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THE θ = ∞ CONJECTURE IMPLIES THE
RIEMANN HYPOTHESIS

SANDRO BETTIN AND STEVEN M. GONEK

Abstract. We show that the θ = ∞ conjecture implies the Riemann hypothesis.

§1. Introduction. Since the work of Levinson [4], it has been known that one
can obtain lower bounds for the proportion of zeros of the Riemann zeta-function
on the critical line by computing upper bounds for the mollified second moment

IN (T1, T2) :=
∫ T2

T1

|MN (
1
2 + it)|2|ζ( 1

2 + it)|2 dt, (1.1)

where MN (s) is a mollifier roughly of the form

MN (s) :=
∑

n6N

µ(n)
ns

(
1− log n

log N

)
,

with N > 2 an integer. Levinson [4] computed the asymptotic formula

lim
T→∞

IT θ (0, T )
T

= 1+ 1
θ

(1.2)

for 0 < θ < 1/2, and used this result to deduce that κ > 1/3, where

κ := #{ρ | ζ(ρ) = 0, 0 < = ρ < T, < ρ = 1
2 }

#{ρ | ζ(ρ) = 0, 0 < = ρ < T }
is the proportion of the non-trivial zeros of ζ(s) that lie on the critical line.
Conrey [1] later proved that (1.2) (with a slightly different mollifier) remains
valid for θ < 4/7, and thereby deduced that κ > 2/5.

Initially, it was believed (see [2]) that (1.2) does not hold when θ > 1.
However, Farmer [2] produced a heuristic argument suggesting that it holds for
every θ > 0, and called this the “θ = ∞ conjecture”. Moreover, he proved that
this conjecture implies that κ = 1, in other words, that 100% of the non-trivial
zeros of ζ(s) lie on the critical line. He also argued that a slightly stronger form of
the conjecture implies Montgomery’s pair correlation conjecture. More recently,
Radziwiłł [6] showed that, as θ → ∞, MT θ (t) is essentially the best possible
mollifier of length T θ for ζ(s). In particular, his work implies that Levinson’s
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30 S. BETTIN AND S. M. GONEK

method can give κ = 1 only if it is used with mollifiers of length T θ , where θ is
arbitrarily large.

The purpose of this note is to show that the θ =∞ conjecture actually implies
the Riemann hypothesis. Indeed, we show that even an upper bound of the form
IN (0, T )� T 1+ε, for some θ > 1 and all N in the range 2 6 N 6 T θ , implies
a zero-free region for the zeta-function of the form < s > 1− δ, for some δ > 0
depending on θ : in other words, a quasi-Riemann hypothesis.

THEOREM 1. Let θ > 0 and assume that, for every ε > 0, IN (0, T ) �ε

T 1+ε for N in the range 2 6 N 6 T θ . Then ζ(s) has no zero in the half-plane
< s > 1/2 + 1/2θ . In particular, if IN (0, T ) �ε T 1+ε for 2 6 N 6 T θ with θ
arbitrarily large, then the Riemann hypothesis is true.

In a number of recent works on mean values of L-functions in the t-aspect,
the integral is taken over [T, 2T ] rather than over [0, T ]. Thus, it is natural to
ask whether one can obtain a version of Theorem 1 for the interval [T, 2T ].
Usually, there is no difficulty in passing from one interval to the other. In our
case, however, the problem for [T, 2T ] is more subtle because one needs an �-
result for MN (t) that is uniform in t . Using ideas from [5] and [3], we prove the
following.

THEOREM 2. Let θ > 0 and assume that, for every ε > 0, IN (T, 2T ) �ε

T 1+ε for N in the range 2 6 N 6 T θ . Then ζ(s) has no zero in the half-plane
< s > 1/2+ 2/θ . In particular, if IN (T, 2T )�ε T 1+ε for 2 6 N 6 T θ with θ
arbitrarily large, then the Riemann hypothesis is true.

Notice that Theorem 2 only implies a quasi-Riemann hypothesis when θ > 4,
so, in this respect, it is weaker than Theorem 1. However, Theorem 2, whose
proof is more difficult than that of Theorem 1, is, in a certain sense, best possible.
If, for example, one assumes that ζ(s) has a unique simple zero ρ0 = β0 + iγ0
such that γ0 > 0 and β0 > 1/2, one can show that

IN (T, 2T ) = c1
N 2β0−1

T 3
log T

log2 N

(
1+<

(
N 2iγ0

|ζ ′(ρ0)|2
ζ ′(ρ0)2

)
+ o(1)

)

+ O
(

T 1+ε + Nβ0−1/2+ε

T

)

for some constant c1 > 0 as T →∞, and this is consistent with the assumption
that IT θ (T, 2T )� T 1+ε if θ < 4. For the sake of comparison, we note that, with
the same zero configuration,

IN (0, T ) = N 2β0−1

log2 N
(C(N )+ o(1))+ O(T 1+ε + Nβ0−1/2+εT ε)

for some positive function C(N ) bounded away from zero, so that IT θ (0, T ) �
T 1+ε implies that β0 6 1/2+ 1/2θ , which is consistent with Theorem 1.
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§2. Proof of the theorems. We will prove Theorems 1 and 2 at the same time.
It should be pointed out, however, that an easier argument would suffice for the
former.

We begin by extending our earlier definition of MN (s) slightly by writing

Mx (s) log x =
∑

n6x

µ(n)
ns log(x/n) (2.1)

for x > 0 (with M1(s) := 0). Notice that the right-hand side is zero when 0 <
x 6 1 and that this also allows us to extend the definition of IN (T1, T2) in (1.1)
to Ix (T1, T2). Now, for t ∈ R,

Mx (
1
2 + it) log x = 1

2π i

∫ 1+i∞

1−i∞
x z

ζ( 1
2 + it + z)

dz
z2 .

Thus, by Mellin inversion, we see that

Ht (w) :=
∫ ∞

1
Mx (

1
2 + it)(log x)x−w dx = 1

(w − 1)2ζ(w − 1
2 + it)

for <w > 3/2. Next, assuming that ρ0 = β0 + iγ0 is a fixed zero of ζ(w) with
β0 > 1/2, we define

G t (w) :=
(w − 1)2(w − 3

2 + it)ζ(w − 1
2 + it)

(w + 1)2(w − 1
2 + it − ρ0)(w + it + 1)4

.

In the half-plane <w > 0, G t (w) is holomorphic and satisfies G t (w) � (1 +
|w + it |)−5/2. Thus, setting

gt (u) = 1
2π i

∫ 3+i∞

3−i∞
G t (w)u−w dw

for u > 0,

gt (u) =
{

0 if u > 1,
O(1) if 0 6 u 6 1,

(2.2)

as can be seen by moving the line of integration to <w = +∞ when u > 1, and
to <w = 0 when 0 6 u 6 1.

Now consider the integral

Jt (x) := 1
2π i

∫ 3+i∞

3−i∞
G t (w)Ht (w)xw dw

= 1
2π i

∫ 3+i∞

3−i∞
(w − 3

2 + it)xw

(w + 1)2(w − 1
2 + it − ρ0)(w + it + 1)4

dw, (2.3)

use, available at https:/www.cambridge.org/core/terms. http://dx.doi.org/10.1112/S0025579316000139
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 09 Jan 2017 at 11:52:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1112/S0025579316000139
https:/www.cambridge.org/core


32 S. BETTIN AND S. M. GONEK

where, from this point on, we assume that x > 2. On the one hand, by the
convolution formula for products of Mellin transforms, and since My(1/2 +
i t) log y = 0 when 0 < y 6 1,

Jt (x) =
∫ ∞

1
My(

1
2 + it)(log y)gt (y/x) dy.

Thus, by (2.2),

Jt (x)�
∫ x

1
|My(

1
2 + it)| log y dy (2.4)

for x > 2. On the other hand, moving the line of integration in (2.3) to <w = 0,
we see that

Jt (x) = 1
2π i

∫ +i∞

−i∞
G t (w)Ht (w)xw dw + xρ0+1/2−it (ρ0 − 1)

(3
2 + ρ0 − it)2(ρ0 + 3

2 )
4
. (2.5)

The integral on the right is O(1) since Ht (w)G t (w)� (1+|w|)−2 for <w = 0.
Thus, from (2.4) and (2.5), we deduce that

xβ0+1/2

(1+ |t |)2 + 1�
∫ x

1
|My(

1
2 + it)| log y dy.

It follows from the Cauchy–Schwarz inequality that

x2β0

(1+ |t |)4 +
1
x
�
∫ x

1
|My(

1
2 + it)|2 log2 y dy

for x > 2. Multiplying both sides by |ζ(1/2+ it)|2 and integrating with respect
to t over the interval [T1, T2], where 0 6 T1 6 T2/2, we obtain

∫ T2

T1

|ζ(1
2 + it)|2

(
x2β0

(1+ t)4
+ 1

x

)
dt

�
∫ x

1
log2 y

∫ T2

T1

|My(
1
2 + it)ζ(1

2 + it)|2 dt dy

6 log2 x
∫ x

1
Iy(T1, T2) dy.

Now
∫ T2

T1
|ζ(1/2+ it)|2 dt � T2 log(T2 + 2) for 0 6 T1 6 T2/2, so

x2β0 log(T1 + 2)
|1+ T1|3 + T2 log(T2 + 2)

x
� log2 x

∫ x

1
Iy(T1, T2) dy.

Thus, if IN (0, T ) �ε T 1+ε holds for 2 6 N 6 T θ and for every ε > 0, then,
taking T1 = 0, T2 = T and x = T θ , we obtain

T 2β0θ�εT 1+ε+θ .

Letting T →∞ and letting ε > 0 be sufficiently small, we obtain β0 6 1/2 +
1/2θ , as claimed in Theorem 1. Theorem 2 follows in the same way on taking
T1 = T and T2 = 2T .

use, available at https:/www.cambridge.org/core/terms. http://dx.doi.org/10.1112/S0025579316000139
Downloaded from https:/www.cambridge.org/core. Purdue University Libraries, on 09 Jan 2017 at 11:52:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
http://dx.doi.org/10.1112/S0025579316000139
https:/www.cambridge.org/core


THE θ = ∞ CONJECTURE IMPLIES THE RIEMANN HYPOTHESIS 33

Acknowledgements. The first author would like to thank Brian Conrey and
Jon Keating for bringing this problem to his attention. Both authors wish to
thank the organizers of the workshop “Computational Aspects of L-functions”
and ICERM for providing an excellent environment for collaboration.

References

1. J. B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line.
J. Reine Angew. Math. 399 (1989), 1–26.

2. D. W. Farmer, Long mollifiers of the Riemann zeta-function. Mathematika 40(1) (1993), 71–87.
3. S. M. Gonek, S. W. Graham and Y. Lee, A Generalized Lindelöf Hypothesis, unpublished manuscript.
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