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Abstract

We show that the replicator dynamics for zero-sum games arises as a result of
a non-canonical bracket that is a hybrid between a Poisson Bracket and a Nambu
Bracket. The resulting non-canonical bracket is parameterized both the by the skew-
symmetric payoff matrix and a mediating function. The mediating function is only
sometimes a conserved quantity, but plays a critical role in the determination of the
dynamics. As a by-product, we show that for the replicator dynamics this function
arises in the definition of a natural metric on which phase flow-volume is preserved.
Additionally, we show that the non-canonical bracket satisfies all the same identities
as the Poisson bracket except for the Jacobi identity (JI), which is satisfied for special
cases of the mediating function. In particular, the mediating function that gives rise to
the replicator dynamics yields a bracket that satisfies JI. This neatly explains why the
mediating function allows us to derive a metric on which phase flow is conserved and
suggests a natural geometry for zero-sum games that extends the Symplectic geometry
of the Poisson bracket and potentially an alternate approach to quantizing evolutionary
games.

1 Introduction

Evolutionary games have been well-studied over the past four decades [1–6], with much
attention paid to the replicator equation. The Hamiltonian structure of these systems has
been considered in [7] and also in [8–10], where chaotic motion in generalized replicators are
also considered. There has also been recent interest in the intersection of Lie Algebras, Lie
Brackets and the replicator dynamic [11,12].

Nambu mechanics [13] are a logical generalization of Hamiltonian dynamics to odd di-
mensional systems and systems with multiple conserved quantities that are not (necessarily)
defined by Hamilton’s equations yet (i) are conservative and (ii) satisfy their own more
generic form of Liouville’s theorem. Nambu first defined his bracket on two Hamiltonians.
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Let F,G,H : R3 → R be three functions. The Nambu bracket in which G and H are
conserved quantities is

[F,G,H] = ⟨∇F,∇G×∇H⟩ ,
where ⟨·, ·⟩ is the standard inner product.

A three dimensional dynamical system with variables (x1, x2, x3) has Nambu dynamics if

ẋi = [xi, G,H]

for some conserved quantities G and H. In general on H1, . . . , Hn−1 conserved quantities the
Nambu bracket becomes

[F,H1, . . . , Hn−1] =
∑︂
σ∈Sn

ϵσ
∂F

∂xσ(1)

∂H1

∂xσ(2)

· · · ∂Hn−1

∂xσ(n)

. (1)

Here σ is a permutation in the symmetric group Sn on n symbols and ϵσ is the Levi-Civita
symbol at index σ(1), . . . , σ(n). Nambu [13] observed that when F = xi, the resulting system
given by

ẋi = [xi, H1, . . . , Hn−1] (2)

obeys a generalized form of Liouville’s Theorem. Necessarily any n-dimensional system of
ordinary differential equations with exactly n− 1 conserved quantities must be of the form
Eq. (2). In what follows we consider dynamical systems that evolve on the n−1 dimensional
unit simplex embedded in Rn, which we denote ∆n−1.

2 Game Theoretic Motivation

To motivate the discussion, consider the rock-paper-scissors (RPS) payoff matrix

A =

⎡⎣ 0 −1 1
1 0 −1
−1 1 0

⎤⎦ . (3)

Let x = (x1, x2, x3) ∈ ∆2 be the proportions of rock, paper and scissors (resp.) in an
evolutionary game. We assume x is a column vector with corresponding row vector xT . It
is known that for RPS, the replicator dynamic [14]

ẋi = xi

(︁
eTi Ax− xTAx

)︁
conserves precisely the two quantities G(x) = x1x2x3 and H(x) = x1 + x2 + x3. Therefore,
ordinary RPS exhibits a Nambu dynamic with

ẋi = [xi, G,H].

The conservation of the quantity G(x) reflects the conservation of volume in the Euclidean
norm in the flow in phase space, though it is certainly not necessary that G(x) be conserved
to have Euclidean volume conservation in phase space. For example when

G(x) = −
∑︂
i

xi log(xi), (4)

2



the dynamics conserve the Euclidean volume of phase space. In this case, however, entropy
is conserved and the dynamics become

ẋi = eTi Axlog, (5)

where xlog = ⟨log(x1), log(x2), log(x3)⟩.

2.1 Results in Three Strategy Zero-Sum Games

Consider the generalized zero-sum (skew-symmetric) payoff matrix

A =

⎡⎣ 0 −b a
b 0 −c
−a c 0

⎤⎦ .

This matrix has 0 determinant so by Zeeman’s theorem [15], the interior of ∆2 has no
hyperbolic fixed points. The phase flow does not preserve Euclidean volume. However, it
is noted in [7, 14] that for replicator dynamics with an elliptic interior fixed point, there
is a 2-form dependent on the game matrix whose resulting volume is preserved; however
the explicit structure of this two-form is never provided. In the case of the ordinary RPS
matrix, this 2-form is the Euclidean metric tensor. Inspired by this, we can modify the
Nambu bracket to accommodate a more generalized form of Liouville’s theorem. Nambu’s
work was designed to generalize Liouville’s theorem to cases when the dynamics are phase
fluid volume preserving.

Given a diagonal matrix Q ∈ R3×3, let the Q-modified Nambu bracket be

[F,G,H]Q = ⟨∇F, (Q · ∇G)×∇H⟩ .

If

Q =

⎡⎣c 0 0
0 a 0
0 0 b

⎤⎦ ,

then the replicator dynamics for the three strategy zero-sum RPS matrix are given by

ẋi = [xi, G,H]Q, (6)

where G and H are defined as before. When Q is not a multiple of the identity matrix, the
interior fixed point of the system of differential equations moves from the center of ∆2 and
the phase portrait becomes (visually) asymmetric (see Fig. 1). As a further consequence,
the Euclidean volume is no longer conserved.

Let gR(x) = R/G(x) (for some R ∈ R). Let F(x) be the vector field defining the
right-hand-side of the replicator dynamics for the (generalized) RPS game. Straightforward
computation shows that in Euclidean coordinates

∇ · [gR(x)F(x)] = 0. (7)
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Figure 1: The dynamics of Eq. (6) are shown. The visual asymmetry in the phase portrait
is caused by the Q-modified Nambu bracket when Q is not a multiple of the identity. In this
case, the standard Euclidean volume is not conserved by the dynamics. Here a = 1, b = 2
and c = 1/2.

Consequently, any metric tensor g with
√︁

det(g) = gR(x) will have the property that the
divergence of the vector field F(x) with respect to this two-form is 0. That is,

div [F(x)] =
1√︁

det(g)

∑︂
i

∂xi

[︂√︁
det(g)F(x)

]︂
= 0.

This implies there is a family of metrics for which the divergence of the replicator dynamics
vanishes. In particular, div [F(x)] = 0 with respect to the straightforward metric

g =

⎡⎢⎣
1
x2
1

0 0

0 1
x2
2

0

0 0 1
x2
3

⎤⎥⎦ , (8)

which is similar to but distinct from the Shahshahani metric (see [3], [11]). Before general-
izing, it is worth noting that when G(x) is replaced by Eq. (4), in Eq. (6), the phase flow
continues to preserve Euclidean volume. This seems to be an interesting property of the
entropy in ∆2.

3 Results in Arbitrary Dimensions

Now consider an arbitrary dimension skew-symmetric n × n payoff matrix A with n ≥ 3
defining a zero-sum game. We define a new bracket as

{F,H}A,G =
∑︂
σ∈Sn

Aσ(1),σ(n)

(n− 2)!

∂F

∂xσ(1)

∂n−2G

∂xσ(2) · · · ∂xσ(n−1)

∂H

∂xσ(n)

. (9)
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In the case when n = 3, this reduces to the Nambu bracket if and only if A is the three-
strategy unbiased RPS game. One could argue with suitable abuse of notation that for
n = 2, this yields a scaled version of the Poisson bracket, but we will not consider this case.
Our demotion of G out of the bracket will be clear in the sequel.

Because we assume A is skew-symmetric, this bracket has the anti-commutativity prop-
erty

{F,H}A,G = −{H,F}A,G.

From its construction, the bracket is bi-linear in the sense that for α, β ∈ R we have

{αF1 + F2, H}A,G = α{F1, H}A,G + {F2, H}A,G

and
{F, βH1 +H2}A,G = β{F1, H1}A,G + {F,H2}A,G.

Likewise, by the product rule, this bracket must satisfy a Leibniz rule

{F1F2, H}A,G = {F1, H}A,GF2 + F1{F2, H}A,G.

We delay discussing the Jacobi identify until after we have illustrated the utility of this
bracket in evolutionary games.

For compactness, let
∂n−2G

∂xσ(2) · · · ∂xσ(n−1)

= Gσ(2)···σ(n−1).

Then

Ḣ =
n∑︂

i=1

∂H

∂xi

ẋi =
n∑︂

i=1

∑︂
σ∈Sn

Aσ(1),σ(n)

(n− 2)!

∂H

∂xσ(1)

Gσ(2)···σ(n−1)
∂H

∂xσ(n)

.

With no loss of generality, assume σ(1) = i and σ(n) = j (arbitrary indices). Define

Tij =
Aij

(n− 2)!

∂H

∂xi

∂H

∂xj

∑︂
σ∈Sn|σ(1)=i,σ(n)=j

Gσ(2)···σ(n−1). (10)

By fixing σ(1) and σ(n), we can decompose Ḣ into a sum of the terms Tij, which are easier
to analyze. Effectively we are factoring out the various Gσ(2)···σ(n−1) for each possible value
of σ(1) and σ(n). Thus we see

Ḣ =
∑︂
i

∑︂
j

Tij.

However, Tij = −Tji, which follows from Eq. (10) and the fact that A is skew-symmetric.
From this we conclude that Ḣ = 0. Therefore, H is a constant of motion in this modified
bracket, as expected. Depending on A, G and H it is possible that G is conserved, but this
is not guaranteed. We discuss this in the context of the standard replicator dynamics below.

Let
G =

∏︂
i

xi, H =
∑︂
i

xi. (11)

Then the classic replicator dynamic on zero-sum games is given by

ẋi = {xi, H}A,G. (12)

5



To see this note that xTAx = 0. Therefore

ẋi = xie
T
i Ax =

∑︂
j ̸=i

Aijxixj. (13)

When σ(1) = i and σ(n) = j, the coefficient of the summand is Aij/(n− 2)! and

Gσ(2)···σ(n−1) = xixj. (14)

This term is repeated (n− 2)! times because we sum over elements of the symmetric group.
Thus expanding the right-hand-side of Eq. (9) yields Eq. (13) for the given F , G and H.

We also deduce that Eq. (7) generalizes from the fact that xTAx = 0. From Eq. (13),
let Fi(x) = xie

T
i Ax. Then [︄

1∏︁
j xj

Fi(x)

]︄
=

eTi Ax∏︁
j ̸=i xj

, (15)

which has no terms in xi because Aii = 0 by assumption. Therefore

∇ ·
[︃

1

G(x)
F(x)

]︃
= 0. (16)

It follows that the volume of phase flow is preserved for the n-dimensional generalization of
g in Eq. (8). This argument also allows us to produce a condition for Euclidean volume to be
preserved. If the row (column) sum of A is zero, then Euclidean volume must be conserved
since it is clear that

∂

∂xi

Fi(x) = eTi Ax,

again because Aii = 0. Consequently, ∇ · F(x) = 1TAx, which is zero if and only if the
row sum of A is zero. Here 1 is an n-dimensional vector of 1’s. Modification to Eq. (10)
shows that a zero column (row) sum is also sufficient to guarantee that G(x) = x1 · · ·xn is
conserved.

The preceding analysis suggests that the function G should not be considered a conserved
quantity (hence its demotion out of the bracket), but instead is a mediator of the functional
form of the resulting dynamics. As shown, in the case when n = 3 and G is the entropy of
the discrete distribution defined by x, the resulting dynamics are simple and governed by
Eq. (5). In the case when n = 4, if G is defined as the entropy of x, the resulting dynamics
are trivial because Gσ(2)···σ(n−1) = 0. However, if we define

G(x1, x2, x3, x4) =
∑︂
i

xi

∏︂
j ̸=i

log(xi), (17)

then just as in Eq. (5), we have

ẋi = {xi, H}A,G = eTi Axlog,

and again this system of ordinary differential equations conserves Euclidean volume. For
n > 4, a similar G(x) function can be defined yielding Eq. (5), but the interpretation
becomes more difficult.
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3.1 Jacobi Identity

Return now to the assumption that G = x1 · · · xn and assume A is skew-symmetric. The
Jacobi identity

{F, {H,L}A,G}A,G + {H, {L, F}A,G}A,G + {L, {F,H}A,G}A,G = 0. (18)

can be shown to hold for any skew-symmetric A ∈ Rn×n (a proof sketch is provided in the
appendix). Thus for any skew-symmetric A, the bracket

[F,H]A = {F,H}x1···xn,A (19)

defines a Poisson algebra [16] since the bracket satisfies (i) anti-commutativity, (ii) bilinearity,
(iii) the Leibniz rule and (iv) the Jacobi identity. As noted, this bracket is distinct from
the Poisson bracket and produces a corresponding geometry. We illustrate this with the
simplest dynamic that does not occur on the simplex. Let H = x2

1 + x2
2 + x2

3 and A be given
by Eq. (3). The result is a dynamical system that evolves on the sphere (see Fig. 2). There
is no longer a convenient game-theoretic interpretation but the resulting dynamics clearly
respect Liouville’s theorem. Studying the resulting geometry of this Poisson algebra is an

Figure 2: A phase portrait of the dynamical system given by Eq. (12) with G = x1x2x3 and
H = x2

1 + x2
2 + x2

3 is shown. The payoff matrix is the ordinary RPS matrix. Evolution is
shown on a portion of the surface of the 2-sphere.

area of future work.

4 Conclusions and Future Directions

Evolutionary games have been studied extensively by formulating Hamiltonians for the dy-
namics on the interior of the simplex. In early work, Akin and Losert [1] show that zero-sum
evolutionary games have a Hamiltonian structure. Because of that work’s relationship to
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the work in this paper, we discuss it in more detail below. Hofbauer [3, 7] studies bimatrix
games as Hamiltonian systems. Hamiltonians are also used in the analysis of bimatrix games
by Sato et al. [8,10], where chaotic behavior is analyzed, but no Poisson structures are con-
sidered. More recently, a Hamiltoninan approach is used in [17] and [18] to study extinction
and thermodynamics in evolutionary games respectively.

A more general (mathematical) study is conducted in [19] in which a class of Poisson
structures is introduced to study polymatrix games and applications to the ordinary replica-
tor dynamics are provided. However this study does not consider those systems that satisfy
Liouville’s theorem and does not explicitly incorporate the results of Akin and Losert on
zero-sum evolutionary games [1]. Akin and Losert’s analysis in [1] is deep but non-intuitive.
Though they construct a preserved volume form, the explicit metric is not stated and their
proof requires an analysis of the foliations of the invariant manifolds of the dynamical system.
In this paper, we show that the replicator dynamic for zero-sum games emerges naturally
from a parameterized bracket structure that is a hybrid between a Poisson and Nambu
bracket. As a consequence we easily construct a metric in which phase space volume is pre-
served without resorting to symplectic geometry as in [1]. This also allows us to characterize
conditions when the ordinary Euclidean volume form is preserved, which is not considered
in [1]. Additionally, since it is known that dynamics arising from the Nambu bracket are
degenerate Hamiltonian in higher-dimensions, it is likely that our analysis would provide a
simpler mechanism for proving that zero-sum evolutionary games are Hamiltonian. We leave
this as future work.

Moreover, because we have introduced a new Poisson algebra, our work expands both
the dynamics that can be considered and suggests interesting potential work in relating Lie
Algebras, Poisson Algebras and this new bracket. In particular, characterizing the elements
of the corresponding Lie pseudo-group would be of value. We assume that these will be
similar to the symplectomorphisms that characterize the Lie pseudo-groups of the standard
Poisson bracket. Also, since the resulting bracket respects the Jacobi identity, it suggests a
potential way to construct a quantized version of the replicator dynamic for zero-sum games,
thus extending work in quantum evolutionary games (see e.g., [20]).
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A Sketch of Proof of Jacobi Identity

We first make use of the Eq. (14) to simplify the definition of the bracket

[F,H]A =
∑︂
i<j

Aijxixj

(︃
∂F

∂xi

∂H

∂xj

− ∂F

∂xj

∂H

∂xi

)︃
. (20)

The similarity to the Poisson bracket is immediately clear and the proof that the bracket
satisfies the Jacobi identity is identical to the proof that the Poisson bracket satisfies the
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Jacobi identity (see e.g., [21]) but with more terms because we must take into consideration
the extra product with xixj. The principle can be established in general by choosing an
arbitrary term in e.g., [L, [F,H]A]A and showing that it cancels with corresponding terms
in [F, [H,L]A]A and [H, [L, F ]A]A, just as in the proof for the Poisson bracket. To see this,
consider a single term in [L, [F,H]A]A

A12x1x2
∂L

∂x1

{︃
A12

[︃
x1

(︃
∂F

∂x1

∂H

∂x2

− ∂F

∂x2

∂H

∂x1

)︃
+

x1x2

(︃
∂2F

∂x1∂x2

∂H

∂x2

+
∂F

∂x1

∂2H

∂x2
2

− ∂2F

∂x2
2

∂H

∂x1

− ∂F

∂x2

∂2H

∂x1∂x2

)︃]︃
· · ·

}︃
(21)

We now show two terms in [F, [H,L]A]A that cancel some terms in Eq. (21)

A12x1x2
∂F

∂x1

{︃
A12

[︃
x1

(︃
∂H

∂x1

∂L

∂x2

− ∂H

∂x2

∂L

∂x1

)︃
+

x1x2

(︃
∂2H

∂x1∂x2

∂L

∂x2

+
∂H

∂x1

∂2L

∂x2
2

− ∂2H

∂x2
2

∂L

∂x1

− ∂H

∂x2

∂2L

∂x1∂x2

)︃]︃
+ · · ·

A12

[︃
x2

(︃
∂H

∂x1

∂L

∂x2

− ∂H

∂x2

∂L

∂x1

)︃
+

x1x2

(︃
∂2H

∂x2
1

∂L

∂x2

+
∂H

∂x1

∂2L

∂x1∂x2

− ∂2H

∂x1∂x2

∂L

∂x1

− ∂H

∂x2

∂2L

∂x2
1

)︃]︃
· · ·

}︃
and two terms in [H, [L, F ]A]A that cancel the remaining terms

A12x1x2
∂H

∂x1

{︃
A12

[︃
x1

(︃
∂L

∂x1

∂F

∂x2

− ∂L

∂x2

∂F

∂x1

)︃
+

x1x2

(︃
∂2L

∂x1∂x2

∂F

∂x2

+
∂L

∂x1

∂2F

∂x2
2

− ∂2L

∂x2
2

∂F

∂x1

− ∂L

∂x2

∂2F

∂x1∂x2

)︃]︃
+ · · ·

A12

[︃
x2

(︃
∂L

∂x1

∂F

∂x2

− ∂L

∂x2

∂F

∂x1

)︃
+

x1x2

(︃
∂2L

∂x2
1

∂F

∂x2

+
∂L

∂x1

∂2F

∂x1∂x2

− ∂2L

∂x1∂x2

∂F

∂x1

− ∂L

∂x2

∂2F

∂x2
1

)︃]︃
· · ·

}︃
.

By symmetry, this argument applies to every term in the left-hand-side of the Jacobi iden-
tity, thus showing that equality with zero holds. We provide a Mathematica notebook in
supplementary material to illustrate the cancellation of all terms in dimensions 3 and 4.
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