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Abstract

In this paper we obtain new results on multivariate dimension polynomials of differential field
extensions associated with partitions of basic sets of derivations. We prove that the coefficient of
the summand of the highest possible degree in the canonical representation of such a polynomial
is equal to the differential transcendence degree of the extension. We also give necessary and
sufficient conditions under which the multivariate dimension polynomial of a differential field ex-
tension of a given differential transcendence degree has the simplest possible form. Furthermore,
we describe some relationships between a multivariate dimension polynomial of a differential
field extension and dimensional characteristics of subextensions defined by subsets of the basic
sets of derivations. In the last part of the paper we show how the invariants of multivariate
dimension polynomials can be used for determining the equivalence of systems of algebraic dif-
ferential equations and discuss the relationship between such polynomials and the concept of
Einstein’s strength of a system of algebraic partial differential equations.
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1. Introduction

Differential dimension polynomials introduced in [5] by E. Kolchin play the same role
in differential algebra as Hilbert polynomials play in commutative algebra and algebraic
geometry. An important feature of differential dimension polynomials is that they de-
scribe in exact terms the freedom degree of a continuous dynamic system as well as the
number of arbitrary constants in the general solution of a system of algebraic partial
differential equations. The following fundamental result, whose proof can be found in [6,
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Chapter II], establishes the existence and basic properties of a (univariate) dimension
polynomial of a finitely generated differential field extension.

Theorem 1.1. Let K be a differential field of characteristic zero, that is, a field consid-
ered together with the action of a set ∆ = {δ1, . . . , δm} of mutually commuting deriva-
tions of K into itself. Let Θ denote the free commutative semigroup of all power prod-
ucts of the form θ = δk11 . . . δkmm (ki ≥ 0), let ord θ =

∑m
i=1 ki, and for any r ≥ 0, let

Θ(r) = {θ ∈ Θ | ord θ ≤ r}. Let L = K〈η1, . . . , ηn〉 be a differential field extension of K
generated by a finite set η = {η1, . . . , ηn}. (As a field, L = K({θηj |θ ∈ Θ, 1 ≤ j ≤ n}). )
Then there exists a polynomial ωη|K(t) ∈ Q[t] such that

(i) ωη|K(r) = tr. degK K({θηj |θ ∈ Θ(r), 1 ≤ j ≤ n}) for all sufficiently large r ∈ Z;

(ii) degωη|K ≤ m and ωη|K(t) can be represented as ωη|K(t) =
∑m
i=0 ai

(
t+i
i

)
where

a0, . . . , am ∈ Z;
(iii) d = degωη|K , am and ad do not depend on the choice of the system of ∆-

generators η of the extension L/K (clearly, ad 6= am if and only if d < m, that is,
am = 0). Moreover, am is equal to the differential transcendence degree of L over K
(denoted by ∆-tr. degK L), that is, to the maximal number of elements ξ1, . . . , ξk ∈ L
such that the set {θξi|θ ∈ Θ, 1 ≤ i ≤ k} is algebraically independent over K.

(iv) If the elements η1, . . . , ηn are ∆-algebraically independent over K (i. e., the set
{θηi | θ ∈ Θ, 1 ≤ i ≤ n} is algebraically independent over K), then ωη|K(t) = n

(
t+m
m

)
.

The polynomial ωη|K is called the differential dimension polynomial of the differential
field extension L/K associated with the system of differential generators η. The invariants
d = degωη|K and ad in part (iii) of the theorem are called the differential (or ∆-) type and
typical differential (or ∆-) transcendence degree of the extension L/K; they are denoted
by ∆-typeK L and ∆-t. tr. degK L, respectively.

Differential dimension polynomials provide a power tool for the study of systems of
algebraic differential equations. For a wide class of such systems, the dimension polyno-
mial of the corresponding differential field extension expresses the strength of the system
of equations in the sense of A. Einstein. This concept, that was introduced in [1] as an
important qualitative characteristic of a system of PDEs, can be expressed as a certain
differential dimension polynomial, as it is shown in [14]. Another important application of
differential dimension polynomials is based on the fact that if P is a prime (in particular,
linear) differential ideal of a finitely generated differential algebra R over a differential
field K and L is the quotient field of R/P treated as a differential overfield of K, then
the differential dimension polynomial of the extension L/K characterizes the ideal P ;
assigning such polynomials to prime differential ideals has led to a number of new results
on the Krull-type dimension of differential algebras and differential field extensions (see,
for example, [3], [4], [13], [7, Chapter 7]), and [17]). It should be also added that the
dimension polynomial associated with a finitely generated differential field extension car-
ries certain differential birational invariants, that is, numbers that do not change when
we switch to another finite system of generators of the extension. These invariants are
closely connected to some other important characteristics; one of them is the differential
transcendence degree of the extension. Among recent works on univariate differential di-
mension polynomials one has to mention the work of O. Sanchez [15] on the evaluation of
the coefficients of a differential dimension polynomial, the work of J. Freitag, O. Sanchez
and W. Li on the definability of Kolchin polynomials, and works of M. Lange-Hegermann
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[8] and [9], where the author introduced a differential dimension polynomial of a charac-

terizable (not necessarily prime) differential ideal and a countable differential polynomial

that generalizes the concept of differential dimension polynomial.

In 2001 the author introduced a concept of a multivariate differential dimension poly-

nomial of a finitely generated differential field extension associated with a partition of the

set of basic derivations ∆ (see [10]). The proof of the corresponding existence theorem

that generalizes the first two parts of Theorem 1.1, was based on a special type of reduc-

tion in a ring of differential polynomials that takes into account the partition of ∆. It was

also shown that a multivariate differential dimension polynomial carries essentially more

differential birational invariants of the corresponding differential field extension than its

univariate counterpart. As it is demonstrated in Example 4.7, a multivariate dimension

polynomial associated with an algebraic differential equation with parameters can carry

all this parameters, while the univariate dimension polynomial determines just some re-

lation between the parameters. Therefore, there is a strong motivation for the study of

multivariate differential dimension polynomials and their invariants. The main difficulty

in this study is due to the fact that a multivariate dimension polynomial of a prime

differential polynomial ideal is determined by a characteristic set with respect to several

term orderings. Such sets were introduced in [10], but the corresponding theory is in its

infancy. Another problem, that is partially solved in this paper, is to characterize invari-

ants of multivariate dimension polynomials and to find relationships between invariants

of such polynomials associated with different partitions of the basic set of derivations.

In this paper we obtain new results on multivariate differential dimension polynomials

of differential field extensions associated with partitions of the basic sets of derivations.

We give necessary and sufficient conditions under which the multivariate dimension poly-

nomial of a differential field extension of a given differential transcendence degree has the

simplest possible form. This result (Theorem 4.4) generalizes the corresponding property

of univariate differential dimension polynomials proved in [16]. We also prove that the

coefficient of the summand of the highest possible degree in the canonical representation

of a multivariate dimension polynomial is equal to the differential transcendence degree

of the extension (Theorem 4.2). Furthermore, we obtain some relationships between a

multivariate dimension polynomial of a differential field extension and dimensional char-

acteristics of subextensions defined by subsets of the basic sets of derivations.

This paper essentially extends the results obtained in [13]: we give a constructive

proof of the main theorem on the reduction of differential polynomials with respect to

several term orderings (Theorem 3.6 and Corollary 3.7) and present the corresponding

algorithm; we also establish the existence of a special differential transcendence basis B

of a finitely generated differential field extension L/K such that the multivariate differ-

ential dimension polynomial of L/K〈B〉 is naturally connected with the corresponding

dimension polynomial of L/K (Theorem 4.6); in the last part of the paper we show how

the invariants of multivariate dimension polynomials can be used for the study of equiv-

alence of systems of algebraic differential equations and discuss the relationship between

such polynomials and the concept of Einstein’s strength of a system of algebraic partial

differential equations.
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2. Preliminaries

Throughout the paper Z, N and Q denote the sets of all integers, all nonnegative
integers and all rational numbers, respectively. If M is a finite set, then CardM will
denote the number of elements of M . By a ring we always mean an associative ring with
unity. Every ring homomorphism is unitary (maps unity onto unity), every subring of a
ring contains the unity of the ring, and every algebra over a commutative ring is unitary.
Unless otherwise indicated, every field is supposed to have zero characteristic.

A differential ring is a commutative ring R considered together with a finite set ∆
of mutually commuting derivations of R into itself. The set ∆ is called a basic set of
the differential ring R that is also called a ∆-ring. A subring (ideal) R0 of a ∆-ring
R is called a differential (or ∆-) subring of R (respectively, a differential (or ∆-) ideal
of R) if δ(R0) ⊆ R0 for any δ ∈ ∆. If a differential (∆-) ring is a field, it is called a
differential (or ∆-) field. In what follows, Θ (or Θ∆ if we want to indicate the basic set)
denotes the free commutative semigroup generated by ∆ (that is, if ∆ = {δ1, . . . , δm},
then Θ = {θ = δk11 . . . δkmm | k1, . . . , km ∈ N}).

If R is a ∆-ring and S ⊆ R, then the smallest ∆-ideal of R containing S is denoted
by [S] (as an ideal, it is generated by the set {θξ | ξ ∈ S}). If the set S is finite, S =
{ξ1, . . . , ξq}, we say that the ∆-ideal I = [S] is finitely generated, write I = [ξ1, . . . , ξq])
and call ξ1, . . . , ξq differential (or ∆-) generators of I. If a ∆-ideal is prime (in the usual
sense), it is called a prime differential (or ∆-) ideal.

LetR1 andR2 be two differential rings with the same basic set ∆ = {δ1, . . . , δm}. (More
rigorously, we assume that there exist injective mappings of the set ∆ into the sets of
mutually commuting derivations of the rings R1 and R2. For convenience we will denote
the images of elements of ∆ under these mappings by the same symbols δ1, . . . , δm).
A ring homomorphism φ : R −→ S is called a differential (or ∆-) homomorphism if
φ(δa) = δφ(a) for any δ ∈ ∆, a ∈ R.

If K is a ∆-field and K0 a subfield of K which is also a ∆-subring of K, then K0 is
said to be a differential (or ∆-) subfield of K, and K is called a differential (or ∆-) field
extension or a ∆-overfield of K0. We also say that we have a ∆-field extension K/K0.
In this case, if S ⊆ K, then the intersection of all ∆-subfields of K containing K0 and S
is the unique ∆-subfield of K containing K0 and S and contained in every ∆-subfield of
K containing K0 and S. It is denoted by K0〈S〉 or by K0〈S〉∆ if we want to indicate the
set of basic derivations ∆. If K = K0〈S〉 and the set S is finite, S = {η1, . . . , ηn}, then
K is said to be a finitely generated ∆-field extension of K0 with the set of ∆-generators
{η1, . . . , ηn}. In this case we write K = K0〈η1, . . . , ηn〉. It is easy to see that the field
K0〈η1, . . . , ηn〉 coincides with the field K0({θηi|θ ∈ Θ, 1 ≤ i ≤ n}).

Let L be a ∆-field extension of a ∆-field K. We say that a set U ⊆ L is ∆-algebraically
dependent over K, if the family {θ(u) |u ∈ U, θ ∈ Θ} is algebraically dependent over K.
Otherwise, the family U is said to be ∆-algebraically independent over K. An element
u ∈ L is said to be ∆-algebraic over K if the set {u} is ∆-algebraically dependent over
K. A maximal ∆-algebraically independent over K subset of L is called a differential
(or ∆-) transcendence basis of L over K (or of the extension L/K). It is known (see [6,
Chapter II]) that every system of ∆-generators of a ∆-field extension L/K contains a
∆-transcendence basis of L over K and if L/K is finitely generated as a ∆-field extension,
then all ∆-transcendence bases have the same number of elements called the differential
(or ∆-) transcendence degree of L over K; it is denoted by ∆-tr. degK L.

4



If K is a ∆-field and Y = {y1, . . . , yn} is a finite set of symbols, then one can consider
the countable set of symbols ΘY = {θyj |θ ∈ Θ, 1 ≤ j ≤ n} and the polynomial ring
R = K[{θyj |θ ∈ Θ, 1 ≤ j ≤ n}] in the set of indeterminates ΘY over K. This polynomial
ring is naturally viewed as a ∆-ring where δ(θyj) = (δθ)yj (δ ∈ ∆, θ ∈ Θ, 1 ≤ j ≤ n) and
the elements of ∆ act on the coefficients of the polynomials of R as they act in the field
K. The ring R is called a ring of differential (or ∆-) polynomials in the set of differential
(∆-) indeterminates y1, . . . , yn over the ∆-field K. This ring is denoted by K{y1, . . . , yn}
and its elements are called differential (or ∆-) polynomials.

MULTIVARIATE NUMERICAL POLYNOMIALS OF SUBSETS OF Nm

Definition 2.1. A polynomial f(t1, . . . , tp) in p variables (p ≥ 1) with rational coeffi-
cients is said to be numerical if f(t1, . . . , tp) ∈ Z for all sufficiently large t1, . . . , tp ∈ Z,
that is, there exists (s1, . . . , sp) ∈ Zp such that f(r1, . . . , rp) ∈ Z whenever (r1, . . . , rp) ∈
Zp and ri ≥ si (1 ≤ i ≤ p).

Clearly, every polynomial with integer coefficients is numerical. As an example of a nu-
merical polynomial in p variables with non-integer coefficients one can consider

∏p
i=1

(
ti
mi

)
(m1, . . . ,mp ∈ Z), where

(
t
k

)
= t(t−1)...(t−k+1)

k! for any k ∈ Z, k ≥ 1,
(
t
0

)
= 1, and

(
t
k

)
= 0

if k is a negative integer.
If f is a numerical polynomial in p variables (p > 1), then deg f and degti f (1 ≤ i ≤ p)

will denote the total degree of f and the degree of f relative to the variable ti, respectively.
The following theorem gives the ”canonical” representation of a numerical polynomial in
several variables.

Theorem 2.2. Let f(t1, . . . , tp) be a numerical polynomial in p variables t1, . . . , tp, and
let degti f = mi (1 ≤ i ≤ p). Then the polynomial f(t1, . . . , tp) can be represented as

f(t1, . . . tp) =

m1∑
i1=0

. . .

mp∑
ip=0

ai1...ip

(
t1 + i1
i1

)
. . .

(
tp + ip
ip

)
(2. 1)

with integer coefficients ai1...ip that are uniquely defined by the numerical polynomial.

In the rest of this section we deal with subsets of Nm where the positive integer m is
represented as a sum of p nonnegative integers m1, . . . ,mp (p ≥ 1). In other words, we
fix a partition (m1, . . . ,mp) of m.

If x = (x1, . . . , xm) ∈ Nm, we set ord1 x =
∑m1

j=1 xj and ordi =
∑mi
j=mi−1+1 xj for

i = 2, . . . , p. If A ⊆ Nm, then for any r1, . . . , rp ∈ N, A(r1, . . . , rp) will denote the subset
of A that consists of all m-tuples a = (a1, . . . , am) such that ordi a ≤ ri (1 ≤ i ≤ p).
Furthermore, we shall associate with the set A a set VA ⊆ Nm that consists of all m-
tuples v = (v1, . . . , vm) ∈ Nm that are not greater than or equal to any m-tuple from A
with respect to the product order on Nm. (Recall that the product order on the set Nk
(k ∈ N, k ≥ 1) is a partial order ≤P on Nk such that c = (c1, . . . , ck) ≤P c′ = (c′1, . . . , c

′
k)

if and only if ci ≤ c′i for all i = 1, . . . , k. If c ≤P c′ and c 6= c′, we write c <P c′ ).
Clearly, an element v = (v1, . . . , vm) ∈ Nm belongs to VA if and only if for any element
(a1, . . . , am) ∈ A there exists i ∈ N, 1 ≤ i ≤ m, such that ai > vi.

The following two theorems proved in [7, Chapter 2] generalize the well-known Kolchin’s
result on the numerical polynomials of subsets of Nm (see [6, Chapter 0, Lemma 17]) and
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give an explicit formula for the numerical polynomials in p variables associated with a
finite subset of Nm.

Theorem 2.3. Let A be a subset of Nm where m = m1 + · · ·+mp for some nonnegative
integers m1, . . . ,mp (p ≥ 1). Then there exists a numerical polynomial ωA(t1, . . . , tp) in
p variables with the following properties:

(i) ωA(r1, . . . , rp) = Card VA(r1, . . . , rp) for all sufficiently large (r1, . . . , rp) ∈ Np (i.
e., there exist (s1, . . . , sp) ∈ Np such that the equality holds for all (r1, . . . , rp) ∈ Np such
that (s1, . . . , sp) ≤P (r1, . . . , rp)).

(ii) degωA ≤ m and degti ωA ≤ mi for i = 1, . . . , p.
(iii) deg ωA = m if and only if the set A is empty. In this case

ωA(t1, . . . , tp) =

p∏
i=1

(
ti +mi

mi

)
.

(iv) ωA is a zero polynomial if and only if (0, . . . , 0) ∈ A.

Definition 2.4. The polynomial ωA(t1, . . . , tp) is called the dimension polynomial of the
set A ⊆ Nm associated with the partition (m1, . . . ,mp) of m.

Theorem 2.5. Let A = {a1, . . . , an} be a finite subset of Nm where n is a positive
integer and m = m1 + · · · + mp for some nonnegative integers m1, . . . ,mp (p ≥ 1). Let
ai = (ai1, . . . , aim) (1 ≤ i ≤ n) and for any l ∈ N, 0 ≤ l ≤ n, let Γ(l, n) denote the set
of all l-element subsets of the set Nn = {1, . . . , n}. Furthermore, for any σ ∈ Γ(l, p), let

āσj = max{aij |i ∈ σ} (1 ≤ j ≤ m) and bσj =
∑
h∈σj

āσh. Then

ωA(t1, . . . , tp) =

n∑
l=0

(−1)l
∑

σ∈Γ(l,n)

p∏
j=1

(
tj +mj − bσj

mj

)
(2. 2)

Remark 2.6. Clearly, if A ⊆ Nm and A′ is the set of all minimal elements of the set A
with respect to the product order on Nm, then the set A′ is finite and ωA(t1, . . . , tp) =
ωA′(t1, . . . , tp). Thus, Theorem 2.5 gives an algorithm that allows one to find the dimen-
sion polynomial of any subset of Nm (with a given representation of m as a sum of p
positive integers): one should first find the set of all minimal points of the subset and
then apply Theorem 2.5.

Proposition 2.7. Let

f(t1, . . . , tp) =

m1∑
i1=0

. . .

mp∑
ip=0

ai1...ip

(
t1 + i1
i1

)
. . .

(
tp + ip
ip

)
and

g(t1, . . . , tp) =

m1∑
i1=0

. . .

mp∑
ip=0

bi1...ip

(
t1 + i1
i1

)
. . .

(
tp + ip
ip

)
be numerical polynomials in p variables t1, . . . , tp written in the form (2.1) (all coefficients

ai1...ip and bi1...ip are integers). Suppose that there exists r(0) = (r
(0)
1 , . . . , r

(0)
p ) ∈ Np

such that for all r = (r1, . . . , rp) ∈ Np such that r(0) ≤P r, one has f(r1, . . . , rp) =
g(r1, . . . , rp). Then f(t1, . . . , tp) = g(t1, . . . , tp) (that is, ai1...ip = bi1...ip for all (i1, . . . , ip) ∈
Np, (i1, . . . , ip) ≤P (m1, . . . ,mp)).
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Proof. We proceed by induction on p. If p = 1, the statement is true because in this
case f − g has infinitely many roots and therefore f = g. Suppose that p > 1 and our
statement is true for numerical polynomials with less than p variables. Then f − g =
m1∑
i1=0

Ci1(t2, . . . , tp)

(
t1 + i1
i1

)
where

Ci1(t2, . . . , tp) =

m2∑
i2=0

. . .

mp∑
ip=0

[ai1...ip − bi1...ip ]

(
t2 + i1
i2

)
. . .

(
tp + ip
ip

)
(0 ≤ i1 ≤ m1).

If we set ti = ri, where ri ≥ r
(0)
i (i = 2, . . . , p), in the above expression for f − g, we

obtain a polynomial in one variable t1 that vanishes for all integer values of t1 that are

greater than or equal to r
(0)
1 . Therefore, all coefficients Ci1(t2, . . . , tp) (0 ≤ i1 ≤ m1)

vanish at (r2, . . . , rp). By the induction hypothesis, Ci1(t2, . . . , tp) = 0 (0 ≤ i1 ≤ m1),
hence f − g = 0, so f = g. 2

3. Reduction with respect to several term orderings and multivariate
differential dimension polynomials

Let K be a differential (∆-) field whose basic set of derivations ∆ is represented as
the union of p nonempty disjoint subsets (p ≥ 1):

∆ = ∆1

⋃
· · ·
⋃

∆p (3. 1)

where ∆i = {δi1, . . . , δimi} for i = 1, . . . , p (m1 + · · · +mp = m where m = Card ∆). In
other words, we fix a partition of the set ∆.

Let Θi denote the free commutative semigroup generated by ∆i (1 ≤ i ≤ p) and let
Θ be the free commutative semigroup generated by the whole set ∆. For any element

θ = δk1111 . . . δ
k1m1
1m1

δk2121 . . . δ
kpmp
pmp ∈ Θ, the numbers ordi θ =

∑mi
j=1 kij (i = 1, . . . , p) and

ord θ =
∑p
i=1 ordi θ will be called the order of θ with respect to ∆i and the order of

θ, respectively. If θ, θ′ ∈ Θ, we say that θ′ divides θ (or that θ is a multiple of θ′)
and write θ′ | θ if there exists θ′′ ∈ Θ such that θ = θ′′θ′. As usual, the least common

multiple of elements θ1 =
∏p
i=1

∏mi
j=1 δ

kij1
ij , . . . , θq =

∏p
i=1

∏mi
j=1 δ

kijq
ij ∈ Θ is the element

θ =
∏p
i=1

∏mi
j=1 δ

kij
ij , where kij = max{kijl|1 ≤ l ≤ q} (1 ≤ i ≤ p, 1 ≤ j ≤ mi), denoted

by lcm(θ1, . . . , θq).
If r = (r1, . . . , rp) ∈ Np, the set {θ ∈ Θ | ordi θ ≤ ri for i = 1, . . . , p} will be denoted

by Θ(r1, . . . , rp) or Θ(r). If ξ is an element of a ∆-field K and Θ′ ⊆ Θ, then Θ′ξ, will
denote the set {θ(ξ) | θ ∈ Θ′}.

We consider p orderings <1, · · · <p of the semigroup Θ defined as follows.

If θ = δk1111 . . . δ
k1m1
1m1

δk2121 . . . δ
kpmp
pmp and θ′ = δl1111 . . . δ

l1m1
1m1

δl2121 . . . δ
lpmp
pmp are elements of Θ,

then θ <i θ
′ if and only if the vector (ordi θ, ord1 θ, . . . , ordi−1 θ, ordi+1 θ, . . . , ordp θ, ki1,

. . . , kim, k11, . . . , k1m1
, k21, . . . , ki−1,mi−1

, ki+1,1, . . . , kpmp) is less than the vector
(ordi θ

′, ord1 θ
′, . . . , ordi−1 θ

′, ordi+1 θ
′, . . . , ordp θ

′, li1, . . . , lim, l11, . . . , l1m1 , l21, . . . ,
li−1,mi−1

, li+1,1, . . . , lpmp) with respect to the lexicographic order on Nm+p.
Let K{y1, . . . , yn} be the ring of ∆-polynomials in ∆-indeterminates y1, . . . , yn over

K. Then the elements θyi (θ ∈ Θ, 1 ≤ i ≤ n) will be called terms, and the set of all terms
ΘY will be considered together with p orderings that correspond to the orderings of Θ
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and are denoted by the same symbols <1, . . . , <p. These orderings of ΘY are defined as

follows. θyj <i θ
′yk (θ, θ′ ∈ Θ, 1 ≤ j, k ≤ n, 1 ≤ i ≤ p) if and only if θ <i θ

′ or θ = θ′

and j < k. By the ith order of a term u = θyj we mean the number ordi u = ordi θ. The

number ord u = ord θ is called the order of u.

We say that a term u = θyi is divisible by a term v = θ′yj and write v |u, if i = j

and θ′ | θ. If v |, u and v 6= u, we say that u is a proper derivative 0f v. For any terms

u1 = θ1yj , . . . , uq = θqyj with the same ∆-indeterminate yj , the term lcm(θ1, . . . , θq)yj
is called the least common multiple of u1, . . . , uq, it is denoted by lcm(u1, . . . , uq).

If A ∈ K{y1, . . . , yn}, A /∈ K, and 1 ≤ i ≤ p, then the highest with respect to the

ordering <i term that appears in A is called the i-leader of the ∆-polynomial A. It is

denoted by u
(i)
A . If A is written as a polynomial in one variable u

(1)
A , A = Id(u

(1)
A )

d
+

Id−1(u
(1)
A )

d−1
+ · · ·+ I0 (Id, Id−1, . . . , I0 do not contain u

(1)
A ), then Id is called the leading

coefficient of the ∆-polynomial A and the partial derivative ∂A/∂u
(1)
A = dId(u

(1)
A )

d−1
+

(d−1)Id−1(u
(1)
A )

d−2
+ · · ·+ I1 is called the separant of A. The leading coefficient and the

separant of A are denoted by IA and SA, respectively.

Definition 3.1. Let A and B be two ∆-polynomials from K{y1, . . . , yn}. We say that

A has lower rank than B (or that B has higher rank than A) and write rk A < rk B

if either A ∈ K, B /∈ K, or the vector (u
(1)
A , deg

u
(1)

A

A, ord2 u
(2)
A , . . . , ordp u

(p)
A ) is less

than the corresponding vector (u
(1)
B , deg

u
(1)

B

B, ord2 u
(2)
B , . . . , ordp u

(p)
B ) with respect to

the lexicographic order (u
(1)
A and u

(1)
B are compared with respect to <1 and all other

coordinates are compared with respect to the natural order on N). If the two vectors are

equal (or A ∈ K and B ∈ K) we say that the ∆-polynomials A and B are of the same

rank and write rk A = rk B.

Definition 3.2. Let A and B be two ∆-polynomials in K{y1, . . . , yn} and A /∈ K. We

say that B is reduced with respect to A if the following two conditions hold.

(i) B does not contain any term θu
(1)
A (θ ∈ Θ, θ 6= 1) such that ordi(θu

(i)
A ) ≤ ordi u

(i)
B

for i = 2, . . . , p.

(ii) If B contains u
(1)
A , then either there exists j, 2 ≤ j ≤ p, such that ordju

(j)
B <

ordj u
(j)
A or ordju

(j)
A ≤ ordj u

(j)
B for all j = 2, . . . , p and deg

u
(1)

A

B < deg
u
(1)

A

A.

A ∆-polynomial B is said to be reduced with respect to a set A ⊆ K{y1, . . . , yn} if B

is reduced with respect to every element of A.

Remark 3.3. It follows from the last definition that a ∆-polynomial B is not reduced

with respect to a ∆-polynomial A (A /∈ K) if either B contains a term θu
(1)
A (θ ∈ Θ, θ 6= 1)

such that ordi(θu
(i)
A ) ≤ ordiu

(i)
B for i = 2, . . . , p or B contains u

(1)
A and in this case

ordju
(j)
A ≤ ordju

(j)
B for j = 2, . . . , p and deg

u
(1)

A

A ≤ deg
u
(1)

A

B. This observation is helpful

if one would like to show that a ∆-polynomial is not reduced with respect to some other

∆-polynomial.

Definition 3.4. A set of ∆-polynomials A is called autoreduced if A
⋂
K = ∅ and every

element of A is reduced with respect to any other element of this set.
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The following statement is proved in [10] (see[10, Theorem 4.5]).

Proposition 3.5. Every autoreduced set is finite.

Theorem 3.6. Let A = {A1, . . . , Ar} be an autoreduced set in the ring of ∆-polynomials
K{y1, . . . , yn} and B ∈ K{y1, . . . , yn}. Then there exist a ∆-polynomial B0 and nonneg-
ative integers pj , qj (1 ≤ j ≤ r) such that B0 is reduced with respect to A, rk B0 ≤ rk B,
and

r∏
j=1

I
pj
Ai
S
qj
Aj
B ≡ B0 (mod[A]). (3. 2)

Proof. Suppose that B is not reduced with respect to A and B contains a term v = θu
(1)
Aj

,

where θ ∈ Θ, ord θ > 0, 1 ≤ j ≤ r, such that ordi(θu
(i)
Aj

) ≤ ordi u
(i)
B for i = 2, . . . , p. Let

v be the greatest such a term with respect to <1. We will call it the A-leader of B. Let
e = degv B and J the coefficient of ve when B is written as a polynomial in v. Since

θAj = SAjθu
(1)
Aj

+ C = SAjv + C, where all terms of C are of lower rank than v and

ordi u
(i)
C ≤ ordi(θu

(i)
Aj

) ≤ ordi u
(i)
B for i = 2, . . . , p, either the A-leader of the ∆-polynomial

B1 = SAjB − Jve−1θAj

has lower rank than v or it is equal to v and in this case degv B1 < degw B. Applying the
same procedure to B1 and continuing this process we obtain a ∆-polynomial B′ and some
nonnegative integers q1, . . . , qr such that

∏r
i=1 S

qi
Ai
B ≡ B′ (mod[A]) and the A-leader of

B′ is either one of the 1-leaders of Aj (1 ≤ j ≤ r) or has lower rank than any u
(1)
Aj

. In

the last case, B′ is reduced with respect to A and we are done.

Suppose that the A-leader of B′ is w = u
(1)
Aj

for some j (1 ≤ j ≤ r), k = degw B
′ ≥ dj ,

where dj = deg
u
(1)

Aj

Aj , ordi u
(i)
Aj
≤ ordi u

(i)
B′ for i = 2, . . . , p, and F is the coefficient of wk

when B is written as a polynomial in w. Then either the A-leader of the ∆-polynomial

B′1 = IAjB
′ − (u

(i)
Aj

)k−djFAj

has lower rank than w or it is equal to w, degw B1 < degw B1, and ordi u
(i)
Aj
≤ ordi u

(i)
B′1

for

i = 2, . . . , p. Applying the same procedure to B′1 and continuing this process we obtain
a ∆-polynomial B0 and some nonnegative integers p1, . . . , pr (in addition to q1, . . . , qr)
such that (3. 2) holds. 2

The process of reduction described in the proof of the last theorem can be realized by
the following algorithm where R = K{y1, . . . , yn}.

Algorithm I. (B, r,A1, . . . , Ar; B0; )
Input: B ∈ R, a positive integer r, A = {A1, . . . , Ar} ⊆ R where Aj 6= 0
for j = 1, . . . , r
Output: p1, . . . , pr, q1, . . . , qr ∈ N, and B0 ∈ Rsuch that
B0 −

∏r
j=1 I

pj
Aj
S
qj
Aj
B ∈ [A] and B0 is reduced with respect to A, and rk B0 ≤ rk B.

Begin B0 := B
While there exist j, 1 ≤ j ≤ r, and a term v, that appears in B0 with a nonzero

coefficient, such that u
(1)
Aj
|v, u

(1)
Aj
6= v, and ordi(

v

u
(1)

Aj

u
(i)
Aj

) ≤ ordi u
(i)
B0

for i = 2, . . . , p

9



do

z:= the greatest (with respect to <1) of the terms v that satisfy the above conditions.

k:= the smallest number j, 1 ≤ j ≤ r, for which u
(1)
Aj

is the greatest (with respect

to <1) 1-leader of an element Aj ∈ A such that u
(1)
Aj
|z and ordi(

z

u
(1)

Aj

uAj ) ≤ ordi u
(i)
B0

for

i = 2, . . . , p.

e := deg
u
(1)

Ak

Ak; J := the coefficient of ze when B0 is written as a polynomial in z;

θ := z

u
(1)

Aj

.

B0 := SAkB0 − Jze−1θAk.

While for every j = 1, . . . , r, B0 contains no proper derivatives of u
(1)
Aj

and there

exist l, 1 ≤ l ≤ r such that B0 contains (u
(1)
Al

)t with a nonzero coefficient such that

t ≥ dl = deg
u
(1)

Al

Al and ordi u
(i)
Al
≤ ordi u

(i)
B0

for i = 2, . . . , p

do

s:= the smallest number j, 1 ≤ j ≤ r, for which u
(1)
Aj

is the greatest (with respect

to <1) 1-leader of an element Aj ∈ A such that (u
(1)
Aj

)t appears in B0 with nonzero

coefficient, t ≥ dj , and ordi u
(i)
Aj
≤ ordi u

(i)
B0

for i = 2, . . . , p.

h := deg
u
(1)

As

B0; F := the coefficient of (u
(1)
As

)h when B0 is written as a polynomial in

u
(1)
As

;

Qs := Qs + F (u
(1)
As

)h−1As; B0 := IAsB0 − F (u
(1)
As

)h−1As.

End

Corollary 3.7. LetA = {A1, . . . , Ar} be an autoreduced set in the ring of ∆-polynomials

K{y1, . . . , yn} andB1, . . . , Bs ∈ K{y1, . . . , yn}. Then there exist ∆-polynomials C1, . . . , Cs
and nonnegative integers pj , qj (1 ≤ j ≤ r) such that each Ci (1 ≤ i ≤ r) is reduced with

respect to A, the rank of each Ci is no higher than the highest of the ranks of B1, . . . , Bs,

and
r∏
j=1

I
pj
Aj
S
qj
Aj
Bi ≡ Ci (mod[A]) (1 ≤ i ≤ s).

Proof. Without loss of generality we can assume that rkB1 < · · · < rkBs. Then we can

apply the process of successive reduction described in the proof of the last theorem (and

Algorithm I) to obtain the result of our statement. 2

In what follows, while considering an autoreduced set A = {A1, . . . , Ar}, we always

assume that its elements are arranged in order of increasing rank: rk A1 < · · · < rk Ar.

Definition 3.8. Let A = {A1, . . . , Ar} and B = {B1, . . . , Bs} be two autoreduced sets.

Then A is said to have lower rank than B if one of the following two cases holds:

(i) There exists k ∈ N such that k ≤ min{r, s}, rk Ai = rk Bi for i = 1, . . . , k− 1 and

rk Ak < rk Bk.

(ii) r > s and rk Ai = rk Bi for i = 1, . . . , s.

If r = s and rk Ai = rk Bi for i = 1, . . . , r, then A is said to have the same rank as B.
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The statements of Propositions 3.9 and 3.11 below can be obtained by mimicking the
proofs of the corresponding statements for classical Ritt-Kolchin autoreduced sets (see
[7, Proposition 5.3.10 and Lemma 5.3.12]).

Proposition 3.9. In every nonempty family of autoreduced sets of differential polyno-
mials there exists an autoreduced set of lowest rank.

Definition 3.10. Let J be a ∆-ideal of the ring of ∆-polynomials K{y1, . . . , yn}. Then
an autoreduced subset of J of lowest rank is called a characteristic set of the ideal J .

Proposition 3.11. Let A = {A1, . . . , Ad} be a characteristic set of a ∆-ideal J of the
ring of ∆-polynomials R = K{y1, . . . , yn}. Then an element B ∈ J is reduced with
respect to the set A if and only if B = 0. In particular, IA /∈ J and SA /∈ J for every
A ∈ A.

Let K be a ∆-field and L = K〈η1, . . . , ηn〉 a finitely generated ∆-extension of K with
a set of ∆-generators η = {η1, . . . , ηn}. Then there exists a natural ∆-homomorphism φη
of the ring of ∆-polynomials K{y1, . . . , yn} onto the ∆-subring K{η1, . . . , ηn} of L such
that φη(a) = a for any a ∈ K and φη(yj) = ηj for j = 1, . . . , n. If A ∈ K{y1, . . . , yn},
then φη(A) is called the value of A at η and is denoted by A(η). Obviously, P = Kerφη
is a prime ∆-ideal of K{y1, . . . , yn}. It is called the defining ideal of η. If we consider

the quotient field Q of R = K{y1, . . . , yn}/P as a ∆-field (where δ(uv ) = vδ(u)−uδ(v)
v2 for

any u, v ∈ R), then this quotient field is naturally ∆-isomorphic to the field L. The ∆-
isomorphism of Q onto L is identical on K and maps the images of the ∆-indeterminates
y1, . . . , yn in the factor ring R onto the elements η1, . . . , ηn, respectively.

Let K be a differential (∆-) field, Card ∆ = m, and let a partition (3. 1) of ∆ be fixed:
∆ = ∆1

⋃
· · ·
⋃

∆p (p ≥ 1), where ∆i = {δi1, . . . , δimi} (1 ≤ i ≤ p). Furthermore, let
L = K〈η1, . . . , ηn〉 be a ∆-field extension of K generated by a finite set η = {η1, . . . , ηn}.
Let P be the defining ideal of η and A = {A1, . . . , Ad} a characteristic set of P .

For any r1, . . . , rp ∈ N, let

U ′r1...rp = {u ∈ ΘY | ordi u ≤ ri for i = 1, . . . , p and u is not a derivative of any u
(1)
Ai

(that is, u 6= θu
(1)
Ai

for any θ ∈ Θ; i = 1, . . . , d) and let

for i = 1, . . . , p and for every θ ∈ Θ, A ∈ A such that u = θu
(1)
A , there exists i ∈

{2, . . . , p} such that ordi(θu
(i)
A ) > ri}.

(If p = 1, U ′r1 = {u ∈ ΘY | ord1 u ≤ r1 and u is not a derivative of any u
(1)
Ai
} and

U ′′r1 = ∅.) Furthermore, for any (r1 . . . rp) ∈ Np, let Ur1...rp = U ′r1...rp
⋃
U ′′r1...rp .

The following theorem proved in [10, Section 5] establishes the existence and describes
the form of a multivariate dimension polynomial associated with a finite system of ∆-
generators of a ∆-field extension and with a partition of the set ∆. We give an extended
version of this result that follows from the proof of [10, Theorem 5.1].

Theorem 3.12. With the above notation,
(i) For all sufficiently large (r1 . . . rp) ∈ Np, the set Ur1...rp is a transcendence basis of

K(
n⋃
j=1

Θ(r1, . . . , rp)ηj) over K.
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(ii) There exist numerical polynomials ωη|K(t1, . . . , tp) and φη|K(t1, . . . , tp) in p vari-
ables such that ωη|K(r1, . . . , rp) = CardU ′r1...rp and φη|K(r1, . . . , rp) = CardU ′′r1...rp
for all sufficiently large (r1 . . . rp) ∈ Np, so that the polynomial Φη|K(t1, . . . , tp) =
ωη|K(t1, . . . , tp)+φη|K(t1, . . . , tp) has the property that for all sufficiently large (r1, . . . , rp) ∈

Np, Φη(r1, . . . , rp) = tr. degK K(
n⋃
j=1

Θ(r1, . . . , rp)ηj).

(iii) degti Φη|K ≤ mi (1 ≤ i ≤ p), so that deg Φη|K ≤ m and the polynomial
Φη|K(t1, . . . , tp) can be represented as

Φη|K(t1, . . . , tp) =

m1∑
i1=0

. . .

mp∑
ip=0

ai1...ip

(
t1 + i1
i1

)
. . .

(
tp + ip
ip

)
(3. 3)

where ai1...ip ∈ Z for all i1 . . . ip.
(iv) φη|K(t1, . . . , tp) is an alternating sum of polynomials in p variables of the form

φj;k1,...,kq =

(
t1 +m1 − b1j

m1

)
. . .

(
tk1−1 +mk1−1 − bk1−1,j

mk1−1

)[(tk1 +mk1 − ak1,j
mk1

)
−(

tk1 +mk1 − bk1,j
mk1

)]
·
(
tk1+1 +mk1+1 − bk1+1,j

mk1+1

)
. . .

(
tkq−1 +mkq−1 − bkq−1,j

mkq−1

)
·[(tkq +mkq − akq,j

mkq

)
−
(
tkq +mkq − bkq,j

mkq

)]
. . .

(
tp +mp − bpj

mp

)
, so deg φη|K < m.

Definition 3.13. Numerical polynomial Φη|K(t1, . . . , tp), whose existence is established
by the last theorem, is called a differential (or ∆-) dimension polynomial of the dif-
ferential field extension L = K〈η1, . . . , ηn〉 associated with the system of ∆-generators
η = {η1, . . . , ηn} and with partition (3. 1) of the basic set of derivations ∆.

Remark 3.14. With the notation of the last theorem, if η1, . . . , ηn are ∆-algebraically
independent over K, then

Φη|K(t1, . . . , tp) = n

p∏
i=1

(
ti +mi

mi

)
. (3. 4)

Indeed, all elements δk1111 . . . δ
k1m1
1m1

δk2121 . . . δ
kpmp
pmp such that

∑mi
j=1 kij ≤ ri (1 ≤ i ≤ p) form

a transcendence basis of the field K(
n⋃
j=1

Θ(r1, . . . , rp)ηj) over K. By Theorem 2.3 (iii),

the number of such elements is n

p∏
i=1

(
ri +mi

mi

)
, so we arrive at formula (3. 5).

Remark 3.15. Theorem 3.12 shows that the main problem in computing the multi-
variate ∆-dimension polynomial Φη|K is constructing a characteristic set of the defining
∆-ideal of the ∆-field extension. If this ideal is linear (that is, the defining system of
differential equations on the generators of the extension is linear), then this problem
was solved in [11] by algorithm for constructing a Gröbner basis with respect to several
term orderings (see [11, Algorithm 1] and [11, Theorem 3.10]). In the nonlinear case the
problem of generalizing the Ritt-Kolchin algorithm to the case of autoreduced sets with
respect to several term orderings defined above is still open.
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4. Properties and invariants of multivariate differential dimension
polynomials

In this section we determine some invariants of multivariate dimension polynomials
associated with a differential field extension, that is, numerical characteristics of the
extension that do not depend on the system of its differential generators and that are
carried by any its dimension polynomials (associated with a given partition of the basic
set of derivations).

For any permutation (j1, . . . , jp) of the set {1, . . . , p} (p ≥ 1), let ≤j1,...,jp denote the
corresponding lexicographic order on Np such that (r1, . . . , rp) ≤j1,...,jp (s1, . . . , sp) if and
only if either rj1 < sj1 or there exists k ∈ N, 1 ≤ k ≤ p − 1, such that rjν = sjν for
ν = 1, . . . , k and rjk+1

< sjk+1
. If E is a finite subset of Np, then E′ will denote the set

of all p-tuples e ∈ E that are maximal elements of E with respect to one of the p! orders
≤j1,...,jp . Say, if E = {(3, 0, 2), (2, 1, 1), (0, 1, 4), (1, 0, 3), (1, 1, 6), (3, 1, 0), (1, 2, 0)} ⊆ N3,
then E′ = {(3, 0, 2), (3, 1, 0), (1, 1, 6), (1, 2, 0)}.

The following result gives differential birational invariants carried by a multivariate
dimension polynomial of a differential field extension. In particular, it shows that mul-
tivariate differential dimension polynomials carry essentially more such invariants than
their univariate counterparts introduced by E. Kolchin.

Theorem 4.1. Let K be a differential field with a basic set of derivations ∆ and let
partition (3. 1) of the set ∆ into the union of p disjoint sets (p ≥ 1) be fixed. Let
L = K〈η1, . . . , ηn〉 be a ∆-field extension of K with the finite set of ∆-generators η =
{η1, . . . , ηn} and let

Φη|K(t1, . . . , tp) =

m1∑
i1=0

. . .

mp∑
ip=0

ai1...ip

(
t1 + i1
i1

)
. . .

(
tp + ip
ip

)
(4. 1)

be the corresponding differential dimension polynomial. Let Eη = {(i1 . . . ip) ∈ Np | 0 ≤
ik ≤ mk (k = 1, . . . , p) and ai1...ip 6= 0}. Then d = deg Φη|K , am1...mp , the elements
(k1, . . . , kp) ∈ E′η, the corresponding coefficients ak1...kp , and the coefficients of the terms
of total degree d in Φη|K do not depend on the system of ∆-generators η.

Proof. The fact that the elements (k1, . . . , kp) of the set E′η and the corresponding
coefficients ak1...kp do not depend on the system of ∆-generators η of L/K is estab-
lished in the proof of Theorem 5.3 of [10] using the observation that if ζ = {ζ1, . . . , ζq}
is another system of ∆-generators of L/K, then there exists (s1, . . . , sp) ∈ Np such
that Φη|K(r1, . . . , rp) ≤ Φζ|K(r1 + s1, . . . , rp + sp) and Φζ|K(r1, . . . , rp) ≤ Φη|K(r1 +
s1, . . . , rp + sp) for all sufficiently large (r1, . . . , rp) ∈ Np. Clearly, these inequalities show
that deg Φζ|K = deg Φη|K . Let d = deg Φη|K . Let us order the terms of total degree d in
Φη|K and Φζ|K using the lexicographic order ≤p,p−1,...,1 and for sufficiently large r ∈ N,
set x1 = r, x2 = 2x1 , x3 = 2x2 , . . . , xp = 2xp−1 , R = 2xp and ri = xiR (1 ≤ i ≤ p). If
r → ∞, then the last two inequalities immediately imply that Φη|K and Φζ|K have the
same coefficients of the corresponding terms of total degree d. 2

The next theorem characterizes one of the invariants of polynomial (4. 1).

Theorem 4.2. With the notation of the last theorem, am1...mp = ∆-tr. degK L.
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Proof. Let ∆-tr. degK L = d. Then, as it was mentioned in section 2, one can choose
a ∆-transcendence basis of L/K from the set η, so we can assume that η1, . . . , ηd form
such a basis. Since the family {θηi | θ ∈ Θ, 1 ≤ i ≤ d} is algebraically independent over

K, it follows from Remark 3.14 that tr. degK K(
d⋃
j=1

Θ(r1, . . . , rp)ηj) = d

p∏
i=1

(
ri +mi

mi

)
for all (r1, . . . , rp) ∈ Np. Let F = K〈η1, . . . , ηd〉. Then every element ηj , d+ 1 ≤ j ≤ n, is
∆-algebraic over K. It means that there exists a ∆-polynomial Aj ∈ F{yj} (F{yj} is the
ring of ∆-polynomials in one ∆-indeterminate yj over F ) such that Aj(ηj) = 0. Taking
such a polynomial of the smallest possible degree we can assume that SAj (ηj) 6= 0. Let

Aj =
∑qj
k=0 Ijk(u

(1)
Aj

)k where all terms of all Ijk are less than u
(1)
Aj

with respect to <1.

If δ ∈ ∆, then δAj(ηj) = 0, so SAj (ηj)δ(u
(1)
Aj

(ηj)) +
∑qj
k=0 δ(Ijk(ηj))u

(1)
Aj

(ηj) = 0. The

term δu
(1)
Aj

has the form θjyj for some θj ∈ Θ and one can easily see that for any term

v in any SAj or δ(Ijk), we have v <1 θjyj and ordi v ≤ ordi u
(i)
Aj

+ 1 (i = 1, . . . , p). It

follows that θjηj ∈ F ({θηk | θ ∈ Θ, θyk <1 θjyj and ordi θyk ≤ aji for i = 1, . . . , p})
where aji = ordi u

(i)
Aj

+ 1 (1 ≤ i ≤ p).

Since F = K
(⋃d

k=1

⋃
(l1,...,lp)∈Np Θ(l1, . . . , lp)ηk

)
, there exist h1, . . . , hp ∈ N such that

θjηj ∈ K(
⋃d
k=1 Θ(h1, . . . , hp)ηk

⋃
{θηk | θ ∈ Θ, θyk <1 θjyj , ordi θyk ≤ aji (i = 1, . . . , p)}).

Let θ′ ∈ Θ and θj | θ′. For any i = 1, . . . , p, let si = ordi θ
′ (clearly, si ≥ aji). Then

θ′ηj ∈ K(
⋃d
k=1 Θ(s1 + h1, . . . , sp + hp)ηk

⋃
{θηl | θ ∈ Θ, θyj <1 θ′yj , ordi θ ≤ ordi θ

′

(1 ≤ i ≤ p) and θj - θ}).
Therefore, if ri ∈ N, ri ≥ maxd+1≤j≤n{aji} (i = 1, . . . , p), then one has

K(
⋃n
k=1 Θ(r1, . . . , rp)ηk) ⊆ K(

⋃d
k=1 Θ(r1 + h1, . . . , rp + hp)ηk ∪

⋃n
j=d+1[Θ(r1, . . . , rp) \

Θ(r1 − aj1, , . . . , rp − ajp)]ηj). It follows that

Φη|K(r1, . . . , rp) ≤ d
p∏
i=1

(
ri +mi

mi

)
+

n∑
j=d+1

[
p∏
i=1

(
ri +mi

mi

)
−

p∏
i=1

(
ri − aji +mi

mi

)]
for all sufficiently large (r1, . . . , rp) ∈ Np. Since the total degree of the polynomial∑n
j=d+1

[∏p
i=1

(
ti+mi
mi

)
−
∏p
i=1

(
ti−aji+mi

mi

)]
is less than m, we obtain that am1...mp ≤ d.

On the other hand, for all sufficiently large (r1, . . . , rp) ∈ Np, Φη|K(r1, . . . , rp) =

tr. degK K(
⋃n
k=1 Θ(r1, . . . , rp)ηk) ≥ tr. degK K(

⋃d
k=1 Θ(r1, . . . , rp)ηk) = d

∏p
i=1

(
ri+mi
mi

)
,

hence am1...mp ≥ d. Thus, am1...mp = d = ∆-tr. degK L. 2

With the notation of Theorem 3.15, let p ≥ 2, 1 ≤ k < p, and ∆(k) = ∆1

⋃
· · ·
⋃

∆k.
For any rk+1, . . . , rp ∈ N, let Frk+1,...,rp denote the ∆(k)-field extension of K generated by⋃n
j=1 Θ(0, . . . , 0, rk+1, . . . , rp)ηj , so Frk+1,...,rp = K〈

⋃n
j=1 Θ∆\∆(k)(rk+1, . . . , rp)ηj〉∆(k) .

Since Θ(r1, . . . , rp) = Θ(r1, . . . , rk, 0, . . . , 0)Θ(0, . . . , 0, rk+1, . . . , rp), we can combine the
results of Theorems 3.12 and 4.2 to obtain the following statement.

Corollary 4.3. With the above notation, and the ∆-dimension polynomial (4. 1) of the
extension K〈η1, . . . , ηn〉/K, the numerical polynomial in p− k variables

φ(tk+1, . . . , tp) =

mk+1∑
ik+1=0

. . .

mp∑
ip=0

am1...mkik+1...ip

(
tk+1 + ik+1

ik+1

)
. . .

(
tp + ip
ip

)
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describes the growth of ∆(k)-tr. degK Frk+1,...,rp , that is,

φ(rk+1, . . . , rp) = ∆(k)- tr. degK Frk+1,...,rp

for all sufficiently large rk+1, . . . , rp ∈ Np−k.

This corollary, in particular, shows that if L = K〈η1, . . . , ηn〉 is a finitely generated
differential field extension of a differential field K with a basic set ∆, ∆′ ⊆ ∆, ∆′′ = ∆\∆′,
and m1 = Card ∆′, m2 = Card ∆′′ (m1 +m2 = m where m = Card ∆), then there exists
a univariate numerical polynomial φ(t) =

∑m2

i=0 ci
(
t+i
i

)
(ci ∈ Z) such that φ(r) = ∆′-

tr. degK K〈
⋃n
k=1 Θ∆′′(r)ηk〉∆′ and cm2 = ∆-tr. degK L. Furthermore, if

Φη|K(t1, t2) =

m1∑
i=0

m2∑
i2=0

aij

(
t1 + i

i

)(
t2 + j

j

)
is the bivariate ∆-dimension polynomial of L/K associated with the partition ∆ =
∆′
⋃

∆′′ and d = degt1 Φη|K < m1, then

∆′- t. tr. degK K〈
n⋃
k=1

Θ∆′′(r)ηk〉∆′ =

m2∑
i=0

adj

(
r + j

j

)
.

In this case d = ∆′-typeK K〈
⋃n
k=1 Θ∆′′(r)ηk〉∆′ .

The following theorem provides necessary and sufficient conditions on generators of a
differential field extension of a given differential transcendence degree d under which the
corresponding multivariate dimension polynomial has the simplest possible form.

Theorem 4.4. With the notation of Theorem 4.2, the following conditions are equiva-
lent.

(i) Φη|K(t1, . . . , tp) = d

p∏
i=1

(
ti +mi

mi

)
.

(ii) ∆-tr. degK K〈η1, . . . , ηn〉 = tr. degK(η1, . . . , ηn) = d.

Proof. (i) ⇒ (ii). By Theorem 4.2, d = ∆-tr. degK L where L = K〈η1, . . . , ηn〉. Without
loss of generality we can assume that η1, . . . , ηd is a ∆-transcendence basis of L over K.
Then for all sufficiently large (r1, . . . , rp) ∈ Np,

Φη|K(r1, . . . , rp) = tr. degK K(
n⋃
j=1

Θ(r1, . . . , rp)ηj) = tr. degK K(
d⋃
j=1

Θ(r1, . . . , rp)ηj),

hence

tr. deg
K(
⋃d

j=1
Θ(r1,...,rp)ηj)

K(
n⋃
j=1

Θ(r1, . . . , rp)ηj) = 0.

Therefore, every element ηj , d+ 1 ≤ j ≤ n, is algebraic over the field F = K〈η1, . . . , ηd〉,
so if η′ denotes the (n− d)-tuple (ηd+1, . . . , ηn), then Φη′|F (t1, . . . , tp) = 0.

Let P be the defining ∆-ideal of η′ in the ring of ∆-polynomials F{y1, . . . , yn−d} and
let A be a characteristic set of P (we use the terminology and term orderings <1, · · · <p
introduced in the beginning of this section). For every j = 1, . . . , n−d, let Ej denote the
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set of all (k1, . . . , km) ∈ Nm such that δk11 . . . δkmm yj is a 1-leader of an element of A. Since

Φη′|F = 0, we also have ωη′|F = 0 where ωη′|F is the polynomial in p variables defined

in Theorem 3.12(ii). Furthermore, it follows from Theorem 2.3(iv) that ωη′|F = 0 if and

only if Ej = {(0, . . . , 0)} for j = 1, . . . , n− d.

Since y1 <1 yj for j = 2. . . . , n − d, a ∆-polynomial in A with leader y1 is a usual

polynomial in y1 with coefficients in F . Therefore, ηd+1 and all θηd+1 (θ ∈ Θ) are

algebraic over F . If η′′ = (ηd+2, . . . , ηn), then Φη′′|F (r1, . . . , rp) ≤ Φη′|F (r1, . . . , rp) for

all (r1, . . . , rp) ∈ Np, so Φη′′|F = 0 and we can repeat the above arguments and obtain

that every θηj (θ ∈ Θ, d+ 1 ≤ j ≤ n) is algebraic over F .

Since the elements ηd+1, . . . , ηn are algebraic over the field F = K〈η1, . . . , ηd〉, there

exist h1, . . . , hp ∈ N such that ηd+1, . . . , ηn are algebraic over K(
⋃d
j=1 Θ(h1, . . . , hp)ηj).

It follows that the field extension K(
⋃n
j=1 Θ(r1, . . . , rp)ηj)/K(

⋃d
j=1 Θ(r1, . . . , rp)ηj) is

algebraic whenever (h1, . . . , hp) ≤P (r1, . . . , rp).

Suppose that ηd+1 is not algebraic over the field K(η1, . . . , ηd). Let (q1, . . . , qp) be a

minimal (with respect to the product order <P ) element of Np such that ηd+1 is algebraic

over K(
⋃d
j=1 Θ(q1, . . . , qp)ηj). (By the assumption, (q1, . . . , qp) 6= (0, . . . , 0) ). Without

loss of generality we can assume that q1 ≥ 1. Then ηd+1 is transcendental over the field

K(
⋃d
j=1 Θ(q1 − 1, . . . , qp)ηj). Then there exists a term v in the ring of ∆-polynomials

K{y1, . . . , yd} such that ord1 v = q1, ordi v ≤ qi for i = 2, . . . , p, ηd+1 is transcendental

over the field K ′ = K({θηj | θ ∈ Θ(q1, . . . , qp), 1 ≤ j ≤ d, θyj <1 v}) and algebraic over

K ′(v(η)). It follows that v(η) is algebraic over K(
⋃d
j=1 Θ(q1, . . . , qp)ηj \{ηd+1}

⋃
{v(η)}).

Therefore, if θ′ ∈ Θ(r1, . . . , rp) where (h1, . . . , hp) ≤P (r1, . . . , rp), then θ′v(η) is algebraic

over K(
⋃d
j=1 Θ(r1 + q1, . . . , rp + qp)ηj \ {θ′ηd+1}

⋃
{θ′v(η)}).

Since ηd+1 is algebraic over K(
⋃d
j=1 Θ(q1, . . . , qp)ηj), the element θ′ηd+1 is algebraic

overK(
⋃d
j=1 Θ(s1+q1, . . . , sp+qp)ηj) where si = ordi θ

′, 1 ≤ i ≤ p (clearly, si ≤ ri for i =

1, . . . , p). Therefore, θ′v(η) is algebraic over K(
⋃d
j=1 Θ(s1 + q1, . . . , sp+ qp)ηj \{θ′v(η)}),

hence the set
⋃d
j=1 Θ(r1 + q1, . . . , rp + qp)ηj is algebraically dependent over K that

contradicts the fact that η1, . . . , ηd are ∆-algebraically independent over K.

Thus, ηd+1 is algebraic over K(η1, . . . , ηd) and similarly every ηj , d + 1 ≤ j ≤ n, is

algebraic over K(η1, . . . , ηd), so d = ∆-tr. degK K〈η1, . . . , ηn〉 = tr. degK(η1, . . . , ηn).

(ii) ⇒ (i). As in the proof of Theorem 4.2, without loss of generality we can assume

that η1, . . . , ηd is a ∆-transcendence basis of the ∆-field L = K〈η1, . . . , ηn〉 over K.

Then the elements η1, . . . , ηd are algebraically independent over K, so K(η1, . . . , ηn) is

an algebraic extension of K(η1, . . . , ηd). Thus, K(
⋃n
j=1 Θ(r1, . . . , rp)ηj) is an algebraic

extension of the field K(
⋃d
j=1 Θ(r1, . . . , rp)ηj) for any (r1, . . . , rp) ∈ Np.

Since Φ(η1,...,ηd)|K(t1, . . . , tp) = d
∏p
i=1

(
ti+mi
mi

)
and the fields K(

⋃n
j=1 Θ(r1, . . . , rp)ηj)

and K(
⋃d
j=1 Θ(r1, . . . , rp)ηj) have the same transcendence degree over K, we obtain the

equality of statement (i). 2

Proposition 4.5. Let L = K〈η1, . . . , ηn〉 be a ∆-field extension generated by a finite

set η = {η1, . . . , ηn} and let partition (3. 1) of the set ∆ be fixed. Suppose that ∆-

tr. degK L = 0 or that ∆-tr. degK L = d ≥ 1, η1, . . . , ηd form a ∆-transcendence basis of
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L over K and η′ = {ηd+1, . . . , ηn}. Then

Φη′|K〈η1,...,ηd〉(r1, . . . , rp) ≤ Φη|K(r1, . . . , rp)− d
p∏
i=1

(
ri +mi

mi

)
(4. 2)

for all sufficiently large (r1, . . . , rp) ∈ Np.

Proof. If ∆-tr. degK L = 0, the statement is obvious. Let d = ∆-tr. degK L ≥ 1 and
{η1, . . . , ηd} a ∆-transcendence basis of L/K. Let K ′ = K〈η1, . . . , ηd〉 and for any r =

(r1, . . . , rp) ∈ Np, Λ1(r) =
⋃d
k=1 Θ(r1, . . . , rp)ηk, Λ2(r) =

⋃n
l=d+1 Θ(r1, . . . , rp)ηl and

Λ3(r) = Λ1(r)
⋃

Λ2(r). Then

Φη′|K′(r1, . . . , rp) = tr. degK′ K
′(Λ2(r)) ≤ tr. degK(Λ1(r))K(Λ3(r)) = tr. degK K(Λ3(r))

− tr. degK K(Λ1(r)) = Φη|K(r1, . . . , rp)−d
p∏
i=1

(
ri +mi

mi

)
for all sufficiently large (r1, . . . , rp). 2

Theorem 4.6. Let L = K〈η1, . . . , ηn〉 be a ∆-field extension generated by a finite set
η = {η1, . . . , ηn} and let d = ∆-tr. degK L. Then there exists c1, . . . , cp|inN and a ∆-
transcendence basis B of L over K such that B = {ηi1 , . . . ηid} ⊂ η (1 ≤ i1 < · · · < id ≤
n) and if η′ denotes the set η \B, then

Φη′|K〈B〉(r1 + c1, . . . , rp + cp) ≥ Φη|K(r1, . . . , rp)− d
p∏
i=1

(
ti +mi

mi

)
(4. 3)

for all (r1, . . . , rp)) ∈ Np.

Proof. Let Ψη|K(t1, . . . , tp) = Φη|K(t1, . . . , tp) − d
p∏
i=1

(
ti +mi

mi

)
. Let P be the defining

ideal of η in the ring of ∆-polynomials K{y1, . . . , yn} and let A be a characteristic set of
P (in the sense of Definition 3.9 and the preceding considerations). For every j = 1, . . . , n,
let

Ej = {(k1, . . . , km) ∈ Nm | δk11 . . . δkmm yj is a 1-leader of an element of A}.
Using the notation of Theorem 3.12 (iv), we obtain that deg φη|K(t1, . . . , tp) ≤ m − 1.

Also, part (ii) of Theorem 3.12 shows that ωη|K(t1, . . . , tp) =
n∑
j=1

ωEj (t1, . . . , tp) where

ωEj (t1, . . . , tp) is the dimension polynomial of the set Ej ⊆ Nm associated with the par-
tition (m1, . . . ,mp) of m corresponding to our partition (3. 1) of the set ∆ (see Definition
2.4). Since

Φη|K(t1, . . . , tp) = d

p∏
i=1

(
ti +mi

mi

)
+ terms of total degree less than m,

there are exactly d indices j ∈ {1, . . . , n} for which Ej = ∅, that is, degωEj = m (see
Theorem 2.3(iii)). Without loss of generality , we can assume that these indices are
1, . . . , d, so the leader of any element of A is of the form θyk where θ ∈ Θ and d + 1 ≤
k ≤ n. It follows that B = {η1, . . . , ηd} is a ∆-transcendence basis of L over K. Indeed,
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if there are elements ζ1 = θ1ηj1 , . . . , ζs = θsηjs with θi ∈ Θ and 1 ≤ ji ≤ d (i = 1, . . . , s)
and a polynomial f in s variables with coefficients in K such that f(ζ1, . . . , ζs) = 0,
then f(θ1yj1 , . . . , θsyjs) ∈ P . This ∆-polynomial is reduced with respect to A, hence all
coefficients of f are zeros. Thus, η1, . . . , ηd are ∆-algebraically independent over K. Also,
every ∆-generator ηi with d + 1 ≤ i ≤ n is ∆-algebraic over K〈B〉, since there exists
θ0 ∈ Θ such that θ0yi is the 1-leader of some element A ∈ A for which A(η) = 0. This
equality shows that θ0ηi is algebraic over the field extension of K〈B〉 generated by the
set {θηk | θ ∈ Θ, d+ 1 ≤ k ≤ n and θyk <1 θ0yi}. Using the induction with respect to the
well-ordering <1 of the set of terms of K{y1, . . . , yn} we obtain that ηi is ∆-algebraic
over K〈B〉.

In what follows, we use the notation from the proof of Proposition 4.5: for any r =
(r1, . . . , rp) ∈ Np, Λ1(r) =

⋃d
k=1 Θ(r1, . . . , rp)ηk, Λ2(r) =

⋃n
j=d+1 Θ(r1, . . . , rp)ηj , and

Λ3(r) = Λ1(r)
⋃

Λ2(r). By Proposition 4.5,

Φη′|K〈η1,...,ηd〉(r1, . . . , rp) ≤ Ψη|K(r1, . . . , rp),

that is,

tr. degK〈η1,...,ηd〉K〈η1, . . . , ηd〉(Λ2(r)) ≤ tr. degK(Λ1(r))K(Λ3(r)) (4. 4)

for all sufficiently large r = (r1, . . . , rp) ∈ Np, that is, there exists a p-tuple r(0) =

(r
(0)
1 , . . . , r

(0)
p ) ∈ Np such that the last equality holds for all r ∈ Np such that r ≥P r(0)

(as before, ≥P denotes the product order on Np).
Let us show that for all r ∈ Np with r ≥P r(0), we also have

tr. degK(Λ1(r))K(Λ3(r)) ≤ tr. degK〈η1,...,ηd〉K〈η1, . . . , ηd〉(Λ2(r)). (4. 5)

Then the inequalities (4. 4) and (4. 5), together with Proposition 2.7, will imply the
desired result.

Assume for contradiction that this is not true. Then there exists s = (s1, . . . , sp) ∈ Np
with s ≥P r(0) and a set W ⊆

⋃n
i=d+1 Θ(s1, . . . , sp)yi such that the set W (η) = {θηi | θ ∈

Θ(s1, . . . , sp), d + 1 ≤ i ≤ n} is algebraically independent over K(Λ1(s1, . . . , sn)), but
algebraically dependent over K〈η1, . . . , ηd〉. Let N(s) = {r ∈ Nm | s ≤P r} and let e =
(e1, . . . , ep) be the smallest element of N(s) with respect to the lexicographic order ≤lex
on Np such that W (η) is algebraically dependent over K(Λ1(e)). Then s <lex e and there
exists a nonzero polynomial f ∈ K(Λ1(e))[{w |w ∈ W}] such that f(η) = 0. Clearing
the denominators of f , we obtain a nonzero ∆-polynomial g ∈ K[{θyj | θ ∈ Θ(e), 1 ≤≤
d}
⋃
W ] such that g(η) = 0. Let g be such a ∆-polynomial of the lowest possible rank (in

the sense of Definition 3.1). Then the 1-leader of g is of the form θ1yk where ordi θ1 = ei
(1 ≤ i ≤ p) and 1 ≤ k ≤ d.

Let us write g =
∑

gtt where t runs over a finite set M of monomials in the inde-

terminates w (w ∈W ) and the coefficients gt are nonzero ∆-polynomials in K[{θyj | θ ∈
Θ(e), 1 ≤ d}]. By Corollary 3.7, there exists a ∆-polynomial H, which is a product of
initials and separants of elements of A (so H /∈ P ), and for each t ∈ M there exists a
∆-polynomial T such that Ht ≡ T (mod[A]), T is reduced with respect to A, and the
rank of T is no higher than the highest of the ranks of monomials t (t ∈M) and therefore

lower than the rank of u
(1)
g .

Let h =
∑
t∈M gtT . Clearly, h is reduced with respect to A and h ∈ P (because

h ≡ Hg(mod[A]) and g ∈ P ). By Proposition 3.11, h = 0. Now, since ∂T/∂u
(1)
g = 0 and
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∂T/∂u
(1)
g = 0, we have

HSg = H
∑
t∈M

(
∂gt

∂u
(1)
g

)
t ≡

∑
t∈M

(
∂gt

∂u
(1)
g

)
T (mod[A]) ≡ ∂h

∂u
(1)
g

(mod[A]) ≡ 0 (mod[A]).

It follows that HSg ∈ P , hence Sg ∈ P , so Sg(η) = 0. We have obtained a contradiction
with the choice of g as the ∆-polynomial of the lowest rank that vanishes at η. This
completes the proof of the theorem. 2

The following example illustrates the fact that a multivariate dimension polynomial
of a differential field extension carries essentially more information about the extension
than its univariate counterpart.

Example 4.7. Let K be a differential field with a basic set of derivations ∆ = {δ1, δ2, δ3}
and let L be a ∆-field extension of K generated by a single ∆-generator η with the defining
equation

δa1δ
b
2δ
c
3η + δa1η + δb2η + δb+c3 η = 0 (4. 6)

where a, b and c are some positive integers. In other words, L = K〈η〉 is ∆-isomorphic to
the quotient field of the factor ring K{y}/P where P is the linear (and therefore prime)
∆-ideal of the ring of differential (∆-) polynomials K{y} generated by the ∆-polynomial
f = δa1δ

b
2δ
c
3y + δa1y + δb2y + δb+c3 y. (P is the defining ideal of η over K.)

By [6, Chapter II, Theorem 6], the univariate Kolchin differential dimension poly-
nomial ωη/K(t) of L/K is equal to the univariate dimension polynomial of the subset
{(a, b, c)} of N3. Using formula (2. 2) for p = 1, we obtain that

ωη/K(t) =

(
t+ 3

3

)
−
(
t+ 3− (a+ b+ c)

3

)
=

(
a+ b+ c

2

)
t2+(

(a+ b+ c)(4− a− b− c)
2

)
t +

(a+ b+ c)[(a+ b+ c)2 − 6(a+ b+ c) + 11]

6
. (4. 7)

Now, let us fix a partition ∆ = ∆1 ∪ ∆2 with ∆1 = {δ1, δ2}. Let ∆2 = {δ3}, and
Φη(t1, t2) denote the ∆-dimension polynomial of L/K associated with this partition and

the ∆-generator η. With the notation of section 3, we obtain that u
(1)
f = δa1δ

b
2δ
c
3y and

u
(2)
f = δb+c3 y. Using the notation of Theorem 3.12 and formula (2. 2) we obtain that for

all sufficiently large (r1, r2) ∈ N2,

CardU ′r1,r2 =

(
r1 + 2

2

)
(r2 + 1)−

(
r1 + 2− (a+ b)

2

)
(r2 + 1− c).

Expanding the last expression and using symbols t1 and t2 for the variables representing
r1 and r2, respectively, we obtain the polynomial ωη|K(t1, t2) (see Theorem 3.12) that
describes the size of CardU ′r1,r2 :

ωη|K(t1, t2) =
c

2
t21 + (a+ b)t1t2 +

2a+ 2b+ 3c− 2ac− 2bc

2
t1 +

(a+ b)(3− a− b)
2

t2+

1

2
[(a+b−2)(a+b−1)(c−1)+2].

Furthermore, for all sufficiently large (r1, r2) ∈ N2,

CardU ′′r1,r2 = Card{δa+k1
1 δb+k22 δc+k33 | k1, k2, k3 ∈ N, k1+k2 ≤ r1−(a+b), r3−(b+c) < k3
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≤ r3−c} =

(
r1 + 2− (a+ b)

2

)
b.

Thus, with the notation of Theorem 3.12,

φη|K(t1, t2) =
b

2
t21 +

b(3− 2a− 2b)

2
t1 +

b(a+ b− 2)(a+ b− 1)

2
.

It follows that the bivariate differential dimension polynomial of the extension L/K
corresponding to the partition ∆ = {δ1, δ2}

⋃
{δ3} is

Φη|K(t1, t2) =
b+ c

2
t21 + (a+ b)t1t2 +

1

2
[2a+ 5b+ 3c− 2ab− 2ac− 2bc− 2b2]t1+

(a+ b)(3− a− b)
2

t2+
1

2
[(a+b−2)(a+b−1)(b+c−1)+2]. (4. 8)

Finally, let us fix a partition ∆ = ∆1∪∆2∪∆3 with ∆i = {δi} (i = 1, 2, 3). Proceeding
as before (with the notation of Theorem 3.12), we obtain that

ωη|K(t1, t2, t3) = ct1t2+bt1t3+at2t3+(b+c−bc)t1+(a+c−ac)t2+(a+b−ab)t3+a+b+c−ab

−ac−bc+abc

and
φη|K = bt1t2 + (b− b2)t1 + (b− ab)t2 + (b− ab− b2 + ab2),

so in this case

Φη|K(t1, t2, t3) = (b+c)t1t2+bt1t3+at2t3+(2b+c−bc−b2)t1+(a+b+c−ab−ac)t2+

(a+b−ab)t3+(a+2b+c−2ab−ac−bc−b2+ab2+abc). (4. 9)

It follows from Theorem 4.1 that the dimension ∆-polynomial in three variables given by
(4. 9) carries four invariants of the extension L/K: the total degree 2 and the coefficients
b+ c, b and a of the terms t1t2, t1t3 and t2t3, respectively. The dimensional polynomial
(4. 8) carries three invariants, the total degree 2 and the coefficients b+ c and a+ b, while
the univariate Kolchin polynomial (4. 7) carries only two invariants of the extension, the
total degree 2 and the sum of the parameters a+ b+ c. Therefore, the ∆-dimension poly-
nomial (4. 9) corresponding to the partition of ∆ into the union of three disjoint subsets
determines all three parameters a, b and c of the defining differential equation (4. 6) while
the univariate dimension polynomial gives just the sum of the parameters. Also, in ac-
cordance with the above considerations, the dimension polynomial (4. 8) (corresponding
to the partition ∆ = ∆1

⋃
∆2 with ∆1 = {δ1, δ2} and ∆2 = {δ3}) shows that

∆2- tr. degK K〈{δ
k1
1 δk22 η | k1 + k2 ≤ r}〉∆2

= (a+ b)r +
(a+ b)(3− a− b)

2

for all sufficiently large r ∈ N.

We conclude with an analytical interpretation of multivariate differential dimension
polynomials as generalized Einstein’s strength of systems of algebraic partial differential
equations of certain type.

Let K{y1, . . . , yn} be the ring of ∆-polynomials over a ∆-field K (we use the above
notation and assume that partition (3. 1) of ∆ is fixed). If Σ = {Aλ |λ ∈ Λ} is a set of
∆-polynomials in K{y1, . . . , yn} then the system of equations

Aλ(y1, . . . , yn) = 0 (λ ∈ Λ) (4. 10)
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is said to be a system of algebraic (partial if Card ∆ > 0) differential equations. An n-
tuple η = (η1, . . . , ηn) with coordinates in some ∆-overfield of K is said to be a solution of
this system if Σ is contained in the kernel of the substitution of (η1, . . . , ηn) for (y1, . . . , yn)
which is a ∆-homomorphism K{y1, . . . , yn} → K〈η1, . . . , ηn〉 sending each yi to ηi and
leaving elements of K fixed. (Note that by the Ritt-Raudenbush basis theorem, see [6,
Chapter III, Theorem 1], the solution set of system (4. 10) is the same as the solution set
of some its finite subsystem, so we can assume that the set Λ is finite.) A system of the
form (4. 10) is said to be prime if the differential radical ideal P generated in the ring
K{y1, . . . , yn} by the set Σ is prime. (Since a linear ∆-ideal of the ring K{y1, . . . , yn}
is prime, see [7, Proposition 3.2.28]), every system of linear homogeneous differential
equations is prime.) In this case, if L is the field of fractions of the integral domain
K{y1, . . . , yn}/P (which can be naturally treated as a ∆-field extension of K) and ηi
is the canonical image of yi in L (1 ≤ i ≤ n), then L = K〈η1, . . . , ηn〉. The differential
dimension polynomial in p variables associated with the system of generators {η1, . . . , ηn}
of the extension L/K (and partition (3. 1) of ∆) is said to be the differential dimension
polynomial of the system associated with the given partition of the set ∆.

Let us consider a system of partial differential equations of the form

Ai(f1, . . . , fn) = 0 (i = 1, . . . , q) (4. 11)

over a field K of infinitely differentiable functions of m real variables x1, . . . , xm (fi
are unknown functions of x1, . . . , xm). Let ∆ = {δ1, . . . , δm} where δi is the partial
differentiation ∂/∂xi, and suppose that Ai(y1, . . . , ys) are elements of the ring of ∆-
polynomials K{y1, . . . , yn}. We also fix partition (3. 1) of the set of basic derivations ∆
(such a partition can be, for example, a natural separation of (all or some) derivations
with respect to coordinates and the derivation with respect to time). For any r1, . . . , rp ∈
N, consider the values at some fixed point c of the unknown functions f1, . . . , fn and
their partial derivatives, whose order with respect to ∆i does not exceed ri (1 ≤ i ≤ p).
If f1, . . . , fn should not satisfy any system of equations, these values can be chosen
arbitrarily. Because of the system (and equations obtained from the equations of the
system by partial differentiations), the number of independent values at c of the functions
f1, . . . , fn and their partial derivatives whose ith order does not exceed ri (1 ≤ i ≤ p)
decreases. This number, which is a function of p variables r1, . . . , rp, is the “measure of
strength” of the system in the sense of A. Einstein (with respect to the given partition
of ∆). We denote it by Sr1,...,rp .

If the given system is prime, that is, the radical ∆-ideal P of K{y1, . . . , yn} generated
by the ∆-polynomials A1, . . . , Aq is prime (e. g., the ∆-polynomials are linear), then the
∆-dimension polynomial Φη|K(t1, . . . , tp) of the system (defined by Theorem 3.12 for the
∆-field extension L/K described above) has the property that

Φη|K(r1, . . . , rp) = Sr1,...,rp

for all sufficiently large (r1, . . . , rp) ∈ Np, so this dimension polynomial is the measure
of Einstein’s strength of the system of differential equations (4. 11) with respect to the
given partition of the basic set of derivations ∆.

Considering differential dimension polynomials of prime systems of algebraic partial
differential equations with basic set of derivations ∆, we say that two such systems
with coefficients in a ∆-field K are equivalent if there is a ∆-isomorphism between the
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corresponding ∆-field extensions of K that leaves elements of K fixed (it is called a
∆-K-isomorphism). The following example shows how multivariate differential dimen-
sion polynomials can be used for determining the equivalence or non-equivalence of two
systems.

Example 4.8. Let us consider two algebraic differential equations over a differential
field K with a basic set of derivation ∆ = {δ1, δ2, δ3},

δa1δ
b
2δ
c
3y + δa1y + δb2y + δb+c3 y = 0 (4. 12)

and
δa1δ

b
2δ
c
3y + δa+b+c

3 y = 0, (4. 13)

where a, b, and c are some positive integers. As we have seen in Example 4.7, the uni-
variate Kolchin differential dimension polynomial of equation (4. 12) is given by (4. 7).
The univariate differential dimension polynomial of equation (4. 13) is the same (see [11,
Example 4.9]). The ∆-dimension polynomials in three variables associated with system
(4. 12) and the partition ∆ = ∆1 ∪∆2 ∪∆3 with ∆i = {δi} (i = 1, 2, 3) is given by (4. 9).
The corresponding polynomial of equation (4. 13), as it is shown in [11, Example 4.9], is

Φη|K(t1, t2, t3) = (a+b+c+1)t1t2+bt1t3+at2t3+(a+b+c+1−ab−b2−bc)t1+(a+b+c+1−

ab−a2−ac)t2+(a+b−ab)t3+a+b+c+1+ab2+a2b−a2−b2−2ab−bc−ac+abc. (4. 14)

Since the polynomials (4. 9) and (4. 14) have different coefficients of the term t1t2, there is
no ∆-K-isomorphism between the differential field extensions of K defined by equations
(4. 12) and (4. 13).

Our example shows that using a partition of the basic set of derivations and the com-
putation of the corresponding multivariate ∆-dimension polynomials, one can determine
that two systems of ∆-equations are not equivalent, even though they have the same
univariate differential dimension polynomial.
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