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THE 6 = oo CONJECTURE IMPLIES THE
RIEMANN HYPOTHESIS

SANDRO BETTIN AND STEVEN M. GONEK

Abstract. 'We show that the 6 = oo conjecture implies the Riemann hypothesis.

§1. Introduction. Since the work of Levinson [4], it has been known that one
can obtain lower bounds for the proportion of zeros of the Riemann zeta-function
on the critical line by computing upper bounds for the mollified second moment

T
In(T1, T) ::/ |My (3 +inc (4 +in)[* dt, (1.1)

T
where My (s) is a mollifier roughly of the form

1
= 50 (1 )

n<N

with N > 2 an integer. Levinson [4] computed the asymptotic formula

176(0,T) 1

lim =14+ ) (1.2)

T—o0 T

for 0 < 6 < 1/2, and used this result to deduce that ¥ > 1/3, where

_#Mplt(@=0,0<JIp<T, Rp=1)
#Hp¢(p)=0,0<Jp<T}

is the proportion of the non-trivial zeros of {(s) that lie on the critical line.
Conrey [1] later proved that (1.2) (with a slightly different mollifier) remains
valid for 6 < 4/7, and thereby deduced that x > 2/5.

Initially, it was believed (see [2]) that (1.2) does not hold when 6 > 1.
However, Farmer [2] produced a heuristic argument suggesting that it holds for
every 6 > 0, and called this the “6 = oo conjecture”. Moreover, he proved that
this conjecture implies that « = 1, in other words, that 100% of the non-trivial
zeros of ¢ (s) lie on the critical line. He also argued that a slightly stronger form of
the conjecture implies Montgomery’s pair correlation conjecture. More recently,
Radziwill [6] showed that, as 6 — oo, Mps(¢) is essentially the best possible
mollifier of length T? for ¢(s). In particular, his work implies that Levinson’s
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method can give « = 1 only if it is used with mollifiers of length 77, where 6 is
arbitrarily large.

The purpose of this note is to show that the & = oo conjecture actually implies
the Riemann hypothesis. Indeed, we show that even an upper bound of the form
INO,T) K T1+8, for some 6 > 1 and all N in therange 2 < N < TG, implies
a zero-free region for the zeta-function of the form Rs > 1 — §, for some § > 0
depending on 6: in other words, a quasi-Riemann hypothesis.

THEOREM 1. Let 6 > 0 and assume that, for every ¢ > 0, Iny(0,T) <,
T'*¢ for N in the range 2 < N < T?. Then ¢ (s) has no zero in the half-plane
Ns > 1/2 4 1/20. In particular, if IN(0, T) <e T'* for2 < N < T? with 6
arbitrarily large, then the Riemann hypothesis is true.

In a number of recent works on mean values of L-functions in the z-aspect,
the integral is taken over [T, 27'] rather than over [0, T']. Thus, it is natural to
ask whether one can obtain a version of Theorem 1 for the interval [T, 27T].
Usually, there is no difficulty in passing from one interval to the other. In our
case, however, the problem for [T, 2T] is more subtle because one needs an €2-
result for My (¢) that is uniform in ¢. Using ideas from [5] and [3], we prove the
following.

THEOREM 2. Let 6 > 0 and assume that, for every ¢ > 0, IN(T,2T) <,
T'*¢ for N in the range 2 < N < T?. Then ¢ (s) has no zero in the half-plane
Ns > 1/2+2/6. In particular, if IN(T,2T) <z T'F¢ for2 < N < T? with 6
arbitrarily large, then the Riemann hypothesis is true.

Notice that Theorem 2 only implies a quasi-Riemann hypothesis when 6 > 4,
so, in this respect, it is weaker than Theorem 1. However, Theorem 2, whose
proof is more difficult than that of Theorem 1, is, in a certain sense, best possible.
If, for example, one assumes that ¢ (s) has a unique simple zero pg = By + iyo
such that 9 > 0 and By > 1/2, one can show that

N2bo=1 1og T i 18/ (00) 2
IN(T,2T) =¢cj—————(1+N N21yo—)_|_01>
we ) =aT log2N< ( ¢'(p0)? M

NBo—1/2+¢

+0 <T1+‘9 + —)
T

for some constant ¢; > 0 as T — oo, and this is consistent with the assumption

that I (T, 2T) <« T'*¢ if < 4. For the sake of comparison, we note that, with

the same zero configuration,
2B0—1

—(C(N) +o(1)) + O(T' ¢ 4 N=1/ZFeTe)
og” N

IN(@©,T) = 0

for some positive function C(N) bounded away from zero, so that I7¢(0, T) <
T'*¢ implies that By < 1/2 + 1/26, which is consistent with Theorem 1.
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§2. Proof of the theorems. We will prove Theorems 1 and 2 at the same time.
It should be pointed out, however, that an easier argument would suffice for the
former.

We begin by extending our earlier definition of My (s) slightly by writing

Mi(s)logx = Y “’f:’) log(x/n) @2.1)

n<x

for x > 0 (with M(s) := 0). Notice that the right-hand side is zero when 0 <
x < 1 and that this also allows us to extend the definition of Iy (77, T5) in (1.1)
to I,(Ty, T>). Now, for ¢t € R,

1+ioc0 x? dz
Mx(%—}—it)logx:—, ]——2
271 Jisico (5 +it42) 2

Thus, by Mellin inversion, we see that

1
(w— D2 (w— L +ir)

H;(w) := /OOMX(% +it)(logx)x Vdx =
1

for W w > 3/2. Next, assuming that pg = Bo + i)y is a fixed zero of ¢ (w) with
Bo = 1/2, we define

(w— 12w — 3 +icw— 5 +ir)
(w+ D2(w — § +ir — po)(w + it + DY’

Gi(w) :=

In the half-plane R w > 0, G;(w) is holomorphic and satisfies G,(w) < (1 +
|w + it])~>/2. Thus, setting

1 34i00
&(u) = —/ G, (w)u""dw
271 J3-ioo

foru > 0,

0 ifu>1,
= 22
& () {0(1) ifo<u<l, 22)

as can be seen by moving the line of integration to R w = +o00 when u# > 1, and
toNMNw=0when0 <u < 1.
Now consider the integral

1 34ico
Ji(x) == — G, (w)H,(w)x" dw
271 J3-ioo
1 o (w— % +i)x®

= —2 : dw, (2.3)
271 J3—ico (w4 1)2(w — 5 + it — po)(w +ir + 1)*
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where, from this point on, we assume that x > 2. On the one hand, by the
convolution formula for products of Mellin transforms, and since M,(1/2 +
it)logy =0when0 < y < 1,

Ji (x) =/1 My (5 +it)(log y)gi(y/x) dy.

Thus, by (2.2),

X
50 < [ 1,3 +inltogy dy 24)
1
for x > 2. On the other hand, moving the line of integration in (2.3) to R w = 0,
we see that
+ioo opoHL/2—it o g
J(x) = — / G (w) Hy (w)x" dw + — — (o )3 . (2.5)
271 J oo (3 +po —i)*(po + 3)*

The integral on the rightis O (1) since H;(w)G;(w) < (1+ lw[)~2 for R w = 0.
Thus, from (2.4) and (2.5), we deduce that

xﬁo+l/2
(14 [t])?
It follows from the Cauchy—Schwarz inequality that
2Bo 1 X
X
— + -« | My +inPlogyd
aTri /1 My (5 )| log” ydy

for x > 2. Multiplying both sides by |¢(1/2 + if)|> and integrating with respect
to ¢ over the interval [T7, T], where 0 < T7 < T,/2, we obtain

e 280 1
1oz X 2
/Tl 1¢(5 +iD)] ((1+t)4+x)dt

X T
<« [ 1oy [ Tim,d+ines inParay
1 T

X
+1« / |My (% +it)| logy dy.
1

X
< logzx/ I,(Th, Ty) dy.
1

Now [;21£(1/2 +it)[dt > Ty log(Ty +2) for 0 < Ty < Ty/2. 50
x2Polog(Ty +2) T log(Tr +2)
1+ 173

Thus, if Iy (0, T) <, T'*° holds for 2 < N < T? and for every & > 0, then,
taking 71 =0, T, =T and x = T?, we obtain

X
< logzx/ I,(Th, Ty) dy.
1

TZ,B()H <<ET1+8+9 .

Letting T — oo and letting ¢ > 0 be sufficiently small, we obtain 8y < 1/2 +
1/26, as claimed in Theorem 1. Theorem 2 follows in the same way on taking
T, =T and T, = 2T.
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