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Fig. 1. Hardware-in-the-loop Phase Retrieval. Holographic displays often show poor image quality due to severe real world deviations in the light propagation
compared to the simulated “ideal” light propagation model. We built a holographic display-camera setup (left) to generate data that is used to train a neural
network for approximating the unknown light propagation in a real display and the resulting aberrations. We then use this trained network to compute phase
holograms that compensate for real world aberrations in a hardware-in-the-loop fashion. This allows us to supervise the display states with unknown light
propagation just by observing image captures of the display prototype (left). Compared to holographic images captured using state-of-the-art methods,
Double Phase Encoding [Maimone et al. 2017] (bottom center) and Wirtinger Holography [Chakravarthula et al. 2019] (bottom right), the proposed method
(top right) produces images on real hardware that are aberration-free and close to the target image (top center).

Holography is arguably the most promising technology to provide wide
field-of-view compact eyeglasses-style near-eye displays for augmented and
virtual reality. However, the image quality of existing holographic displays
is far from that of current generation conventional displays, effectively
making today’s holographic display systems impractical. This gap stems
predominantly from the severe deviations in the idealized approximations
of the “unknown” light transport model in a real holographic display, used
for computing holograms.

In this work, we depart from such approximate “ideal” coherent light
transport models for computing holograms. Instead, we learn the deviations
of the real display from the ideal light transport from the images measured
using a display-camera hardware system. After this unknown light prop-
agation is learned, we use it to compensate for severe aberrations in real
holographic imagery. The proposed hardware-in-the-loop approach is robust
to spatial, temporal and hardware deviations, and improves the image quality
of existing methods qualitatively and quantitatively in SNR and perceptual
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quality. We validate our approach on a holographic display prototype and
show that the method can fully compensate unknown aberrations and erro-
neous and non-linear SLM phase delays, without explicitly modeling them.
As a result, the proposed method significantly outperforms existing state-
of-the-art methods in simulation and experimentation – just by observing
captured holographic images.
CCS Concepts: • Computing methodologies → Computational pho-
tography.
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1 INTRODUCTION
Personal displays play an essential role in how we interact with
smart devices and the immediate environment, including diverse
applications in communication, entertainment, medical assistance,
navigation, and in emerging environments such as self-driving vehi-
cles. As an emerging next personal computing and social interaction
platform, virtual reality (VR) and augmented reality (AR) promise
such applications. Indeed, existing consumer products offer wear-
able displays with an acceptable form factor, resolution and field
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of view, which make a wide variety of compelling applications in
VR possible. However, AR displays still remain limited to large
hardware, suffer from low image quality, vergence-accommodation
conflict, and they do not allow for occlusion effects. Overcoming
these limitations using conventional optics result in large setups.
Resorting to approaches such as light field displays promise com-
pact form factors, but is a poor alternative due to the spatio-angular
resolution trade-off. For near-eye displays to be widely adopted as a
personal and social computing platform, tomorrow’s displays must
provide wide field of view and high resolution in a small form factor,
closely mimicking ordinary pairs of eyeglasses a user can wear for
long hours.
Holographic displays, in principle, promise such an eyeglasses-

like form factor by shifting the optical complexity to computation.
Unlike conventional displays, which need a cascade of refractive
optics to physically modulate the emitted wavefront of light, a holo-
graphic display produces this combined effect via a digital hologram
using a spatial light modulator (SLM). In other words, today’s holo-
graphic display methods move the complexity of traditional optics to
complexity of the modulation setup and careful regularization. While
theoretically an elegant and promising technology, holographic
setups, in practice, suffer from severe non-linearities in the phase
modulation, inhomogeneity of the SLM itself, and imperfections in
the minimal optics and illumination setup.
Recent works have achieved impressive results by careful hand-

tuning of these non-linearities [Maimone et al. 2017] in a light-weight
wearable form-factor. However, the achieved image quality still does
not approach conventional displays. An underlying fundamental
limitation of the existing methods is the approximation of the light
propagation model, which is generally inadequate in describing the
experimental setup. Moreover, the forward models are often delib-
erately simplified with various assumptions and approximations to
make the underlying phase retrieval problem tractable.
In this work, we depart from such approximate forward models

and propose a hardware-in-the-loop method to learn the non-linear
image formation model of a real holographic projection system. Re-
lying on an initial phase estimate computed from an approximate
forward model that does not consider the hardware non-linearities,
we learn the mapping between the image generated by the holo-
graphic projector with unknown light transport, and the intended
ideal reconstruction. These mappings serve as upper bounds on
the unknown objective function (and our forward model) that we
aim to minimize. We validate the proposed method both in simula-
tion and on an experimental prototype and demonstrate that our
improved approach eliminates severe artifacts present in existing
approaches. We assess these capabilities qualitatively and quantita-
tively on representative test data, and we verify that the proposed
method generalizes and is robust to hardware, spatial and temporal
drift.
In particular, we make the following contributions:

• We introduce a method for the estimation of unknown light
propagation models in holographic display forward models.

• The proposed approach relies on a learned hardware-in-the-
loop optimization which iteratively refines an upper bound
on the estimated objective function derived in this work.

• We validate the proposed method by solving phase retrieval
for holographic projections with constant focus over the im-
age. The resulting holographic reconstructions improve by
more than 10 dB in simulation and 2.5 dB in PSNR on the
hardware prototype.

• We assess the proposed framework experimentally with a
prototype near-eye holographic display setup. The proposed
method reduces severe artifacts of existing holographic dis-
play approaches, which we quantify with perceptual and SNR
metrics.

Overview of Limitations. Although the proposed method achieves
unparalleled image quality and predicts real-world aberrations at
real-time frame rates, applying the method may require end-of-
manufacturing-line per-device training data to account for optical
fabrication tolerances. However, this would only be a one-time cali-
bration step which we envision to be automated for production of
future holographic eyeglasses-style displays and automotive heads-
up displays. Similar to aberration calibration for smartphone camera
modules manufacturing, this process would require a custom dis-
play and capture stage after the fabrication of each device with the
proposed hardware-in-the-loop optimization method, producing a
learned aberration approximation network that might be embedded
in the firmware of the device. While the proposed method may
have the potential to generalize per device type, evaluating this
potential capability would require access to production samples
with representative tolerances, which is out of scope.

2 RELATED WORK
In this section, we review relevant holographic display technologies
and computer-generated holography (CGH) algorithms.

2.1 Holographic Near-Eye Displays
Holographic displays have been explored as elegant approaches to
variable focus control and aberration correction, which are essen-
tial features for eyeglasses-style displays. Several recent near-eye
display designs employ holographic projectors and/or holographic
optical elements (HOE) to achieve a compact form factor. While
most of the designs rely on a single phase-only spatial light modu-
lator (SLM) [Chen and Chu 2015], configurations using two phase
SLMs [Levin et al. 2016], or a combination of both amplitude and
phase SLMs [Shi et al. 2017] have also been explored. Although
the proposed holographic benchtop prototypes are large and bulky,
many recent works have proposed ways forward to achieve compact
form factors. For example, multi-functional HOEs [Jang et al. 2019,
2017; Li et al. 2016; Maimone et al. 2017] and waveguides [Yeom
et al. 2015] have been explored as techniques that allow relaying the
projected imagery into the eye. Two critical limitations of existing
holographic near-eye displays are the tiny eyebox and poor image
quality. Several recent works have achieved an increased eyebox
size by using eyetracking [Jang et al. 2019, 2017]. Eyetracking has
also been proposed for focus control and aberration correction [Mai-
mone et al. 2017]. These existing display designs merely differ in
hardware implementation details such as the approaches used for
optical path folding, eyetracking and component design. In contrast,
the algorithms used for generating the holograms, which restrict
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the achievable image quality, remain the same or similar across the
displays – low image quality remains a critical limitation of today’s
holographic displays.

2.2 Holographic Display Setups and Limitations
In this section we briefly review holographic display configurations
and the most important limitations that restrict image quality in
holographic displays.

SLM technology. Achieving accurate, complex modulation of both
phase and amplitude with a single device remains an open prob-
lem [Reichelt et al. 2012]. In recent work, phase-only SLMs are often
preferred due to their higher diffraction efficiency. However, these
phase-only SLMs require a trillion sub-wavelength sized pixels to
display holograms comparable to conventional holograms [Reichelt
et al. 2012]. Unfortunately, existing SLMs only have resolutions
ranging up to 3840 × 2160 (4K UHD) with pixel pitches limited to
approximately 4 𝜇m and fill factors less than 95%. The space for
electronics between the active pixel areas further leads to zero-
order undiffracted light which often causes severe artifacts in the
holographic images.

Phase wrapping and quantization errors. Existing SLMs imple-
ment quantized phase modulation with limited bit-depth. Typically
the phase values of the computer generated digital hologram are
wrapped to lie within [0, 2𝜋], and are further quantized to the bit-
depth of the SLM. The resulting approximation errors introduced
by phase wrapping and quantization significantly deteriorate the
holographic image quality [Dallas and Lohmann 1972]. Further-
more, the phase modulation and diffraction efficiency of the SLM
pixels are dependent on voltage controlled birefringence made avail-
able via a calibrated lookup table (LUT). Any inconsistencies in the
LUTs cause non-linear phase modulation which further degrade the
display quality.

Coherent Laser Speckle. Coherent light sources such as single-
longitudinal-mode lasers are sources whose coherence length is
large. These sources produce coherent speckle noise. Recent work
aims at reducing speckle by using rotating diffusers [Bianco et al.
2016], modulating or quickly repositioning the laser beam [Kang
2008] or superposition ofmultiple reconstructions [Golan and Shoham
2009]. Coherent laser speckle noise can also be mitigated by using
partially coherent light sources, however, this results in blur or loss
of depth perception due to reduced coherence length [Dainty 1977].
Although many techniques have been proposed to reduce noise in
CGH [Bianco et al. 2018], effective holographic noise suppression
still remains an open problem.

2.3 CGH Phase Retrieval Algorithms
Holography for displays relies on diffraction and interference of
light for generating imagery. Based on the diffracted field, a holo-
gram can be classified as a far-field Fourier hologram or a near-field
Fresnel hologram. Using a phase-only SLMs requires computing
phase-only holograms that are capable of producing the diffraction
field that can closely mimic the target image. This phase retrieval
problem is generally ill-posed and non-convex. Though introduced
for Fourier phase retrieval, early methods such as error reduction

using iterative optimization [Gerchberg 1972; Lesem et al. 1969] and
hybrid input-output (HIO) methods [Bauschke et al. 2003; Fienup
1982] are applicable for both Fourier and Fresnel holograms. Re-
searchers have also explored phase-retrieval methods using first-
order non-linear optimization [Fienup 1993; Gonsalves 1976; Lane
1991], alternative direction methods for phase retrieval [Marchesini
et al. 2016; Wen et al. 2012], non-convex optimization [Zhang et al.
2017], and methods overcoming the non-convex nature of the phase
retrieval problem by lifting, i.e. relaxation, to a semidefinite [Candes
et al. 2013] or linear program [Bahmani and Romberg 2017; Gold-
stein and Studer 2018]. Recently, Chakravarthula et al. [2019; 2020]
demonstrated an optimization approach using first-order gradient
descent methods to solve for holograms with flexible loss functions.
We refer the reader to Barbastathis et. al [2019] for an overview of
learned phase retrieval methods.

All of these methods, and the following algorithms, have in
common that they assume a perfect image formation model and ig-
nore deviations from the perfect forward model and non-linearities
that occur in the real hardware prototype. The proposed method
addresses this limitation.

Point and Polygonal Algorithms. Successful scene representations
in computer graphics model a scene as a collection of points (3D
point cloud), an RGB-D image, a polygonal mesh or stacked layers
of intensity modulation. Researchers have leveraged such scene
representation for computing holograms [Leseberg and Frère 1988;
Waters 1966], popularly known as Fresnel holograms. While iter-
ative phase retrieval methods can be applied for computing Fres-
nel holograms, direct methods in combination with some form of
amplitude-phase encoding are much faster [Maimone et al. 2017].
One can also use a look-up table of precomputed elemental fringes
to speed up the computation [Lucente 1993; Shi et al. 2017]. Recent
point-source based CGH computation methods leverage the par-
allelization of modern GPUs [Chen and Wilkinson 2009; Masuda
et al. 2006; Petz and Magnor 2003]. Instead of computing the wave
propagation for millions of points, a 3D object can be represented
as a collection of tilted and shifted planes (polygonal mesh), whose
diffraction patterns can be computed by the fast Fourier transform
(FFT) algorithm [Matsushima 2005; Tommasi and Bianco 1993], also
considering texture and shading [Ahrenberg et al. 2008; Matsushima
2005], which is not possible with the point-based hologram computa-
tion. Occlusion culling effects can also be provided using geometric
facet selection by ray tracing [Kim et al. 2008], silhouette meth-
ods [Matsushima and Nakahara 2009; Matsushima et al. 2014] and
inverse orthographic projection techniques [Jia et al. 2014]. These
methods, however, do not support subtle view-dependent effects
such as intra-pupil occlusion.

Hogel-based Algorithms. A hologram can be partitioned spatially
into elementary hologram patches (hogels), each producing lo-
cal ray distributions (images) that together reconstruct multiple
views supporting intra-ocular occlusions [Lucente and Galyean
1995; Smithwick et al. 2010; Yamaguchi et al. 1993], similar to light
field displays [Lanman and Luebke 2013]. These holograms which
encode a light field are dubbed “holographic stereograms”. Although
conventional stereograms suffer lack of focus cues and limited
depth of field [Lucente and Galyean 1995], holographic stereograms
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can be paired with point-source methods to enhance the image fi-
delity to provide improved resolution, accommodation and occlusion
cues [Shi et al. 2017; Zhang et al. 2015]. Such light field holograms
typically require choosing a specific hogel size, which, in turn, re-
quires trading off spatial and angular resolution. An overlap-add
approach was recently proposed to overcome this spatio-angular res-
olution tradeoff, making more efficient use of information encoded
in the light field [Padmanaban et al. 2019].
In contrast to light field based holograms, a further line of re-

search proposes to slice objects at multiple depths and superimpose
the wavefronts from each slice on the hologram plane [Bayraktar
and Özcan 2010; Zhao et al. 2015], similar to layer-based light field
displays [Wetzstein et al. 2012]. Moreover, layer-based and light
field methods can both be combined to produce view-dependent
occlusion effects [Chen and Chu 2015; Zhang et al. 2016]. The pro-
posed hardware-in-the-loop phase retrieval naturally facilitates
layer-based displays due to their similarity in formulating an image
loss function, in contrast to hogel-based display which requires
explicitly incorporating depth in the loss for computing the holo-
grams.

3 COMPUTATIONAL DISPLAY HOLOGRAPHY
Computational display holography aims to replace a real static
hologram with a spatial light modulator (SLM) whose states are
configurable. To this end, existing methods simulate the process
of optical recording and reconstruction of the real hologram using
numerical methods. Computing digital holograms can be interpreted
as a coherent optical system producing a complex wave field, which
is an image of the wave field originally reflected or refracted by the
object. Generating such digital holograms for an SLM is possible
as long as the sampling theorem is fulfilled: at least two pixels of
the SLM sample a fringe period of the hologram. Owing to the
limitations in existing SLM modulation, we focus on phase-only
holograms in this work which have higher diffraction efficiency.
Moreover, we adopt a Fresnel holography regime relevant to near-
eye displays [Maimone et al. 2017], although the proposed method
is not limited to Fresnel holography configurations.
For a hologram of complex amplitude 𝐻 (𝜁 , 𝜂) illuminated by a

reference wave field 𝐸𝑅 (𝜁 , 𝜂), the resulting field in the image plane
at a distance 𝑑 can be calculated using the scalar (Fresnel) diffraction
integral [Goodman 2005]:

𝐸𝐼 (𝑥,𝑦) =
1
𝑗𝜆

∫ ∞

−∞

∫ ∞

−∞
𝐻 (𝜁 , 𝜂)𝐸𝑅 (𝜁 , 𝜂)

exp( 𝑗𝑘𝜌)
𝜌

𝑑𝜁𝑑𝜂, (1)

where (𝜁 , 𝜂) are the coordinates on the hologram plane, (𝑥,𝑦) are
the coordinates on the image plane, 𝑘 = 2𝜋

𝜆
is the wave number and

𝜌 =
√
(𝜁 − 𝑥)2 + (𝜂 − 𝑦)2 + 𝑑2 is the Euclidean distance between

the points on the hologram and image planes, respectively. The
resulting complex wave field represents the reconstructed wave
field on the image plane, containing both amplitude and phase.
Note that a phase-only hologram modulates only the phase of light,
and hence has a constant amplitude across the hologram plane
𝐻 (𝜁 , 𝜂) = 𝑐exp( 𝑗Φ(𝜁 , 𝜂)) where 𝑐 is the constant amplitude, which
we assume to be unity in the following.

The diffraction integral in Eq. (1) can also be viewed as a super-
position integral of waves, thus representing a linear shift-invariant
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Fig. 2. Illustration of a representative (Fourier) holographic image formation
model and its deviations on a real-world prototype. For computing the scalar
diffraction integral, light from a coherent illumination source modulated by
a continuous hologram aperture is simulated. Evaluating the integral for
the given forward model results in the digitally propagated wave field on
the image plane (top). However, the diffraction integral no longer holds in a
real-world prototype where severe deviations occur due to the illumination
source, imperfect optics, pixelated SLM and coherent laser speckle (bottom).
Explicitly modeling and calibrating these deviations is often not feasible,
see text.

system which can be written as a convolution

𝐸𝐼 (𝑥,𝑦) =
∫ ∞

−∞

∫ ∞

−∞
𝐻 (𝜁 , 𝜂)𝐸𝑅 (𝜁 , 𝜂) · 𝑔(𝑥 − 𝜁 ,𝑦 − 𝜂)𝑑𝜁𝑑𝜂, (2)

where the kernel

𝑔(𝜁 , 𝜂) = 1
𝑗𝜆

exp
[
𝑗𝑘
√
𝑑2 + 𝜁 2 + 𝜂2

]
√
𝑑2 + 𝜁 2 + 𝜂2

(3)

is the impulse response of free space propagation. This definition
is the point-source propagation model from Chakravarthula et
al. [2019]. Note that generating the hologram is exactly the inverse
process, i.e. propagating the wave field from the image plane to the
hologram plane, or equivalently, convolving the conjugate kernel
with the image field [Maimone et al. 2017]. One can invoke the
convolution theorem to express Eq. (2) as

𝐸𝐼 = (𝐻 ◦ 𝐸𝑅) ∗ 𝑔 = F −1 (F [𝐻 ◦ 𝐸𝑅] ◦ F [𝑔]) (4)

where ◦ is the Hadamard element-wise product and F is the Fourier
transform operator. The above convolution model from Eq. (4) can
be reformulated to reflect Fresnel, Fraunhofer, and angular spec-
trum propagation by modifying the kernel 𝑔 with necessary ap-
proximations. For these propagation models, please refer to the
Supplementary Material.

While the above formulation allows for synthesizing phase-only
digital holograms, it assumes a continuous hologram aperture and
an aberration free-hardware optical system, all simulated on a com-
puter. However, a real hardware prototype severely deviates from
ideal coherent light transport. Next, we discuss several deviations
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which affect the final holographic image quality, building towards
the underlying non-ideal coherent light transport for a phase-only
holographic display.

3.1 SLM Fill Factor
In contrast to a continuous aperture assumed in the scalar diffraction
integral, an SLM is discretized into pixels. For a theoretical fill factor
of 100% of the SLM, the pixel size equals the pixel pitch and the
SLM would act as a continuous aperture. However, existing SLMs
in CMOS technology contain small non-modulating zones between
the individual phase modulating pixels, limiting the fill factor. As
shown in Figure 2, we can characterize such physical SLMs by the
number of pixels 𝑁 and𝑀 in 𝜁 and 𝜂 directions, respectively with
the pixel pitches Δ𝜁 and Δ𝜂 and with fill factors in the range [0, 1].
The transmittance of such an SLM can be modeled as follows:

𝑡SLM = rect
(
𝜁

𝑁Δ𝜁
,
𝜂

𝑀Δ𝜂

) [
𝑡𝑎𝑝 + 𝑡𝑑𝑠

]
, (5)

where 𝑡𝑎𝑝 is the transmission function of the active pixel area dis-
playing the phase pattern of the computed phase-only hologram,
𝑡𝑑𝑠 is the transmission of the dead space area of the SLM pixels,
and rect

(
𝜁

𝑁Δ𝜁 ,
𝜂

𝑀Δ𝜂

)
is the total SLM aperture area. Please refer

to the Supplementary Material for details. Inspecting Eq. (5), it be-
comes clear that the SLM introduces an extra complex amplitude to
the hologram, which typically shows up as a zero-order intensity
overlay, significantly distorting the reconstructed image pattern.

3.2 Non-Linear SLM, Phase Wrapping andQuantization
As discussed in Section 2, the phase modulation of an SLM is con-
trolled by a voltage that is represented by a gray level. The mapping
between gray levels and voltage levels can be non-linear and is
typically represented by a Lookup Table (LUT). Approximation er-
rors in this LUT results in erroneous phase modulations. Moreover,
wrapping the phase from 2𝜋 back to 0 and the further phase quanti-
zation into (often only 8-bit) gray levels causes quantization noise
manifesting as severe aberrations. Such errors resulting from the
SLM non-linearities and phase representation can be modeled as:

Φ′cdh = Φcdh + Δ𝜙non-lin + Δ𝜙wrap + Δ𝜙quant, (6)

where Φcdh is the computed display hologram phase pattern from
ideal light transport model, whereas Φ′cdh is the represented phase
pattern on the SLM effected by deviations due to non-linearities
in LUT (Δ𝜙non-lin), phase wrapping (Δ𝜙wrap) and quantization
(Δ𝜙quant) errors.

3.3 Illumination, Optics and Alignment Errors
A typical digital hologram, when illuminated by a real reference
wave, eliminates the reference wave component from the hologram,
leaving only the object wave which forms the image field. How-
ever, the illuminating reference wave often cannot be accurately
replicated in simulation. Furthermore, inconsistencies in the angle
between the real and digital reference waves result in tilt phase
errors. Such deviations can occur due to misalignment of the SLM
and several reflective and/or refractive optics in the display setup.

We express them as

𝐻illum = 𝐻 · 𝐴err;illumexp( 𝑗𝜙err;illum), (7)

where𝐴err;illum and 𝜙err;illum model the deviations in amplitude and
phase.

3.4 Phase Aberrations from Model Approximations
Evaluating a full Fresnel integral (Eq. (1)) is desirable but is often
computationally expensive. Relying on Fresnel or Fraunhofer ap-
proximations instead to compute digital holograms at reasonably
large distances significantly reduces the computational cost and has
been proposed before [Peng et al. 2017]. The approximation errors
with respect to the full Fresnel integral cause phase aberrations
(𝜙err;phs) that can be modeled as

𝐻err;phs = 𝐻 · exp( 𝑗𝜙err;phs) . (8)

Such phase aberrations can result in curvatures in the reconstructed
images. For example, a Fresnel approximation results in a parabolic
phase error.

3.5 Coherent Noise
A coherent source of light impinging on an SLM also results in the
coherent noise, which can manifest itself as blur or grainy speckle.
Any reflectionswithin the holographic display setup cause grainy co-
herent speckle noise due to optically rough surfaces. Non-diffusing
transparent objects introduce coherent noise from undesired diffrac-
tion and multiple reflections due to dust particles, scratches and
defects in and on the optical elements. While such errors are chal-
lenging to model, their effect on the wave propagation and ideal
holographic image formation can be described by the deviation in
the computed hologram as

𝐻err;Cnoise = 𝐻 · 𝐴Cnoiseexp(𝑙𝜙Cnoise), (9)

where 𝐴Cnoise and 𝜙Cnoise are the amplitude and phase of the co-
herent noise, respectively.
This behavior may result in severe deviations from the ideal

coherent light transport from Eq. (1). As the sum and product of
complex exponentials is another complex exponential, the effect
of all the deviations in a real physical setup can be combined into
a single complex exponential describing the aberration wave field
𝐸err = 𝐴errexp( 𝑗𝜙err).

4 HARDWARE-IN-THE-LOOP IN-EXACT PHASE
RETRIEVAL

In this section, we describe the proposed holographic phase retrieval
method which incorporates hardware deviations from the ideal im-
age formation. We start by modeling the unknown coherent light
transport of a hologram as a function of the propagated wave field
on the image plane.We derive an upper bound of the deviations from
the ideal light transport (Eq. (1)) and represent this bound by a dif-
ferentiable learned aberration approximator parameterized by a deep
neural network. This formulation allows us to cast the holographic
computation as a complex non-convex optimization problem, which
we solve using first-order optimization methods [Chakravarthula
et al. 2019]. We iteratively refine the aberration approximator in
the region around the optimum via hardware-in-the-loop display
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captures. Once learned, the aberration approximator can be used
for all future hologram calculations.

4.1 Compensating Phase Patterns
Expressing a complex hologram as a phase-only hologram, the
conjugate complex amplitude of all deviations described in the
previous section can be consumed into the computed hologram
phase pattern as a compensating phase perturbation Φdev, i.e. 𝐻 ′ =
exp

(
𝑗 [Φ(𝜁 , 𝜂) +Φdev (𝜁 , 𝜂)]

)
. This allows us to reformulate the light

transport as

𝐸 ′𝐼 (𝑥,𝑦) =
1
𝑗𝜆

∫ ∞

−∞

∫ ∞

−∞
𝐻 ′(𝜁 , 𝜂)𝐸𝑅 (𝜁 , 𝜂)𝐸err (𝜁 , 𝜂)

exp( 𝑗𝑘𝜌)
𝜌

𝑑𝜁𝑑𝜂

(10)

where𝐻 ′(𝜁 , 𝜂) is the phase-only hologram with compensating phase
for setup deviations errors, i.e. 𝐸err introduced in Section 3. In this
work, we propose a method to efficiently estimate these model
deviations and compute the compensating phase patterns.

4.2 In-exact Phase Retrieval
Consider a phase hologram 𝐻 (Φ) that is propagated using an ideal
wave propagation function P. This propagation results in an ob-
served image wave field given by 𝐸𝐼 = P(𝐻 (Φ)). However, in
practice, the propagation in a real-world holographic display may
deviate significantly from the ideal propagation model, see Eq. (10).
The resulting image wave field, taking into account both the sys-
temic and content-dependent deviations (𝐸err), can be defined as

𝐸 ′𝐼 = P̃
(
exp( 𝑗Φ)

)
, (11)

where P̃ is the deviated light propagation. To design a hologram,
we penalize the distance between the reconstructed intensity image
𝐼̃ (Φ) = |𝐸 ′

𝐼
(Φ) |2 and target image 𝐼 as described by a custom penalty

function. For example, for an L2 distance, the penalty would be

Φopt = minimize
Φ

����̃𝐼 (Φ) − 𝐼 ����2 . (12)

Alternatively, we can formulate the wave field on the image plane
(Eq. (11)) as a combination of the ideal non-deviated field P(𝐻 (Φ))
and the aberration field R(Φ) originating from the real world aber-
rations. The image intensity then is

𝐼̃ = |P(𝐻 (Φ)) + R(Φ) |2

= |P(𝐻 (Φ)) |2 + |R(Φ) |2 + 2|P(𝐻 (Φ)) | |R(Φ) |cos(Δ𝜃 ),
(13)

where Δ𝜃 is the phase difference between the ideal wave field and
the aberration wave field on the image plane. Note that the interfer-
ence of the two wave fields can be constructive, destructive or an
intermediary. However,

cos(Δ𝜃 ) ≤ 1 (14)

allows us to bound the image intensity as

𝐼̃ = |P(𝐻 (Φ) + R(Φ)) |2 ≤ (|P(𝐻 (Φ)) | + |R(Φ) |)2, (15)

Assuming a given phase retrieval method for the ideal forward
propagation model is accurate within 𝜖-error (𝜖 > 0) for a local
neighborhood Φ∗ around Φ which fulfills



|P(𝐻 (Φ∗)) |2 − 𝐼

2 ≤ 𝜖 ,

the bound on image intensity from Eq. 15 further allows us to bound
the objective in Eq. (12) as


|P̃ (𝐻 (Φ∗)) |2 − 𝐼


2 ≤ 

( |P(𝐻 (Φ∗)) | + |R(Φ∗) |)2 − 𝐼

2 + 𝜖. (16)

With this bounded objective function in hand, we can now solve
for an aberration compensating hologram phase Φ∗ with an ideal
propagation image wave field and a wave field error, to produce an
intended target image on the real prototype, that is

Φopt = minimize
Φ∗

����( |P(𝐻 (Φ∗)) | + |R(Φ∗) |)2 − 𝐼 ����2︸                                     ︷︷                                     ︸
upper bound error

. (17)

To this end, we learn the aberration errors using a generative ad-
versarial network (GAN), which acts as an Aberration Approximator
D of the real display. We refer to this network as the Aberration
Approximator in the remainder of the manuscript. While the wave
field itself is difficult to measure, modeling the upper bound error
allows us to use the intensity instead, which can be measured by
a conventional camera and is used as an the input to the network.
The new aberrated intensity on the image plane of a real hardware
prototype is given by the updated propagated field intensity

|P̃ (𝐻 (Φ)) |2 ≤ (|P(𝐻 (Φ)) | + |R(Φ) |)2 ≤ D(|P(𝐻 (Φ)) |2) . (18)

We update the Aberration Approximator iteratively by learning
the aberration wave error and optimize for a compensating holo-
gram phase pattern. In the subsequent sections, we describe our
method of constructing this approximator for the real hardware dis-
play prototype and our hologram phase optimization strategy. We
note that vision aberrations including astigmatism compensation
can be accurately modeled and implemented using an additional
Zernike-phase [Maimone et al. 2017]. This additional phase can be
directly added to our holograms to compensate for vision-induced
aberrations.

4.3 Learned Aberration Approximator
As described in Section 3, it is challenging to formally model all
deviations from the ideal forwardmodel in a real holographic display.
Furthermore, the individual steps in the physical display chain that
contribute to aberrations are often non-differentiable (e.g. non-linear
SLM response) which prevents using efficient first-order gradient
solvers.We tackle this problem bymodeling the upper bound Eq. (18)
as a differentiable function D that acts as an approximation to the
real hardware, and with it we can solve the upper bound Eq. (17)
optimization problem. Formally, we model real-world deviations
using

D : I ↦→ Ĩ , (19)
where I denotes the set of images computed using ideal phase holo-
gram propagation and Ĩ is the set of real world captures.
Deep neural networks are powerful models for non-linear and

non-trivial image-to-image mappings and hence are a natural choice
for our differentiable hardware approximator. Existing deep learning
approaches have been proposed for transferring styles (e.g. Monet
to Van Gogh) [Zhu et al. 2017] or hallucinating realistic images
from under-constrained semantic labels (e.g. segmentation maps,
sketches) [Isola et al. 2016]. In contrast, our task is to approximate
captured holographic aberrations precisely down to minute details.
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Target ImageHologram Phase

Wirtinger Derivatives

Display Output with AberrationsAberration Approximator OutputIntermediate Reconstruction

Aberration ApproximatorAngular Spectrum Propagation

+

Discriminator

Real World Aberrations Aberration Approximator Output TargetImage from Ideal Propagation Flow of GradientsDown Convolution

Optimized Hologram 
Display Output

Fig. 3. Overall pipeline of our hardware-in-the-loop phase retrieval method. We compensate for real world errors in holographic image reconstruction by
a hardware-in-the-loop optimization method. In contrast to existing approaches, we use a trained neural network that acts as a differentiable mapping
function from the ideal simulated reconstruction to the aberrated real world display. Using this network as an approximator to the hardware, we perform a
hardware-in-the-loop optimization to generate aberration-compensating holograms that eliminate diverse hardware deviations.

Departing from existing work, our aberration approximator must
not hallucinate plausible, natural features involved and the map-
ping to be learned needs to be constrained. As such, we propose a
conditional GAN conditioned on the ideal reconstruction instead
of a semantic or style guide that can be found in Pix2Pix [Isola
et al. 2016]. Specifically, we train a substantially modified U-Net
[Ronneberger et al. 2015] to map ideal simulated reconstructions
to those captured from a real holographic display. We observe that
conditioning the discriminator on the ideal simulated reconstruc-
tion provides better training stability and performance. Our training
data is captured in a hardware-in-the-loop fashion as discussed in
Section 5.1. We discuss the network architecture and training details
in the following section.

4.3.1 Network Architecture.

Generator. Our generator network is a modified U-Net with a base
structure of 8 downsampling operations using stride 2 convolutions
with 5 × 5 kernel window followed by symmetric upsampling using
stride 2 transposed convolutions with 4×4 kernel window. However,
departing from the architecture proposed in Pix2Pix [Isola et al.
2016], we cater the network towards our application through several
modifications. First, we remove dropout as we found that it provides
excessive regularization. Second, the last layer of the Pix2Pix U-Net
consists of directly upsampling an 𝐻/2 ×𝑊 /2 × 64 feature map to
the final 𝐻 ×𝑊 × 3 RGB image, while we instead choose to first
upsample to a high-resolution 𝐻 ×𝑊 × 32 feature map before using
an additional stride 1 convolution to produce the final𝐻×𝑊 ×3 RGB
image. Third, we remove instance normalization from the first two
encoding layers and the last two decoding layers to allow for better
tone matching. Lastly, our skip connections connect the encoding
layers after LeakyReLU activation instead of before as is done in
Pix2Pix. For more details, please see the Supplementary Material.

Discriminator. Using a discriminator during the training phase
helps in constructing a robust loss function for improving the per-
ceptual quality of predictions from our aberration approximator
network. We use a 94 × 94 PatchGAN discriminator [Isola et al.
2016], which consists of three downsampling stride 2 convolutions
followed by three stride 1 convolutions. The last layer uses a Sig-
moid activation to convert the output of the discriminator into a
probability score between 0 and 1 predicting whether the given
image is a real holographic capture or a generated image. Although
conditional GANs typically provide auxiliary information such as
segmantation maps or edge sketches for the discriminator to be
“conditioned” on, we do not utilize these in our application. Never-
theless, we found that conditioning the discriminator on the ideal
simulated reconstruction improved our learned aberration approxi-
mator. In this setting, our discriminator learns to recognize realistic
transformations from simulations to the actual hardware capture.
Please refer to the Supplementary Material for additional details.

Loss Function. We use a weighted combination of ℓ1 loss Lℓ1 ,
perceptual loss LPerc [Johnson et al. 2016], and adversarial loss
LAdv to train the Aberration Approximator :

LD = 𝜆ℓ1Lℓ1 + 𝜆PercLPerc + 𝜆AdvLAdv . (20)

The perceptual loss compares the image features from activation
layers in a pre-trained VGG-19 neural network, that is,

LPerc (𝑥,𝑦) =
∑
𝑙

𝜈𝑙 ∥𝜙𝑙 (𝑥) − 𝜙𝑙 (𝑦)∥1, (21)

where 𝜙𝑙 is the output of the 𝑙-th layer of the VGG-19 pre-trained
network and 𝜈𝑙 is the corresponding loss balancing weight. Specifi-
cally, we use the outputs of ReLU activations just before the first two
maxpool layers, i.e. relu1_2 and relu2_2. The combined ℓ1 loss and
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perceptual loss acts as a content loss for learning most of the aberra-
tions in the holographic display, while the adversarial loss provides
additional direction for learning any remaining errors that were
missed by the content loss. In experiments, we set 𝜈relu1_2 = 1.5,
𝜈relu2_2 = 1.0, 𝜆1 = 10.0, 𝜆Perc = 0.05, and 𝜆Adv = 0.5 which pro-
duces a 1:1 ratio of content loss to adversarial loss.

4.4 Learned Hardware-in-the-loop Hologram Optimization
In lieu of differentiable real hardware, we use a trained neural net-
work that estimates the experimental wave errors to compensate for
any aberrations, directly in the computed phase holograms. To this
end, we train our Aberration Approximator network in a two-step
alternating optimization approach, listed in Algorithm 1. Specif-
ically, we alternate between optimizing for phase patterns (with
fixed forward model) and optimizing for local aberration errors by
refining the network with real holographic display aberrations(from
fixed phase patterns). We describe both steps in the following.

Training the aberration approximator. We initialize the proposed
training scheme assuming an ideal wave field at the image plane,
i.e. R(Φ) = 0 and optimize for the underlying phase holograms for
the input dataset of target images T. When these holograms are
displayed on a real prototype, severe artifacts are present which we
model with the learned aberration approximatorD. To this end, we
acquire repeatedly captured datasets of real aberrated images Ĩ from
a prototype holographic display and learn D by training a GAN as
described in Section 4.3.1. With the new aberration approximator
D, we then recompute the phase holograms, updating the propa-
gation model to contain the aberrations modeled by the network,
as described by Algorithm 1. Each iteration alternates between the
phase computation, capture step, and aberration approximator net-
work refinement steps using the most recent captures, thus learning
to model finer residual errors than the previous iterations. Once
learned, we use the frozen aberration approximator network model
for all future computations of aberration compensated phase holo-
grams.

Hardware-in-the-loop phase retrieval. For the phase retrieval stage,
we use the trained frozen network D to solve the aberration com-
pensating phase optimization problem as described in Eq. (18). Our
objective function is a combination of several penalty functions: 1)
the learned perceptual image similarity metric (LPIPS) [Zhang et al.
2018] as a deep neural network perceptual quality metric based
on human judgments, 2) multi-scale structual similarity index (MS-
SSIM) [Wang et al. 2003] as a perceptual quality metric, 3) L2 loss
for pixel-wise accuracy. We note that our aberration approximator
network learns to predict the real holographic display images which
typically are prone to noise, spatial and radiometric inaccuracies
compared to the digital target image. While the LPIPS loss is trained
to be robust to such inaccuracies, training an additional adversarial
loss, as shown in Figure 3, allows for a more robust loss function
that better generalizes to real-world measured holographic images.
Our overall loss function L is a weighted combination of the above
mentioned content and adversarial loss functions given by

L = LLPIPS + 𝜆ms-ssimLms-ssim + 𝜆ℓ2Lℓ2︸                                         ︷︷                                         ︸
content loss L𝑐

+𝜆AdvLAdv (22)

Algorithm 1 Training the aberration approximator network D.
1: Inputs:

T // Training image set
2: Outputs:

D
3: // Refine aberration approximator D for 𝐾 iterations
4: D0 = Id
5: for 𝑘 = 1 to 𝐾 do
6: // Iterate over training dataset
7: for 𝐼 ∈ T do
8: // Optimize for each Φ𝐼 with a fixed D
9: Φ𝑘−1

𝐼
← minimize

Φ
L

(
D𝑘−1 ( |P(𝐻 (Φ)) |2) − 𝐼

)
︸                               ︷︷                               ︸

upper bound error
10: end for
11: // Compute ideal phase hologram images
12: I← P(𝐻 (Φ𝑘−1))
13: // Capture real hardware aberrated images
14: Ĩ← P̃(𝐻 (Φ𝑘−1))
15: // Refine D with new captures
16: D𝑘 ← refine(D𝑘−1, I , Ĩ )
17: end for
18: // Freeze D for future use
19: D ← D𝐾

Although the optimization loss function is similar to the loss func-
tion used to train our aberration approximator network, note that
training of the aberration approximator is done over an entire dataset
of images, whereas the phase-only hologram optimization is done
for a single image, in the future, that is unseen during network train-
ing. We perform the phase retrieval by solving the above equation
using the Wirtinger derivatives as described by Chakravarthula
et al. [2019]. We repeat the phase optimization process until the
aberration error outputs fall below a user-defined threshold. We
derive the corresponding Wirtinger derivatives and offer insights
into termination criteria in the Supplementary Material.

Please note that the latest implementations of machine learning
libraries, such as TensorFlow, haveWirtinger derivatives built into
their auto-differentiation packages, easing the use of traditional
stochastic gradient descent (SGD) methods. While Tensorflow’s
implementation of gradients is similar to ours, PyTorch computes
the complex derivatives via a Jacobian, which implicitly computes
theWirtinger derivatives. We discuss both implementations in detail
in the Supplementary Material.

4.5 Extension to Online-Camera Phase Optimization
In the approach discussed above, we use a learned aberration ap-
proximator which acts as a substitute for real display and camera
hardware, to compute hologram phase patterns that compensate for
real hardware aberrations. This approach uses the actual display and
camera hardware only for acquiring training data for the aberration
approximator network (and learning the unknown light transport).
Holograms can also be actively optimized in an online fashion,

using images from a camera that sees the holographic projections at
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each iteration as reference. In other words, holograms can be opti-
mized to compensate for real hardware aberrations directly, without
substituting the hardware with the trained aberration approximator
network. Given that the light transport in a real holographic display
is unknown, one can assume an ideal propagation model for the
purpose of computing gradients for iterative hologram phase re-
finement. Alternatively, we can easily extend our network training
strategy as described by Algorithm 1 to an online learning method
for holographic phase retrieval of unknown propagation models.
Here, the test images are now seen during training. Specifically,
the alternating optimization for phase retrieval (with fixed forward
model) and network refinement (with fixed holographic phase) can
be used for computing aberration compensating holograms for each
individual image. However, we note that such an approach takes
several minutes for optimizing a single phase hologram as a result of
the 𝐾 sequential iterations, including display, capture, fine-tuning
and training, making it impractical. We envision future training
hardware to be capable of online phase refinement at fast rates.
Although efficient online phase optimization is an exciting area
for future research, we find that our learned hardware-in-the-loop
phase retrieval method already compensates for severe real-world
aberrations. We show holographic images obtained from online
compensation in the Supplementary Material.

5 SETUP AND IMPLEMENTATION
We assess the holograms generated by the proposed method in
simulation and experimentally on a hardware display prototype. We
discuss the specific hardware setup and software implementation
details in the following.

5.1 Hardware Prototype
Our prototype holographic display uses a HOLOEYE LETO-I liquid
crystal on silicon (LCoS) reflective phase-only spatial light modu-
lator with a resolution of 1920 × 1080 and a pixel pitch of 6.4 nm.
The SLM is controlled as an external monitor and the hologram
phase patterns are transferred and displayed on it via HDMI port of
a graphics card. This SLM is illuminated by a collimated and linearly
polarized beam from a single optical fiber that is coupled to three
laser diodes. The laser diodes emit at wavelengths 446 nm, 517 nm
and 636 nm and are controlled using a ThorLabs LDC205C laser
diode controller in a color field sequential manner.
The illuminated beam that is modulated by the phase-only SLM

is focused on an intermediate plane where an iris is placed to dis-
card unwanted diffraction orders and conjugate images. Specifically,
we use a linear phase ramp on the computed phase hologram to
physically shift the holographic image away from the zero-order
undiffracted light. We then block this zero-order undiffracted light
and the conjugate (ghost) images using an iris, allowing primar-
ily the modulated light to form an image. We relay this light onto
the camera sensor plane. We use a Canon Rebel T6i DSLR camera
body, without the camera lens attached, to capture images for the
assessment of the display’s image quality. The camera has an output
resolution of 6000 × 4000 and a pixel pitch of 3.72 µm, well above
the pitch of our SLM. This oversampling on the image plane allows
us to effectively capture high frequency content, including noise.

A B

C
Fig. 4. Zero-order elimination. (A) Zero-order undiffracted light from the
dead-space between SLM pixels result in a bright ringing pattern over the
image that severely affects the image quality with poor contrast. (B) We
eliminate the zero-order light by adding a linear phase ramp to the phase
patterns and filtering the unwanted light using an iris. (C) Compared to the
reference image (left), holographic projections with zero-order light show
severe ringing artifacts (middle). Eliminating zero-order light improves the
image contrast significantly but results in additional artifacts due to SLM
modulation limitations (right). The holograms for (C) are computed using
Wirtinger Holography [Chakravarthula et al. 2019], with a linear phase
ramp added to it.

Figure 4 validates that we have almost completely eliminated
the zero-order undiffracted light. However, the additional phase
ramp added to the holograms to filter out the undiffracted and
conjugate light results in severe artifacts manifesting as horizontal
streaks as can be seen in Figure 4-C. Residual artifacts resulting from
the several real-world deviations such as laser speckle, dust and
scratches in the optical system, recall Section 3, further degrades
the image quality noticeably. Our method successfully eliminates
such severe artifacts as discussed in Section 6.

Data Acquisition. Learning the aberrations of the proposed hard-
ware prototype requires capturing a dataset of aberrated real-world
display outputs and the corresponding sharp reference images. Ac-
quiring such data manually is often tedious and prone to errors.
Specifically, misalignment between various captured images results
in additional inconsistencies in the training data which are not due
to the non-ideal behavior of the hardware.
To address these challenges, we use the display-camera setup

shown in Figure 5 to acquire large training datasets robustly without
human intervention This is achieved by sequentially displaying
phase holograms on the SLM and simultaneously capturing the
corresponding holographic projections with the camera. We repeat
this process for each refinement step of our aberration approximator,
as described in Section 4.4.
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Fig. 5. Hardware-in-the-loop display-capture setup. Top: The display-
prototype setup to generate the training data for our aberration approxima-
tor network. Bottom: Setup schematic, with RGB lasers that are coupled
into a single-model fiber which illuminates the reflective SLM displaying
the phase pattern. The modulated wave is measured using a conventional
intensity camera.

5.2 Implementation
We implement the aberration approximator and optimization proce-
dure for the phase-only holograms using TensorFlow 1.14. We train
the model on a GPU cluster providing 16 GB of memory required
for handling the trained network as well as the high resolution
1080 × 1920 images. We do not use data augmentation techniques
and instead simply train on full resolution images. For divisibility,
we zero-pad the input images to 1280 × 2048 and then we crop the
1080 × 1920 region-of-interest from the output of the network. We
use the Adam optimizer for both the generator and discriminator
with learning rate 0.0002 and an exponential decay rate of 𝛽1 = 0.5
for the first moment and 𝛽2 = 0.999 for the second moment, and
we train for 40000 iterations. Our batch size is one. The overall
training process takes around one day for a dataset of 120 images.
The source images are from our custom dataset of images randomly
picked from the DIV2K dataset [Agustsson and Timofte 2017] which
contains high resolution images of natural scenes.

The proposed hardware-in-the-loop optimization is implemented
using TensorFlow eager execution mode to allow for Wirtinger
gradient updates. We obtain the gradients of the aberration approx-
imator and the losses from auto-differentiation using TensorFlow
and use those to compute Wirtinger gradients. We optimize the
phase holograms using Adam optimizer with a learning rate of
0.001 and exponential decay rates of 𝛽1 = 0.9 and 𝛽2 = 0.999 for

Table 1. Quantitative comparison against state-of-the-art deep learning
techniques for image mapping. We outperform existing encoder-decoder
and generative adversarial approaches in predicting the aberrations on the
holographic display output.

PSNR (dB) SSIM 1 - LPIPS
Proposed 29.6 0.831 0.943
Proposed (unconditional) 24.5 0.628 0.825
Pix2PixHD [2017] 24.1 0.565 0.813
Pix2Pix [2016] 24.3 0.614 0.824
U-Net [2015] 24.7 0.595 0.786
U-Net [2015] with L2 24.4 0.563 0.425
U-Net [2015] with L1 25.1 0.590 0.497

the first and second moments, respectively. The optimization of the
phase holograms for a given aberration approximator takes about
80 sec for 300 iterations on a consumer GPU.

6 ANALYSIS
To compute holograms that compensate for experimental aberra-
tions, the aberration approximator network has to reliably replicate
the hardware artifacts. In this section, we analyze the modeling
capability of the learned aberration approximator. We first com-
pare the performance of our network architecture against existing
image-to-image translation approaches. Next, we perform an abla-
tion study to demonstrate that our architecture modifications and
loss function produce meaningful improvements in modeling real
aberrations. Quantitative metrics for network evaluations are calcu-
lated between the ground truth “noisy” images from the holographic
display and the outputs of the approximator networks. Lastly, we
demonstrate in simulation that the aberration approximator pro-
vides useful gradients for phase retrieval optimization.

6.1 Baseline Comparisons
We compare our proposed aberration approximator architecture and
loss function against state-of-the-art image-to-image translation
approaches. Specifically, we compare against the vanilla U-Net [Ron-
neberger et al. 2015], Pix2Pix [Isola et al. 2017], Pix2PixHD [Wang
et al. 2017]. We train the U-Nets using ℓ1, ℓ2, and perceptual loss. For
Pix2Pix and Pix2PixHD we use their default settings and loss func-
tions. All methods were trained on full resolution images without
augmentation. Due to memory constraints, we halve the number of
filters in the U-Net at each layer and for Pix2PixHD we halve the
number of filters in the first layer of the generator and discriminator.
Table 1 shows PSNR, SSIM, and LPIPS evaluation results. The

proposed method outperforms the state-of-the-art networks by at
least 5 dB in PSNR. The SSIM results also indicate that our approach
produces more perceptually accurate reconstructions than other
baseline methods. Figure 6 shows qualitative examples for a few
selected images. The vanilla U-Nets with ℓ1 and ℓ2 losses fail to learn
the diverse noise patterns. Training a U-Net with a percetual loss
allows for better replication of noise but the predictions are still far
from the actual aberrations and severe checkerboarding artefacts
can be observed. Pix2Pix is capable of learning the aberrations to an
extent, however, the color tones and patterns do not match as closely
as ours. Pix2PixHD learns to generate high frequency aberrations
that look plausible, but these aberrations are often misaligned with
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Fig. 6. Qualitative comparison of different deep learning techniques for holographic aberration prediction. We compare aberration predictions using our method
against state-of-the-art image mapping techniques. In addition to example outputs from each method, we show absolute error maps between each method
and the target display output. All U-Net approaches fail to match the aberrations of the display. Pix2Pix is able to coarsely match the aberrations but not the
color tones. Pix2PixHD learns to generate aberrations that look believable but do not match that actual display captures, which is particularly evident in the
corresponding error maps. Furthermore, Pix2PixHD sometimes produces additional artefacts; an example of which can be seen in the first row. The proposed
approach models the aberrations in a real holographic display with greatest fidelity.

the actual display aberrations as can be seen in the error maps.
Furthermore, Pix2PixHD occasionally fails and introduces additional
artefacts. We found that deeper networks such as the U-Net and
Pix2PixHD were more difficult to train for our task compared to
shallower networks such as ours and Pix2Pix. We account this to the
fact that the small loss gradients from the high frequency aberrations
are difficult to backpropagate through these deeper networks.

6.2 Ablation Study
We performed an ablation study to demonstrate how our architec-
ture design and loss function choices impact the aberration predic-
tion quality. We found that training with an unconditional GANwas
less stable and prone to falling into undesirable local minima, see Ta-
ble 1 and the Supplementary Material. Intuitively, conditioning the
discriminator on the ideal reconstructions allowed the discrimina-
tor to focus on distinguishing the aberrations only, which provides
better training signal for our generator. We refer to the Supple-
mentary Material for additional comparisons on the loss function
components.

6.3 Simulated Phase Retrieval with Aberration
Approximator

We demonstrate in simulation that using our aberration approx-
imator provides useful gradients which allow for phase retrieval.
Figure 7 shows simulated phase retrieval results with the proposed

Table 2. Quantitative results for phase retrieval with the aberration ap-
proximator in simulation, starting from hardware captures obtained using
Wirtinger holography [2019] with DC component removed. The quantita-
tive improvement demonstrates that our aberration approximator provides
useful gradients that allow for optimization within theWirtinger framework.

PSNR (dB) SSIM 1 - LPIPS
Proposed 30.4 0.937 0.949
Wirtinger Holography [2019] 19.9 0.571 0.505

aberration aproximator included as described in Section 4.4. Only
instead of displaying the optimized phase pattern on the physcial dis-
play, we propagate the wavefront through the ideal forward model
and the aberration estimator, effectively simulating the imperfect
hardware system. These synthetic results validate the effectiveness
of our proposed method (Algorithm 1). Table 2 shows quantitative
improvement after our optimization process in simulation. The sig-
nificant improvement across all image quality metrics demonstrates
that the proposed technique indeed compensates for the adequately
modeled hardware deviations. We note, since our aberration ap-
proximator is trained to map ideal Wirtinger reconstructions to
hardware captures, it is unsuitable for evaluating other methods
such as double phase encoding [2017] in the same simulation frame-
work. As such, we defer to the next section for comparisons on the
hardware prototype.
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Reference Image Estimated Display Output Reconstruction using Our Method

Fig. 7. Simulated results for phase retrieval using the trained aberration approximator. For a given target image (left), our aberration approximator network
estimates the “aberrated” hardware display output (middle) due to real world deviations from an ideal light propagation model. We compensate for these real
world deviations through our hologram optimization method. The simulated reconstructions of our holograms eliminate severe predicted aberrations and
show a significant improvement in image quality (right).

Table 3. Quantitative results for holographic reconstructions using differ-
ent phase retrieval methods. Metrics are computed on hardware captures
compared against the aligned target image. For fair comparison we adjust
intensities to match the target image intensity [Yoshikawa et al. 2016]. The
proposed method not only outperforms other methods by 2.5 dB PSNR,
but also greatly improves the SSIM and LPIPS perceptual metrics, and thus
quantitatively demonstrates improved perceptual quality.

Real display output PSNR (dB) SSIM 1-LPIPS
Proposed 20.5 0.625 0.541
Wirtinger Holography [2019] 17.6 0.475 0.417
Double Phase Encoding [2017] 15.24 0.342 0.208

7 ASSESSMENT
We validate and evaluate our approach for real-world use by com-
paring it to the state-of-the-art holographic phase retrieval methods,
Double phase encoding [Maimone et al. 2017] and Wirtinger Holog-
raphy [Chakravarthula et al. 2019], in full color. Figure 8 shows
experimentally acquired results from the holographic display setup
described in Section 5.1. The proposed method outperforms exist-
ing state-of-the-art methods quantitatively and qualitatively for
real-world display captures.
For the purpose of acquiring these results, we covered our hard-

ware prototype with blackout curtains to mitigate the effect of
ambient light on the final captures. We maintained the SLM look-up-
tables (LUTs), camera settings and laser settings constant through-
out the various experiments. In particular, we computed holograms
of a resolution test pattern showing TV lines of varying frequencies

and finetuned the camera sensor plane position until all the frequen-
cies in the TV chart can be seen, to minimize any loss of frequencies
due to camera defocus errors. We kept the camera ISO at 100 and
exposure at 10 ms. We used the SLM look up tables (LUTs) provided
by the manufacturer to display the calibration TV-hologram but
tuned the voltages by a small amount until a maximum diffraction
efficiency is noticed. The LUTs and the corresponding voltages are
then kept constant for all the experiments.

We found that the holograms for other methods needed an extra
gamma correction to the phase patterns, before displaying on the
hardware, for improved performance on our aged SLM with inac-
curate look-up-tables, aiming for best hand-tuned display outputs.
In contrast, we do not apply such gamma correction to the phase
patterns from our hardware-in-the-loop method and the proposed
approach directly compensates for the phase errors. Also, since the
double phase encoding leads to the unwanted effect of a noticeable
portion of light escaping the designated image window, we increase
the laser power for these holograms to match the intensities for
a fair comparison. We note that our optical setup is optimized to
relay a real projected image directly to the sensor of the DSLR cam-
era (Section 5.1) without lens distortions, eliminating the need for
additional calibration.

The real captured results reported in Figure 8 show that the pro-
posed approach compensates for most of the severe aberrations
occurring in existing methods. We eliminate the zero-order un-
diffracted light that is caused by the dead pixel space in the SLM as
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Target (Chakravarthula et al. 2019)
Wirtinger HolographyDouble Phase Encoding

(Maimone et al. 2017) Our Method

Fig. 8. Experimental Validation.We computed aberration compensated phase holograms using the proposed hardware-in-the-loop approach. We captured
RGB color images of these aberration compensated holograms in a color sequential manner. The same camera settings were used for all the image capture
experiments while the output laser power was adjusted to white-balance the illumination. Note that the laser power was adjusted (increased) for double phase
encoding holograms due to the unwanted loss of light in the double phase encoding approach.
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discussed in Section 5.1. This significantly improves the contrast and
can be seen in the results reported, e.g. the black regions between
the flowers in second row and the doll in the last row of results.
The proposed approach eliminates the ringing at the edges of the
holographic projections and reconstruction noise that is present
in existing methods. This can be observed in the image patches
that are selected from the peripheries of the real captures. As a
result, fine details such as the skin of the star fish in the first row
and texture on the porcelain in the last row are revealed by the
proposed method in contrast to Wirtinger holography or double
phase encoding methods. Similarly, the fine details on the flowers
and the colored glass window in the middle rows is made visible
with the proposed method at high contrast and resolution.

We further validate our method by computing several image qual-
ity metrics such as PSNR, SSIM and LPIPS perceptual similarity on
real holographic images from a custom test dataset consisting of
images randomly chosen from the DIV2K dataset [Agustsson and
Timofte 2017] and that are not seen by the aberration approximator
before during the training stage. The resulting quality metrics for
the real captured holographic images for our method compared
against the state-of-the-art double phase encoding and Wirtinger
holography are reported in Table 3. The target display images were
first gamma-corrected and the holograms of these gamma-corrected
intensity images were computed. These holograms were displayed
on a real holographic display and captured with a linear camera
sensor to compute the corresponding image quality metrics between
the captured images and the gamma-corrected targets. The proposed
method demonstrates 2.5 dB improvement over the prior methods
and significant increases in SSIM and LPIPS performance – validat-
ing the improved quality of the real holographic images shown in
Figure 8. For further evaluation, we provide additional real captured
results in Supplementary Material.

7.1 3D Holographic Display
We also extend the proposed hardware-in-the-loop phase retrieval
method to tackle 3D volumetric scenes via dynamic global scene
focus. Computing full Fresnel holograms of 3D scenes using point-
source integration methods generally result in holographic imagery
with continuous per-pixel focus cues. However, these methods re-
quire computing and superposing the underlying lens phase patterns
individually for several million points that make the 3D scene, which
is a computationally expensive process. Moreover, such Fresnel holo-
grams are typically not phase-only and require either a complex
modulation of both amplitude and phase [Shi et al. 2017], or a heuris-
tic encoding of the complex hologram [Maimone et al. 2017]. Each of
these approaches results in reduction of the holographic projection
quality. As an alternative, the 3D volume can be discretized into
multiple focal planes and a superposition of holograms correspond-
ing to only those depth planes can be computed to render a 3D
hologram. The holograms for each focal plane can be independently
or jointly computed using our optimization framework, however, at
the cost of a reduction in speed by N for N discrete depth planes.
Therefore, we provide 3D holograms by sweeping holographic

projections of 2D scenes through the 3D volume in space, via dy-
namic global scene focus. Specifically, since the human eye can
focus only at a single depth at any given instant of time, we display

a 2D hologram of the 3D scene whose focus is changed to match
the focal depth of the user’s eye [Maimone et al. 2017]. The depth of
field blur in the scenes is rendered in image space [Chakravarthula
et al. 2018; Cholewiak et al. 2017]. While correcting for the aber-
rations at various depths as described by Maimone et al. [2017] is
an option, that requires training the aberration approximator with
holographic images generated and captured at various discretely
sampled depths. Instead, we train our aberration approximator to
predict deviations at a single depth but add additional lens phase
functions to the aberration compensated holograms to move the
projections across the continuous 3D volume. As shown in Figure 9,
the global focus change of the 3D scenes is accurately displayed on
our holographic display prototype.

7.2 Robustness to Eye Motion and Display Variability
In this section, we evaluate the robustness of our method to spatial,
temporal and systemic changes in the display-capture setup, and its
inherent hardware limitations.

Robustness to Eye Motion. To evaluate the quality of aberration-
compensated holographic images with eye motion, we compare the
quality of display outputs captured for various unseen horizontal
and vertical translations of a Canon T6i DSLR camera. Note that the
holograms for this experiment are generated using an aberration
approximator network that is trained on a dataset of holographic
images captured with a fixed camera position. A subset of images
shown in the top row of Figure 10 shows that the overall quality
of holographic images remain stable with the camera motion up to
4 cm.

Robustness to Temporal Variability. To assess the performance of
the trained network to temporal variations of the hardware, we
compare the captured images from the hardware display prototype
over a time window of three months with a Canon T6i DSLR camera,
as shown in the bottom left of Figure 10. It can be noticed that our
aberration approximator predicts real world deviations consistently
and there is no significant change in the image quality of aberration-
compensated holographic projections over time. The disparities in
the brightness and color is due to the differences in the laser power
and we note that these are not fundamental to the proposed method.

Robustness to Acquisition Device. While the dataset of real hard-
ware captures that we use for training the aberration approxima-
tor network inherently contains the nonlinearities of the camera,
we tailor our holographic phase optimization loss functions to be
perceptually consistent but agnostic to radiometric variations as
discussed in Section 4.4. Also note that the optical layout used in
our setup is designed to relay the holographic image directly on the
camera sensor without any lens distortion or chromatic aberration,
eliminating the need for additional lens calibration. To validate this,
we capture and compare the display output with two different cam-
eras: a Canon Rebel T6i DSLR camera of resolution 6000 × 4000 and
a Fujifilm FinePix S5 Pro DSLR camera of resolution 4256 × 2848.
The Canon T6i has a 24MP APS-C (22.3 × 14.0 mm) sized CMOS
sensor and features DIGIC 6 processor. On the other hand, Fujifilm
S5 Pro has a 6MP APS-C (23× 15.5mm) sized CCD sensor. Despite
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Fig. 9. 3D holograms via dynamic global scene focus. We acquire RGB color images of 3D volumetric scenes projected at different depths via global scene focus
and captured in a color sequential manner. The images were captured with the camera settings for all the experiments, an ISO of 100 and an exposure time of
10 ms, while the output laser power was adjusted to white-balance the illumination.

the two devices having entirely different imaging sensor properties,
the display captures from either cameras are consistent, as shown
in lower right part of the Figure 10, and validate the robustness
of our optimization framework against radiometric variability of
acquisition devices.

8 DISCUSSION AND CONCLUSION
We introduce amachine learned hardware-in-the-loop phase retrieval
method to estimate the unknown forward model in a real holo-
graphic display. The proposed method allows us to compensate

hardware deviations from the ideal forward model which are non-
linear and difficult to model. To this end, we learn an aberration
approximator from hardware captures, that is parameterized by a
deep neural network, and effectively emulates the real hardware.
Using this aberration approximator function allows us to formulate
the holographic phase retrieval problem as an optimization problem
that can be solved using first-order optimization methods. The pro-
posed approach iteratively refines the upper bound on the estimated
objective function which we have derived in this work.
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- 2 cm + 2 cmTarget

3 months Fujifilm S5 Pro Canon Rebel T6i

Fig. 10. Robustness to spatial, temporal and acquisition device.We evaluate the robustness of our method by acquiring and comparing the quality of images
with spatial, temporal and camera variability. In specific, we evaluate the quality of measured holographic images spatially by displacing the camera up to
4 cm (top), temporally over a period of 3 months (bottom left) and with different imaging devices (bottom right). The proposed method produces consistent
stable results for all setup variations. Spatial and temporal variability experiments are performed with a Canon Rebel T6i DSLR camera.

We validate that our aberration approximator accurately models
images acquired from our prototype display. We assess the proposed
phase retrieval approach by solving for phase-only holograms that
compensate for severe errors. In particular, our approach eliminates
severe non-linear artifacts in the real holographic reconstructions.
Without modeling deviations, the approach allows us to eliminate
zero-order undiffracted light, non-ideal and non-linear phase re-
sponse of the SLM device and severe ringing and chromatic arti-
facts that are not tackled by existing phase retrieval methods. The
proposed method outperforms existing state-of-the-art methods
quantitatively and qualitative for real-world display captures.
We envision the proposed hardware-in-the-loop phase retrieval

method to enable research towards high-quality artifact-free holo-
graphic near-eye displays of the future.
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