Mask-ToF: Learning Microlens Masks for
Flying Pixel Correction in Time-of-Flight Imaging
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Abstract

We introduce Mask-ToF, a method to reduce flying pixels
(FP) in time-of-flight (ToF) depth captures. FPs are perva-
sive artifacts which occur around depth edges, where light
paths from both an object and its background are integrated
over the aperture. This light mixes at a sensor pixel to pro-
duce erroneous depth estimates, which can adversely affect
downstream 3D vision tasks. Mask-ToF starts at the source
of these FPs, learning a microlens-level occlusion mask
which effectively creates a custom-shaped sub-aperture for
each sensor pixel. This modulates the selection of fore-
ground and background light mixtures on a per-pixel basis
and thereby encodes scene geometric information directly
into the ToF measurements. We develop a differentiable
ToF simulator to jointly train a convolutional neural net-
work to decode this information and produce high-fidelity,
low-FP depth reconstructions. We test the effectiveness of
Mask-ToF on a simulated light field dataset and validate
the method with an experimental prototype. To this end, we
manufacture the learned amplitude mask and design an op-
tical relay system to virtually place it on a high-resolution
ToF sensor. We find that Mask-ToF generalizes well to real
data without retraining, cutting FP counts in half.

1. Introduction

Large-scale image datasets such as ImageNet [15] and
CIFAR [31, 32], in tandem with a boom in computational
resources, drastically reshaped the field of image process-
ing. In the depth domain, a similar trend [61, 8, 13] has
recently made the mass-acquisition of high-quality depth
maps a vital prerequisite for a range of 3D graphics and vi-
sion applications. These include human-centered tasks such
as pose tracking [59, 29], action recognition [26, 51], and
facial analysis [56], as well as scene-understanding prob-
lems including mapping [19], segmentation [ 14], and object
reconstruction [70, 10, 75]. While methods look to captured
depth datasets for ground truth, the devices used to capture
them are subject to a slew of error sources which, if not
addressed, can hurt task performance and generalizability.

Qiang Fu?

Wolfgang Heidrich? Felix Heide!

2King Abdullah University of Science and Technology

Global Aperture “Mask”

(a) Noise/FP Susceptibility

Sensor Pixel —=

Microlens —a.
Mask w

Collected
Light Mlcrolens

fasiss

Microlens Mask Noise/FP Susceptibility

More Noise ==

"<«—More Flying Pixels

Figure 1: (a) 3D visualization of a microlens mask selec-
tively blocking light entering a sensor pixel. (b) The equiv-
alent mask pattern for a global aperture setup, all sensor
pixels equally susceptible to FPs. (c) A learned mask pat-
tern with spatially multiplexed noise/FP susceptibility.

One of many approaches to depth acquisition is passive
sensing: exploiting parallax cues to infer distances solely
from input monocular [66, 41, 18] or multiview [24, 27, 73]
images. These methods can use standard RGB cameras for
data acquisition, but struggle with textureless regions and
complex geometries [63, 30]. Active sensing approaches
tackle this challenge by first sending out a known illumina-
tion into the scene and reconstructing depth with the help
of the returned light. These include structured light meth-
ods such as active stereo, where spatially patterned light is
projected into the scene to aid in the stereo feature match-
ing process [1]. While being robust to textureless scenes,
their accuracy is fundamentally limited by illumination pat-
tern density and sensor baseline, resulting in a bulky cam-
era form-factor. Some of the most successful active depth
sensing methods are time-of-flight (ToF) approaches, where
depth is estimated from the travel time of light leaving and
returning to the device. Direct ToF systems such as LIDAR
send out individual laser pulses and measure their time to
return using time-resolved sensors such as avalanche photo
diodes [12]. These can provide high-accuracy and long-
range depth estimates, but use a scanning approach to col-
lect data, leading to poor depth completeness and/or expen-
sive sensor array systems. In contrast, amplitude-modulated
continuous wave (AMCW) ToF cameras, the focus of this



paper, flood-illuminate a scene with periodic amplitude-
modulated light and estimate the phase shift of returned
light to infer depth. These devices do not need to time-
resolve captured light like their direct ToF counterparts, and
so can rely on an easy-to-manufacture CMOS sensor array
to produce complete depth maps at a high framerate. This,
when combined with their small sensor-illumination base-
line, makes AMCW ToF cameras compact and affordable,
and has led to their widespread adoption in the vision com-
munity. Devices such as those in the Microsoft Kinect series
have subsequently helped create community-made freely-
available scene understanding benchmarks that lower the
barrier of entry for 3D vision research [64, 2].

Although they promise to democratize low-cost dense
depth imaging, AMCW ToF methods are still subject to fun-
damental limitations of the sensing process: noise from am-
bient light, photon shot, phase wrapping, multipath interfer-
ence (MPI), and flying pixels (FPs) [16]. There has accord-
ingly arisen a large body of work in computational post-
processing methods to address these issues; methods con-
cerning depth denoising [17, 74], phase unwrapping [35],
and MPI correction [42]. Contrastingly, while confidence-
based methods [55] are able to identify flying-pixels, recti-
fying them — recovering the depth of their corresponding
chief ray — has remained a great challenge.

FPs are formed when light from both an object and its
background reaches the same sensor pixel, generating a
mixed depth measurement. These often appear to be float-
ing in empty space in the resultant point cloud, hence flying
pixels. Computationally unmixing these FPs often leads to
edge blur or severe artifacts [72]. As they originate in the
optical pipeline, artifacts of the light collection process by
the main lens, we argue that an effective strategy to miti-
gate them should also start in the optical pipeline. Unfortu-
nately, a direct masking approach, such as simply reducing
aperture size to block stray light paths, is not efficient for
overall light throughput, and so significantly lowers SNR.

With Mask-ToF we learn a microlens amplitude mask,
allowing us to generate per-pixel aperture configurations
with spatially-varying susceptibility to noise and FPs, as
shown in Figure 1. We train an encoder-decoder network
which learns to aggregate this spatial information and lever-
ages mask structural cues to produce refined depth esti-
mates. We then backpropagate this net’s loss to jointly learn
high-level mask patterns. We photolithographically manu-
facture the learned mask, and virtually place it on the sensor
with a custom optical relay system to validate Mask-ToF on
real-world data. In the future, we expect this mask can be
fabricated directly on the camera sensor in a similar manner
to a polarization sensor [47], preserving its form factor.

In summary, we make the following contributions:

* We develop a differentiable AMCW ToF image forma-
tion model, including sub-aperture light transport.

* We incorporate sub-aperture masking and a refinement
network into this framework and learn an optimal mask
structure through a patch-based gradient descent ap-
proach from synthetic data.

* We test the masks in simulation, evaluating on over-
all error and FP reduction, then manufacture them and
construct an experimental setup to validate the pro-
posed method on real data.

2. Related Work

Depth Imaging. There exists a wide body of work in both
passive and active methods for depth imaging. The for-
mer operates with only passive depth cues, such as paral-
lax [24, 5, 46] and defocus [66, 66], to infer depth. These
methods exhibit diminished accuracy for textureless scenes
with few visual cues and complex geometries with ambigu-
ous cues [63]. Active methods overcome this challenge by
sending out a known illumination pattern into the scene and
using the returned signal to help reconstruct depth. While
structured light approaches rely on this illumination to im-
prove local image contrast [58, 1], ToF imaging uses the
travel time of light itself to measure distance [23, 60]. This
sensing approach allows for compact illumination-sensor
setups and does not hinge on ambiguous visual cues.

ToF Imaging. ToF imaging can be further categorized into
direct and indirect methods. Direct ToF devices such as Li-
DAR send out pulses of light, scanning over a scene and
directly measuring their round-trip time via avalanche pho-
todiodes [ 12, 50] or single-photon detectors [45, 22]. While
accurate and long-ranged, these systems can produce only
a few spatial measurements at a time, resulting in sparse
depth maps [40]. Furthermore, their specialized detectors
are orders of magnitude more expensive than conventional
CMOS sensors. AMCW ToF imaging, a representative in-
direct ToF method, instead floods the whole scene with pe-
riodically modulated light and infers depth from phase dif-
ferences between captures [20, 34]. These captures can be
acquired with a standard CMOS sensor, making AMCW
ToF cameras an affordable solution for dense depth mea-
surement. Ultimately, all these devices integrate light over
an aperture and are thus susceptible to FPs [55, 57].

Depth Reconstruction Methods. Depth cameras are all
subject to erroneous measurements, which has led to a wide
array of work in robust depth reconstruction algorithms.
Some approaches attempt to learn a direct mapping be-
tween noisy and clean 3D points [44, 49], though they are
limited in their scope and scalability as they contend with
graph operations on unstructured point cloud data [53, 54].
Correlation between color and depth has also been used
to smooth noisy depth estimates and enforce view consis-
tency [30, 38], though these approaches often blur object



edges, producing more FPs. Confidence-based methods for
ToF [55, 17] on the other hand can detect FPs as unreliable
measurements, but lack the context needed to determine if
they belong to an object, background, or intermediate depth.
Mask-ToF resolves this problem with a two-stage, general-
izable approach that joins reconstruction with the optical
pipeline; where a spatially varying amplitude mask encodes
the information needed to correct these flying pixels.

Masks for Computational Imaging. Masks enable an
imaging system to directly modify the point spread func-
tion (PSF) of input light, densely encoding information
about the scene that can be computationally recovered post-
capture. Amplitude masks can only attenuate light, yet have
a wide range of applications including light-field [43], lens-
less [4], x-ray [52], high-speed [39], and spectral imag-
ing [3]. Phase masks can allow for finer manipulation of
PSFs [11], and may be of interest in future masked ToF
projects, but are prohibitively expensive to manufacture at a
micro-scale resolution. In this work we learn an occlusion
mask with spatially varying microlens apertures, encoding
scene geometric information in AMCW ToF measurements
to help correct FPs during reconstruction.

End-to-End Design of Optics and Computation. Con-
ventional imaging systems are designed in a sequential
manner: first develop the optical and sensor stack in iso-
lation, driven by compartmentalized metrics, then delin-
eate an image processing pipeline [69]. Recently, a new
paradigm of jointly optimizing optics and reconstruction
has emerged, where all stages are jointly optimized in
the design phase. These hold promise for applications in
extended depth-of-field [62], microscopy [48], monocular
depth [9], HDR [67], hyperspectral [6], and transient [68]
imaging. Inspired by these works, Mask-ToF uses a differ-
entiable ToF simulator to jointly learn an optimal mask pat-
tern and train a depth refinement network to produce high
SNR, low FP depth maps.

3. Image Formation

Before introducing our proposed method, we review the
fundamentals of AMCW ToF imaging; for details see [33].

Pinhole Model. Correlation ToF cameras flood-illuminate
the scene with an amplitude-modulated light signal

p(t) = acos(wt) + 8. )

Here w is a modulation frequency, « is amplitude, and £ is
signal bias. Under a pinhole camera model this modulated
light is perfectly reflected by an object and captured by the
ToF camera after travel time 7. The measured signal

p(t—17) :dCOS(wt*¢)+B, ¢ = wT 2)

is effectively p(t) with attenuated amplitude &, shifted bias
B, and an introduced 7-dependent phase shift ¢.
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Figure 2: (a) ToF measurement at an object edge. (b) With-
out a mask, signals mix in unknown quantities to produce a
flying pixel. (c) Mask-ToF can use surrounding pixel values
and mask structure to disambiguate this measurement.

The camera then correlates p(t—7) with an identically mod-
ulated reference signal r(t) = cos(wt + 1) to produce

|

T
Cy) = / p(t —7m)r(t)dt = —cos(¢p+1), (3)
0
for integration time 7" >> 7. By sampling correlation values
C(%) at four different phase offsets ¢ =10, 7/2, 37/2, 7],
we can extract the measured signal’s true phase ¢ from

C(r) — C(n/2)
C(0) — C(3m/2)

This arctangent, however, introduces a 27n phase ambigu-
ity for depths z > A = ¢/2w, halved for the round-trip
distance and with ¢ being the speed of light. To estimate
this factor n we can use a phase unwrapping algorithm [35],
which typically solves instances of Equation (4) for multi-
ple modulation frequencies w and disambiguates ¢ via Eu-
clidean division [71]. This estimate is ultimately converted
to depth as z = ¢c/4nw.

¢ = arctan ( ) +2mm. neN. @)

Lens Model. In a practical camera system, to increase light
throughput, we use a lens to focus light incident on an aper-
ture plane U/ to a sensor pixel z; for simplicity we assume a
2D model. We thus rewrite the image formation model as

Pt —T2) = A(w)py(t — 7 — Tu)du,  (5)
u€eU
where p,. is the measurement at pixel x, A(-) is a binary
aperture function, u € U is the aperture coordinate, and 7,
is an additional time-of-flight term incurred by the residual
path length. p,., 7, refer to Equation (2) evaluated for a ray
connecting through point u to . The length of this ray is

dua =T =W+ P 24 (5w ©



where f is the focal length of the lens, z is the depth of the
scene point, and r is the lens radius. For a typical AMCW
ToF camera, with operating range z > r and modulation
frequency w = O(108Hz), the phase contribution from the
residual distance term 6, , = d,, » — do 18 negligible. We
thus discard the corresponding time-of-flight term 7, and
approximate the image formation model as

Palt — ) / Apa(t — 7)du. ()
ueU

Flying Pixels. While for an unobstructed point z this image
formation is adequate, an edge case arises for points at a
depth discontinuity. Suppose there is a single pixel on the
sensor whose chief ray (u = 0) comes from an z near an
object edge, see Figure 2. This would mean that for part of
the aperture coordinates, U P we would receive unfocused
light rays from the foreground object, with travel time 7/,
while the other rays passing through U? = U/ \ UF would
have the intended travel time 7. The received signal would
similarly consist of a mix of both foreground pZ (¢ —7) and
background p2 (¢ — 7,.) measurements

Pt —7) = p"(t —7") +p7(t = 7)
= p(t —7) = acos(wt — @) + & cos(wt — ¢') + B+ A,
¢ =wr, ¢ =wr’

asin(@) + & sin(¢’) )
acos(¢) + & cos(¢) )’

= é = arctan ( (8)

where dg is the measured phase shift of this mixed signal.
Solving Equation (4) returns an incorrect depth Z some-
where between the foreground and background depths.

Aperture-Masked ToF Image Formation. It might seem
that a simple solution to the above flying pixel problem is
just to reduce the aperture size. In the extreme case where
A(u) = 0,Yu > 0, we retain only the chief ray and so
have no mixed measurements. Unfortunately, this also leads
to poor light efficiency, which lowers the system’s SNR as
it becomes more susceptible to photon shot. We provide
a detailed discussion of this fundamental SNR/FP tradeoff
in the Supplemental Document. To better maintain light
throughput, we can selectively block light paths by applying
a spatially-varying microlens amplitude mask M, (u) to the
image plane. The model from Equation (7) thus becomes

Pou(t —72) = /eu My (w)A(w)py (t — 7)du.  (9)

One could imagine an ominscient mask M, (u) = 0 for
u € UT, else M,(u) = 1. This would remove unfocused
foreground light and preserve all other light paths, perfectly
correcting FPs with high SNR. Unfortunately, such a mask
could only work for a single scene, and we would need to

know that scene beforehand to design it. Instead, with the
derivations above, we can form a differentiable framework
for AMCW ToF image formation and use gradient descent
to learn a single generalizable mask pattern. We describe
this approach in the following section.

4. Learning to Mask Flying Pixels

Mask Intuition. Before we outline how to learn a mask,
it’s important to intuit why a static mask could help correct
FPs in the first place. With a global aperture, shown in Fig-
ures 1 and 2 (b), all pixels are equally susceptible to FPs;
if one sensor pixel returns an FP, likely so will its neigh-
bors. The addition of spatially variable susceptibility via a
microlens mask, shown in Figures | and 2 (c), means this
is no longer the case. A sensor pixel with a wide effective
aperture can be trusted with regards to noise statistics but
is likely to return FPs when near an object boundary. Con-
trastingly, a neighboring pixel with a narrow aperture will
likely produce noisier measurements, but be less affected by
depth discontinuities. By aggregating information in pixel
neighborhoods, we can effectively use wide aperture pixels
to denoise local measurements, and narrow aperture pixels
to de-flying-pixel them. This means a Mask-ToF approach
critically needs not only a mask, but also a method to de-
code the information encoded by the mask.

From Light to Time-of-Flight. Given ground truth depth,
we can simulate ToF measurements via Equation (2) with-
out distinguishing between light rays. However, to apply the
mask M, (u) as in Equation (9), we also need access to the
aperture plane U/. We thus discretize the image formation
model and use light fields [37] as a natural parametrization

Puz(t —Tp) = Z M, (w)A(u)py (t — 72). (10)

u€L

Here p,, ,; is our ToF signal, a sum over sub-aperture views
u in the light field L, discretized now in both z and u. As the
number of sub-aperture views |L| — oo we converge on the
form of Equation (9), though in practice |L| governs mask
resolution and is limited by manufacturing constraints.

Tensor Image Model. Rather than operate on P,y 4,4, in
3D space we swap to a tensor view of simulation, as visual-
ized in Figure 3 (c). We start with a depth map D € RA>*W
which we convert to phase array ®, and with the light field
tensor L simulate 4x|L| correlation images Co 0 — Cs3 |1
One for each of four phase shifts ¢/ and sub-aperture arrays
L, € L. These are individually masked by M,,, and the
views are averaged to produce 4 final correlation images
Cy, subject to simulated noise 7,;. This process is summa-
rized in Equation (11).
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Cyu =Ly © (0.54 cos(® + qp))g—7 b= %
™
1
Cy = — My, ® Cyu
1y ~ uniform(a, b) - NV (1, o). (11)

Here g is sensor gain, 7' is integration time, I xW is the
sensor size, and ©® denotes element-wise multiplication.
The noise constants a, b, i1, 0 are chosen empirically. At
high photon counts, Poisson and Skellam [7] noise can be
well approximated by scaled Gaussian noise, thus 7 gener-
alizes many expected sources of ToF noise [21] while main-
taining simulation differentiability.

Depth Reconstruction. Using Equation (4) we generate an
estimated depth map D from the four masked correlation
images C,. We implement this as a differentiable func-
tion D = P(C) with automatic gradient evaluations. This
grants us flexibility as we can swap P(C) for other depth
estimation methods, such as the discrete Fourier transform,
if needed. To process the information embedded in these
measurements by the microlens mask, we propose a refine-
ment network R, illustrated in Figure 3 (b). R is a residual
encoder-decoder model, inspired by the hourglass architec-
ture from [73], which takes as input D and M and outputs

D* = R(P(C),M) = max(0,D + D), (12)

where D* is the refined depth map and DR is a learned
residual depth which when added to D serves to correct
the now spatially multiplexed effects of noise and FPs. As
Equation (4) does the initial depth calculation, R does not

have to learn how to generate depth from phase, and can
be made significantly more lightweight than a typical deep
reconstruction network. This helps R to quickly learn high-
level depth and mask features, and generalize well to arbi-
trary scenes where raw phase data might significantly differ
from the training set. The sequential depth estimation and
refinement approach also allows us to naturally exploit cal-
ibration procedures [29] implemented by the sensor manu-
facturer. We can feed real depth data directly into R without
having to retrain and learn calibration offsets.

Loss Functions. For training, we opt for a combined loss

1 ) .
E = W : ('lULKS(Di*,Di) + wCEC(DT7 D)) ’
N Df —Di| —d/2 if |D; —Di| >4
Dy, D) =4 ' :
Ls(Di', Dj) { (Df —Dy)%/25  else,
Lo(DF,D) = min [proj(D;) — proj(D;)], (13)

where i,j € {0,..,HW — 1} are enumerative indices.
Smooth L1 loss Lg helps enforce local smoothness in the
reconstructed depth map, controlling the Gaussian noise 7
while being less sensitive to depth outliers. To penalize
these outliers, we add a Chamfer loss term L. It con-
siders the projected points proj(p), which we produce by
concatenating sensor coordinates x,y to the corresponding
depth values z, and penalizes points based on their distance
to the nearest ground truth point. FPs, which exist in the
empty space between foreground and background depths
with no close neighbors, are thus heavily penalized. We
balance these losses with weights wy, and we.
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Patch-based Training. We can propagate the gradient of
this loss through the differentiable framework above all the
way to the mask M, however, learning an unconstrained M
proves computationally burdensome. We thus restrict M to
be an mxn tiling of a mask patch Mp and learn Mp in-
stead, adopting a patch-based stochastic gradient descent
approach. We sample a batch of random patches from the
input light field and ground truth depth, and update Mp and
R based on the patch loss. This effectively exponentially
increases the number of available samples for training, al-
lowing us to rely on a relatively small light field dataset. As
R is fully convolutional, it is invariant to input shape, and so
this patch training generalizes well to the full-sized images.

5. Synthetic Assessment

Implementation. Our network R is trained on patches of
size 80x80x9x9 sampled from 512x512x9x9 synthetic
light field data. This data, sourced from [25], contains 9x9
sub-aperture views per image pixel, and a total of 16 light
fields. The full-sized evaluation masks are constructed by
an 8x 8 tiling of the center 64 x 64 area of the learned mask
Mp, reducing edge artifacts from training. Noise parame-
ters a, b, u, o from Equation (11) are set to 0.75, 1.25, 0, 3;
empirically matched to real recorded ToF samples. We set
sensor gain to g = 20 and integration time to 7" = 1 ms.
The ADAM optimizer was used for training [28], with
an initial learning rate of 0.004 for the refinement network
R and 0.1 for the mask Mp. We halve both rates every
80 epochs. Mp is not updated for the first 70 epochs of

training, as these epochs tend to be extremely noisy, the
convolutional layers of R having not yet learned high-level
structures [76]. Through empirical study we found weights
wr, = 100 and we = 0.08 to effectively balance the differ-
ing scales of Chamfer and smooth L1 loss in Equation (13).
We leave § as the default § = 1. The network contains 19
million learnable parameters, 1 million of which are the am-
plitude mask, and is trained for 3 hours on a single Nvidia
Tesla V100. Inference time for a single 512x512 image is
=~ 8 ms. Code and trained models will be made available.

Ablation Study. We quantify the effects of architecture
design choices in a series of ablation experiments, sum-
marized in Table 1. Here, Proposed is our final network
R, and Chamfer Only/LI Only are tests where we train
R using only the respective loss function. In the Half
modification we remove the first hourglass, H1, while in
Big we double intermediate channel counts in R. These
help gauge if the network can be simplified or requires in-
creased parametrization. The Global modification adds an-
other global channel, implemented by duplicating H1 with
increased stride lengths and concatenating the new signal at
the input to H2, to test if the network can be improved by
aggregating more non-local information. The No Mask tests
the effect of training R on only depth data, without mask
input. Lastly, ToFNet is a reimplementation of the ToFNet
architecture from [65]. We train it until convergence with
weighted L1 and TV loss as suggested in the original work,
and fine-tune the learning rate to our data.

We validate the proposed architecture of the network
R with the results in Table 1. Specifically, the proposed



Ablation RMSE | MAE | Thresh 3mm |  Thresh 15mm |
Mask-ToF  5.166/7.115 1.281/1.278  5.052/4.397  1.178/1.120
Chamfer Only 6.459/7.913 1.992/1.930  10.91/9.878  1.457/1.330
L1 Only 5216/7.127 1.284/1.293  5.024/4426  1214/1.194
Half 5.480/7.432 1356/1.367 5.247/4.647  1.391/1.373
Big 5432/7.169 1.514/1482  6351/5439  1.369/1.284
Global 5427/7310 1407/1.393  5.488/4.716  1.363/1.307
NoMask  5.482/7.353 1.410/1.398  5284/4.664  1.369/1.303
ToFNet 1142/12.19 5.120/5.038  4236/42.82  5.316/4.964

Table 1: Quantitative ablation results (train/test) for

changes to network R or training procedure. Thresh Xmm is
a threshold metric denoting the percentage of points further
than X millimeters from ground truth depth.

Mask RMSE | MAE | Thresh 3mm |  Thresh 15mm |
Diam. 1 9.412/8.293 5.203/4.576 46.31/46.549 6.647/4.345
AllOnes  9.227/12.58 2.470/2.814  9.712/10.45 3.118/3.558
Diam. 5  6.512/8.732 1.718/1.753  7.377/6.552 1.585/1.582

Mask-ToF  5.166/7.115 1.281/1.278  5.052/4.397 1.178/1.120

Table 2: Quantitative comparison (train/test) of mask-aided
ToF recovery. 4 images (greek, pillow, pens, tower) of 16
withheld for testing.

method wins in all categories compared to the Big and Half,
suggesting it is adequately parametrized. The lack of im-
provement from Global also suggests that the network R is
sufficiently utilizing non-local information. Chamfer Only
and No Mask both lead to lackluster performance, empha-
sizing the value of the L1 regularization term and mask
comprehension, respectively. Although we see close re-
sults for LI Only, the addition of Chamfer loss does lead
to a reduction in outliers, expressed in RMSE and threshold
metrics. ToFNet shows overall worse performance than our
Baseline refinement architecture, with the network learning
to reconstruct a smooth depth map, however not learning to
remove flying pixels. This is possibly due to its significantly
wider scope; lacking a skip layer to the output, it must learn
to reconstruct depth from raw phase measurements.

Analysis of Mask Patterns. Mask-ToF contains a feed-
back loop: a change in the mask structure of Mp neces-
sitates an update to the refinement network R, which itself
alters the propagated loss gradient and changes the structure
of Mp. Thus, to avoid local minima, we test a broad set of
both human-selected and randomly generated initial masks
including: various diameters of circular aperture, Gaussian
and Bernoulli noise, randomly oriented barcode structures,
and several multiplexed designs. A full discussion of mask
patterns is available in the Supplemental Document.

We compare the final optimized mask against the best
hand-crafted (naive) initializations to validate our proposed
end-to-end optimization method. For a fair comparison, we
fine-tune the refinement network R for each of these hand-
crafted mask designs and highlight the drop in performance
from a lack of joint mask optimization. Results are dis-
played in Figure 3 and quantified in Table 2. We see that the
Diameter 1 mask achieves low error for the 15mm thresh-
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Figure 5: (a) The assembled imaging system. (b) The mask
mounted on a precision microscope slide attached to a trans-
lation stage. (c) A schematic of the relay lens system.

old metric and RMSE, which we find to be a good proxy
for FP count. Even with the refinement network, however,
its low light throughput leads to a large amount of noise,
resulting in poor MAE and RMSE values. On the other end
of the spectrum, the All-Ones (open-aperture) mask pro-
duces smooth low-noise reconstructions, but with copious
FPs. The optimized mask design wins in all categories,
with the low FP count and high SNR, and provides near-
identical light throughput as the Diameter 5 mask (13 times
the throughput of the Diameter I pinhole mask).

6. Experimental Assessment

Mask Fabrication. We fabricate our custom mask patterns
via photolithography. 0.5mm fused silica wafers are used
as the substrate, receiving a 200nm of chromium film to oc-
clude light. A layer of 0.6 pum thick photoresist AZ1505 is
then spin-coated on top. We place the wafer under a mas-
ter mask on a contact aligner (EVG 620000) for UV expo-
sure, and develop in AZ726 to form the mask pattern on the
photoresist. With an etchant we then remove the chromium
from under open areas in the photoresist. See the Supple-
mental Document for further information on fabrication.

Prototype. We capture measurements with an AMCW
ToF camera (Helios Flex, Lucid Vision) operating on an
NVIDIA Jetson TX2. We use a custom-designed 1:1 Kep-
lerian telescope as an optical relay system to virtually place
the mask on the sensor (see Figure 5). This eliminates the
need to remove the sensor cover glass and allows for rapid
prototyping, but in a commercial product can be supplanted
by a directly integrated mask to maintain device form fac-
tor. The mask sits on the intermediate image plane of the
telescope attached to a precision microscope slide, which is
optically conjugate with the sensor plane. We adjust the po-
sition of the mask with an XYZ translation stage (Thorlabs
PT3A). For more details, see the Supplemental Document.
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Figure 6: Perspective point cloud visualizations and depth maps of reconstruction results for Mask-ToF and naive mask
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Figure 7: To quantify flying pixel ratios, we (a) capture 5
flat targets at a known depth and (b) count the number of
points between the target and background planes.

Results. Depth maps were captured via the previously de-
scribed setup and fed directly into the synthetically trained
refinement network R, with no network fine-tuning. By
counting points as in Figure 7, we see that Mask-ToF cuts
flying pixel counts in half when compared to an open aper-
ture. Compared to the near-identical light throughput Diam-
eter 5 mask we reduce FPs by an additional 30.5%. These
results are qualitatively confirmed in Figure 6 for objects
of varying geometry and reflectance, with additional results
in the Supplemental Document and 3D rendering in the ac-
companying video. Our optimized mask reconstruction vis-
ibly and significantly reduces FPs as compared to Diameter
5, while maintaining object shape consistency with the open
aperture measurements. Of note is how sharply Mask-ToF

reconstructs the tips of the Plant example’s petals, as com-
pared to the noisy reconstruction produced by the Diame-
ter 5 mask. Additionally, Mask-ToF is even able to reduce
intra-object FPs such as those inside the Plant’s pot.

7. Conclusion

Mask-ToF is an end-to-end approach to tackle the long-
standing problem of flying pixel artifacts in time-of-flight
imaging. It learns a per-pixel microlens amplitude mask,
that, when combined with a jointly trained refinement net-
work, reduces FPs while preserving light throughput. We
validate the method both in simulation and experimentally,
manufacturing the learned mask and optically placing it on
a camera sensor with a custom-designed optical relay sys-
tem. The proposed mask and reconstruction method out-
perform existing hand-engineered masks (and no mask) for
real-world scenes. In a mass-market implementation of our
method, we envision the amplitude mask to be integrated as
part of the sensor assembly, maintaining the camera form-
factor while improving FP statistics. Future research di-
rections include learned phase mask patterns and dynamic
masks, implemented via a spatial light modulator or similar,
which adapt their structure to the observed scene.
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