Multivariate Differential Dimension
Polynomials, their Properties and Invariants

Alexander Levin

The Catholic University of America
Washington, D. C. 20064

Abstract

In this paper we obtain new results on multivariate dimension polynomials of differential field
extensions associated with partitions of basic sets of derivations. We prove that the coefficient of
the summand of the highest possible degree in the canonical representation of such a polynomial
is equal to the differential transcendence degree of the extension. We also give necessary and
sufficient conditions under which the multivariate dimension polynomial of a differential field ex-
tension of a given differential transcendence degree has the simplest possible form. Furthermore,
we describe some relationships between a multivariate dimension polynomial of a differential
field extension and dimensional characteristics of subextensions defined by subsets of the basic
sets of derivations. In the last part of the paper we show how the invariants of multivariate
dimension polynomials can be used for determining the equivalence of systems of algebraic dif-
ferential equations and discuss the relationship between such polynomials and the concept of
Einstein’s strength of a system of algebraic partial differential equations.
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1. Introduction

Differential dimension polynomials introduced in [5] by E. Kolchin play the same role
in differential algebra as Hilbert polynomials play in commutative algebra and algebraic
geometry. An important feature of differential dimension polynomials is that they de-
scribe in exact terms the freedom degree of a continuous dynamic system as well as the
number of arbitrary constants in the general solution of a system of algebraic partial
differential equations. The following fundamental result, whose proof can be found in [6,
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Chapter II], establishes the existence and basic properties of a (univariate) dimension
polynomial of a finitely generated differential field extension.

Theorem 1.1. Let K be a differential field of characteristic zero, that is, a field consid-
ered together with the action of a set A = {d1,...,d} of mutually commuting deriva-
tions of K into itself. Let © denote the free commutative semigroup of all power prod-
ucts of the form 6 = &' ...8km (k; > 0), let ord = 37" k;, and for any r > 0, let
O(r)={0€0]ord § <r}. Let L =K(n,...,n,) be a differential field extension of K
generated by a finite set n = {n1,...,n,}. (As a field, L = K({0n;|0 € ©,1 < j <n}).)
Then there exists a polynomial wyx (t) € Q[t] such that

(i) wyk(r) =tr.degx K({0n;]0 € ©(r), 1 < j < n}) for all sufficiently large r € Z;

(ii) degwy x < m and wy(t) can be represented as wy |k (t) = > 1" a; (ti”) where

ag, ..., am € Z;

(iil) d = degwy |k, am and ag do not depend on the choice of the system of A-
generators 7 of the extension L/K (clearly, ag # a,, if and only if d < m, that is,
am, = 0). Moreover, a,, is equal to the differential transcendence degree of L over K
(denoted by A-tr.degy L), that is, to the maximal number of elements &;,...,& € L
such that the set {610 € ©,1 < i < k} is algebraically independent over K.

(iv) If the elements 7q,...,n, are A-algebraically independent over K (i. e., the set
{6m; 16 € ©,1 < i < n} is algebraically independent over K), then w,x(t) = n(*T™).

m

The polynomial wy g is called the differential dimension polynomial of the differential
field extension L/ K associated with the system of differential generators 7. The invariants
d = degwyk and aq in part (iii) of the theorem are called the differential (or A-) type and
typical differential (or A-) transcendence degree of the extension L/K; they are denoted
by A-typey L and A-t. tr. degy L, respectively.

Differential dimension polynomials provide a power tool for the study of systems of
algebraic differential equations. For a wide class of such systems, the dimension polyno-
mial of the corresponding differential field extension expresses the strength of the system
of equations in the sense of A. Einstein. This concept, that was introduced in [1] as an
important qualitative characteristic of a system of PDEs, can be expressed as a certain
differential dimension polynomial, as it is shown in [14]. Another important application of
differential dimension polynomials is based on the fact that if P is a prime (in particular,
linear) differential ideal of a finitely generated differential algebra R over a differential
field K and L is the quotient field of R/P treated as a differential overfield of K, then
the differential dimension polynomial of the extension L/K characterizes the ideal P;
assigning such polynomials to prime differential ideals has led to a number of new results
on the Krull-type dimension of differential algebras and differential field extensions (see,
for example, [3], [4], [13], [7, Chapter 7]), and [17]). It should be also added that the
dimension polynomial associated with a finitely generated differential field extension car-
ries certain differential birational invariants, that is, numbers that do not change when
we switch to another finite system of generators of the extension. These invariants are
closely connected to some other important characteristics; one of them is the differential
transcendence degree of the extension. Among recent works on univariate differential di-
mension polynomials one has to mention the work of O. Sanchez [15] on the evaluation of
the coefficients of a differential dimension polynomial, the work of J. Freitag, O. Sanchez
and W. Li on the definability of Kolchin polynomials, and works of M. Lange-Hegermann



[8] and [9], where the author introduced a differential dimension polynomial of a charac-
terizable (not necessarily prime) differential ideal and a countable differential polynomial
that generalizes the concept of differential dimension polynomial.

In 2001 the author introduced a concept of a multivariate differential dimension poly-
nomial of a finitely generated differential field extension associated with a partition of the
set of basic derivations A (see [10]). The proof of the corresponding existence theorem
that generalizes the first two parts of Theorem 1.1, was based on a special type of reduc-
tion in a ring of differential polynomials that takes into account the partition of A. It was
also shown that a multivariate differential dimension polynomial carries essentially more
differential birational invariants of the corresponding differential field extension than its
univariate counterpart. As it is demonstrated in Example 4.7, a multivariate dimension
polynomial associated with an algebraic differential equation with parameters can carry
all this parameters, while the univariate dimension polynomial determines just some re-
lation between the parameters. Therefore, there is a strong motivation for the study of
multivariate differential dimension polynomials and their invariants. The main difficulty
in this study is due to the fact that a multivariate dimension polynomial of a prime
differential polynomial ideal is determined by a characteristic set with respect to several
term orderings. Such sets were introduced in [10], but the corresponding theory is in its
infancy. Another problem, that is partially solved in this paper, is to characterize invari-
ants of multivariate dimension polynomials and to find relationships between invariants
of such polynomials associated with different partitions of the basic set of derivations.

In this paper we obtain new results on multivariate differential dimension polynomials
of differential field extensions associated with partitions of the basic sets of derivations.
We give necessary and sufficient conditions under which the multivariate dimension poly-
nomial of a differential field extension of a given differential transcendence degree has the
simplest possible form. This result (Theorem 4.4) generalizes the corresponding property
of univariate differential dimension polynomials proved in [16]. We also prove that the
coefficient of the summand of the highest possible degree in the canonical representation
of a multivariate dimension polynomial is equal to the differential transcendence degree
of the extension (Theorem 4.2). Furthermore, we obtain some relationships between a
multivariate dimension polynomial of a differential field extension and dimensional char-
acteristics of subextensions defined by subsets of the basic sets of derivations.

This paper essentially extends the results obtained in [13]: we give a constructive
proof of the main theorem on the reduction of differential polynomials with respect to
several term orderings (Theorem 3.6 and Corollary 3.7) and present the corresponding
algorithm; we also establish the existence of a special differential transcendence basis B
of a finitely generated differential field extension L/K such that the multivariate differ-
ential dimension polynomial of L/K(B) is naturally connected with the corresponding
dimension polynomial of L/K (Theorem 4.6); in the last part of the paper we show how
the invariants of multivariate dimension polynomials can be used for the study of equiv-
alence of systems of algebraic differential equations and discuss the relationship between
such polynomials and the concept of Einstein’s strength of a system of algebraic partial
differential equations.



2. Preliminaries

Throughout the paper Z, N and Q denote the sets of all integers, all nonnegative
integers and all rational numbers, respectively. If M is a finite set, then Card M will
denote the number of elements of M. By a ring we always mean an associative ring with
unity. Every ring homomorphism is unitary (maps unity onto unity), every subring of a
ring contains the unity of the ring, and every algebra over a commutative ring is unitary.
Unless otherwise indicated, every field is supposed to have zero characteristic.

A differential ring is a commutative ring R considered together with a finite set A
of mutually commuting derivations of R into itself. The set A is called a basic set of
the differential ring R that is also called a A-ring. A subring (ideal) Ry of a A-ring
R is called a differential (or A-) subring of R (respectively, a differential (or A-) ideal
of R) if 6(Ry) C Ry for any § € A. If a differential (A-) ring is a field, it is called a
differential (or A-) field. In what follows, © (or ©a if we want to indicate the basic set)
denotes the free commutative semigroup generated by A (that is, if A = {61,...,0m},
then © = {6 = 6% .. 6k |ky, ... k,, € N}).

If Ris a A-ring and S C R, then the smallest A-ideal of R containing S is denoted
by [S] (as an ideal, it is generated by the set {0 |£ € S}). If the set S is finite, S =
{&i,. .., &4}, we say that the A-ideal I = [S] is finitely generated, write I = [£1,...,&,])
and call &1, ..., &, differential (or A-) generators of I. If a A-ideal is prime (in the usual
sense), it is called a prime differential (or A-) ideal.

Let Ry and Ry be two differential rings with the same basic set A = {61,...,0,,}. (More
rigorously, we assume that there exist injective mappings of the set A into the sets of
mutually commuting derivations of the rings R; and Rs. For convenience we will denote
the images of elements of A under these mappings by the same symbols d1,...,0).
A ring homomorphism ¢ : R — S is called a differential (or A-) homomorphism if
¢(da) = d¢(a) for any 6 € A, a € R.

If K is a A-field and K| a subfield of K which is also a A-subring of K, then Kj is
said to be a differential (or A-) subfield of K, and K is called a differential (or A-) field
extension or a A-overfield of K. We also say that we have a A-field extension K/Kj.
In this case, if S C K, then the intersection of all A-subfields of K containing Ky and S
is the unique A-subfield of K containing Ky and S and contained in every A-subfield of
K containing Ky and S. It is denoted by K¢(S) or by Ky(S)a if we want to indicate the
set of basic derivations A. If K = K((S) and the set S is finite, S = {m1,...,n,}, then
K is said to be a finitely generated A-field extension of K with the set of A-generators
{n1,...,0n}. In this case we write K = Ko(n1,...,n,). It is easy to see that the field
Ko{(m,...,n,) coincides with the field Ko({0n;]0 € ©,1 <i < n}).

Let L be a A-field extension of a A-field K. We say that a set U C L is A-algebraically
dependent over K, if the family {6(u) |u € U, 0 € ©} is algebraically dependent over K.
Otherwise, the family U is said to be A-algebraically independent over K. An element
u € L is said to be A-algebraic over K if the set {u} is A-algebraically dependent over
K. A maximal A-algebraically independent over K subset of L is called a differential
(or A-) transcendence basis of L over K (or of the extension L/K). It is known (see [6,
Chapter II]) that every system of A-generators of a A-field extension L/K contains a
A-transcendence basis of L over K and if L/K is finitely generated as a A-field extension,
then all A-transcendence bases have the same number of elements called the differential
(or A-) transcendence degree of L over K it is denoted by A-tr.deg L.



If K is a A-field and Y = {y1,...,yn} is a finite set of symbols, then one can consider
the countable set of symbols OY = {fy;|6 € ©,1 < j < n} and the polynomial ring
R = K[{0y;]0 € ©,1 < j < n}| in the set of indeterminates ©Y over K. This polynomial
ring is naturally viewed as a A-ring where 6(6y;) = (60)y; (6 € A,0 € ©,1 < j <n)and
the elements of A act on the coefficients of the polynomials of R as they act in the field
K. The ring R is called a ring of differential (or A-) polynomials in the set of differential
(A-) indeterminates y, . ..,y over the A-field K. This ring is denoted by K{y1,...,yn}
and its elements are called differential (or A-) polynomials.

MULTIVARIATE NUMERICAL POLYNOMIALS OF SUBSETS OF N™

Definition 2.1. A polynomial f(ti,...,¢,) in p variables (p > 1) with rational coeffi-
cients is said to be numerical if f(t1,...,tp) € Z for all sufficiently large t1,...,t, € Z,
that is, there exists (s1,...,sp) € ZP such that f(r1,...,7p) € Z whenever (r1,...,7,) €
7P and r; > s; (1 <i<p).

Clearly, every polynomial with integer coefficients is numerical. As an example of a nu-

merical polynomial in p variables with non-integer coefficients one can consider [[%_; (ml)
- T

(m1,...,my € Z), where (,tc) = W for any k € Z,k > 1, ((t)) =1, and (2) =0
if k£ is a negative integer.

If f is a numerical polynomial in p variables (p > 1), then deg f and deg, f (1 <i <p)
will denote the total degree of f and the degree of f relative to the variable ¢;, respectively.
The following theorem gives the ”canonical” representation of a numerical polynomial in
several variables.

Theorem 2.2. Let f(t1,...,t,) be a numerical polynomial in p variables ¢1,...,t,, and
let deg;. f = m; (1 <i <p). Then the polynomial f(t1,...,t,) can be represented as

mi mp . .

tl —+ 11 t +1

f(tl,...tp): E E ail___ip< il ><pl p) (2 1)
i1=0  ip=0 p

with integer coefficients a;,..;, that are uniquely defined by the numerical polynomial.

In the rest of this section we deal with subsets of N where the positive integer m is

represented as a sum of p nonnegative integers my,...,m, (p > 1). In other words, we
fix a partition (mq,...,m,) of m.
If z = (21,...,2) € N”, we set ordyx = 7" z; and ord; = >37 = . x; for

i=2,...,p. If ACN™, then for any r,...,r, € N, A(r1,...,7p) will denote the subset
of A that consists of all m-tuples a = (a1, ...,a,) such that ord;a < r; (1 < i < p).
Furthermore, we shall associate with the set A a set V4 C N™ that consists of all m-
tuples v = (v1,...,v,) € N™ that are not greater than or equal to any m-tuple from A
with respect to the product order on N™. (Recall that the product order on the set N*
(k € N,k > 1) is a partial order <p on N* such that ¢ = (c1,...,c;) <p ¢ = (c},...,c})
if and only if ¢; < ¢, for all i = 1,...,k. If ¢ <p ¢ and ¢ # ¢/, we write ¢ <p ¢ ).
Clearly, an element v = (vy,...,v,) € N™ belongs to Vy if and only if for any element
(a1, ...,am,) € A there exists i € N, 1 < ¢ < m, such that a; > v;.

The following two theorems proved in [7, Chapter 2] generalize the well-known Kolchin’s
result on the numerical polynomials of subsets of N™ (see [6, Chapter 0, Lemma 17]) and



give an explicit formula for the numerical polynomials in p variables associated with a
finite subset of N™.

Theorem 2.3. Let A be a subset of N™ where m = m; 4 - - - +m,, for some nonnegative
integers myq,...,my (p > 1). Then there exists a numerical polynomial w4 (t1,...,tp) in
p variables with the following properties:

(i) wa(ri,...,rp) = Card Va(r1,...,rp) for all sufficiently large (rq,...,7,) € NP (i.
e., there exist (s1,...,sp) € NP such that the equality holds for all (r1,...,7r,) € NP such
that (s1,...,8p) <p (r1,...,7p)).

(ii) degwa <m and deg, wa <m; fori=1,...,p.

(iii) deg wa = m if and only if the set A is empty. In this case

P
ti +my
wA(th...,tp):H( . )

i=1
(iv) w4 is a zero polynomial if and only if (0,...,0) € A.

Definition 2.4. The polynomial w4 (¢1,...,t,) is called the dimension polynomial of the

set A C N™ associated with the partition (m1,...,m;) of m.
Theorem 2.5. Let A = {a1,...,a,} be a finite subset of N where n is a positive
integer and m = my + - -- +m, for some nonnegative integers mq,...,m, (p > 1). Let

a; = (a1, ... aim) (1 <i<mn)andforanyl €N, 0 <! <n,let I'(l,n) denote the set
of all l-element subsets of the set N,, = {1,...,n}. Furthermore, for any o € I'(l, p), let

Go; = max{a;;|i € o} (1 <j<m)andb,; = Z Gon. Then

he€o;
alts, ..t :i Y H(t +m3_ ”3> (2. 2)
= ocel’(l,n) =1

Remark 2.6. Clearly, if A C N™ and A’ is the set of all minimal elements of the set A
with respect to the product order on N™, then the set A’ is finite and wa(t1,...,tp) =
war(t1,...,tp). Thus, Theorem 2.5 gives an algorithm that allows one to find the dimen-
sion polynomial of any subset of N™ (with a given representation of m as a sum of p
positive integers): one should first find the set of all minimal points of the subset and
then apply Theorem 2.5.

Proposition 2.7. Let

& t+i ty+i
1+
et =3 Z( ‘ ) ( >
— — 11 Z;o
i1=0 ip=0
and
mi .
t1+ 11 t, +1
st =35 S5 () ()
i1=0  ip=0 p
be numerical polynomials in p variables 1, . .., t, written in the form (2.1) (all coefficients
a;,...i, and b;, . ;, are integers). Suppose that there exists r© = (rgo),...,réo)) € NP
such that for all r = (r1,...,7,) € NP such that r® <p r, one has flri,...,mp) =

g(ri,...,mp). Then f(t1,...,tp) = g(t1,...,tp) (thatis, a;, i, = b, 4, forall (i1,...,4,) €
N;D, (il,...,ip) Sp (ml,...,mp)).



Proof. We proceed by induction on p. If p = 1, the statement is true because in this
case f — g has infinitely many roots and therefore f = g. Suppose that p > 1 and our
statement is true for numerical polynomials with less than p variables. Then f — g =

mi t .
Z Ci, (ta,. .. ,tp)( ! T‘_Zl) where

i1=0 “
mo mp . .
ta + 11 t, +1 .
Cil (tg, . ,tp) = Z Z [ailmip — bnzp]( i ) ( p ip p) (O <11 < m1).
i2=0 ip=0
If we set t; = r;, where r; > 7’50) (i =2,...,p), in the above expression for f — g, we

obtain a polynomial in one variable ¢; that vanishes for all integer values of t; that are
greater than or equal to 7°§O). Therefore, all coefficients Cj, (t2,...,t,) (0 < i3 < myq)

vanish at (ro,...,7p). By the induction hypothesis, C;, (t2,...,t,) = 0 (0 < i1 < mq),
hence f —g=0,s0 f=g¢g. O

3. Reduction with respect to several term orderings and multivariate
differential dimension polynomials

Let K be a differential (A-) field whose basic set of derivations A is represented as
the union of p nonempty disjoint subsets (p > 1):

A=A -4, (3. 1)

where A; = {0i1,...,0im,} fori=1,...,p (m1 +---+ m, = m where m = Card A). In
other words, we fix a partition of the set A.
Let ©; denote the free commutative semigroup generated by A; (1 < i < p) and let

© be the free commutative semigroup generated by the whole set A. For any element
§ = okn 6’;;11 ok ...6;%? € O, the numbers ord; § = 337" k;; (i = 1,...,p) and
ord § = Y7, ord; § will be called the order of 6 with respect to A; and the order of
6, respectively. If 6,6’ € ©, we say that 6’ divides 0 (or that 6 is a multiple of 6’)

and write 6’ |6 if there exists 8” € © such that § = 6”6’. As usual, the least common
multiple of elemelzlts R g | ) 55”1, N 7 1 R 5?;” € O is the element
6=T1I"_, H;nzl 8;;”, where ki; = max{k;;|1 <1 <q} (1 <i<p,1<j<m;),denoted
by lem(6y,. .., 0,).

Ifr=(r1,...,7p) € NP, the set {§ € ©]ord; 6 <r; fori=1,...,p} will be denoted
by ©(r1,...,1p) or O(r). If £ is an element of a A-field K and ©' C ©, then ©¢, will
denote the set {6() |6 € ©'}.

We consider p orderings <1, - <, of the semigroup © defined as follows.

IF 0 = o otmiska et and 0 = 8. 616 L 6 are clements of ©,
then 6 <; 0’ if and only if the vector (ord; #,ord; 0,...,ord;_q 6,0rd; 11 6,... yord, 0, k;1,

vy kimy ki, o Rimy s k21, o Rictm_y Kig1,1 - - -5 Kpmy,) 1 less than the vector
(Ol"di 0’,ord1 9/, N ,OI‘di_l 0’,ordi+1 (9/, ce ,OI‘dp 9/, lila N 7lim7 l117 PN ,Z1m171217 ey
lictmi_ysliv1,1, -+ - lpm,) With respect to the lexicographic order on Nm+p,

Let K{y1,...,yn} be the ring of A-polynomials in A-indeterminates yi,...,¥y, over
K. Then the elements 0y, (6 € ©,1 < i < n) will be called terms, and the set of all terms
OY will be considered together with p orderings that correspond to the orderings of ©



and are denoted by the same symbols <, ..., <,. These orderings of ©Y are defined as
follows. Oy; <; 0'yr (6,0’ € ©,1 < j,k <n,1 <i<p)if and only if § <; ' or 0 = ¢’
and j < k. By the ith order of a term u = 0y; we mean the number ord; u = ord; §. The
number ord u = ord 6 is called the order of w.

We say that a term u = fy; is divisible by a term v = ¢'y; and write v|w, if i = j
and 0" 6. If v|,u and v # u, we say that u is a proper derivative Of v. For any terms
ur = 61y;,...,uq = O4y; with the same A-indeterminate y;, the term lem(6s,...,6,)y;
is called the least common multiple of w1, ..., ug, it is denoted by lem(u1, ..., uq).

If Ae K{y1,...,yn}, A ¢ K, and 1 < i < p, then the highest with respect to the
ordering <; term that appears in A is called the i-leader of the A-polynomial A. It is

. d
denoted by “X)- If A is written as a polynomial in one variable u(Al), A= Id(uill)) +
d—1
Id_l(u(Al)) +---+1Io (Ig,Ig-1,- .-, Io do not contain u )) then I is called the leadmg
coefficient of the A-polynomial A and the partial derivative 0A/ 5‘uE41) = dId(qu)) +

d—2
(d— 1)Id,1(uf41)) + .-+ I is called the separant of A. The leading coefficient and the
separant of A are denoted by I4 and S4, respectively.

Definition 3.1. Let A and B be two A-polynomials from K{yi,...,y,}. We say that
A has lower rank than B (or that B has higher rank than A) and write rk A < rk B
if either A € K, B ¢ K, or the vector (ug),deg o A, ords uf),.. ord, up)) is less

than the corresponding vector (uB ,deg,, W B, ordgu y-..,ordy, ug)) with respect to
the lexicographic order (ufj) and ug) are compared with respect to <; and all other

coordinates are compared with respect to the natural order on N). If the two vectors are
equal (or A € K and B € K) we say that the A-polynomials A and B are of the same
rank and write rk A = rk B.

Definition 3.2. Let A and B be two A-polynomials in K{y1,...,y,} and A ¢ K. We
say that B is reduced with respect to A if the following two conditions hold.

(i) B does not contain any term HUS) (0 € ©,0 # 1) such that ordi(é'ug)) < ord; ug)
fori=2,...,p.

(ii) If B contains ui‘l), then either there exists j, 2 < j < p, such that ordjug) <
ord; ug) or ordjug) < ord; ug) forall j =2,...,p and deg o) B < deg o) A.

A A-polynomial B is said to be reduced with respect to aAset AC K{Ayl, ceyYntif B
is reduced with respect to every element of A.

Remark 3.3. It follows from the last definition that a A-polynomial B is not reduced
with respect to a A-polynomial A (A ¢ K) if either B contains a term 9u541) eO,0#£1)
such that ord; (QuX ) < ord; uSB) for i = 2,...,p or B contains uf41) and in this case
ord; u(]) < ord; uB) for j =2,...,p and deg, (1)A < deg, (1)B This observation is helpful
if one would like to show that a A- polynomlal is not reduced with respect to some other
A-polynomial.

Definition 3.4. A set of A-polynomials A is called autoreduced if A K = () and every
element of A is reduced with respect to any other element of this set.



The following statement is proved in [10] (see[10, Theorem 4.5]).
Proposition 3.5. Every autoreduced set is finite.

Theorem 3.6. Let A = {A;,..., A} be an autoreduced set in the ring of A-polynomials
K{y1,...,yn} and B € K{y1,...,yn}. Then there exist a A-polynomial By and nonneg-
ative integers p;, ¢; (1 < j < r) such that By is reduced with respect to A, rk By < rk B,
and

11 7% 5% B = By (mod[A)). (3.2)

Jj=1

Proof. Suppose that B is not reduced with respect to A and B contains aterm v = Gu(l)

where 6 € ©, ordf > 0, 1 < j < r, such that ord; (Gu ) < ord; uB fori=2,...,p. Let
v be the greatest such a term w1th respect to <i. We will call it the A- leader of B. Let
e = deg, B and J the coefficient of v® when B is written as a polynomial in v. Since

0A; = Sa, 9uf41j) +C = Sa,v + C, where all terms of C are of lower rank than v and
ord; ug) < ordi(HuX]),) < ord; ug) fori=2,...,p, either the A-leader of the A-polynomial

By = 854,B— Jv* 04

has lower rank than v or it is equal to v and in this case deg, B < deg,, B. Applying the
same procedure to By and continuing this process we obtain a A-polynomial B’ and some
nonnegative integers qi, ..., ¢, such that []'_, S% B = B’ (mod[A]) and the A-leader of

B’ is either one of the 1-leaders of A; (1 < j < r) or has lower rank than any u&‘) In

the last case, B’ is reduced with respect to A and we are done.
Suppose that the A-leader of B’ is w = “54) for some j (1 <j <r), k=deg, B >d,,

where d; = deg (1) A;, ord; u(z) < ord; ug for i = 2,...,p, and F is the coefficient of w*

when B is ertten as a polynomial in w. Then either the A-leader of the A-polynomial
Bl =14,B — (u}))"~4FA,

has lower rank than w or it is equal to w, deg,, B; < deg,, B1, and ord; u%) < ord; uB, for

i =2,...,p. Applying the same procedure to B and continuing this process we obtam
a A—polynomial By and some nonnegative integers p1,...,p, (in addition to q1,...,q,)
such that (3.2) holds. O

The process of reduction described in the proof of the last theorem can be realized by
the following algorithm where R = K{y1,...,yn}-

Algorithm 1. (B,r, Ay,...,A.; Bo;)

Input: B € R, a positive integer 7, A = {A1,..., A} C R where A; #0
forj=1,...,r

Output: p1,...,prq1,.-.,¢ € N, and By € Rsuch that

By — 1), IpJ Sq’ B € [A] and By is reduced with respect to A, and rk By < rk B.
Begin Bj := B

While there exist j, 1 < j < r, and a term v, that appears in By with a nonzero

coefficient, such that uA)|v ufq) # v, and ord;( mux)) < ord; “53) fori=2,...,p



do

z:= the greatest (with respect to <) of the terms v that satisfy the above conditions.
)

k:= the smallest number j, 1 < j < r, for which u(Alj is the greatest (with respect

to <1) 1-leader of an element A; € A such that ui‘lj)|z and ord;(—yua,) < ord; u%()) for

t=2,...,p.
e:=deg o) Ay; J:= the coefficient of z¢ when By is written as a polynomial in z;
Ak

— _z_

0:= ufjj .

By = SAkBO — JZeileAk.

While for every j = 1,...,r, By contains no proper derivatives of ugj and there

exist I, 1 < I < r such that By contains (ufj))t with a nonzero coefficient such that
t>d = deguu) A; and ord; ufi? < ord; ug[)) fori=2,...,p
Ay
do
s:= the smallest number j, 1 < j < r, for which ui‘l) is the greatest (with respect
J
to <1) 1-leader of an element A; € A such that (u;l]))t appears in By with nonzero
coefficient, ¢t > d;, and ord; u(jz < ord; ugg fori=2,...,p.
h := deg ) Bo; F:= the coeflicient of (ug))h when By is written as a polynomial in
Asg s
1),

UAS,
Qs = Q, + F(ul{)"""Ay; By :=14,By — F(ul}))"1A,.
End

Corollary 3.7. Let A = {Ay,..., A, } be an autoreduced set in the ring of A-polynomials
K{y1,...,yn}and By,...,Bs € K{y1,...,yn}. Then there exist A-polynomials C1, ..., Cj
and nonnegative integers p;,¢; (1 < j <r) such that each C; (1 <4 < r) is reduced with
respect to A, the rank of each Cj is no higher than the highest of the ranks of By, ..., By,
and

[1 7% % Bi = Ci (mod[A]) (1<i<s).
j=1

Proof. Without loss of generality we can assume that rk B; < --- < rk B,;. Then we can
apply the process of successive reduction described in the proof of the last theorem (and
Algorithm I) to obtain the result of our statement. 0O

In what follows, while considering an autoreduced set A = {A;,..., A, }, we always
assume that its elements are arranged in order of increasing rank: rk A; < --- <rk A,.

Definition 3.8. Let A = {A4,..., A} and B={By,...,Bs} be two autoreduced sets.
Then A is said to have lower rank than B if one of the following two cases holds:

(i) There exists k € N such that k¥ < min{r,s}, rtk A, =1k B; fori=1,...,k—1 and
rk A <1k Byg.

(ii) »>sandrk A, =1k B; fori=1,...,s.

Ifr=sandrk A; =1k B; fori =1,...,r, then A is said to have the same rank as B.
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The statements of Propositions 3.9 and 3.11 below can be obtained by mimicking the
proofs of the corresponding statements for classical Ritt-Kolchin autoreduced sets (see
[7, Proposition 5.3.10 and Lemma 5.3.12]).

Proposition 3.9. In every nonempty family of autoreduced sets of differential polyno-
mials there exists an autoreduced set of lowest rank.

Definition 3.10. Let J be a A-ideal of the ring of A-polynomials K{y,...,y,}. Then
an autoreduced subset of J of lowest rank is called a characteristic set of the ideal J.

Proposition 3.11. Let A = {A;,..., A4} be a characteristic set of a A-ideal J of the
ring of A-polynomials R = K{y1,...,yn}. Then an element B € J is reduced with
respect to the set A if and only if B = 0. In particular, I4 ¢ J and Sa ¢ J for every

Aec A

Let K be a A-field and L = K(ny,...,n,) a finitely generated A-extension of K with
a set of A-generators 7 = {71, ...,n,}. Then there exists a natural A-homomorphism ¢,
of the ring of A-polynomials K{yi,...,y,} onto the A-subring K{n,...,n,} of L such
that ¢, (a) = a for any a € K and ¢,(y;) =n; for j =1,...,n. If A € K{y1,...,yn},
then ¢, (A) is called the value of A at n and is denoted by A(n). Obviously, P = Ker ¢,
is a prime A-ideal of K{yi,...,yn} It is called the defining ideal of n. If we consider
the quotient field @ of R = K{y1,...,yn}/P as a A-field (where §(%) = M for
any u,v € R), then this quotient field is naturally A-isomorphic to the field L. The A-
isomorphism of @) onto L is identical on K and maps the images of the A-indeterminates
Y1,---,Yn in the factor ring R onto the elements 7, ..., n,, respectively.

Let K be a differential (A-) field, Card A = m, and let a partition (3.1) of A be fixed:
A=AU---UA, (p>1), where A; = {d;1,...,0im,} (1 < i < p). Furthermore, let
L=K(n,...,n,) be a A-field extension of K generated by a finite set n = {n1,...,mn}-
Let P be the defining ideal of n and A = {A,,..., Aq} a characteristic set of P.

For any r1,...,7, € N, let

Uyow, ={u€OY|ordju <r;fori=1,...,p and u is not a derivative of any ufjl)

(that is, u # 9u(AlB for any 6 € ©;i=1,...,d) and let

for i = 1,...,p and for every § € ©,A € A such that u = Gu(l), there exists ¢ €
A
{2,...,p} such that ordi(HuE;)) > 7t

(Ifp=1,U/, = {uec OY|ordiu < 7 and u is not a derivative of any ugb)} and
Uy, = 0.) Furthermore, for any (r1...7p) € NP, let Uy, ., = Uy, UUS . .

The following theorem proved in [10, Section 5] establishes the existence and describes
the form of a multivariate dimension polynomial associated with a finite system of A-
generators of a A-field extension and with a partition of the set A. We give an extended

version of this result that follows from the proof of [10, Theorem 5.1].

Theorem 3.12. With the above notation,

(i) For all sufficiently large (r1...7,) € NP, the set Uy, ..., is a transcendence basis of
n

K(U O(r1,...,mp)n;) over K.

Jj=1
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(ii) There exist numerical polynomials wyk (t1,...,tp) and ¢y k(t1,...,t,) in p vari-
ables such that wyr(r1,...,rp) = CardU] . and ¢, k(ri,...,rp) = CardU}
for all sufficiently large (ry ...rp) € NP, so that the polynomlal <I>n|K(t1,... ) =
Wy (t1s e tp)Fn i (tr, ooy tp) has the property that for all sufficiently large (r1,...,7p)

NP, @, (rq,...,1rp) =tr.degy K U O(ri,...,mp)n5)-

(iii) deg, ®yx < m; (1 § i S p), so that deg ®,x < m and the polynomial
@,k (t1,...,1,) can be represented as

Okt oty Z Z (t”L“) . (t”ﬂp> (3. 3)

(2
i1=0 ip=0 p

where a;,.., € Z for all i; .
(iv) oy K(tl, .., tp) isan alternating sum of polynomials in p variables of the form

5 _ (trtma—by boy—1 + Mgy -1 — by -1, [ bry 1y = Gy
Gk, kg my M, —1 M,

(tkl +my, — bmg)} (tk1+1 + My, 41 — bk1+1,j) <tkq1 +mg, -1 — bkql,j>
mkl mk1+1 mkq—l

[(tkq +my, — akq,j> 3 (tkq +my, — bkq,jﬂ (t,, +my — bpj) S0 deg by < m
, . )
kq kq

m m myp

Definition 3.13. Numerical polynomial ®,x(t1,...,t,), whose existence is established
by the last theorem, is called a differential (or A-) dimension polynomial of the dif-
ferential field extension L = K(ny,...,n,) associated with the system of A-generators
n={n,...,nn} and with partition (3.1) of the basic set of derivations A.

Remark 3.14. With the notation of the last theorem, if ny,...,n, are A-algebraically
independent over K, then

Okt oty —nH(t ;m> (3. 4)

i=1

k: m .
Indeed, all elements 6% ., 5k1m1(5k21 ... Opm,” such that Zm’ kij <7 (1 <i<p) form

17711

a transcendence basis of the field K( U (r1,...,mp)n;) over K. By Theorem 2.3 (iii),

i +m
the number of such elements is n I | ( it Z) so we arrive at formula (3.5).
: mg

i=1

Remark 3.15. Theorem 3.12 shows that the main problem in computing the multi-
variate A-dimension polynomial @, is constructing a characteristic set of the defining
A-ideal of the A-field extension. If this ideal is linear (that is, the defining system of
differential equations on the generators of the extension is linear), then this problem
was solved in [11] by algorithm for constructing a Grobner basis with respect to several
term orderings (see [11, Algorithm 1] and [11, Theorem 3.10]). In the nonlinear case the
problem of generalizing the Ritt-Kolchin algorithm to the case of autoreduced sets with
respect to several term orderings defined above is still open.
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4. Properties and invariants of multivariate differential dimension
polynomials

In this section we determine some invariants of multivariate dimension polynomials
associated with a differential field extension, that is, numerical characteristics of the
extension that do not depend on the system of its differential generators and that are
carried by any its dimension polynomials (associated with a given partition of the basic
set of derivations).

For any permutation (ji,...,j,) of the set {1,...,p} (p > 1), let <j;, . ; denote the
corresponding lexicographic order on NP such that (rq,...,7,) <j, .j, (s1,...,5p) if and
only if either r;, < s;, or there exists £ € N, 1 < k < p — 1, such that r;, = s;, for
v=1,....,kand 1, <sj,,,.If Eis a finite subset of N, then E’ will denote the set
of all p-tuples e € F that are maximal elements of E with respect to one of the p! orders
Sjrgye Say, if B ={(3,0,2),(2,1,1),(0,1,4),(1,0,3),(1,1,6),(3,1,0),(1,2,0)} € N3,
then E' = {(3,0,2),(3,1,0),(1,1,6),(1,2,0)}.

The following result gives differential birational invariants carried by a multivariate
dimension polynomial of a differential field extension. In particular, it shows that mul-
tivariate differential dimension polynomials carry essentially more such invariants than
their univariate counterparts introduced by E. Kolchin.

Theorem 4.1. Let K be a differential field with a basic set of derivations A and let
partition (3.1) of the set A into the union of p disjoint sets (p > 1) be fixed. Let
L =K(n,...,n,) be a A-field extension of K with the finite set of A-generators n =
{m,...,nn} and let

mi myp . .
Z Z t1 + 11 t, +1
@U\K<t17"'atp): ailmip< il ) (p- p) (4 1)

{2
i1=0 ip:() P

be the corresponding differential dimension polynomial. Let E, = {(i1...4,) € N? |0 <
ir. < my(k=1,...,p) and a;,.;, # 0}. Then d = deg ®,x, Am,...m,, the elements
(k1,...,kp) € E,’W the corresponding coefficients ay;, ...x,, and the coefficients of the terms
of total degree d in @, do not depend on the system of A-generators 7.

Proof. The fact that the elements (ki,...,kp) of the set Ej and the corresponding
coefficients ag,..x, do not depend on the system of A-generators n of L/K is estab-
lished in the proof of Theorem 5.3 of [10] using the observation that if ¢ = {(1,...,(;}
is another system of A-generators of L/K, then there exists (si,...,sp) € NP such
that @, g (r1,...,7p) < Peg(r1 + 81,...,7p + 8p) and @i (r1,...,7p) < Pyc(r1 +
s1,...,7p+ sp) for all sufficiently large (r1,...,7,) € NP. Clearly, these inequalities show
that deg ®¢|x = deg @, Let d = deg @, k. Let us order the terms of total degree d in
®,x and ¢ i using the lexicographic order <, , 1, .1 and for sufficiently large r € N,
set ®y =1, xg = 2%, 13 =22, .. 0, =21, R=2% andr, = ;R (1 <i<p).If
r — 0o, then the last two inequalities immediately imply that ®, x and ®x have the
same coefficients of the corresponding terms of total degree d. O

The next theorem characterizes one of the invariants of polynomial (4. 1).

Theorem 4.2. With the notation of the last theorem, a,,,..;m, = A-tr.degy L.
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Proof. Let A-tr.degy L = d. Then, as it was mentioned in section 2, one can choose
a A-transcendence basis of L/K from the set 7, so we can assume that 7,...,n4 form
such a basis. Since the family {fn; |0 € ©,1 < i < d} is algebraically independent over

K, it follows from Remark 3.14 that tr.deg, K U O(r1,...,mp)n;) = dH (Tz ;mz)

for all (r1,...,rp) € NP. Let F' = K(n1,...,n4). Then every element 7);, d+ 1 <j<m,is
A-algebraic over K. It means that there exists a A-polynomial A; € F{y;} (F{y;} is the
ring of A-polynomials in one A-indeterminate y; over F') such that A;(n;) = 0. Taking

such a polynomial of the smallest possible degree we can assume that Sa; (n;) # 0. Let
(1) with respect to <j.
If § € A, then 0.A;(n;) =0, s0 Sa, (n))d(u'y) (n)) + Ly o LGy Y (n;) = 0. The

term 5u541j) has the form 6;y; for some 60; € @ and one can easﬂy see that for any term

Aj=XF, Ijk(ugj))k where all terms of all Ijk are less than u),

v in any Sa; or 6(I;x), we have v <; 0;y; and ord; v < ord; u() +1@G@E=1,...,p). It
follows that 0;n; € F({0n|0 € ©,0y, <1 0;y; and ord,; Oy § aj; for i = 1,...,p})
where aj; = ord; ux) +1(1<i<p).

Since ' = K (Uk 1 U(11 L)enp O(l,. .., lp)nk), there exist hq,...,h, € N such that

6‘j7’]j S K(Ukzl (hl, ey p)nk U{H’I]k | 0 c @, Hyk <1 ijj, OI'di Hyk < Qaj; (’L = 17 e ,p)}).
Let ¢ € © and 6; |¢'. For any ¢ = 1,...,p, let s; = ord,; 6’ (clearly, s; > a;;). Then
0'n; € K(Uj_y O(s1 + ha,...ysp + by U{Om |0 € ©,0y; <1 0'yj,0rdi6 < ord; ¢’

(1<i<p)and®b;16}).

Therefore, if r; € N, 7, > maxgy1<j<n{aji} (¢ =1,...,p), then one has
n d n
K(Uk:l @(’I"l, s an)Wk) g K(Uk:l @(Tl + hlv -y Tp + hp)nk U Uj:d-}-l[@(rlv cee 7TP) \
O(r1 — aji,,...,7p — ajp)n;). It follows that
n p P
ri +my i +m; Ty — Qj; + My
P vy rp) < —
(L dH( my; >+Z [H< my ) H( my )
=1 j=d+1 Li=1 =1
for all sufficiently large (rq,...,7r,) € NP. Since the total degree of the polynomial
> a1 [Hle () =110, (ti*agjfmi)} is less than m, we obtain that am, .. .m, < d.
On the other hand, for all sufficiently large (ri1,...,7p) € NP, @1 (ri,...,1) =

tr. degye K (Up_y ©(r1,....rp)me) > tr.degye K(Ujp_; O(r,....mp)m) = dTT0_, ("5™).
hence a,...;m, > d. Thus, am,..m, =d = A-tr.degy L. O

With the notation of Theorem 3.15, let p > 2, 1 < k < p, and A®) = A J---|JAy.
For any rj41,...,7p € N, let Fy, | ;. denote the A®)_field extension of K generated by
U;-L:1 0(,..., 0 T“k+1, .. Tp)ma $0 Frpy, i, = K<U?:1 9A\A(k> (Tht1, - - 77";0)773'>A(’“)'
Since O(r1,...,rp) = @(7“1, T, 0, 0)@(07 ..30,7%41,...,7p), we can combine the
results of Theorems 3.12 and 4.2 to obtain the following statement.

Corollary 4.3. With the above notation, and the A-dimension polynomial (4.1) of the
extension K(n1,...,n,)/K, the numerical polynomial in p — k variables

mE41 . .
tht1 + Tkt t, +1
PRI S PR ( | (e

1 (3
7,k+1 =0 l =0 k+1 p
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describes the growth of A®)-tr. degy F,

Thk415--+3Tp?

that is,

O(Tkt1,- - ,Tp) = A®)_tr, degy F, Tht1,-5Tp

for all sufficiently large 7411, ...,7, € NP7k,

This corollary, in particular, shows that if L = K(n,...,n,) is a finitely generated
differential field extension of a differential field K with a basic set A; A’ C A A” = A\A/|
and m; = Card A’, mg = Card A” (my +mg = m where m = Card A), then there exists
a univariate numerical polynomial ¢(t) = Y72 ¢;(*1") (¢; € Z) such that ¢(r) = A/-
tr.degy K(Up_, Oar (r)ni)ar and ¢, = A-tr.degy L. Furthermore, if

CL A t1 410\ (ta+ ]
ot -5 S50

1=0 i2=0

is the bivariate A-dimension polynomial of L/K associated with the partition A =
A'\JA” and d = deg;, @, x < m1, then

n ma ’f‘+ .
A'-t.tr. deg g K(U Oar (r)ng)ar = Zadj< i j)-
k=1 i=0

In this case d = A'-typex K{Up_, Oar (1)) ar

The following theorem provides necessary and sufficient conditions on generators of a
differential field extension of a given differential transcendence degree d under which the
corresponding multivariate dimension polynomial has the simplest possible form.

Theorem 4.4. With the notation of Theorem 4.2, the following conditions are equiva-
lent.

(i) ®pxc (b, 1) = dH <t :;L:m)

i=1
(i) A-tr.deg K{(ny,...,nn) = tr.degr(n1,...,0n) = d.

Proof. (i) = (ii). By Theorem 4.2, d = A-tr.degy L where L = K(n1,...,n,). Without
loss of generality we can assume that 77, ...,74 is a A-transcendence basis of L over K.
Then for all sufficiently large (r1,...,7p,) € NP,

n

Oy (rey. .. 1p) = tr.degg K U (r1,...,mp)n;) = tr.degy K
j=1 g=1

Cg

T1,... 77])

hence
tr. degK(Uj:1 Y K( LJI O(ri,...,mp)n;) = 0.
j=

Therefore, every element n;, d+1 < j < n, is algebraic over the field F = K(n1,...,naq),
so if 7/ denotes the (n — d)-tuple (1411, ..,7n), then @,/ p(t1,...,1,) = 0.

Let P be the defining A-ideal of 1’ in the ring of A-polynomials F{y,...,yn—q} and
let A be a characteristic set of P (we use the terminology and term orderings <j,--- <,
introduced in the beginning of this section). For every j =1,...,n—d, let E; denote the
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set of all (ki,...,km) € N™ such that 6 ... 85my; is a 1-leader of an element of A. Since
®,,p = 0, we also have w,/|p = 0 where w,/p is the polynomial in p variables defined
in Theorem 3.12(ii). Furthermore, it follows from Theorem 2.3(iv) that w,/ z = 0 if and
only if E; = {(0,...,0)} forj=1,...,n—d.

Since y1 < y; for j = 2....,n —d, a A-polynomial in A with leader y; is a usual
polynomial in y; with coefficients in F. Therefore, 441 and all 6411 (0 € ©) are
algebraic over F. If " = (nay2,...,mn), then o p(re,...,17) < @pyp(ry,...,rp) for
all (r1,...,7rp) € NP, so @, r = 0 and we can repeat the above arguments and obtain
that every 6n; (0 € ©,d+1 < j < n) is algebraic over F.

Since the elements 7441, ..., 7, are algebraic over the field F' = K(n,...,7n4), there
exist hi,...,h, € N such that ng41,...,n, are algebraic over K(U?Z1 O(h1,...,hp)n;).
It follows that the field extension K(U?:1 O(ry,. .. 7rp)nj)/K(U?:l O(r1,...,mp)n;) is
algebraic whenever (hi,...,hp) <p (r1,...,7p).

Suppose that 7g4+1 is not algebraic over the field K (n1,...,74). Let (¢1,...,qp) be a
minimal (with respect to the product order <p) element of NP such that 7441 is algebraic
over K(U;l:1 O(q1,-..,qp)n;). (By the assumption, (gi,...,¢p) # (0,...,0)). Without
loss of generality we can assume that ¢; > 1. Then 7441 is transcendental over the field
K(U?:1 ©(q1 — 1,...,¢p)n;). Then there exists a term v in the ring of A-polynomials
K{y1,...,yq} such that ordy v = ¢1, ord; v < ¢; for ¢ = 2,...,p, n441 is transcendental
over the field K’ = K({0n; 0 € O(q1,...,qp),1 < j < d,0y; <1 v}) and algebraic over
K'(v(n)). It follows that v(n) is algebraic over K(U?zl O(q1,- -, qp)n; \{na+1} U{v(m)}).
Therefore, if 0’ € ©(r, ..., rp) where (h1,...,hy) <p (r1,...,7p), then 8'v(n) is algebraic

over K (U ©(r1 + a1, 7 + )5 \ {041} U0 (m)}).
Since 1441 is algebraic over K(U?:1 O(q1,.-.,qp)n;), the element 0'ngyq is algebraic

1,...,p). Therefore, 8'v(n) is algebraic over K(U?Z1 O(s1+q,---.8p+ap)n; \{0v(n)}),
hence the set U?:l O(r1 + q1,...,7p + gp)n; is algebraically dependent over K that
contradicts the fact that 7, ...,7nq are A-algebraically independent over K.

Thus, ng4+1 is algebraic over K(n1,...,714) and similarly every n;, d+1 < j < n, is
algebraic over K(n1,...,n4), so d = A-tr.degp K{n,...,n,) = tr.degr(m1,...,0n)-

over K(U?:1 O(s1+q1, ..., Sp+qp)n;) where s, = ord; ', 1 < i < p (clearly, s; < r; fori =

(ii) = (i). As in the proof of Theorem 4.2, without loss of generality we can assume
that 71,...,mq is a A-transcendence basis of the A-field L = K(n,...,n,) over K.
Then the elements n,...,nq are algebraically independent over K, so K(n,...,n,) is
an algebraic extension of K(ni,...,nq). Thus, K(U?:1 O(ri,...,mp)n;) is an algebraic
extension of the field K(U;l:1 O(r1,...,rp)n;) for any (r1,...,r,) € NP.

Since @, . nay i (1o -5 tp) =d ][0, (t’;m’) and the fields K(U?:1 O(r1,...,mp)0;)
and K (U?:1 O(r1,...,7p)n;) have the same transcendence degree over K, we obtain the
equality of statement (i). O

Proposition 4.5. Let L = K{(n1,...,n,) be a A-field extension generated by a finite
set n = {m,...,n,} and let partition (3.1) of the set A be fixed. Suppose that A-
tr.degy L = 0 or that A-tr.deg, L =d > 1, 1m1,...,nq form a A-transcendence basis of
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L over K and ' = {n441,...,nn}. Then

p
r; +m;
¢W/|K(nl»-<~777d>(rla-~'7rp) < (I)n|K(Tla~--7rp) *dH < ) (4 2)

im N T
for all sufficiently large (ri,...,r,) € NP.

Proof. If A-tr.degy L = 0, the statement is obvious. Let d = A-tr.deg, L > 1 and
{m,...,na} a A-transcendence basis of L/K. Let K' = K(m,...,nq) and for any r =
(ri,...orp) € NPUAL(r) = UL, O, ..,k Aa(r) = Ujyyy ©(r1,...,mp)m and
As(r) = A1(r) JAz2(r). Then

Do (1155 1p) = tr.deg g K'(Aa(r)) < tr.degre(a, () K(A3(r)) = tr. degg K(A3(r))

p
7 +my;
—tr.degy K(A1(r)) = @y (11, .- ,rp)—dH < - )
i=1 '
for all sufficiently large (rq,...,7p). O

Theorem 4.6. Let L = K(n,...,n,) be a A-field extension generated by a finite set
n = {m,...,nn} and let d = A-tr.degy L. Then there exists c1,...,cp[inN and a A-
transcendence basis B of L over K such that B = {n;,,...0i,} Cn (1 <i1 <+ <ig <
n) and if " denotes the set 1\ B, then

p
ti +my
(I)n’|K<B)(T1 +cl,...,7“p+cp) > (bn\K(rla“pr) —dH( m; ) (4. 3)

i=1

for all (r1,...,7,)) € NP.

P
t; i .
Proof. Let Wy xc(tr, ..., tp) = yclte,... tp) —d ]| ( tm ) Let P be the defining
i=1 i
ideal of 7 in the ring of A-polynomials K{yi,...,y,} and let A be a characteristic set of
P (in the sense of Definition 3.9 and the preceding considerations). For every j = 1,...,n,

let
Ej = {(k1,... km) € N™ |5 .. §5my. is a 1-leader of an element of A}.

Using the notation of Theorem 3.12 (iv), we obtain that deg ¢,k (t1,...,tp,) < m — 1.
n

Also, part (ii) of Theorem 3.12 shows that wy x(t1,...,tp) = Zij (t1,...,tp) where
j=1

wg, (t1,...,tp) is the dimension polynomial of the set E; C N™ associated with the par-
tition (my, ..., mp) of m corresponding to our partition (3.1) of the set A (see Definition
2.4). Since

P
t; i
Qi (ty ... tp) = dH ( + m > + terms of total degree less than m,
i=1 ¢
there are exactly d indices j € {1,...,n} for which E; = (), that is, degwg, = m (see
Theorem 2.3(iii)). Without loss of generality , we can assume that these indices are
1,...,d, so the leader of any element of A is of the form Oy where § € © and d + 1 <
k < n. It follows that B = {n1,...,nq} is a A-transcendence basis of L over K. Indeed,
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if there are elements (; = 6017;,,...,(; = 0sn;, with§; € © and 1 < j; <d (i=1,...,s)
and a polynomial f in s variables with coefficients in K such that f((,...,{s) = 0,
then f(61yj,,...,0sy;,) € P. This A-polynomial is reduced with respect to A, hence all
coefficients of f are zeros. Thus, 71, ...,ng are A-algebraically independent over K. Also,
every A-generator n; with d + 1 < i < n is A-algebraic over K(B), since there exists
6o € O such that Oyy; is the 1-leader of some element A € A for which A(n) = 0. This
equality shows that fyn; is algebraic over the field extension of K(B) generated by the
set {0 |0 € ©,d+1 < k < n and Oy, <1 Ooy; }. Using the induction with respect to the
well-ordering <3 of the set of terms of K{y1,...,y,} we obtain that 7; is A-algebraic
over K(B).

In what follows, we use the notation from the proof of Proposition 4.5: for any r =
(r1y.e o) € NPUAL(r) = Ui, O(r1, .o, mp)k, An(r) = Uj—ai1 ©(r1s .o, 7p)m, and
As(r) = Ay (r) | A2(r). By Proposition 4.5,

(I)W/\Kml _____ nd)(’rl,...ﬂ’p)S\IIMK(Tl,...,Tp),

that is,

tr.deg g (. na) K(ni,...,na)(Aa(r)) < tr. deg (A, (r) K(As(r)) (4. 4)

for all sufficiently large r = (r1,...,7,) € NP, that is, there exists a p-tuple r@ =

(7“%0), .. ,r,(oo)) € NP such that the last equality holds for all » € NP such that r >p r(®
(as before, >p denotes the product order on NP).
Let us show that for all r € NP with » >p r(o), we also have

tr. degK(Al(r)) K(As(r)) < tr. degK<771 _____ na) K{m,...,na)(Aa(r)). (4. 5)

Then the inequalities (4.4) and (4.5), together with Proposition 2.7, will imply the
desired result.

Assume for contradiction that this is not true. Then there exists s = (s1,...,s,) € N?
with s >p r(® and aset W C /., ©(s1,.. ., sp)y; such that the set W(n) = {0n;| 60 €
O(s1,...,8p),d +1 < i < n} is algebraically independent over K(A1(s1,...,5s)), but
algebraically dependent over K (n,...,n4). Let N(s) = {r € N |s <p r} and let e =
(e1,...,ep) be the smallest element of N(s) with respect to the lexicographic order <.,
on NP such that W (n) is algebraically dependent over K (A1(e)). Then s <, e and there
exists a nonzero polynomial f € K(Ai(e))[{w|w € W} such that f(n) = 0. Clearing
the denominators of f, we obtain a nonzero A-polynomial g € K[{0y; |6 € O(e),1 <<
d} |JW] such that g(n) = 0. Let g be such a A-polynomial of the lowest possible rank (in
the sense of Definition 3.1). Then the 1-leader of g is of the form 6,y where ord; 6, = ¢;
(I1<i<p)and 1<k <d.

Let us write g = Z git where t runs over a finite set M of monomials in the inde-
terminates w (w € W) and the coefficients g; are nonzero A-polynomials in K[{fy, |6 €
O(e),1 < d}]. By Corollary 3.7, there exists a A-polynomial H, which is a product of
initials and separants of elements of A (so H ¢ P), and for each t € M there exists a
A-polynomial T" such that Ht = T (mod[A]), T is reduced with respect to A, and the
rank of T is no higher than the highest of the ranks of monomials ¢ (¢ € M) and therefore
lower than the rank of uél).

Let h = > ,crg¢T. Clearly, h is reduced with respect to A and h € P (because

h = Hg(mod[A]) and g € P). By Proposition 3.11, h = 0. Now, since 9T/dul" =0 and
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8T/8u(gl) =0, we have

HS,=H Z ( 99t )t = Z ( 99 )T(mod[,A]) = 8?1) (mod[A]) = 0 (mod[A]).

1 1
teM 6“2) teM 6“51) Oug

It follows that HS, € P, hence Sy € P, so S¢(n) = 0. We have obtained a contradiction
with the choice of g as the A-polynomial of the lowest rank that vanishes at n. This
completes the proof of the theorem. O

The following example illustrates the fact that a multivariate dimension polynomial
of a differential field extension carries essentially more information about the extension
than its univariate counterpart.

Example 4.7. Let K be a differential field with a basic set of derivations A = {41, d2,d3}
and let L be a A-field extension of K generated by a single A-generator 1 with the defining
equation
550585m + 6¢m + 65 + 65T =0 (4. 6)

where a, b and ¢ are some positive integers. In other words, L = K(n) is A-isomorphic to
the quotient field of the factor ring K{y}/P where P is the linear (and therefore prime)
A-ideal of the ring of differential (A-) polynomials K{y} generated by the A-polynomial
f = 008505y + 03y + Sy + 64Ty (P is the defining ideal of 77 over K.)

By [6, Chapter II, Theorem 6], the univariate Kolchin differential dimension poly-
nomial wy/x(t) of L/K is equal to the univariate dimension polynomial of the subset
{(a,b,c)} of N3. Using formula (2.2) for p = 1, we obtain that

oy () = <t§3) 3 (t—|—3—(;z—|—b+c)> _ <a—|—;)+c> 2

(a+b+c)d—a—b—c) (a+b+o)(la+b+c)?—6(at+b+c)+11]
( g )e+ ) |

Now, let us fix a partition A = Ay U Ay with Ay = {d1,02}. Let Ay = {d3}, and
®,,(t1,t2) denote the A-dimension polynomial of L/K associated with this partition and

(4.7)

the A-generator 7. With the notation of section 3, we obtain that ugcl) = 096585y and

u?) = 69¢y. Using the notation of Theorem 3.12 and formula (2.2) we obtain that for
all sufficiently large (r1,72) € N2

2 2
CardU}, . = (“; )(7“2 +1) - (’"1 + ) (a+b)>(r2 +1-c).

Expanding the last expression and using symbols ¢; and ¢, for the variables representing
r1 and 7o, respectively, we obtain the polynomial wyk(t1,t2) (see Theorem 3.12) that
describes the size of Card U’ :

T1,72°

2a—|—2b+30—2ac—2bct (a+b)(3—a—-10)
2 ! 2

C
wy( i (t1, o) = 515% + (a + b)tity + to+

1
5[(a—|—b—2)(a—|—b—1)(c—1)+2].
Furthermore, for all sufficiently large (ry,72) € N2,

Card U/ , = Card{6¢TF1 6572550 | k) ey ks € N, ky4-ky < 71 —(a+b), r3—(b+c) < ks

71,72
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<ry—c} = <7‘1 +2—2(a—|—b))b.

Thus, with the notation of Theorem 3.12,
bla+b—2)(a+b—-1)

b, bB—20-20)
1 .

ti,ta) = -t
b\ (t1,t2) 5l T 5 5

It follows that the bivariate differential dimension polynomial of the extension L/K
corresponding to the partition A = {41, d2} (J{d3} is

b |
By (1, 1) = %t% + (a+ B)tata + 5 (20 + 5b+ 3¢ — 2ab — 2ac — 2be — 267t +

DB el L atb-2)(atb-1)(bre-1)+2] (4. 8)

Finally, let us fix a partition A = A;UAsUA3 with A; = {§;} (i = 1,2, 3). Proceeding
as before (with the notation of Theorem 3.12), we obtain that

wy|k (t1,t2,t3) = ctita+bt1ts+atats+(b+c—be)ti+(a+c—ac)ta+(a+b—ab)tz+a+b+c—ab

—ac—bc+abe
and
Gy = btita + (b— %)ty + (b— ab)ts + (b — ab — b* + ab?),
so in this case

P, x (1, t2, t3) = (b+c)tita+btits+atats+(2b+c—be—b)t1+(a+b+c—ab—ac)ta+

(a4-b—ab)ts+(a+2b+c—2ab—ac—bc—b*+ab*+abc). (4. 9)
It follows from Theorem 4.1 that the dimension A-polynomial in three variables given by
(4.9) carries four invariants of the extension L/K: the total degree 2 and the coefficients
b+ ¢, b and a of the terms t1to, t1t3 and tot3, respectively. The dimensional polynomial
(4.8) carries three invariants, the total degree 2 and the coefficients b+ ¢ and a+ b, while
the univariate Kolchin polynomial (4.7) carries only two invariants of the extension, the
total degree 2 and the sum of the parameters a + b+ ¢. Therefore, the A-dimension poly-
nomial (4.9) corresponding to the partition of A into the union of three disjoint subsets
determines all three parameters a, b and c of the defining differential equation (4. 6) while
the univariate dimension polynomial gives just the sum of the parameters. Also, in ac-
cordance with the above considerations, the dimension polynomial (4.8) (corresponding
to the partition A = Ay |J Ay with Ay = {§1,02} and Ay = {d3}) shows that

(a+b)(3—a—0b)
2

Ao-tr.degy K ({08652 | ky + ko <} a, = (a+b)r +
for all sufficiently large r € N.

We conclude with an analytical interpretation of multivariate differential dimension
polynomials as generalized Einstein’s strength of systems of algebraic partial differential
equations of certain type.

Let K{y1,...,yn} be the ring of A-polynomials over a A-field K (we use the above
notation and assume that partition (3.1) of A is fixed). If ¥ = {Ay| A € A} is a set of
A-polynomials in K{y1,...,yn} then the system of equations

Ax(Y1,---yyn) =0 (Ae ) (4. 10)
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is said to be a system of algebraic (partial if Card A > 0) differential equations. An n-
tuple n = (1, ..., n,) with coordinates in some A-overfield of K is said to be a solution of
this system if ¥ is contained in the kernel of the substitution of (11, ...,n,) for (y1,...,yn)
which is a A-homomorphism K{yi,...,yn} — K{m,...,n,) sending each y; to n; and
leaving elements of K fixed. (Note that by the Ritt-Raudenbush basis theorem, see [6,
Chapter ITI, Theorem 1], the solution set of system (4.10) is the same as the solution set
of some its finite subsystem, so we can assume that the set A is finite.) A system of the
form (4.10) is said to be prime if the differential radical ideal P generated in the ring
K{y1,...,yn} by the set ¥ is prime. (Since a linear A-ideal of the ring K{y1,...,yn}
is prime, see [7, Proposition 3.2.28]), every system of linear homogeneous differential
equations is prime.) In this case, if L is the field of fractions of the integral domain
K{y1,...,yn}/P (which can be naturally treated as a A-field extension of K) and ;
is the canonical image of y; in L (1 < i < n), then L = K({(n,...,n,). The differential
dimension polynomial in p variables associated with the system of generators {n,...,m,}
of the extension L/K (and partition (3.1) of A) is said to be the differential dimension
polynomial of the system associated with the given partition of the set A.
Let us consider a system of partial differential equations of the form

Ai(f1,.- ., fn)=0 i=1,...,9) (4. 11)
over a field K of infinitely differentiable functions of m real variables z1,...,z, (f;
are unknown functions of z1,...,%;,). Let A = {d1,...,d,,} where §; is the partial

differentiation 0/0x;, and suppose that A;(y1,...,ys) are elements of the ring of A-
polynomials K{yi,...,yn}. We also fix partition (3.1) of the set of basic derivations A
(such a partition can be, for example, a natural separation of (all or some) derivations
with respect to coordinates and the derivation with respect to time). For any r1,...,r, €
N, consider the values at some fixed point ¢ of the unknown functions fi,..., f, and
their partial derivatives, whose order with respect to A; does not exceed r; (1 < i < p).
If f1,..., fn should not satisfy any system of equations, these values can be chosen
arbitrarily. Because of the system (and equations obtained from the equations of the
system by partial differentiations), the number of independent values at ¢ of the functions
fi,--., fn and their partial derivatives whose ith order does not exceed r; (1 < i < p)
decreases. This number, which is a function of p variables rq,...,7p, is the “measure of
strength” of the system in the sense of A. Einstein (with respect to the given partition
of A). We denote it by Sy, ..,

If the given system is prime, that is, the radical A-ideal P of K{y1,...,y,} generated
by the A-polynomials Ay,..., A, is prime (e. g., the A-polynomials are linear), then the
A-dimension polynomial @,k (t1,...,t,) of the system (defined by Theorem 3.12 for the
A-field extension L/K described above) has the property that

‘I)U|K<T17 L) Tp) = S’r‘l,...,'rp

for all sufficiently large (r1,...,7,) € NP, so this dimension polynomial is the measure
of Einstein’s strength of the system of differential equations (4.11) with respect to the
given partition of the basic set of derivations A.

Considering differential dimension polynomials of prime systems of algebraic partial
differential equations with basic set of derivations A, we say that two such systems
with coefficients in a A-field K are equivalent if there is a A-isomorphism between the
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corresponding A-field extensions of K that leaves elements of K fixed (it is called a
A-K-isomorphism). The following example shows how multivariate differential dimen-
sion polynomials can be used for determining the equivalence or non-equivalence of two
systems.

Example 4.8. Let us consider two algebraic differential equations over a differential
field K with a basic set of derivation A = {41, d2, 95},

596505y + 0%y + S5y + 05Ty = 0 (4.12)

and

50505y + 05Ty =0, (4. 13)
where a, b, and ¢ are some positive integers. As we have seen in Example 4.7, the uni-
variate Kolchin differential dimension polynomial of equation (4.12) is given by (4.7).
The univariate differential dimension polynomial of equation (4.13) is the same (see [11,
Example 4.9]). The A-dimension polynomials in three variables associated with system
(4.12) and the partition A = A UA;UAg with A; = {6;} (i = 1,2, 3) is given by (4.9).
The corresponding polynomial of equation (4.13), as it is shown in [11, Example 4.9], is

(I)n|K(t1, ta, t3) = (a+b+c+1)t1t2 +bt1t3+at2t3+(a+b+c—|—1—ab—b2—bc)t1 +(a+b+c+1—

ab—a®—ac)ty+(a+b—ab)tz+a+b+ct+1+ab*+a*b—a®—b*—2ab—bc—ac+abe. (4. 14)
Since the polynomials (4.9) and (4. 14) have different coefficients of the term ¢;¢2, there is
no A-K-isomorphism between the differential field extensions of K defined by equations
(4.12) and (4.13).

Our example shows that using a partition of the basic set of derivations and the com-
putation of the corresponding multivariate A-dimension polynomials, one can determine
that two systems of A-equations are not equivalent, even though they have the same
univariate differential dimension polynomial.
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