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ABSTRACT
We present a method of Gröbner bases with respect to several term

orderings and use it to obtain new results on multivariate dimen-

sion polynomials of inversive difference modules. Then we use the

difference structure of the module of Kähler differentials associated

with a finitely generated inversive difference field extension of a

given difference transcendence degree to describe the form of a

multivariate difference dimension polynomial of the extension.
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1 INTRODUCTION
The role of difference dimension polynomials in difference algebra

is similar to the role of Hilbert polynomials in commutative algebra

and algebraic geometry, as well as to the role of Kolchin differential

dimension polynomials in differential algebra. In particular, as it

is shown in [7] (see also [9, Chapter 7]), the univariate difference

dimension polynomial of a system of algebraic difference equations

expresses the A. Einstein’s strength of the system, that is, the differ-

ence counterpart of the concept of strength of a system of partial

differential equations introduced in [1]. This fact determines the

importance of the study of difference dimension polynomials and

methods of their computation for the qualitative theory of differ-

ence equations. Furthermore, dimension polynomials of finitely

generated difference and inversive difference field extensions carry

certain invariants, i. e., numbers that are independent of a system
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of difference generators and therefore characterize the correspond-

ing difference algebraic structure. Also, properties of difference

dimension polynomials associated with prime reflexive difference

ideals provide a powerful tool in the dimension theory of difference

rings, see [10], [4, Chapter 7] and [9, Sections 3.6 and 4.6]. In 2007

the author proved the existence theorems and found invariants

of multivariate difference and difference-differential polynomials

of difference and difference-differential modules and field exten-

sions associated with given partitions of basic sets of operators

(translations and derivations), see [6] and [7]. Based on these re-

sults, one can associate with a system of algebraic difference (or

difference-differential) equations a family of multivariate dimen-

sional polynomials that carry essentially more characteristics of

the system than their univariate counterpart. Similar results for

inversive difference modules and field extensions were obtained in

[8] and [9, Sections 3.5 and 4.2]. While the theorems on multivariate

difference and difference-differential dimension polynomials were

obtained via the developed technique of Gröbner bases with respect

to several term orderings in free modules over rings of difference

and difference-differential operators, the corresponding results in

the inversive difference case were proved by the method of gen-

eralized characteristic sets. Even though this approach allows one

to prove theorems on multivariate dimension polynomials, it does

not give an algorithm for their computation. In this connection,

one should mention a work [12] where the authors introduced the

concept of a relative Gröbner bases in a free difference-differential

module with respect to two term orderings and gave a new proof

of the theorem on a difference-differential dimension polynomial

of a finitely generated difference-differential module.

In this paper we present a method of Gröbner bases with respect

to several term orderings in a free inversive difference module over

an inversive difference field that allows one to obtain an algorithm

for computing multivariate dimension polynomials of inversive

difference modules and inversive difference field extensions. (In

particular, we extend the algorithmic technique of [12] to the case

of several term orderings associated with partitions of the sets of

translations.) We also present new results on finitely generated

inversive difference modules with certain multivariate dimension

polynomials and prove (using properties of modules of Kähler differ-

entials) the existence of a special difference transcendence basis of a

finitely generated inversive difference field extension that provides

a nice representation of the multivariate dimension polynomial of

the extension.

2 PRELIMINARIES
Throughout the paper, N, Z, and Q denote the sets of all non-

negative integers, integers, and rational numbers, respectively.
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Q[𝑡1, . . . , 𝑡𝑝 ] will denote the ring of polynomials in 𝑝 variables

𝑡1, . . . , 𝑡𝑝 over Q. If 𝐵 = 𝐴1 × · · · ×𝐴𝑝 is a Cartesian product of or-

dered sets with orders <1, · · · <𝑝 , respectively, then by the product

order on 𝐵 we mean a partial order <𝑃 such that (𝑎1, . . . , 𝑎𝑝 ) <𝑃
(𝑎′

1
, . . . , 𝑎′𝑝 ) if and only if 𝑎𝑖 <𝑖 𝑎

′
𝑖
for 𝑖 = 1, . . . , 𝑝 . This notation

will be used, in particular, in the sets N𝑝 and Z𝑝 .
By a difference ringwe mean a commutative ring 𝑅 together with

a finite set 𝜎 = {𝛼1, . . . , 𝛼𝑚} of mutually commuting injective endo-

morphisms of 𝑅. The set 𝜎 is called a basic set of 𝑅 and its elements

are called translations. We also say that 𝑅 is a 𝜎-ring. If all trans-

lations of 𝑅 are automorphisms, we set 𝜎∗ = {𝛼1, . . . , 𝛼𝑚, 𝛼−1
1
, . . . ,

𝛼−1𝑚 } and say that 𝑅 is an inversive difference ring or a 𝜎∗-ring. If a
difference (respectively, inversive difference) ring 𝑅 is a field, it is

called a difference (or 𝜎-) field (respectively, an inversive difference
(or 𝜎∗-) field). In what follows all 𝜎∗-rings and 𝜎∗-fields will be
considered with the above set of𝑚 translations and Γ will denote

the free commutative group of all power products 𝛾 = 𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚

where 𝑘𝑖 ∈ Z (1 ≤ 𝑖 ≤ 𝑚). All fields are assumed to have character-

istic zero.

If 𝐾 is an inversive difference (𝜎∗-) field and its subfield 𝐾0 is

closed with respect to every 𝛼 ∈ 𝜎∗, then 𝐾0 is said to be an in-

versive difference (or 𝜎∗-) subfield of 𝐾 or that 𝐾 is a 𝜎∗-overfield
of 𝐾0 and we have a 𝜎∗-field extension 𝐾/𝐾0. In this situation, if

𝑆 ⊆ 𝐾 , then the smallest 𝜎∗-subfield of 𝐾 containing 𝐾0 and 𝑆 will

be denoted by 𝐾0⟨𝑆⟩. If 𝐾 = 𝐾0⟨𝑆⟩, then the set 𝑆 is called the set

of 𝜎∗-generators of 𝐾 over 𝐾0 or the set of 𝜎
∗
-generators of the

extension 𝐾/𝐾0. As a field, 𝐾0⟨𝑆⟩ = 𝐾0 (𝛾𝑎 | 𝛾 ∈ Γ, 𝑎 ∈ 𝑆). If the
set 𝑆 is finite, we say that 𝐾/𝐾0 is a finitely generated inversive

difference (or 𝜎∗-) field extension.

Let 𝐾 be an inversive difference field with a basic set of automor-

phisms 𝜎 = {𝛼1, . . . , 𝛼𝑚}. Suppose that the set 𝜎 is represented as

the union of 𝑝 disjoint subsets (𝑝 ≥ 1):

𝜎 = 𝜎1 ∪ · · · ∪ 𝜎𝑝 (1)

where 𝜎1 = {𝛼1, . . . , 𝛼𝑚1
}, 𝜎2 = {𝛼𝑚1+1, . . . , 𝛼𝑚1+𝑚2

}, . . . ,
𝜎𝑝 = {𝜎𝑚1+···+𝑚𝑝−1+1, . . . , 𝛼𝑚} (𝑚1 + · · · +𝑚𝑝 =𝑚) .

If 𝛾 = 𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 ∈ Γ (𝑘 𝑗 ∈ Z) then the order of 𝛾 with

respect to a set 𝜎𝑖 (1 ≤ 𝑖 ≤ 𝑝), denoted by ord𝑖 𝛾 , is defined

as

∑𝑚1+···+𝑚𝑖

𝜈=𝑚1+···+𝑚𝑖−1+1 |𝑘𝜈 |. (If 𝑖 = 1, the last sum is replaced by∑𝑚1

𝜈=1
|𝑘𝜈 |.) The number ord𝛾 =

∑𝑚
𝑗=1 |𝑘 𝑗 | is called the order of

𝛾 . Also, for any 𝑟1, . . . , 𝑟𝑝 ∈ N, we set
Γ(𝑟1, . . . , 𝑟𝑝 ) = {𝛾 ∈ Γ | ord𝑖 𝛾 ≤ 𝑟𝑖 (𝑖 = 1, . . . , 𝑝)}.

Let 𝑅 be an inversive difference (𝜎∗-) ring. An expression of the

form

∑
𝛾 ∈Γ 𝑎𝛾𝛾 , where 𝑎𝛾 ∈ 𝑅 for any 𝛾 ∈ Γ and only finitely many

elements 𝑎𝛾 are different from 0, is called an inversive difference (or
𝜎∗-) operator over 𝑅. Two 𝜎∗-operators

∑
𝛾 ∈Γ 𝑎𝛾𝛾 and

∑
𝛾 ∈Γ 𝑏𝛾𝛾 are

considered to be equal if and only if 𝑎𝛾 = 𝑏𝛾 for any 𝛾 ∈ Γ. The set
of all 𝜎∗-operators over 𝑅 can be equipped with a ring structure if

one uses the natural structure of a left 𝑅-module on this set, and

defines the multiplication by setting 𝛾𝑎 = 𝛾 (𝑎)𝛾 for any 𝑎 ∈ 𝑅,

𝛾 ∈ Γ and extending the operation by distributivity. The resulting

ring is called the ring of inversive difference (or 𝜎∗-) operators over 𝑅
and is denoted by E.

A left E-module is called an inversive difference 𝑅-module (or a
𝜎∗-𝑅-module). In other words, an 𝑅-module𝑀 is a 𝜎∗-𝑅-module if

elements of 𝜎∗ act on𝑀 as mutually commuting endomorphisms of

the additive group of𝑀 such that 𝛼 (𝑎𝑥) = 𝛼 (𝑎)𝛼 (𝑥) and 𝛼 (𝛼−1𝑥) =
𝑥 for any 𝑎 ∈ 𝑅, 𝛼 ∈ 𝜎∗.

In what follows 𝐾 will denote a 𝜎∗-field of characteristic zero,

E will denote the ring of 𝜎∗-operators over 𝐾 , and we will use

the term ”𝜎∗-𝐾-module” for a left E-module 𝑀 . If 𝑀 is a finitely

generated E-module, then the maximal number of elements of𝑀

that are linearly independent over E is called the 𝜎∗-dimension of

𝑀 ; it is denoted by 𝜎∗-dim𝐾 𝑀 . We also assume that partition (1)

of 𝜎 is fixed.

We will consider 𝑝 orders <1, . . . , <𝑝 on Γ (the free commutative

group generated by 𝜎) defined as follows: 𝛾 = 𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 <𝑖 𝛾

′ =

𝛼
𝑙1
1
. . . 𝛼

𝑙𝑚
𝑚 if and only if (ord𝑖 𝛾, ord1 𝛾, . . . , ord𝑖−1 𝛾, ord𝑖+1 𝛾, . . . ,

ord𝑝 𝛾, 𝑘𝑚1+···+𝑚𝑖−1+1, . . . , 𝑘𝑚1+···+𝑚𝑖
, 𝑘1, . . . , 𝑘𝑚1+···+𝑚𝑖−1 ,

𝑘𝑚1+···+𝑚𝑖+1, . . . , 𝑘𝑚) is less than the corresponding vector for 𝛾 ′

with respect to the lexicographic order on Z𝑚+𝑝
. Clearly, Γ is well-

ordered with respect to each of the orders <1, . . . , <𝑝 .

For any 𝑟1, . . . , 𝑟𝑝 ∈ N, the vector 𝐾-subspace of E generated by

Γ(𝑟1, . . . , 𝑟𝑝 ) will be denoted by E𝑟1,...,𝑟𝑝 .
Setting E𝑟1,...,𝑟𝑝 = {0} for any (𝑟1, . . . , 𝑟𝑝 ) ∈ Z𝑝 \N𝑝 , we get a family

{E𝑟1,...,𝑟𝑝 | (𝑟1, . . . , 𝑟𝑝 ) ∈ Z𝑝 } of vector 𝐾-subspaces of E which is

called the standard 𝑝-dimensional filtration of E. Clearly, E𝑟1,...,𝑟𝑝 ⊆
E𝑠1,...,𝑠𝑝 if (𝑟1, . . . , 𝑟𝑝 ) ≤𝑃 (𝑠1, . . . , 𝑠𝑝 ) (≤𝑃 denotes the product order
on Z𝑝 ) and if (𝑖1, . . . , 𝑖𝑝 ),
( 𝑗1, . . . , 𝑗𝑝 ) ∈ N𝑝 , then E𝑖1,...,𝑖𝑝E 𝑗1,..., 𝑗𝑝 = E𝑖1+𝑗1,...,𝑖𝑝+𝑗𝑝 .

Definition 2.1. If𝑀 is a 𝜎∗-𝐾-module, then a family {𝑀𝑟1,...,𝑟𝑝 |
(𝑟1, . . . , 𝑟𝑝 ) ∈ Z𝑝 } is said to be a 𝑝-dimensional filtration of𝑀 if the
following four conditions hold.

(i)𝑀𝑟1,...,𝑟𝑝 ⊆ 𝑀𝑠1,...,𝑠𝑝 for any 𝑝-tuples (𝑟1, . . . , 𝑟𝑝 ),
(𝑠1, . . . , 𝑠𝑝 ) ∈ Z𝑝 such that (𝑟1, . . . , 𝑟𝑝 ) ≤𝑃 (𝑠1, . . . , 𝑠𝑝 ).

(ii)

⋃
(𝑟1,...,𝑟𝑝 ) ∈Z𝑝

𝑀𝑟1,...,𝑟𝑝 = 𝑀 .

(iii) There exists a 𝑝-tuple (𝑟 (0)
1
, . . . , 𝑟

(0)
𝑝 ) ∈ Z𝑝 such that𝑀𝑟1,...,𝑟𝑝 =

0 if 𝑟𝑖 < 𝑟
(0)
𝑖

for at least one index 𝑖 (1 ≤ 𝑖 ≤ 𝑝).

(iv) E𝑟1,...,𝑟𝑝𝑀𝑠1,...,𝑠𝑝 ⊆ 𝑀𝑟1+𝑠1,...,𝑟𝑝+𝑠𝑝 for any 𝑝-tuples
(𝑟1, . . . , 𝑟𝑝 ), (𝑠1, . . . , 𝑠𝑝 ) ∈ Z𝑝 .

If every vector 𝐾-space 𝑀𝑟1,...,𝑟𝑝 is finite-dimensional and there
exists an element (ℎ1, . . . , ℎ𝑝 ) ∈ Z𝑝 such that
E𝑟1,...,𝑟𝑝𝑀ℎ1,...,ℎ𝑝 = 𝑀𝑟1+ℎ1,...,𝑟𝑝+ℎ𝑝 for any (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 , the
𝑝-dimensional filtration is called excellent.

Clearly, if 𝑧1, . . . , 𝑧𝑘 is a finite system of generators of a vector 𝜎∗-

𝐾-space 𝑀 , then {
𝑘∑︁
𝑖=1

E𝑟1,...,𝑟𝑝𝑧𝑖 | (𝑟1, . . . , 𝑟𝑝 ) ∈ Z𝑝 } is an excellent

𝑝-dimensional filtration of𝑀 .

NUMERICAL POLYNOMIALS OF SUBSETS OF Z𝑚

Definition 2.2. A polynomial 𝑓 (𝑡1, . . . , 𝑡𝑝 ) ∈ Q[𝑡1, . . . , 𝑡𝑝 ] (𝑝 ≥
1) is called numerical if 𝑓 (𝑟1, . . . , 𝑟𝑝 ) ∈ Z for all sufficiently large
(𝑟1, . . . , 𝑟𝑝 ) ∈ Z𝑝 (i. e., there exist (𝑠1, . . . , 𝑠𝑝 ) ∈ Z𝑝 such that the
inclusion 𝑓 (𝑟1, . . . , 𝑟𝑝 ) ∈ Z holds for all (𝑟1, . . . , 𝑟𝑝 ) ∈ Z𝑝 such that
(𝑠1, . . . , 𝑠𝑝 ) ≤𝑃 (𝑟1, . . . , 𝑟𝑝 )).



Clearly, a polynomial with integer coefficients is numerical. As

an example of a numerical polynomial in 𝑝 variables with non-

integer coefficients (𝑝 ≥ 1) one can consider

∏𝑝

𝑖=1

( 𝑡𝑖
𝑚𝑖

)
where

𝑚1, . . . ,𝑚𝑝 ∈ N. (As usual,
(𝑡
𝑘

)
(𝑘 ≥ 1) denotes the polynomial

𝑡 (𝑡−1) ...(𝑡−𝑘+1)
𝑘!

,

(𝑡
0

)
= 1, and

(𝑡
𝑘

)
= 0 if 𝑘 < 0.)

The following theorem proved in [4, Corollary 2.1.5] gives the

“canonical” representation of a numerical polynomial.

Theorem 2.3. Let 𝑓 (𝑡1, . . . , 𝑡𝑝 ) be a numerical polynomial in 𝑝
variables 𝑡1, . . . , 𝑡𝑝 , and let deg𝑡𝑖 𝑓 =𝑚𝑖 (𝑚1, . . . ,

𝑚𝑝 ∈ N). Then 𝑓 (𝑡1, . . . , 𝑡𝑝 ) can be represented in the form

𝑓 (𝑡1, . . . 𝑡𝑝 ) =
𝑚1∑︁
𝑖1=0

. . .

𝑚𝑝∑︁
𝑖𝑝=0

𝑎𝑖1 ...𝑖𝑝

(
𝑡1 + 𝑖1
𝑖1

)
. . .

(
𝑡𝑝 + 𝑖𝑝
𝑖𝑝

)
(2)

with uniquely defined integer coefficients 𝑎𝑖1 ...𝑖𝑝 .

Inwhat follows (until the end of the section), we deal with subsets

of Z𝑚 (𝑚 ≥ 1) and a fixed partition of the set N𝑚 = {1, . . . ,𝑚} into
𝑝 disjoint subsets (𝑝 ≥ 1):

N𝑚 = 𝑁1 ∪ · · · ∪ 𝑁𝑝 (3)

where 𝑁1 = {1, . . . ,𝑚1},. . . , 𝑁𝑝 = {𝑚1 + · · · +𝑚𝑝−1 + 1, . . . ,𝑚}
(𝑚1 + · · · +𝑚𝑝 =𝑚).

If 𝑎 = (𝑎1, . . . , 𝑎𝑚) ∈ Z𝑚 , we denote the numbers

𝑚1∑︁
𝑖=1

|𝑎𝑖 |,

𝑚1+𝑚2∑︁
𝑖=𝑚1+1

|𝑎𝑖 |, . . . ,
𝑚∑︁

𝑖=𝑚1+···+𝑚𝑝−1+1
|𝑎𝑖 | by ord1 𝑎, . . . , ord𝑝 𝑎, respectively.

Furthermore, Z𝑚 will be considered as the union

Z𝑚 =
⋃

1≤ 𝑗≤2𝑚
Z
(𝑚)
𝑗

(4)

where Z
(𝑚)
1

, . . . ,Z
(𝑚)
2
𝑚 are all different Cartesian products of𝑚 sets

each of which is either N or Z− = {𝑎 ∈ Z | 𝑎 ≤ 0}. We assume

that Z
(𝑚)
1

= N𝑚 and call Z
(𝑚)
𝑗

the 𝑗th orthant of Z𝑚 , 1 ≤ 𝑗 ≤ 2
𝑚
.

(Clearly, (0, . . . , 0) belongs to all orthants.)

The set Z𝑚 will be considered as a partially ordered set with

the order ⊴ such that (𝑒1, . . . , 𝑒𝑚) ⊴ (𝑒 ′
1
, . . . , 𝑒 ′𝑚) if and only if

(𝑒1, . . . , 𝑒𝑚) and (𝑒 ′
1
, . . . , 𝑒 ′𝑚) belong to the same orthant Z

(𝑚)
𝑘

and

the𝑚-tuple ( |𝑒1 |, . . . , |𝑒𝑚 |) is less than ( |𝑒 ′
1
|, . . . , |𝑒 ′𝑚 |) with respect

to the product order on N𝑚 .

In what follows, for any set𝐴 ⊆ Z𝑚 ,𝑊𝐴 will denote the set of all

elements of Z𝑚 that do not exceed any element of 𝐴 with respect

to the order ⊴. (Thus,𝑤 ∈𝑊𝐴 if and only if there is no 𝑎 ∈ 𝐴 such

that 𝑎 ⊴ 𝑤 .) Also, for any 𝑟1, . . . , 𝑟𝑝 ∈ N, 𝐴(𝑟1, . . . , 𝑟𝑝 ) will denote
the set {𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ 𝐴 | ord𝑖 𝑥 ≤ 𝑟𝑖 (𝑖 = 1, . . . , 𝑝)}.

The above notation can be naturally applied to subsets of N𝑚

(treated as subsets of Z𝑚). If 𝐸 ⊆ N𝑚 and 𝑠1, . . . , 𝑠𝑝 ∈ N, then
𝐸 (𝑠1, . . . , 𝑠𝑝 ) will denote the set of all𝑚-tuples 𝑒 = (𝑒1, . . . , 𝑒𝑚) ∈ 𝐸
such that ord𝑖 𝑒 ≤ 𝑠𝑖 for 𝑖 = 1, . . . , 𝑝 . Furthermore, 𝑉𝐸 will denote

the set of all𝑚-tuples 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ N𝑚 that are not greater

than or equal to any𝑚-tuple from 𝐸 with respect to the product

order on N𝑚 . (Clearly, an element 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ N𝑚 belongs

to 𝑉𝐸 if and only if for any element (𝑒1, . . . , 𝑒𝑚) ∈ 𝐸, there exists
𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑚, such that 𝑒𝑖 > 𝑣𝑖 .)

The following two theorems proved in [4, Chapter 2] generalize

the well-known Kolchin’s result on the numerical polynomials as-

sociated with subsets ofN𝑚 (see [3, Chapter 0, Lemma 16]) and give

explicit formulas for multivariate numerical polynomials associated

with finite subsets of N𝑚 .

Theorem 2.4. Let 𝐸 ⊆ N𝑚 where𝑚 =𝑚1+· · ·+𝑚𝑝 for some non-
negative integers𝑚1, . . . ,𝑚𝑝 (𝑝 ≥ 1). Then there exists a numerical
polynomial 𝜔𝐸 (𝑡1, . . . , 𝑡𝑝 ) such that

(i) 𝜔𝐸 (𝑟1, . . . , 𝑟𝑝 ) = Card𝑉𝐸 (𝑟1, . . . , 𝑟𝑝 ) for all sufficiently large
(𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 . (As usual, Card𝑀 denotes the number of ele-

ments of a finite set𝑀 .)

(ii) The total degree deg 𝜔𝐸 of the polynomial 𝜔𝐸 does not exceed
𝑚 and deg𝑡𝑖 𝜔𝐸 ≤ 𝑚𝑖 for all 𝑖 = 1, . . . , 𝑝 .

(iii) deg 𝜔𝐸 =𝑚 if and only if 𝐸 = ∅. Then

𝜔𝐸 (𝑡1, . . . , 𝑡𝑝 ) =
𝑝∏
𝑖=1

(
𝑡𝑖 +𝑚𝑖
𝑚𝑖

)
.

Definition 2.5. The polynomial 𝜔𝐸 (𝑡1, . . . , 𝑡𝑝 ) is called the di-
mension polynomial of the set 𝐸 ⊆ N𝑚 associated with the partition
(𝑚1, . . . ,𝑚𝑝 ) of𝑚.

Theorem 2.6. Let 𝐸 = {𝑒1, . . . , 𝑒𝑞} (𝑞 ≥ 1) be a finite subset ofN𝑚

and let a partition (3) of the set N𝑚 into 𝑝 disjoint subsets 𝑁1, . . . , 𝑁𝑝
be fixed. Let 𝑒𝑖 = (𝑒𝑖1, . . . , 𝑒𝑖𝑚) (1 ≤ 𝑖 ≤ 𝑞) and for any 𝑙 ∈ N,
0 ≤ 𝑙 ≤ 𝑞, let Θ(𝑙, 𝑞) denote the set of all 𝑙-element subsets of the
set N𝑞 = {1, . . . , 𝑞}. Let 𝑒∅ 𝑗 = 0 and for any 𝜃 ∈ Θ(𝑙, 𝑞), 𝜃 ≠ ∅, let
𝑒𝜃 𝑗 = max{𝑒𝑖 𝑗 | 𝑖 ∈ 𝜃 }, 1 ≤ 𝑗 ≤ 𝑚. (That is, if 𝜃 = {𝑖1, . . . , 𝑖𝑙 }, then
𝑒𝜃 𝑗 denotes the greatest 𝑗th coordinate of the elements 𝑒𝑖1 , . . . , 𝑒𝑖𝑙 .)

Furthermore, let 𝑏𝜃𝑘 =
∑︁
ℎ∈𝑁𝑘

𝑒𝜃ℎ (𝑘 = 1, . . . , 𝑝). Then

𝜔𝐸 (𝑡1, . . . , 𝑡𝑝 ) =
𝑞∑︁
𝑙=0

(−1)𝑙
∑︁

𝜃 ∈Θ(𝑙, 𝑞)

𝑝∏
𝑗=1

(
𝑡 𝑗 +𝑚 𝑗 − 𝑏𝜃 𝑗

𝑚 𝑗

)
(5)

Remark. It is clear that if 𝐸 ⊆ N𝑚 and 𝐸∗ is the set of all

minimal elements of the set 𝐸 with respect to the product order on

N𝑚 , then the set 𝐸∗ is finite and 𝜔𝐸 (𝑡1, . . . , 𝑡𝑝 ) = 𝜔𝐸∗ (𝑡1, . . . , 𝑡𝑝 ).
Thus, Theorem 2.6 gives an algorithm that allows one to find a

numerical polynomial associated with any subset of N𝑚 (and with

a given partition of the set {1, . . . ,𝑚}): one should first find the set

of all minimal points of the subset and then apply Theorem 2.6.

The following result can be obtained precisely in the same way

as Theorem 3.4 of [5].

Theorem 2.7. Let 𝐴 ⊆ Z𝑚 and let partition (3) of the set N𝑚 be
fixed. Then there exists a numerical polynomial 𝜙𝐴 (𝑡1, . . . , 𝑡𝑝 ) in 𝑝
variables such that

(i) 𝜙𝐴 (𝑟1, . . . , 𝑟𝑝 ) = Card𝑊𝐴 (𝑟1, . . . , 𝑟𝑝 ) for all sufficiently large
𝑝-tuples (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 .

(ii) deg𝜙𝐴 ≤ 𝑚 and deg𝑡𝑖
𝜙𝐴 ≤ 𝑚𝑖 (1 ≤ 𝑖 ≤ 𝑝). Also, if

𝜙𝐴 (𝑡1, . . . , 𝑡𝑝 ) is written in the form (2), then 2
𝑚 |𝑎𝑚1 ...𝑚𝑝

.

(iii) If 𝐴 = ∅, then

𝜙𝐴 (𝑡1, . . . , 𝑡𝑝 ) =
𝑝∏
𝑗=1

[𝑚 𝑗∑︁
𝑖=0

(−1)𝑚 𝑗−𝑖
2
𝑖

(
𝑚 𝑗

𝑖

) (
𝑡 𝑗 + 𝑖
𝑖

)]
. (6)



Theorem 2.8. With the notation of Theorem 2.7, take the mapping
𝜌 : Z𝑚 −→ N2𝑚 defined by

𝜌 ((𝑒1, . . . , 𝑒𝑚) = (max{𝑒1, 0}, . . . ,max{𝑒𝑚, 0},max{−𝑒1, 0},
. . . ,max{−𝑒𝑚, 0}) .
Let 𝐵 = 𝜌 (𝐴)⋃{𝑒1, . . . , 𝑒𝑚} where 𝑒𝑖 (1 ≤ 𝑖 ≤ 𝑚) is a 2𝑚-tuple in
N2𝑚 whose 𝑖th and (𝑚 + 𝑖)th coordinates are equal to 1 and all other
coordinates are equal to 0. Then

𝜙𝐴 (𝑡1, . . . , 𝑡𝑝 ) = 𝜔𝐵 (𝑡1, . . . , 𝑡𝑝 )
where 𝜔𝐵 (𝑡1, . . . , 𝑡𝑝 ) is the dimension polynomial of the set 𝐵 (see
Definition 2.5) associated with the partition N2𝑚 = 𝑁 ′

1
∪ · · · ∪ 𝑁 ′

𝑝

where 𝑁 ′
𝑖
= 𝑁𝑖 ∪ { 𝑗 +𝑚 | 𝑗 ∈ 𝑁𝑖 }, 1 ≤ 𝑖 ≤ 𝑝 (𝑁𝑖 is the 𝑖th component

of the partition (3)).

The polynomial 𝜙𝐴 (𝑡1, . . . , 𝑡𝑝 ) is called the dimension polynomial
of the set 𝐴 ⊆ Z𝑚 associated with partition (3).

Note that Theorem 2.8, together with Theorem 2.6, give an algo-

rithm for computing multivariate dimension polynomials of subsets

of Z𝑚 associated with partitions of N𝑚 .

3 GENERALIZED GRÖBNER BASES IN
INVERSIVE DIFFERENCE MODULES

Let 𝐾 be an inversive difference (𝜎∗-) field, 𝜎 = {𝛼1, . . . , 𝛼𝑚}, Γ
the free commutative group generated by 𝜎 , and E the ring of 𝜎∗-
operators over 𝐾 . Furthermore, we assume that a partition (1) of

the set 𝜎 is fixed.

In what follows, a free E-module is also called a free𝜎∗-𝐾-module.
If such a module 𝐹 has a finite family {𝑓1, . . . , 𝑓𝑛} of free generators,
it is called a finitely generated free 𝜎∗-𝐾-module. In this case the

elements of the form 𝛾 𝑓𝜈 (𝛾 ∈ Γ, 1 ≤ 𝜈 ≤ 𝑛) are called terms while
the elements of the group Γ are called monomials. The set of all
terms is denoted by Γ𝑓 ; it is easy to see that this set generates 𝐹 as

a vector space over the field 𝐾 . By the order of a term 𝑢 = 𝛾 𝑓𝜈 with

respect to 𝜎𝑖 (it is denoted by ord𝑖 𝑢, 1 ≤ 𝑖 ≤ 𝑝) we mean the order

of the monomial 𝛾 with respect to 𝜎𝑖 .

We shall consider 𝑝 orderings of the set Γ𝑓 that correspond to

the orderings of the group Γ introduced above. These orderings are

denoted by the same symbols <1, . . . , <𝑝 and defined as follows:

if 𝛾 𝑓𝜇 , 𝛾
′𝑓𝜈 ∈ Γ𝑓 , then 𝛾 𝑓𝜇 <𝑖 𝛾

′𝑓𝜈 if and only if 𝛾 <𝑖 𝛾
′
in Γ or

𝛾 = 𝛾 ′ and 𝜇 < 𝜈 . As before, we consider the representation (4) of

the set Z𝑚 ; it implies that the group Γ and the set of terms Γ𝑓 can
be represented as the unions

Γ =

2
𝑚⋃
𝑗=1

Γ𝑗 and Γ𝑓 =

2
𝑚⋃
𝑗=1

Γ𝑗 𝑓

where Γ𝑗 = {𝛼𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 | (𝑘1, . . . , 𝑘𝑚) ∈ Z(𝑚)

𝑗
} and Γ𝑗 𝑓 = {𝛾 𝑓𝑖 | 𝛾 ∈

Γ𝑗 , 1 ≤ 𝑖 ≤ 𝑚}.
Two elements 𝛾,𝛾 ′ ∈ Γ are said to be similar if they belong to the

same set Γ𝑗 (1 ≤ 𝑗 ≤ 2
𝑚
). In this case we write 𝛾 ∽ 𝛾 ′ or 𝛾 ∽𝑗 𝛾 ′.

Note that ∽ is not a transitive relation on Γ.

Let 𝐹 be a finitely generated free 𝜎∗-𝐾-module and let 𝑓1, . . . , 𝑓𝑛
be linearly independent generators of 𝐹 over the ring of𝜎∗-operators
E. An element 𝛾 ∈ Γ and a term 𝛾 ′𝑓𝑖 ∈ Γ𝑓 (𝛾 ′ ∈ Γ, 1 ≤ 𝑖 ≤ 𝑛) are

called similar if 𝛾 ∽𝑗 𝛾
′
for some 𝑗 (1 ≤ 𝑗 ≤ 2

𝑚
). It is written

as 𝛾 ∽ 𝛾 ′𝑓𝑖 or 𝛾 ∽𝑗 𝛾 ′𝑓𝑖 . Furthermore, we say that two terms

𝛾 𝑓𝑖 , 𝛾
′𝑓𝑘 ∈ Γ𝑓 (1 ≤ 𝑖, 𝑘 ≤ 𝑛) are similar and write 𝛾 𝑓𝑖 ∽ 𝛾 ′𝑓𝑘

or 𝛾 𝑓𝑖 ∽𝑗 𝛾
′𝑓𝑘 , if 𝛾 ∽𝑗 𝛾

′
for some 𝑗 = 1, . . . , 2𝑚 . It is easy to

see that if 𝛾 ∽ 𝑢 for some term 𝑢 ∈ Γ𝑓 (or 𝛾 ∽ 𝛾 ′ for some

𝛾 ′ ∈ Γ), then ord𝜈 (𝛾𝑢) = ord𝜈 𝛾+ord𝜈 𝑢 (respectively, ord𝜈 (𝛾𝛾 ′𝑢) =
ord𝜈 𝛾 + ord𝜈 𝛾

′
) for 𝜈 = 1, . . . , 𝑝 .

Definition 3.1. Let 𝛾1, 𝛾2 ∈ Γ. We say that 𝛾1 is a transform of
𝛾2 and write 𝛾2 | 𝛾1, if 𝛾1 ∽𝑗 𝛾2 (1 ≤ 𝑗 ≤ 2

𝑚) and there exists 𝛾 ∈ Γ𝑗

such that 𝛾1 = 𝛾𝛾2. (In this case we write 𝛾 =
𝛾1

𝛾2
.) Furthermore, we

say that a term 𝑢 = 𝛾1 𝑓𝑖 is a transform of a term 𝑣 = 𝛾2 𝑓𝑘 and write
𝑣 |𝑢, if 𝑖 = 𝑘 and 𝛾1 is a transform of 𝛾2. (If 𝑢 = 𝛾𝑣 , we write 𝛾 =

𝑢

𝑣
.)

Since the set Γ𝑓 is a basis of 𝐹 over 𝐾 , any nonzero element

ℎ ∈ 𝐹 has a unique representation in the form

ℎ = 𝑎1𝛾1 𝑓𝑖1 + · · · + 𝑎𝑙𝛾 𝑓𝑖𝑙 (7)

where 𝛾𝜈 ∈ Γ, 𝑎𝜈 ∈ 𝐾 , 𝑎𝜈 ≠ 0 (1 ≤ 𝜈 ≤ 𝑙), 1 ≤ 𝑖1, . . . , 𝑖𝑙 ≤ 𝑛, and

𝛾𝜈 𝑓𝑖𝜈 ≠ 𝛾𝜇 𝑓𝑖𝜇 whenever 𝜈 ≠ 𝜇 (1 ≤ 𝜈, 𝜇 ≤ 𝑙 ).

Definition 3.2. Let ℎ ∈ 𝐹 be written in the form (7) and 𝑘 ∈
{1, . . . , 𝑝}. Then the greatest with respect to <𝑘 term𝛾𝜈 𝑓𝑖𝜈 (1 ≤ 𝜈 ≤ 𝑙)
is called the 𝑘-leader of ℎ. It is denoted by 𝑢 (𝑘)

ℎ
. The coefficient of 𝑢 (𝑘)

ℎ
in (7) is called the 𝑘-leading coefficient of ℎ and denoted by lc𝑘 (ℎ).

Remark. Let an element ℎ ∈ 𝐹 be written in the form (7). Then

for every 𝑗 ∈ {1, . . . , 2𝑚}, there is a unique term 𝑣 𝑗 in ℎ (𝑣 𝑗 = 𝛾𝜈 𝑓𝑖𝜈

for some 𝜈 , 1 ≤ 𝜈 ≤ 𝑙) such that 𝑢
(1)
𝛾ℎ

= 𝛾𝑣 𝑗 for every 𝛾 ∈ Γ𝑗 .

Indeed, suppose that there are two terms, 𝑣 𝑗 and𝑤 𝑗 in ℎ such that

𝛾1𝑣 𝑗 = 𝑢
(1)
𝛾1ℎ

and 𝛾2𝑤 𝑗 = 𝑢
(1)
𝛾2ℎ

for some elements 𝛾1, 𝛾2 ∈ Γ𝑗 . Then

𝛾2𝛾1𝑣 𝑗 is the 1-leader of the element 𝛾2𝛾1ℎ and 𝛾1𝛾2𝑤 𝑗 is also the

1-leader of this element. It follows that 𝛾2𝛾1𝑣 𝑗 = 𝛾1𝛾2𝑤 𝑗 whence

𝑣 𝑗 = 𝑤 𝑗 . The term 𝑣 𝑗 with the above property is denoted by lt𝑗 (ℎ).

Definition 3.3. Let 𝑓 , 𝑔 ∈ 𝐹 and let 𝑘, 𝑖1, . . . , 𝑖𝑙 be distinct ele-
ments in the set {1, . . . , 𝑝}. Then the element 𝑓 is said to be (<𝑘 , <𝑖1
, · · · <𝑖𝑙 )-reduced with respect to𝑔 if 𝑓 does not contain any transform
𝛾𝑢

(𝑘)
𝑔 such that ord𝑖𝜈 𝛾 + ord𝑖𝜈 𝑢

(𝑖𝜈 )
𝑔 ≤ ord𝑖𝜈 𝑢

(𝑖𝜈 )
𝑓

(𝜈 = 1, . . . , 𝑙).
An element 𝑓 ∈ 𝐹 is said to be (<𝑘 , <𝑖1 , · · · <𝑖𝑙 )-reduced with

respect to a set 𝐺 ⊆ 𝐹 , if 𝑓 is (<𝑘 , <𝑖1 , · · · <𝑖𝑙 )-reduced with respect
to every element of 𝐺 .

With the above notation, let us consider 𝑝 − 1 new symbols

𝑧1, . . . , 𝑧𝑝−1 and the free commutative semigroup Λ of all power

products 𝜆 = 𝛾𝑧
𝑙1
1
. . . 𝑧

𝑙𝑝−1
𝑝−1 with 𝛾 ∈ Γ; 𝑙1, . . . , 𝑙𝑝−1 ∈ N. Let Λ𝑓 =

{𝜆𝑓𝑗 | 𝜆 ∈ Λ, 1 ≤ 𝑗 ≤ 𝑛} = Λ × {𝑓1, . . . , 𝑓𝑛}. Furthermore, for any

element 𝑓 ∈ 𝐹 , let 𝑑𝑖 (𝑓 ) = 𝑜𝑟𝑑𝑖𝑢 (𝑖)𝑓 − 𝑜𝑟𝑑𝑖𝑢 (1)𝑓 (2 ≤ 𝑖 ≤ 𝑝) and let

𝜌 : 𝐹 → Λ𝑓 be defined by 𝜌 (𝑓 ) = 𝑧𝑑2 (𝑓 )
1

. . . 𝑧
𝑑𝑝 (𝑓 )
𝑝−1 𝑢

(1)
𝑓

Definition 3.4. Let 𝑁 be a E-submodule of 𝐹 . A finite set 𝐺 =

{𝑔1, . . . , 𝑔𝑡 } ⊆ 𝑁 will be called a Gröbner basis of 𝑁 with respect to
the orders <1, . . . , <𝑝 if for any 𝑓 ∈ 𝑁 , there exists 𝑔𝑖 ∈ 𝐺 such that

𝜌 (𝑔𝑖 ) | 𝜌 (𝑓 ) in Λ𝑓 . (It means that 𝑢 (1)𝑔𝑖 |𝑢 (1)
𝑓

and 𝑑 𝑗 (𝑔𝑖 ) ≤ 𝑑 𝑗 (𝑓 ) for
𝑗 = 2, . . . , 𝑝 .)

Remark. The above condition 𝜌 (𝑔𝑖 ) | 𝜌 (𝑓 ) means that 𝑓 is not

(<1, . . . , <𝑝 )-reduced with respect to 𝑔𝑖 , since the equality 𝑑 𝑗 (𝑔𝑖 ) ≤



𝑑 𝑗 (𝑓 ) for 𝑗 = 2, . . . , 𝑝 means that 𝑢
(1)
𝑓

= 𝛾𝑢
(1)
𝑔𝑖 (𝛾 ∽ 𝑢

(1)
𝑔𝑖 ) and

ord𝑗 𝛾 +ord𝑗 𝑢 ( 𝑗)𝑔𝑖 ≤ ord𝑗 𝑢
( 𝑗)
𝑓

. The expression of this property with

the use of the divisibility of elements of Λ𝑓 is convenient because
it also shows that the existence of the Gröbner basis in the sense of

Definition 3.4 immediately follows from the Dickson’s lemma.

For any 𝑓 , 𝑔, ℎ ∈ 𝐹 , with 𝑔 ≠ 0, we say that the element 𝑓

(<𝑘 , <𝑖1 , . . . , <𝑖𝑙 )-reduces to ℎ modulo 𝑔 in one step and write

𝑓
g

−−−−−−−−−−−→
<𝑘 ,<𝑖

1
,...,<𝑖𝑙

ℎ if and only if 𝑢
(𝑘)
𝑔 |𝑤 for some term 𝑤 in 𝑓 with

a coefficient 𝑎, 𝑤 = 𝛾𝑢
(𝑘)
𝑔 (𝛾 ∈ Γ), ℎ = 𝑓 − 𝑎(𝛾 (𝑙𝑐𝑘 (𝑔)))−1𝛾𝑔 and

ord𝑖𝜈 𝛾 + ord𝑖𝜈 𝑢
(𝑖𝜈 )
𝑔 ≤ ord𝑖𝜈 𝑢

(𝑖𝜈 )
𝑓

(1 ≤ 𝜈 ≤ 𝑙). If 𝑓 , ℎ ∈ 𝐹 and

𝐺 ⊆ 𝐹 , then we say that the element 𝑓 (<𝑘 , <𝑖1 , . . . , <𝑖𝑙 )-reduces
to ℎ modulo𝐺 and write 𝑓

𝐺−−−−−−−−−−−→
<𝑘 ;<𝑖

1
,...,<𝑖𝑙

ℎ if and only if there exist

two sequences 𝑔 (1) , 𝑔 (2) , . . . , 𝑔 (𝑞) ∈ 𝐺 and ℎ1, . . . , ℎ𝑞−1 ∈ 𝐹 such

that

𝑓
𝑔 (1)

−−−−−−−−−−−→
<𝑘 ,<𝑖

1
,...,<𝑖𝑙

ℎ1
𝑔 (2)

−−−−−−−−−−−→
<𝑘 ,<𝑖

1
,...,<𝑖𝑙

. . .
𝑔 (𝑞−1)

−−−−−−−−−−−→
<𝑘 ,<𝑖

1
,...,<𝑖𝑙

ℎ𝑞−1

𝑔 (𝑞)

−−−−−−−−−−−→
<𝑘 ,<𝑖

1
,...,<𝑖𝑙

ℎ.

Let 𝐺 = {𝑔1, . . . , 𝑔𝑟 } be a finite set of elements in the free 𝜎∗-
𝐾-module 𝐹 . Then the following algorithm (whose termination is

obvious) shows that for every 𝑓 ∈ 𝐹 there exist elements 𝑔 ∈ 𝐹 and

𝑄1, . . . , 𝑄𝑟 ∈ E such that 𝑓 − 𝑔 =

𝑟∑︁
𝑖=1

𝑄𝑖𝑔𝑖 and 𝑔 is (<1, . . . , <𝑝 )-

reduced with respect to 𝐺 .

Algorithm 3.5. (𝑓 , 𝑟, 𝑔1, . . . , 𝑔𝑟 ; 𝑔; 𝑄1, . . . , 𝑄𝑟 )
Input: 𝑓 ∈ 𝐸, a positive integer 𝑟 , 𝐺 = {𝑔1, . . . , 𝑔𝑟 } ⊆ 𝐸 where

𝑔𝑖 ≠ 0 for 𝑖 = 1, . . . , 𝑟

Output: An element 𝑔 ∈ 𝐹 and elements 𝑄1, . . . , 𝑄𝑟 ∈ E such

that 𝑔 = 𝑓 − (𝑄1𝑔1 + · · · +𝑄𝑟𝑔𝑟 ) and 𝑔 is (<1, . . . , <𝑝 )-reduced with
respect to 𝐺

Begin
𝑄1 := 0, . . . , 𝑄𝑟 := 0, 𝑔 := 𝑓

While there exist 𝑖 , 1 ≤ 𝑖 ≤ 𝑟 , and a term 𝑤 , that appears in 𝑔
with a nonzero coefficient 𝑐 (𝑤), such that 𝑢

(1)
𝑔𝑖 |𝑤 and

ord𝑗 ( 𝑤

𝑢
(1)
𝑔𝑖

𝑢
( 𝑗)
𝑔𝑖 ) ≤ ord𝑗 𝑢

( 𝑗)
𝑔 for 𝑗 = 2, . . . , 𝑝 do

𝑧:= the greatest (with respect to <1) of the terms𝑤 that satisfies

the above conditions.

𝑘 := the smallest number 𝑖 for which 𝑢
(1)
𝑔𝑖 is the greatest (with

respect to <1) 1-leader of an element 𝑔𝑖 ∈ 𝐺 such that 𝑢
(1)
𝑔𝑖 |𝑧 and

𝑜𝑟𝑑 𝑗 ( 𝑧

𝑢
(1)
𝑔𝑖

𝑢𝑔𝑖 ) ≤ 𝑜𝑟𝑑 𝑗𝑢
( 𝑗)
𝑔 for 𝑗 = 2, . . . , 𝑝 .

𝑄𝑘 := 𝑄𝑘 + 𝑐 (𝑧)
(
𝑧

𝑢
(1)
𝑔𝑘

(𝑙𝑐1 (𝑔𝑘 )
)−1

𝑧

𝑢
(1)
𝑔𝑘

𝑔𝑘

𝑔 := 𝑔 − 𝑐 (𝑧)
(
𝑧

𝑢
(1)
𝑔𝑘

(𝑙𝑐1 (𝑔𝑘 )
)−1

𝑧

𝑢
(1)
𝑔𝑘

𝑔𝑘

End

We define the least common multiple of two terms 𝑢 = 𝛾𝑢1 𝑓𝑖 =

𝛼
𝑘1
1
. . . 𝛼

𝑘𝑚
𝑚 𝑓𝑖 and 𝑣 = 𝛾

′𝑓𝑗 = 𝛼
𝑙1
1
. . . 𝛼

𝑙𝑚
𝑚 in Γ𝑓 , as follows: lcm(𝑢, 𝑣) =

0 if either 𝑖 ≠ 𝑗 or 𝑖 = 𝑗 and the𝑚-tuples (𝑘1, . . . , 𝑘𝑚) and (𝑙1, . . . , 𝑙𝑚)

do not belong to the same orthant 𝑍
(𝑚)
𝑗

of Z𝑚 . If 𝑖 = 𝑗 and the

𝑚-tuples of exponents of 𝑢 and 𝑣 belong to the same orthant, then

lcm(𝑢, 𝑣) = 𝛼𝜖1 max{ |𝑘1 |, |𝑙1 | }
1

. . . 𝛼
𝜖𝑚 max{ |𝑘𝑚 |, |𝑙𝑚 | }
𝑚 𝑓𝑖 where

(𝜖1, . . . , 𝜖𝑚) is an𝑚-tuple with entries 1 and −1 that belongs to the

same orthant Z
(𝑚)
𝑗

.

Now, for any nonzero elements 𝑓 , 𝑔 ∈ 𝐹 , we can define the 𝑟 th
𝑆-polynomial of 𝑓 and 𝑔 (1 ≤ 𝑟 ≤ 𝑝) as the element 𝑆𝑟 (𝑓 , 𝑔) =©«
lcm(𝑢 (𝑟 )

𝑓
, 𝑢

(𝑟 )
𝑔 )

𝑢
(𝑟 )
𝑓

(lc𝑟 (𝑓 ))
ª®¬
−1

lcm(𝑢 (𝑟 )
𝑓
, 𝑢

(𝑟 )
𝑔 )

𝑢
(𝑟 )
𝑓

𝑓

− ©«
lcm(𝑢 (𝑟 )

𝑓
, 𝑢

(𝑟 )
𝑔 )

𝑢
(𝑟 )
𝑔

(lc𝑟 (𝑔))
ª®¬
−1

lcm(𝑢 (𝑟 )
𝑓
, 𝑢

(𝑟 )
𝑔 )

𝑢
(𝑟 )
𝑔

𝑔.

The following two statements can be obtained by mimicking the

proof of the corresponding statements in [7, Section 4] (Proposition

4.8 and Theorem 4.11).

Proposition 3.6. Let 𝐺 = {𝑔1, . . . , 𝑔𝑡 } be a Gröbner basis of an
E-submodule 𝑁 of 𝐹 with respect to the orders <1, . . . , <𝑝 . Then

(i) 𝑓 ∈ 𝑁 if and only if 𝑓
𝐺−−−−−−−−−−→

<1,<2,· · ·<𝑝

0 .

(ii) If 𝑓 ∈ 𝑁 and 𝑓 is (<1, <2, · · · <𝑝 )-reduced with respect to 𝐺 ,
then 𝑓 = 0.

Proposition 3.7. Let 𝐺 = {𝑔1, . . . , 𝑔𝑡 } be a Gröbner basis of an
E-submodule 𝑁 of 𝐹 with respect to each of the following sequences of
orders: <𝑝 ; <𝑝−1, <𝑝 ; . . . ; <𝑟+1, . . . , <𝑝 (1 ≤ 𝑟 ≤ 𝑝−1). Furthermore,
suppose that

𝑆𝑟 (𝑔𝑖 , 𝑔 𝑗 )
𝐺−−−−−−−−−−−→

<𝑟 ,<𝑟+1,· · ·<𝑝

0 for any 𝑔𝑖 , 𝑔 𝑗 ∈ 𝐺 .

Then 𝐺 is a Gröbner basis of 𝑁 with respect to the sequence of orders
<𝑟 , <𝑟+1, . . . , <𝑝 .

Clearly, the last proposition, together with Algorithm 3.5, gives

an algorithm for the computation of Gröbner bases of a 𝜎∗-𝐾-
submodule of a finitely generated free 𝜎∗-𝐾-module. This algorithm

(together with Algorithm 3.5) is currently being implemented in

MAPLE and PYTHON.

4 MULTIVARIATE DIMENSION
POLYNOMIALS IN THE INVERSIVE
DIFFERENCE CASE

Using the above results about Gröbner bases in finitely generated

free 𝜎∗-𝐾- (that is, E-) modules (we keep the above notation and

conventions), one can obtain the following theorem on a multivari-

ate dimension polynomial of a 𝜎∗-𝐾-submodule that was proved

in [9, Section 3.5] with the use of the characteristic set technique.

The use of Gröbner bases has an obvious advantage because we

have an algorithm for their computation, so the theorem gives an

algorithm for computing multivariate dimension polynomials.

Theorem 4.1. Let 𝑀 be a finitely generated E-module with a
system of generators {ℎ1, . . . , ℎ𝑛 }, 𝐹 a free E-module with a basis
𝑓1, . . . , 𝑓𝑛 , and 𝜋 : 𝐹 −→ 𝑀 the natural E-epimorphism of 𝐹 onto𝑀
(𝜋 (𝑓𝑖 ) = ℎ𝑖 for 𝑖 = 1, . . . , 𝑛). Let 𝑁 = 𝐾𝑒𝑟 𝜋 and let 𝐺 = {𝑔1, . . . , 𝑔𝑑 }



be a Gröbner basis of 𝑁 with respect to (<1, . . . , <𝑝 ). Furthermore,

for any 𝑟1, . . . , 𝑟𝑝 ∈ N, let𝑀𝑟1 ...𝑟𝑝 =

𝑝∑︁
𝑖=1

E𝑟1 ...𝑟𝑝 𝑓𝑖 , and let

𝑉𝑟1 ...𝑟𝑝 = {𝑢 ∈ Γ𝑓 | ord𝑖 𝑢 ≤ 𝑟𝑖 for 𝑖 = 1, . . . , 𝑝 , and 𝑢 is not a

transform of any 𝑢 (1)𝑔𝑖 (1 ≤ 𝑖 ≤ 𝑑) },
𝑊𝑟1 ...𝑟𝑝 = {𝑢 ∈ Γ𝑓 \𝑉𝑟1𝑟𝑝 | ord𝑖 𝑢 ≤ 𝑟𝑖 for 𝑖 = 1, . . . , 𝑝 and whenever

𝑢 = 𝛾𝑢
(1)
𝑔 is a transform of some 𝑢 (1)𝑔 (𝑔 ∈ 𝐺 , 𝛾 ∈ Γ), there exists 𝑖 ,

2 ≤ 𝑖 ≤ 𝑝 , such that ord𝑖 𝛾 + 𝑜𝑟𝑑𝑖𝑢 (𝑖)𝑔 > 𝑟𝑖 },
and𝑈𝑟1 ...𝑟𝑝 = 𝑉𝑟1 ...𝑟𝑝

⋃
𝑊𝑟1 ...𝑟𝑝 . Then

(i) For any (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 , the set 𝜋 (𝑈𝑟1 ...𝑟𝑝 ) is a basis of the
vector 𝐾-space𝑀𝑟1 ...𝑟𝑝 .

(ii) There exist numerical polynomials𝜓𝑀 (𝑡1, . . . , 𝑡𝑝 ) and
𝜒𝑀 (𝑡1, . . . , 𝑡𝑝 ) such that𝜓𝑀 (𝑟1, . . . , 𝑟𝑝 ) = Card𝑉𝑟1 ...𝑟𝑝 and
𝜒𝑀 (𝑟1, . . . , 𝑟𝑝 ) = Card𝑊𝑟1 ...𝑟𝑝 for all sufficiently large (𝑟1 . . . 𝑟𝑝 ) ∈
N𝑝 , so that the polynomial Φ𝑀 (𝑡1, . . . , 𝑡𝑝 ) = 𝜓𝑀 (𝑡1, . . . , 𝑡𝑝 ) +
𝜒𝑀 (𝑡1, . . . , 𝑡𝑝 ) has the property that Φ𝑀 (𝑟1, . . . , 𝑟𝑝 ) = dim𝐾 𝑀𝑟1 ...𝑟𝑝
for all sufficiently large (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 .

(iii) deg𝑡𝑖
Φ𝑀 ≤ 𝑚𝑖 (1 ≤ 𝑖 ≤ 𝑝), so that deg Φ𝑀 ≤ 𝑚 and the

polynomial Φ𝑀 (𝑡1, . . . , 𝑡𝑝 ) can be represented as

Φ𝑀 (𝑡1, . . . , 𝑡𝑝 ) =
𝑚1∑︁
𝑖1=0

. . .

𝑚𝑝∑︁
𝑖𝑝=0

𝑎𝑖1 ...𝑖𝑝

(
𝑡1 + 𝑖1
𝑖1

)
. . .

(
𝑡𝑝 + 𝑖𝑝
𝑖𝑝

)
(8)

where 𝑎𝑖1 ...𝑖𝑝 ∈ Z for all 𝑖1, . . . , 𝑖𝑝 , and 𝑎𝑚1 ...𝑚𝑝
= 𝑑2𝑚 where𝑑 = 𝜎∗-

dim𝐾 𝑀 .
(iv) Let 𝐸 𝑗 = {(𝑘1, . . . , 𝑘𝑚) ∈ Z𝑚 | 𝛼𝑘1

1
. . . 𝛼

𝑘𝑚
𝑚 𝑓𝑗 is the 1-leader of

some element of𝐺} (1 ≤ 𝑗 ≤ 𝑛). Then𝜓𝑀 =

𝑚∑︁
𝑗=1

𝜙𝐸 𝑗
where 𝜙𝐸 𝑗

is the

dimension polynomial of 𝐸 𝑗 (see Theorem 2.7). Clearly, the coefficient
of

(𝑡1+𝑚1

𝑚1

)
. . .

(𝑡𝑝+𝑚𝑝

𝑚𝑝

)
in the canonical representation of𝜓𝑀 (formula

(2)) is equal to the number of empty sets among 𝐸1, . . . , 𝐸𝑛 .
(v) 𝜒𝑀 (𝑡1, . . . , 𝑡𝑝 ) is an alternating sum of polynomials of the form

𝜒 𝑗 ;𝑘1,...,𝑘𝑞 =

(
𝑡1 +𝑚1 − 𝑏1𝑗

𝑚1

)
. . .

(
𝑡𝑘1−1 +𝑚𝑘1−1 − 𝑏𝑘1−1, 𝑗

𝑚𝑘1−1

)
[(
𝑡𝑘1 +𝑚𝑘1 − 𝑎𝑘1, 𝑗

𝑚𝑘1

)
−
(
𝑡𝑘1 +𝑚𝑘1 − 𝑏𝑘1, 𝑗

𝑚𝑘1

)]
·(

𝑡𝑘1+1 +𝑚𝑘1+1 − 𝑏𝑘1+1, 𝑗
𝑚𝑘1+1

)
. . .

(
𝑡𝑘𝑞−1 +𝑚𝑘𝑞−1 − 𝑏𝑘𝑞−1, 𝑗

𝑚𝑘𝑞−1

)
·[(

𝑡𝑘𝑞 +𝑚𝑘𝑞 − 𝑎𝑘𝑞 , 𝑗
𝑚𝑘𝑞

)
−
(
𝑡𝑘𝑞 +𝑚𝑘𝑞 − 𝑏𝑘𝑞 , 𝑗

𝑚𝑘𝑞

)]
. . .(

𝑡𝑝 +𝑚𝑝 − 𝑏𝑝 𝑗
𝑚𝑝

)
, so that deg 𝜒𝑀 < 𝑚.

Definition 4.2. The polynomial Φ𝑀 (𝑡1, . . . , 𝑡𝑝 ) is called a 𝜎∗-
dimension polynomial of the 𝜎∗-𝐾-module 𝑀 associated with the
given excellent 𝑝-dimensional filtration {𝑀𝑟1 ...𝑟𝑝 | (𝑟1,
. . . , 𝑟𝑝 ) ∈ N𝑝 } of this module.

Remark. The last theorem combines several results from [9,

Section 3.5] (as we have mentioned, one can use Gröbner bases

with respect to 𝑝 orderings instead of generalized characteristic sets

used in [9, Section 3.5]). The only exception is part (iv) that follows

from the description of the sets𝑉𝑟1 ...𝑟𝑝 and Theorem 2.7. (Therefore,

Proposition 3.7, together with Theorems 2.8 and 2.6, give a method

of computation of multivariate 𝜎∗-dimension polynomials.) Also,

as it is shown in [9, Theorem 3.5.38], Φ𝑀 (𝑡1, . . . , 𝑡𝑝 ) carries several
invariants of the 𝜎∗-𝐾-module𝑀 , i. e., integers that are independent

of the set of finite generators of𝑀 over E (in what follows we will

use only one of such invariants, 𝑑 = 𝜎∗-dim𝐾 𝑀).

Example. Let 𝐾 be an inversive (𝜎∗-) field with 𝜎 = {𝛼1, 𝛼2},
E the ring of 𝜎∗-operators over 𝐾 , and 𝑀 a 𝜎∗-𝐾-module with

one generator 𝑦 and one defining relation 𝜔𝑦 = 0 where 𝜔 =

𝑐1 (𝛼1+𝛼−1
1
) +𝑐2 (𝛼2+𝛼−1

2
) ∈ E (𝑐1 and 𝑐2 are constants in𝐾 , that is,

𝛼𝑖 (𝑐 𝑗 ) = 𝑐 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2). Thus,𝑀 can be treated as a factor module

of a free E-module 𝐹 with free generator 𝑓 by its E-submodule 𝑁 =

E𝜔𝑓 . Then {𝑔1 = 𝜔𝑓 ,𝑔2 = 𝛼−1
1
𝑔1} is an (<1, <2)-Gröbner basis of

𝑁 . (In this case 𝑢
(1)
𝑔1 = 𝛼1 𝑓 and 𝑢

(1)
𝑔2 = 𝛼−2

1
𝑓 ; the fact that for every

ℎ ∈ 𝑁 , there is 𝑖 ∈ {1, 2} such that 𝜌 (𝑔𝑖 ) | 𝜌 (ℎ) (see Definition 3.4)

follows from [4, Corollary 6.5.4].) With the notation of Theorems

4.1 and 2.7, for any 𝑟1, 𝑟2 ∈ N, 𝑉𝑟1𝑟2 = 𝑊{(1,0) .(−2,0) } and𝑊𝑟1𝑟2 =

{(𝑖, 𝑗) ∈ Z2 | 1 ≤ |𝑖 | ≤ 𝑟1, 𝑗 ∈ {𝑟2,−𝑟2} }. Using Theorems 2.8 and

2.6 we obtain that Card𝑉𝑟1𝑟2 = 4𝑟2 and Card𝑊𝑟1𝑟2 = 4𝑟1, so the

𝜎∗-dimension polynomial of𝑀 associated with the generator 𝑦 is

Φ(𝑡1, 𝑡2) = 4𝑡1 + 4𝑡2.

The next theorem gives a property of a multivariate filtration of

a finitely generated 𝜎∗-𝐾-module whose 𝜎∗-dimension polynomial

has the simplest possible form.

Theorem 4.3. Let𝐾 be an inversive difference field with a basic set
of automorphisms 𝜎 = {𝛼1, . . . , 𝛼𝑚} and let the partition (1) of 𝜎 be
fixed. Let𝑀 be a finitely generated 𝜎∗-𝐾-module with 𝜎∗-generators
𝑥1, . . . , 𝑥𝑛 and let {𝑀𝑟1,...,𝑟𝑝 |
(𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 } be the standard filtration of𝑀 associated with this

system, that is,𝑀𝑟1,...,𝑟𝑝 =

𝑛∑︁
𝑖=1

E𝑟1,...,𝑟𝑝𝑥𝑖 for every (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 .

Let Φ𝑀 (𝑡1, . . . , 𝑡𝑝 ) be the 𝜎∗-dimension polynomial associated with
this filtration be of the form

Φ𝑀 (𝑡1, . . . , 𝑡𝑝 ) = 𝑑
𝑝∏
𝑗=1

[𝑚 𝑗∑︁
𝑖=0

(−1)𝑚 𝑗−𝑖
2
𝑖

(
𝑚 𝑗

𝑖

) (
𝑡 𝑗 + 𝑖
𝑖

)]
where 𝑑 = 𝜎∗-dim𝐾 𝑀 . Without loss of generality we can assume
that 𝑥1, . . . , 𝑥𝑑 are 𝜎∗-linearly independent over 𝐾 , that is, linearly

independent over E. Let 𝑁 =

𝑑∑︁
𝑖=1

E𝑥𝑖 and for any (𝑟1, . . . , 𝑟𝑝 ) ∈

N𝑝 , let 𝑁𝑟1,...,𝑟𝑝 =

𝑑∑︁
𝑖=1

E𝑟1,...,𝑟𝑝𝑥𝑖 . Then 𝑀𝑟1,...,𝑟𝑝 = 𝑁𝑟1,...,𝑟𝑝 for all

(𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 .

Proof. Clearly, the statement is true for𝑚 = 0, so we can assume

that𝑚 > 0 and 𝑝 ≥ 1. By part (iv) of Theorem 4.1 and part (iii) of

Theorem 2.7 (see formula (6)),

dim𝑁𝑟1,...,𝑟𝑝 = 𝑑

𝑝∏
𝑗=1

[𝑚 𝑗∑︁
𝑖=0

(−1)𝑚 𝑗−𝑖
2
𝑖

(
𝑚 𝑗

𝑖

) (
𝑡 𝑗 + 𝑖
𝑖

)]
=

dim𝑀𝑟1,...,𝑟𝑝 for all sufficiently large (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 .
Let 𝑟 (0) = (𝑟 (0

1
, . . . , 𝑟

(0)
𝑝 ) ∈ N𝑝 be a minimal with respect to the



product order ≤𝑃 on N𝑝 element such that the last equality holds

for all 𝑝-tuples 𝑟 ∈ N𝑝 with 𝑟 (0) ≤𝑃 𝑟 (we use the fact that every
subset of N𝑝 contains finitely many elements minimal with respect

to the product order). We should prove that 𝑟 (0) = (0, . . . , 0).
Assume for contradiction that this is not true. Without loss of

generality we can assume that 𝑟
(0)
𝑝 > 0. Then the last equality

does not hold for the 𝑝-tuple 𝑠 (0) = (𝑟 (0
1
, . . . , 𝑟

(0)
𝑝 − 1), so there

exists 𝛾0𝑥𝑖 ∈ 𝑀𝑠 (0) ⊆ 𝑀𝑟 (0) = 𝑁𝑟 (0) such that 𝛾0𝑥𝑖 ∉ 𝑁𝑠 (0) . Since

𝛾0𝑥𝑖 ∈ 𝑁𝑟 (0) \ 𝑁𝑠 (0) , we can write

𝛾0𝑥𝑖 =

𝑑∑︁
𝑗=1

𝑒 𝑗∑︁
𝑘=1

𝑎 𝑗𝑘𝛾 𝑗𝑘𝑥 𝑗 , (9)

where 0 ≠ 𝑎 𝑗𝑘 ∈ 𝐾 , 𝛾 𝑗𝑘 ∈ Γ(𝑟 (0) ) (1 ≤ 𝑗 ≤ 𝑑, 1 ≤ 𝑘 ≤ 𝑒 𝑗 . Also,

the last sum contains a term 𝑎 𝑗 ′𝑘′𝛾 𝑗 ′𝑘′𝑥 𝑗 ′ such that 𝑎 𝑗 ′𝑘′ ≠ 0 and

𝛾 𝑗 ′𝑘′ ∈ Γ(𝑟 (0) ) \ Γ(𝑠 (0) ).
Let Σ′ be the sum of all terms 𝑎 𝑗𝑘𝛾 𝑗𝑘𝑥 𝑗 in (9) such that ord𝑝 𝛾 𝑗𝑘 =

𝑟
(0)
𝑝 let Σ′′ be the sum of the remaining terms. Let 𝑎 𝑗 ′𝑘′𝛾 𝑗 ′𝑘′𝑥 𝑗 ′ be

a term in Σ′ such that if we write it as 𝛾 𝑗 ′𝑘′ = 𝛾
(1)
𝑗 ′𝑘′

. . . 𝛾
(𝑝)
𝑗 ′𝑘′

, where

𝛾
(𝑖)
𝑗 ′𝑘′

(1 ≤ 𝑖 ≤ 𝑝) is a power product of elements 𝜎𝑖 and 𝛾
(𝑝)
𝑗 ′𝑘′

=

𝛼
𝑞𝑚

1
+···+𝑚𝑝−1+1

𝑚1+···+𝑚𝑝−1+1 . . . 𝛼
𝑞𝑚
𝑚 , then the𝑚𝑝 -tuple (𝑞𝑚1+···+𝑚𝑝−1+1, . . . , 𝑞𝑚)

is the largest possible one with respect to the following order ≼
on Z𝑚𝑝

: (𝑖1, . . . , 𝑖𝑚𝑝
) ≼ ( 𝑗1, . . . , 𝑗𝑚𝑝

) if and only if the 2𝑚𝑝 -tuple

( |𝑖1 |, . . . , |𝑖𝑚𝑝
|, 𝑖1, . . . , 𝑖𝑚𝑝

) is less than the 2𝑚𝑝 -tuple

( | 𝑗1 |, . . . , | 𝑗𝑚𝑝
|, 𝑗1, . . . , 𝑗𝑚𝑝

) with respect to the lexicographic order

on Z2𝑚𝑝
. Since ord𝑝 𝛾 𝑗 ′𝑘′ > 0, we can choose the smallest index

𝜈 ≥ 𝑚1 + · · · +𝑚𝑝−1 + 1 such that 𝑞𝜈 ≠ 0. Let 𝛼 denote 𝛼𝜈 if 𝑞𝜈 > 0

and 𝛼−1𝜈 if 𝑞𝜈 < 0. Then

𝛼𝛾0𝑥𝑖 =

𝑑∑︁
𝑗=1

𝑒 𝑗∑︁
𝑘=1

𝛼 (𝑎 𝑗𝑘 )𝛾 𝑗𝑘𝑥 𝑗 , (10)

𝛼𝛾0𝑥𝑖 ∈ 𝑀𝑟 (0) = 𝑁𝑟 (0) and ord𝑝 (𝛼𝛾 𝑗 ′𝑘′) = 𝑟
(0)
𝑝 + 1. Since 𝛼𝛾0𝑥𝑖 ∈

𝑁𝑟 (0) , 𝛼𝛾0𝑥𝑖 can be written as a linear combination of elements of

the set {𝛾𝑥 𝑗 | 𝛾 ∈ Γ(𝑟 (0) ), 1 ≤ 𝑗 ≤ 𝑑} with coefficients in 𝐾 . If we

write the equality of such a linear combination and expression (10),

then the term 𝛼 (𝑎 𝑗 ′𝑘′)𝛾 𝑗 ′𝑘′𝑥 𝑗 ′ cannot be cancelled. This contradicts
the 𝜎∗-linear independence of elements 𝑥1, . . . , 𝑥𝑑 over 𝐾 . Thus,

𝑟 (0) = (0, . . . , 0) and the theorem is proved. □

The following result gives an intersection property of a finitely

generated 𝜎∗-𝐾-module.

Theorem 4.4. Let 𝐾 be an inversive difference (𝜎∗-) field with a
basic set 𝜎 = {𝛼1, . . . , 𝛼𝑚} and𝑀 a finitely generated 𝜎∗-𝐾-module,
with 𝜎∗-generators 𝑥1, . . . , 𝑥𝑛 (that is, generators of 𝑀 as a mod-
ule over the ring E of 𝜎∗-operators over 𝐾). Let 𝑑 = 𝜎∗-dim𝐾 𝑀 .
Then there exist 𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑛} with 𝑖1 < · · · < 𝑖𝑑 such
that 𝑥𝑖1 , . . . , 𝑥𝑖𝑑 are 𝜎∗-linearly independent over 𝐾 and if 𝑁 is the

E-module generated by 𝑥𝑖1 , . . . , 𝑥𝑖𝑑 , 𝑀𝑟1,...,𝑟𝑝 =

𝑛∑︁
𝑘=1

E𝑟1,...,𝑟𝑝𝑥𝑘 , and

𝑁𝑟1,...,𝑟𝑝 =

𝑑∑︁
𝑗=1

E𝑟1,...,𝑟𝑝𝑥𝑖 𝑗 (𝑟1, . . . , 𝑟𝑝 ∈ N), then

𝑁𝑟1,...,𝑟𝑝 = 𝑀𝑟1,...,𝑟𝑝

⋂
𝑁 for all 𝑟1, . . . , 𝑟𝑝 ∈ N.

Proof. Let 𝐹 be the free E-module of rank𝑛with free generators

𝑓1, . . . , 𝑓𝑛 . Let 𝜙 : 𝐹 → 𝑀 be the homomorphism of E-modules such

that𝜙 (𝑓𝑖 ) = 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛. Let𝑊 = Ker𝜙 and let𝐺 be a Gröbner

basis of𝑊 with respect to (<1, . . . , <𝑝 ). For every 𝑗 = 1, . . . , 𝑛, let

𝐸 𝑗 = {𝑒 = (𝑒1, . . . , 𝑒𝑚) ∈ Z𝑚 | 𝛿𝑒1
1
. . . 𝛿

𝑒𝑛
𝑛 is a 1-leader of some ele-

ment of 𝐺}.

Then there exists a polynomial Φ(𝑡1, . . . , 𝑡𝑝 ) ∈ Q[𝑡1, . . . , 𝑡𝑝 ]
such that Φ(𝑟1, . . . , 𝑟𝑝 ) = dim𝐾 𝑀𝑟1,...,𝑟𝑝 for all sufficiently large

(𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 and this polynomial can be written as

Φ(𝑡1, . . . , 𝑡𝑝 ) =
𝑚1∑︁
𝑖1=0

· · ·
𝑚𝑝∑︁
𝑖𝑝=0

𝑎𝑖1,...𝑖𝑝

(
𝑡1 + 𝑖1
𝑖1

)
. . .

(
𝑡𝑝 + 𝑖𝑝
𝑖𝑝

)
where 𝑎𝑖1,...𝑖𝑝 ∈ Z for all 𝑝-tuples (𝑖1, . . . , 𝑖𝑝 ) ∈ N𝑝 with (𝑖1, . . . , 𝑖𝑝 )
≤𝑃 (𝑚1, . . . ,𝑚𝑝 ), and 2

𝑚 |𝑎𝑚1,...𝑚𝑝
. Furthermore,

Φ(𝑡1, . . . , 𝑡𝑝 ) =
∑𝑛
𝑗=1 𝜙𝐸 𝑗

(𝑡1, . . . , 𝑡𝑝 )+ a polynomial of degree less

than𝑚,

where 𝜙𝐸 𝑗
(𝑡1, . . . , 𝑡𝑝 ) is the dimension polynomial of the set 𝐸 𝑗

associated with the partition of the set N𝑚 = {1, . . . ,𝑚} that corre-
sponds to the given partition of 𝜎 .

Since deg𝜙𝐸 𝑗
=𝑚 if and only if 𝐸 𝑗 = ∅ and then 𝜙𝐸 𝑗

(𝑡1, . . . , 𝑡𝑝 ) =∏𝑝

𝑗=1

[∑𝑚 𝑗

𝑖=0
(−1)𝑚 𝑗−𝑖

2
𝑖
(𝑚 𝑗

𝑖

) (𝑡 𝑗+𝑖
𝑖

) ]
, there are exactly 𝑑 indices 𝑗 for

which 𝐸 𝑗 = ∅. Without loss of generality we can assume that these

indices are 1, . . . , 𝑑 . It means that the leaders of elements of 𝐺 con-

tain only generators 𝑓𝑘 of 𝐹 with indices 𝑘 ∈ {𝑑 + 1, . . . , 𝑛}.
Suppose that there exists 𝑟 = (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 such that 𝑁𝑟1,...,𝑟𝑝 ⊉
𝑀𝑟1,...,𝑟𝑝

⋂
𝑁 . Then there exists an element 𝐴 ∈

(
𝑀𝑟1,...,𝑟𝑝

⋂
𝑁

)
\

𝑁𝑟1,...,𝑟𝑝 of the lowest (with respect to (<1, . . . , <𝑝 )) possible rank

among all such elements. Then 𝐴 =

𝑑∑︁
𝑗=1

𝐷 𝑗𝑥 𝑗 =

𝑛∑︁
𝑖=1

𝐷 ′
𝑖𝑥𝑖 where

𝐷 𝑗 ∈ E (1 ≤ 𝑗 ≤ 𝑑) and 𝐷 ′
𝑖
∈ E𝑟1,...,𝑟𝑝 (1 ≤ 𝑖 ≤ 𝑛). It follows that if

we set 𝑃 =

𝑑∑︁
𝑗=1

𝐷 𝑗 𝑓𝑗 −
𝑛∑︁
𝑖=1

𝐷 ′
𝑖 𝑓𝑖 , then 𝑃 ∈𝑊 .

Let 𝑞 = (𝑞1, . . . , 𝑞𝑝 ) be the smallest with respect to the product

order element ofN𝑝 such that 𝑟 ≤𝑃 𝑞,𝐷 𝑗 , 𝐷 ′
𝑖
∈ E𝑞1,...,𝑞𝑝 (1 ≤ 𝑗 ≤ 𝑑 ,

1 ≤ 𝑖 ≤ 𝑛) and let 𝑞 be the smallest such 𝑝-tuple with respect to the

lexicographic order on N𝑝 .
Then (𝑟1, . . . , 𝑟𝑝 ) <𝑃 (𝑞1, . . . , 𝑞𝑝 ) (if 𝑟 = 𝑞, then 𝐴 ∈ 𝑁𝑟1,...,𝑟𝑝 ).

Let 𝑣 = 𝜃1 𝑓𝑘 be the 1-leader of 𝑃 . Then ord𝑖 𝜃1 = 𝑞𝑖 and 1 ≤ 𝑘 ≤ 𝑑 .
Indeed, if 𝑣 appears in one of 𝐷 ′

𝑖
, then (ord1 𝜃1, . . . , ord𝑝 𝜃1) ≤𝑃

(𝑟1, . . . , 𝑟𝑝 ) <𝑃 (𝑞1, . . . , 𝑞𝑝 ) while some 𝐷 𝑗 (1 ≤ 𝑗 ≤ 𝑑) contains a
term 𝜃 ′𝑓𝜈 with (ord1 𝜃 ′, . . . , ord𝑝 𝜃 ′) = (𝑞1, . . . , 𝑞𝑝 ).

Let 𝑃 ′ be the result of the (<1, . . . , <𝑝 )-reduction of 𝑃 with re-

spect to 𝐺 , so 𝑃 ′ is reduced with respect to 𝐺 . Since the reduction

uses transforms of leaders of elements of 𝐺 and these leaders con-

tain only 𝑓𝑖 with 𝑑 + 1 ≤ 𝑖 ≤ 𝑛, 𝑃 ′ must contain 𝑣 . Therefore, 𝑃 ′ ≠ 0.

On the other hand, 𝑃 ′ ∈ 𝑊 and 𝑃 ′ is (<1, . . . , <𝑝 )-reduced with



respect to 𝐺 . This contradiction (see Proposition 3.6) shows that

𝑁𝑟1,...,𝑟𝑝 = 𝑀𝑟1,...,𝑟𝑝
⋂
𝑁 for all 𝑟1, . . . , 𝑟𝑝 ∈ N. □

The last theorem allows one to obtain an interesting result

about 𝜎∗-dimension polynomials of 𝜎∗-field extensions (see Theo-

rem 4.5 below) that is a difference version of [2, Theorem 3.1].

Recall (see [9, Theorem 4.2.17]) that if 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ is a

𝜎∗-field extension (Char𝐾 = 0) with a finite set of generators

𝜂 = {𝜂1, . . . , 𝜂𝑛}, then (given that the partition (1) of 𝜎 is fixed) there

exists a polynomial in 𝑝 variables Ψ𝜂 |𝐾 ∈ Q[𝑡1, . . . , 𝑡𝑝 ] such that

Ψ𝜂 |𝐾 (𝑟1, . . . , 𝑟𝑝 ) = tr. deg𝐾 𝐾 ({𝛾𝜂𝑖 | 𝜏 ∈ Γ(𝑟1, . . . , 𝑟𝑝 ), 1 ≤ 𝑗 ≤ 𝑛})
for all sufficiently large (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 . This polynomial, which

is called the 𝜎∗-dimension polynomial of the extension 𝐿/𝐾 associ-

ated with the set of 𝜎∗-generators 𝜂, carries a number of invariants

of the extension. In particular, if it is written in the canonical form

(2), then 𝑑 = 𝑎𝑚1 ...𝑚𝑝
/2𝑚 is the 𝜎∗-transcendence degree of 𝐿/𝐾

(denoted by 𝜎∗-tr. deg𝐾 𝐿), that is, the maximal number of elements

𝑥1, . . . , 𝑥𝑘 of 𝐿 such that the set {𝛾 (𝑥𝑖 ) | 𝛾 ∈ Γ, 1 ≤ 𝑖 ≤ 𝑘} is alge-
braically independent over 𝐾 . (In this case we say that 𝑥1, . . . , 𝑥𝑘
are 𝜎∗-algebraically independent over 𝐾 . Any maximal set of such

elements has 𝑑 elements; it is called a 𝜎∗-transcendence basis of
𝐿/𝐾 . As in the classical field theory, every set of 𝜎∗-generators of
𝐿/𝐾 contains a 𝜎∗-transcendence basis of this extension.) Proper-
ties of 𝜎∗-dimension polynomials of 𝜎∗-field extensions and their

applications to the analysis of systems of algebraic difference equa-

tions can be found in [9, Chapters 4 and 7]. In this connection, in

the future research we plan to develop and implement an algorithm

for computing multivariate 𝜎∗-dimension polynomials of systems

of algebraic difference equations and apply the obtained results to

the computation of a difference analog of the Einstein’s strength of

concrete such systems.

Theorem 4.5. Let 𝐿 = 𝐾 ⟨𝜂1, . . . , 𝜂𝑛⟩ be a 𝜎∗-field extension gen-
erated by a finite set 𝜂 = {𝜂1, . . . , 𝜂𝑛} and let 𝑑 = 𝜎∗-tr. deg𝐾 𝐿. Then
the set 𝜂 contains a 𝜎∗-transcendence basis 𝐵 = {𝜂𝑖1 , . . . 𝜂𝑖𝑑 } of 𝐿 over
𝐾 (1 ≤ 𝑖1 < · · · < 𝑖𝑑 ≤ 𝑛) such that if 𝜂 ′ denotes the set 𝜂 \ 𝐵, then

Ψ𝜂′ |𝐾 ⟨𝐵⟩ (𝑡1, . . . , 𝑡𝑝 ) = Ψ𝜂 |𝐾 (𝑡1, . . . , 𝑡𝑝 )−

𝑑

𝑝∏
𝑗=1

[𝑚 𝑗∑︁
𝑖=0

(−1)𝑚 𝑗−𝑖
2
𝑖

(
𝑚 𝑗

𝑖

) (
𝑡 𝑗 + 𝑖
𝑖

)]
. (11)

Moreover, tr. deg𝐾 𝐾 ({𝛾𝜂𝑖 | 𝜏 ∈ Γ(𝑟1, . . . , 𝑟𝑝 ), 1 ≤ 𝑗 ≤ 𝑛})

= 𝑑

𝑝∏
𝑗=1

[𝑚 𝑗∑︁
𝑖=0

(−1)𝑚 𝑗−𝑖
2
𝑖

(
𝑚 𝑗

𝑖

) (
𝑟 𝑗 + 𝑖
𝑖

)]
+

tr. deg𝐾 ⟨𝐵⟩ 𝐾 ⟨𝐵⟩({𝛾𝜂𝑖 | 𝜏 ∈ Γ(𝑟1, . . . , 𝑟𝑝 ), 1 ≤ 𝑗 ≤ 𝑛})
for all (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 .

Proof. Clearly we can assume 𝑚 = Card𝜎 > 0 (for 𝑚 = 0

the statement is obvious). Let Ω𝐿 |𝐾 denote the module of Kähler

differentials associated with the extension 𝐿/𝐾 . Then Ω𝐿 |𝐾 can be

treated as a 𝜎∗-𝐿-module where the action of the elements of 𝜎∗ is
defined in such a way that 𝛼 (𝑑𝜁 ) = 𝑑𝛼 (𝜁 ) for any 𝜁 ∈ 𝐿, 𝛼 ∈ 𝜎∗
(see [9, Lemma 4.2.8]). Furthermore, by [9, Theorem 4.2.9], we have

𝜎∗-dim𝐿 Ω𝐿 |𝐾 = 𝜎∗-tr. deg𝐾 𝐿.
Let 𝑀 = Ω𝐿 |𝐾 and for any (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 , let 𝑀𝑟1,...,𝑟𝑝 de-

note the vector 𝐿-space generated by all elements 𝑑𝜁 where 𝜁 ∈

𝐾 (
𝑛⋃
𝑖=1

Γ(𝑟1, . . . , 𝑟𝑝 )𝜂𝑖 ). It is easy to check that

{𝑀𝑟1 ...𝑟𝑝 | (𝑟1, . . . , 𝑟𝑝 ) ∈ Z𝑝 } (𝑀𝑟1,...,𝑟𝑝 = 0 if (𝑟1, . . . , 𝑟𝑝 ) ∈ Z𝑝 \N𝑝 )
is an excellent 𝑝-dimensional filtration of the 𝜎∗-𝐿-module𝑀 . Also,

dim𝐾 𝑀𝑟1,...,𝑟𝑝 = tr. deg𝐾 𝐾 ({𝛾𝜂𝑖 | 𝜏 ∈ Γ(𝑟1, . . . , 𝑟𝑝 ), 1 ≤ 𝑗 ≤ 𝑛})
for all (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 (see[11, Proposition 23.17]).

By Theorem 4.4, there exists a set 𝐵′ = {𝑑𝜂𝑖1 , . . . 𝑑𝜂𝑖𝑑 } ⊆ 𝑀 (1 ≤
𝑖1 < · · · < 𝑖𝑑 ≤ 𝑛) such that the elements of 𝐵′ are linearly indepen-

dent over E and if 𝑁 =

𝑑∑︁
𝜈=1

E𝑑𝜂𝑖𝜈 and 𝑁𝑟1,...,𝑟𝑝 =

𝑑∑︁
𝜈=1

E𝑟1,...,𝑟𝑝𝑑𝜂𝑖𝜈 ,

then 𝑁𝑟1,...,𝑟𝑝 = 𝑀𝑟1,...,𝑟𝑝
⋂
𝑁 for all (𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 . Therefore,

the elements of the set 𝐵 = {𝜂𝑖1 , . . . 𝜂𝑖𝑑 } are 𝜎∗-algebraically inde-

pendent over 𝐾 and 𝜎∗-tr. deg𝐾 ⟨𝐵⟩ 𝐿 = 0. Now we can repeat the

arguments of the proof of [2, Theorem 3.2] to show that if we set

𝐿𝑟1,...,𝑟𝑝 = 𝐾 ({𝛾𝜂𝑖 | 𝜏 ∈ Γ(𝑟1, . . . , 𝑟𝑝 ), 1 ≤ 𝑗 ≤ 𝑛}), 𝐹 = 𝐾 ⟨𝐵⟩, and
𝐹𝑟1,...,𝑟𝑝 = 𝐾 ({𝛾𝜂𝑖𝜈 | 𝜏 ∈ Γ(𝑟1, . . . , 𝑟𝑝 ), 1 ≤ 𝜈 ≤ 𝑑}), then for any

(𝑟1, . . . , 𝑟𝑝 ) ∈ N𝑝 there is an exact sequence of 𝜎∗-𝐿-modules

0 → 𝐿
⊗

𝐹𝑟
1
,...,𝑟𝑝

Ω𝐹𝑟
1
,...,𝑟𝑝 |𝐾 → 𝐿

⊗
𝐿𝑟

1
,...,𝑟𝑝

Ω𝐿𝑟
1
,...,𝑟𝑝 |𝐾

→ 𝐿
⊗

𝐿𝑟
1
,...,𝑟𝑝

Ω𝐿𝑟
1
,...,𝑟𝑝 |𝐹𝑟

1
,...,𝑟𝑝

→ 0,

dim𝐿 𝐿
⊗

𝐿𝑟
1
,...,𝑟𝑝

Ω𝐿𝑟
1
,...,𝑟𝑝 |𝐾 = tr. deg𝐾 𝐿𝑟1,...,𝑟𝑝 ,

dim𝐿 𝐿
⊗

𝐹𝑟
1
,...,𝑟𝑝

Ω𝐹𝑟
1
,...,𝑟𝑝 |𝐾 =

𝑑

𝑝∏
𝑗=1

[ 𝑛 𝑗∑︁
𝑖=0

(−1)𝑛 𝑗−𝑖
2
𝑖

(
𝑛 𝑗

𝑖

) (
𝑡 𝑗 + 𝑖
𝑖

)]
, and

dim𝐿 𝐿
⊗

𝐿𝑟
1
,...,𝑟𝑝

Ω𝐿𝑟
1
,...,𝑟𝑝 |𝐹𝑟

1
,...,𝑟𝑝

=

tr. deg𝐹 𝐹 ({𝛾𝜂𝑖 |𝛾 ∈ Γ(𝑟1, . . . , 𝑟𝑝 ), 1 ≤ 𝑗 ≤ 𝑛}).
Since dim𝐿 is an additive function for exact sequences, we obtain

the statement of our theorem. □
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