpoint. For stereo rec-
tification, this is done by employing a depth-based warp
FStereoWarp : X(r) → X(l) which maps the right viewpoint
images onto the left viewpoint images. For temporal align-
ment we apply an optical flow warp FTempWarp : X(t+ε) →
X(t) to determine a warped current image from a tempo-
rally adjacent frame. For details on the warping procedures
please refer to the Supplemental Document.

In addition to temporal and stereo consistency losses dur-
ing training, we employ a consistency block GC : Y \ S →
Y \S as a downstream network after the translation block to
achieve high quality consistent outputs. Directly applying
the consistency losses to a single-stage network produces
inferior results as the single-stage network struggles to re-
move both fine scattering effects, such as haze and coarse
scattering effects such as snowflakes, in addition to other
jitters such as sensor noise. We train GC using the consis-
tency losses whileGT focuses on the other losses previously
described. See our ablation comparison in Section 5.1 for
the benefits of our two-stage sequential network.

Putting everything together, we train the consistency
block GC to minimize the following consistency loss:

LConsistency = LTemp + LStereo. (10)

The temporal loss component is computed as

LTemp = (L1 + Lperc)(GC(GT(Iin)), GT(I
′
in)), (11)

where

I ′in =MTemp(FTempWarp(I
(t−1)
in ), FTempWarp(I

(t+1)
in )) (12)

is the warped current input computed from temporally ad-
jacent frames I(t−1)in ∈ X(t−1) and I(t+1)

in ∈ X(t+1), and
MTemp is a visibility mask that merges the two warped tem-
porally adjacent frames by recovering out-of-view pixels
and occlusions, see Supplemental Document for details.

The stereo loss component is computed as

LStereo =MStereo � L1(GC(GT(Iin)), GT(I
′
in)), (13)

where I ′in = FStereoWarp(I
(r)
in ) is the warped right stereo im-

age, and MStereo = exp(−αL1(Iin, I
′
in)) is a visibility mask

calculated from the warping error between the left input and
the warped right input, and we empirically set α = 10.

3.5. Generator Architecture

Our ZeroScatter generator network is illustrated in Fig-
ure 3. The architecture consists of two sequential compo-
nents: a translation block GT that eliminates scattering and
performs domain transfer from a raw RGB adverse weather
capture into a clear daytime scene, and a consistency block

Convolution Dilated Convolution Fusion

Input RGB Image

…

Translation Block GT

Output Descattered Image

Consistency Block GC

Reconstruction Network G

Figure 3: ZeroScatter generator network architecture. Our
generator consists of a translation block that translates raw
RGB captures into clear daytime scenes and a consis-
tency block that removes erratic scattering media such as
snowflakes.

GC that further refines the translated output by removing
stereo and temporal artifacts. Drawing inspiration from re-
cent image translation networks [22, 49], our translation
block architecture consists of two streams, one which oper-
ates at the full resolution and the other at a lower resolution.
To allow the network to better recognize global features,
we use an extended encoder with parallel feature extraction
streams: one with 3 × 3 convolution layers to extract rela-
tive local context and one with 5× 5 kernels with a dilation
rate of 2 to allow the network to extract greater global con-
text. Our consistency network consumes the output of the
translation block and enforces consistency by removing dis-
tortions caused by adverse effects such as snowflakes and
sensor noise. The architecture follows a U-Net [41] struc-
ture with 4 downsampling stages.

4. Unpaired Training Data and Setup

We train our model using a dataset from Bijelic et al. [5],
who captured harsh weather scenarios in over 10 000 km of
driving in northern Europe. Unlike previous works [5, 16, 7]
we also leverage temporal sequences. The dataset we use
consists of 12997 video sequences of length 0.5 s and ac-
quired at 20Hz, resulting in a total of 120000 individual
frames. The video sequences allow us to train for weather
and sensor degradations that fluctuate over time, such as
sensor noise and snowflakes. Please refer to the Supple-
mental Document for details on dataset distribution, split,
and implementation details of the proposed approach.

We train ZeroScatter using Adam [25] with a learning
rate of 5e−5. After training, we implement the recon-
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Model cue onlyGT onlyInput Image ZeroScatter
Model &

Multi-modal cueEncoder-Decoder

Figure 4: Ablation study qualitative results on unseen au-
tomotive RGB captures. Our sequential architecture and
composite loss design enables enhanced contrast at long
distances while minimizing snowflakes and sensor noise.

struction network for real-time inference at 20 FPS using
fp16 precision for 768 × 1280 resolution images using an
NVIDIA GeForce RTX 2080 Ti GPU. This allows for real-
time vision and display applications in automotive systems.

5. Assessment
In this section, we validate the proposed method quanti-

tatively and qualitatively. Our quantitative evaluation is per-
formed on two test sets with paired clear reference data: fog
chamber measurements, see Supplemental Material, that al-
low us to assess robustness to adverse weather in controlled
fog scenarios, and a synthetic dataset where the scattering
media is produced by FSyn. For additional experimental de-
tails and qualitative results on the synthetic dataset, please
refer to the Supplemental Document. Before reporting the
performance of the proposed method compared to state-of-
the-art image reconstruction approaches, we first validate
model architecture choices in an ablation study.

5.1. Ablation Study

We conduct an ablation study to validate the effective-
ness of our network architecture and the benefits from our
novel combination of model-based, multi-modal, temporal,
and multi-view supervision. The quantitative results for fog
chamber measurements are shown in Table 1 together with
the ablation configurations. Qualitative results are shown
on unseen real-world data are shown in Figure 4.

We observed that relying solely on model-based training
cues limits the performance on real-world data, as shown
by the “Model cue only” configuration. The model outputs
suffer from reduced contrast and this model is unable to ad-
equately handle spurious sensor noise. “Model & Multi-
Modal cue” illustrates how incorporating multi-modal indi-

rect supervision improves performance with better removal
of scattering components and increased contrast. Adding
the consistency supervision grants us our proposed model
ZeroScatter, which has the best descattering performance
overall. Temporal and stereo consistency supervision en-
ables effective removal of snowflakes and local fluctuations
including sensor noise.

On the architecture side, our ablation study demonstrates
the benefits of our sequential architecture. If we applied
a standard encoder-decoder architecture [41] then mini-
mal descattering is achieved, as shown by the “Encoder-
Decoder” configuration. We attribute this to the limited
receptive field which is unable to robustly recognize and
remove adverse weather. Our translation block remedies
this by using dilated convolutions to obtain a wider field
of view and this results in better descattering as shown by
the “GT only” configuration. However, without the consis-
tency block GC, the translation block GT falls into a local
minimum where it avoids descattering. This is because the
presence of some types of adverse weather such as haze can
inadvertently increase temporal and stereo consistency by
blurring out image details. As a result, our final network
architecture that uses both GT and GC obtains the best per-
formance across all variants compared in this work.

5.2. Controlled Experimental Evaluation

We compare our work against state-of-the-art image
descattering networks [40, 35, 36, 8], image domain trans-
fer networks [56, 20, 57], and traditional image refinement
techniques [58]. Quantitative results are shown in Table 2
and qualitative results are reported in Figure 5. Please see
the Supplemental Document for training details for these
baselines and qualitative comparisons against CycleGAN,
CyCADA, Bidirectional-FCN, and DehazeNet.

Traditional methods such as CLAHE [58] (shown as
FProc) work well to stylize the image, but fail to remove
severe fog and haze in the images. Image domain trans-
fer networks, such as CycleGAN [57], CyCADA [20] , and
ForkGAN [56] obtain better results, but are still unable to
recover high-quality images from the degraded input im-
ages. Deep learning approaches designed for processing
adverse weather such as EPDN [40] , PFF-Net [35] , De-
hazeNet [8], and Bidirectional-FCN [36] all perform well
on the synthetic dataset, however, these methods are not ro-
bust to out of training distribution inputs and consequently
fail to generalize to the real-world fog chamber measure-
ments. We attribute this to the inability of these methods to
incorporate real-world data into their training scheme. Ze-
roScatter remedies these limitations and as a result is able
to achieve the highest image quality.
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Table 1: Quantitative ablation study of different network structures and loss combinations on the fog chamber measurements.

GT GC Lmodel Lmulti-modal Lconsistency 1 - LPIPS PSNR SSIM

ZeroScatter X X X X X 0.878 18.8 0.695
Model & Multi-Modal cue X - X X - 0.875 18.5 0.685
Model cue only X - X - - 0.870 17.4 0.658
GT only X - X X X 0.872 16.9 0.665
Encoder-Decoder [41] - - X X X 0.870 16.6 0.650

Table 2: Quantitative evaluation of image descattering methods. We evaluate descattering performance on the synthetic
dataset and with controlled fog chamber measurements, see Supplemental Document. We also evaluate object detection
performance after applying each descattering method.

Fog Chamber Measurements Synthetic Dataset Object Detection
1 - LPIPS PSNR SSIM 1 - LPIPS PSNR SSIM Easy mAP Med mAP Hard mAP

ZeroScatter 0.878 18.8 0.695 0.873 19.2 0.750 91.36 90.11 82.71
EPDN [40] 0.844 12.7 0.565 0.840 18.4 0.715 91.60 88.50 80.08
PFF-Net [35] 0.841 15.6 0.627 0.827 18.4 0.707 91.37 89.48 81.01
Bidirectional-FCN [36] 0.830 12.9 0.559 0.847 14.4 0.673 91.21 87.11 80.94
DehazeNet [8] 0.799 9.60 0.390 0.814 13.6 0.575 91.02 85.90 80.43
CyCADA [20] 0.819 13.1 0.506 0.808 14.3 0.572 90.97 88.18 80.46
CycleGAN [57] 0.779 11.7 0.505 0.794 13.7 0.578 90.99 85.56 80.15
ForkGAN [56] 0.718 11.6 0.374 0.720 13.8 0.383 87.81 84.53 78.71
FProc [58] 0.852 16.0 0.607 0.851 14.4 0.678 88.59 86.95 80.93
Input Image 0.812 14.3 0.517 0.753 13.4 0.492 90.50 86.50 80.91

Input Image (full size) Input Image FProc ForkGAN PFF-Net ZeroScatter TargetEPDN Target (full size)

Figure 5: Qualitative performance comparison on controlled fog chamber measurements, see text. The proposed method
significantly reduces scattering media present in the scene and most closely resembles the processed daytime target image.

5.3. In-the-Wild Experimental Evaluation

We showcase the performance of ZeroScatter and the
baseline methods on real-world unseen measurements in
Figures 1 and 6. Our high-quality reconstructions shown
in these two figures as well as in the Supplemental Docu-
ment validate the proposed method for diverse real-world
scenes. Objects at long distances such as trees, houses, and
cars, that have been obscured by adverse weather are re-
vealed by the proposed method. Because the baseline meth-
ods do not utilize multi-modal information, their outputs
suffer from residual noise and low contrast in the result-
ing images. Furthermore, without consistency supervision,

their processed outputs accentuate sensor noise and fail to
remove snowflakes.

5.4. Descattering for Object Detection

Furthermore we evaluate whether descattering improves
2D object detection in adverse weather. For this evalu-
ation, we again use real-world adverse weather captures.
Ground-truth annotations are performed manually, and dif-
ficulty levels are defined based on bounding box height,
occlusion level and truncation following [13]. We employ
SSD [33] object detectors with identical architecture that we
finetune on the output of each descattering method for a fair
comparison. Quantitative Average Precision (AP) scores

7



Input Image (full size) Input Image ForkGAN PFF-Net ZeroScatter ZeroScatter (full size)EPDNFProc

Figure 6: Real-world data qualitative comparisons. The proposed method significantly reduces scattering present in the scene
and reveals object in long distance, such as the house and trees in the top two examples above. Compared to EPDN and PFF-
Net, ZeroScatter is able to produce images with better contrast and less noise. ZeroScatter is able to remove snowflakes in
the 3rd and 4th examples and sensor noise in the 5th and 6th examples.

are reported in Table 2, qualitative examples and training
details are shown in the Supplemental Document. Among
all descattering methods, ZeroScatter achieved the highest
AP for the medium and hard settings while still maintaining
near top performance on the easy setting. We attribute it to
ZeroScatter’s ability to remove scattering media in adverse
conditions which in turn improves object detection through
higher confidence detections and bounding box tightness,
especially at long distances.

6. Conclusion
We introduce ZeroScatter, a novel domain transfer

method that maps RGB images captured with strong scatter-
ing in adverse weather for removing scattering media from
conventional RGB camera captures. We propose a combi-
nation of synthetic and real-world data by exploiting model-
based, temporal, multi-view, multi-modal, and adversar-
ial training cues. We validate the method by demonstrat-
ing that ZeroScatter significantly outperforms approaches
both quantitatively in simulation and controlled experimen-

tal conditions, and on in-the-wild scenes. Moreover, we
validate that removed scattering at long distances with Ze-
roScatter also enables state-of-the-art object detection re-
sults in harsh weather. In the future, we anticipate that Ze-
roScatter will not only allow human drivers and detectors
to see in harsh weather but also assist human annotators for
adverse weather scenes, overcoming the fundamental data
bias in these scenarios. We envision the proposed training
method as a basic building block for vision systems beyond
imaging and object detection, especially for autonomous
driving and robotics.
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