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A QUADRATIC DIVISOR PROBLEM AND MOMENTS OF THE
RIEMANN ZETA-FUNCTION

SANDRO BETTIN, H. M. BUI, XTANNAN LI AND MAKSYM RADZIWILL

ABSTRACT. We estimate asymptotically the fourth moment of the Riemann
zeta-function twisted by a Dirichlet polynomial of length T1~¢. Our work relies
crucially on Watt’s theorem on averages of Kloosterman fractions. In the con-
text of the twisted fourth moment, Watt’s result is an optimal replacement for
Selberg’s eigenvalue conjecture.

Our work extends the previous result of Hughes and Young, where Dirichlet
polynomials of length T11—¢ were considered. Our result has several applica-
tions, among others to the proportion of critical zeros of the Riemann zeta-
function, zero spacing and lower bounds for moments.

Along the way we obtain an asymptotic formula for a quadratic divisor prob-
lem, where the condition amims —bnine = h is summed with smooth averaging
on the variables my,mo,n1,n9, h and arbitrary weights in the average on a,b.
Using Watt’s work allows us to exploit all averages simultaneously. It turns out
that averaging over my, mo, n1, n9, h right away in the quadratic divisor problem
simplifies considerably the combinatorics of the main terms in the twisted fourth
moment.

1. INTRODUCTION

The Riemann zeta-function ((s) is intimately related to the study of prime
numbers and other problems in number theory. There are a number of famous
conjectures in this area. Two distinguished examples are the Riemann Hypothesis,
which states that all non-trivial zeros of ((s) are on the line Re(s) = 1/2, and the
Lindel6f Hypothesis, which states that ((1/2 + it) <. (1 + |t])°.

These two conjectures remain far out of reach. However, methods in analytic
number theory can prove that these conjectures are true on average. An example
of this is the study of moments of ((s). To be more precise, let

T
) = [l o

Here, asymptotic formulae were proven for £k = 1 by Hardy and Littlewood and
for k = 2 by Ingham (see [14; Chapter VII]). Note that the Lindel6f Hypothesis is
equivalent to I;,(T) <. T'" for all k € N.

The result of Ingham was useful in proving his zero density result (see, for
example, [14]), which also has applications to prime numbers. Despite extensive

further work, no such result is available for any other values of k. However, results
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are available for twisted fourth moments of ((s), which may be considered to be
somewhere between the k£ = 2 result of Ingham and the open problem for k = 3.
Let us define

aa

P(s) = —

s
a<T?

to be a Dirichlet polynomial of length 77, with ¥ > 0 and a, < a°. Then Watt’s
result in [15] gives that

T
/0 IC(3 +it)[*|P(% +it)Pdt <. T'H* (1)

for ¥ < 1/4. This is an improvement over the work of Deshouillers and Iwaniec
[7], which had a similar bound for ¢ < 1/5, and the initial work of Iwaniec [11],
which led to ¥ < 1/10 just using the Weil bound. Despite appearances, this type
of bound is not far removed from the prime number theory which inspired such
questions. For instance, the bound (1) is useful in studying prime numbers in
short intervals [5].

It is desirable to evaluate more precisely the quantity in (1), in view of various
applications to the theory of the Riemann zeta-function, including the study of
proportion of zeros on the critical line, gaps between zeros of the zeta-functions,
and lower bounds for moments. Some of these consequences of our main results
below have been in fact already worked out (see [2, 3, 4]) and have remained thus
far conditional.

Hughes and Young [10] obtained an asymptotic formula for

T
/|C(é+z‘t)|4|P(§+z't)|2dt
0

when ¥ < 1/11, and it is expected that this result remains true all the way for
¥ < 1 (and in this range it implies the Lindel6f Hypothesis). In this paper, we
prove the following.

Theorem 1.1. Let T > 2 and let o, 3,7,0 € C with «,3,7,0 < (logT)~ L.
Furthermore, let ®(x) be a smooth function supported in [1,2] with derivatives
®U)(x) <; T¢ for any j > 0. Consider

Qg 61)
A(s) = Z p and B(s) = Z 7
a<T? b<T?

where a, < a° and fy < b°, and let 1, 5+6(T) denote
— [t
/ CEtit+a)C(E+it+B)C(E—it+4)C(E—it+6)AR +it)BE+ it)q)<?> dt.
R

Define
Zoprbab = Aapr.6Bapsr.6.aBry.6.0.8b
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where
Q(l+Oz+7)§(1+0z+5)§(1+5+7)§(1+5+5)
C2+a+p+v+9)

ol ijo Oa,B (pJ)O'%(;(pJ )p J

Aoprs =

Y

and oap(n) =D, 1o ny%ny”. Then we have

e Lo (r) "
T Za a a Z_ —a.—B.a dt
76 ’Yv Z Z gab /R T 7577757 7b _'_ 27T Y, 57 ’ ﬁ7 7b

g9 (ab)=

e [o(2) () (5:) "
T o Z_ —,0,a Ry Z_ —a,a

£\ B £\ B
+ (%) Za,—'y,—ﬂ,(s,a,b + (%) Za,—é,'y,—ﬁ,a,b dt
+ 0. (T%+219+€ I T%+19+€).

Remarks.

e Setting A = B and letting the shifts «, 3,7,0 — 0, Theorem 1.1 implies
an asymptotic formula for

T
/|C(é+z‘t)|4|P(§+z't)|2dt
0

when ¥ < 1/4, which should be compared to the ¥ < 1/11 restriction in
the work of Hughes and Young [10].

e The above expression coincides with that obtained by Hughes and Young
[10]. Here, the first two terms come from the diagonal, while the four
remaining terms are the main terms coming from the off-diagonal contri-
bution of sums of the following type

By
Z ﬁf(amlmg, bning, h) K(mymsnins).
mymyng Ty

amima—bnina=h7#0

Each of the four possibilities where ny < no or ny > ns, m; < my or
my > msy contributes to exactly one of the off-diagonal main terms.

e As mentioned in [10; page 207], the symmetries of the expression imply
that the sum of the six main terms is holomorphic in terms of the shift
parameters. The holomorphy of this permutation sum has been proved in
[6; Lemma 2.5.1]. In the remaining of the article, we impose the additional
restrictions that |a + 8] > (logT)~!, etc. We note that the holomorphy
of I, 5~s(T) and of the permutation sum leads to the holomorphy of the
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error term, and hence the maximum modulus principle can be applied to
extend the error term to the enlarged domain.

Practically, it is however unnecessary to specify the Euler products A, g5 and
B g~s5a. In various applications (for example, [2, 3, 4]), the resulting arithmetic
factor can be worked out much more easily by incorporating the arithmetic proper-
ties of the sequences «, and (,. For that purpose we state a variant of Theorem 1.1
below.

Theorem 1.2. Under the same assumptions as in Theorem 1.1 we have

_ N[~ £\ —a-B-v—d
Ia,ﬁ,’y,é(T) = Z O‘aﬁb/R(I)<T> (Za,ﬁ,'y,é,a,b(t) + (%) Z—'y,—é,—a,—ﬁ,a,b(t))dt

a,b<T?

- t t —a— ~ t —a—0
+ Z &a/Bb\/RQ(T) <<%> Ziﬂﬁﬁyiay&yayb(t) + (%) Zi(iﬁfﬁiayaﬂb(t)

a,b<T?

t\B-7~ t \—B-0~
+ <§> Za7,7,,5,5,a7b<t) + <%> Za,(;’%@a,b(t)) dt
+0. (T%+219+5 + T§+19+a)
where

Zaﬁyéab(t) - E - 11 - - V*<m1mzn1nz)
325750,y b 1 §+a §+ﬁ §+f\/ §+5 t2
amima=bning (a )le my nq U

and the function V*(x) is defined as in (8).

Remark. Note that the function V*(x) satisfies V*(x) <4 (1 + |z])~* for any
fixed A > 0, so Theorem 1.2 shows a better structure of the main terms. This is
the form suggested by following the recipe in [6].

An important feature of our results is that we exploit the averaging over a,b
in the proof of the theorems. Thus stating the results for individual a,b and
then summing the error term would lead to an inferior bound. Another interest-
ing feature is that since we arrive to the main terms from another direction, the
combinatorics of the main terms turn out to be easier than in previous treatments.

Our results should also be contrasted with recent results in [1], where the length
of ¥ was extended beyond 1/2 for the twisted second moment, and where some
expressions approaching those of Theorem 1.1 were considered. In addition, the
range ¥ < 1/4 is optimal in the sense that assuming the Selberg eigenvalue con-
jecture does not lead to an extension of the range of ¥). On the Selberg eigenvalue
conjecture Motohashi [13] has obtained an exact formula for the twisted fourth
moment. However in his treatment an estimation of the error terms is lacking
(and the average over a and b is not exploited), and should not in any case allow
one to exceed ¥ = 1/4, as we will now explain. If the polynomial is chosen to

be an amplifier of length T%_a, then results of this form lead to the Burgess style
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subconvexity bound |¢(1/2 + it)| <. ¢167¢. Since this bound is a natural barrier
in other families of L-functions, it seems likely that we cannot improve the length
of the polynomial without including new ingredients specific to ¢(s).

The improvement over the work of Hughes and Young [10] arises from two
ingredients, both appearing in the treatment of a shifted convolution problem
involving the divisor function. The first is that we do not use the d-method, which
turns out to be suboptimal in this application. The second, and main reason for the
improvement in our work, is the treatment of an exponential sum, which resembles
a sum of Kloosterman sums. In Hughes and Young’s work, they use the Weil bound
for Kloosterman sums, neglecting the possibility of further cancellation in the sum.
Our work takes advantage of further cancellation derived from spectral theory on
GL(2). In particular, we use the exponential sum bound from Watt [15], which
is based on the work of Deshouillers and Iwaniec [8]. However, we also appeal in
certain circumstances to the Weil bound, when Watt’s result is not effective.

The quadratic divisor problem that we obtain is likely to be useful in other work,
and therefore we also state it here. For a function f(z,y,z) decaying sufficiently

fast at infinity, we let ﬁ,(x, y, s) denote the Mellin transform of f with respect to
the third variable and we write f for the Mellin transform with respect to all three

variables. Further, let f;ﬁ,%g(az, y;a, b, g) be

1 ~ s
. f3(l‘7 Y, S)C(S)g(l +a— B + Y — 5 + S)g na,ﬂ,'y,é,a,b(oa 07 S)dS, (2)
2m (14¢)

where 1,,5..6.46(, v, s) is defined as in (23). Then we have the following.

Theorem 1.3. Let A, B, X, Z,T > 1 with Z > XT~¢ and log(ABXZ) < logT.
Let oy, By be sequences of complex numbers supported on [1, A] and [1, B], respec-
tively, and such that oy < A%, By < B°. Let f € C*°(R%,) be such that

gitith 4 ; N 2272
L ay.2) iine T+ )" (1 + )7 (1 *(1 )
Oz Oyi 9z flz,y,2) <ijr, (I+2)"1+y) 7 (1+2) + 2y

for anyi,j,k,m > 0. Let K € C*(Rx) be such that K9 (z) <, T5(1+ )77 (1 +
x/X?)7" for any j,r > 0. Then, writing

QaBp
S= Z %f(amlmz, bning, h) K (mymaning),
m§msnin
amimo—bnino=h>0 1772701742

where the sum runs over positive integers a,b, my, ms,ny,ny and h, we have
S = Mayﬁf\ﬁé + MB,CV,’Y,(; _'_ MCLB#S(Y + Mﬁyavévﬂf _'_ 57

where

C(1+a_6 1+7 5 agaﬁgbg
M, =
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00 xz N
l/n }(<§§55)f@5”5(x7$;awb,g)x66dx
0

and the error term & is bounded by
£ <T*(AB)?XZ"? (AB +(A+ B)%(AB)iX%Z—i)

Another variant is stated in Section 4. We have chosen to state in the introduc-
tion the version that we will use to obtain Theorem 1.1. Here, as explained before,
each of the four main terms comes from the four possibilities where n; < ny or
niy > No, My < Mgy Or my > Mmeo. To contrast our result with previous work, the
novelty in our treatment is that we average over all possible parameters, while
allowing the averages over a,b to have arbitrary weights. In comparison, the §-
method delivers a fairly poor range of admissible values of a,b. Finally, when
a = b =1 strong error terms have been obtained by Motohashi [12] exploiting the
fact that there are no exceptional eigenvalue for the Laplacian on SL(2,Z)\H, for
‘H the usual upper half plane.

2. PROOF OF THEOREM 1.1 AND THEOREM 1.2

2.1. The approximate functional equation. We start by recalling the approx-
imate functional equation.

Lemma 2.1 (Approximate functional equation). Let G(s) be an even entire func-

tion of rapid decay in any fized strip |Re(s)| < C satisfying G(0) = 1, and let

1 G S —zS8,.,—S
Va767775<x7 t) = / %ga,ﬁﬁﬁ(S; t>7r 2 "Ij dS7
)

2mi

where

2 2 2

gayﬁv%(s(‘s?t) = RPN 1 i 1. 1is5—i :
) ) () ()

2 2 2

r ( §+a+s+z’t> r ( §+6+s+z‘t> r ( %Jr“/Jrsfit) r ( %+5+sﬂ't>
2

Furthermore, set

(o
atB+y+d 2

Xo,pv.8 (t)=m

and

VO‘va’Yﬁ('x’ t) = X7777577a776<t>vavﬁf)/75<'r7 t)

Then we have

(A +a+it) A+ B+it)C(E+y—it)C(E+0—it)
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_ Z aa,ﬁEZ)Ow(n) <@> _itVa,gmg(mn, ) @)

—it ~

o 30 sl () )+ OM(1+ 1)),

for any fixred A > 0.
Proof. See Proposition 2.1 of [10]. O

Remarks.

e As mentioned in [10], it is convenient to prescribe certain conditions on the
function G(s). To be precise, we assume G(s) is divisible by an even poly-
nomial Q, 4.~,6(s), which is symmetric in the parameters «, 3, v, d, invariant
under the transformations « — —a, f — —f, etc. and zero at s = —@
(as well as other points by symmetry), and that G(s)/Qa.s..s(s) is inde-
pendent of «,3,7,d. An admissible choice is Q4 g+.5(s)exp(s?) for such
Qa.5~,6(s), but there is no need to specify a particular function G(s).

e For t large and s in any fixed vertical strip Stirling’s approximation gives

DT o) (4)

Xa t) = (—
767/-\/75< ) 27-(-
and

Gosnslst) = (5) (140070 +15P)). (5)

Moreover, for any fixed A > 0 we have
ol _
2.2. Initial manipulations. Applying the approximate functional equation (3),
we see that
[a757775<T) = Ja767775<T) + j_’%_év_av_B(T) + OA<T_A)7

for any fixed A > 0, where

QaQlp
D S S et

1 ;—f—a 2
a,b<T? m1,mz2,n1,n2 (ab)2m; 2 1 2

anyme —it ;
Yo 't <I>(—) dt

and J is the same sum, but with V in place of V. Write
Japrs(T) = Muapys(T) + J5 g 5(T)

and

Sy bmap(T) = Moy 50, -(T) + 2 5o (1),
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where

Z Z gty

a,b<T? T1,m2,n1,n) (ab)2m1 m3
amimeo=bninsg

t

=2 Z e
1 2 1

1
b<T? mi,m2,n1,12 ab)am
a:0% amima—bnina=h#0 ( )

h it t
/ (1 + ) Vaﬁmg(mlmgnlng, t)‘b(—) dt
R T

bnan

and My, 5 —qa-pand J° 5 5 being similar expressions.

2.3. The diagonal terms. Asin Hughes and Young [10; Proposition 3.1] we have

o aﬁ b t 1,9
Ml;a,ﬁ,% Z Z ;abg /]R (T)Za757%57a,bdt+ Oe(T2+2+€).

ab)=1
Notice that when moving the line of integration to Re(s) = —1/4 + € in their
equation (47), we cross only a simple pole at s = 0. This is because of the
cancellation of the zeros of the function G(s) at (O‘ﬂ) , etc. with the poles of the
zeta-functions in the formula.
Similarly,
oG
=Y, —0,— 0, — Al a_ fofafadt
- 0€(T§+a+€)_

2.4. The off-diagonal terms. We first evaluate J; ;5. In view of (6), the
summands in J? B J(T) with mimaning > T?¢ give a negligible contribution.
Also, by 1ntegrat10n by parts we have

h N~ t
/]R; (1 + bn1n2> Va,@%g(mlanan, t)q)(f) dt <<J

T
(h/v/abmimaoning)iT7

for any fixed j > 0. So the contribution of the terms with |h| > /abmimanin, T—1+¢
is O4(T~4) for any fixed A > 0. Hence

* . aaab
ass(T) = Z Z ta 148 14y 149

1 1 1 1

1 LS = = =

5 2 2 2 2

a,b<T? mimaninaLT2+e (a’b) 2my my n L
amimeo—bninao=h

0<|h|<vVabmimaning T~11€
ho\-it ¢
/ (1 + ) Va,@%g(mlmgnlnz, t)q)(f) dt + OA<T7A).
R

bm Mo




MOMENTS OF THE RIEMANN ZETA-FUNCTION 9

Note that a trivial bound gives

. 1
Trana(T) <o TV > > L4+ 0T
a,b<T? mimanineLT?te <abm1m2n1n2)
amimo—bnino=h

0<|h|<vVabmimaning T—1te
<. T1+19+€, (7)

where the last estimate comes from letting a, mi, ms and h vary freely and bound-
ing the number of values of b, ny, ny by the number of divisors of amymsy — h. For

|h| < vabmymanyny T~ we have
it
(1 n h > _ e( _ L) + OE(T_H_E).

bnine 2mbnine

Thus, using the trivial bound (7) we get

-y X e ()
75 7,0 +a +5 +v +d abm1n1m2n2

a,b<T?% mimoninoLT?te (a’b)
amimg—bninag=h#0

/Re< — L) Vg6 (mimaninag, t)@(%) dt + 0. (T"*),

27Tb77,177,2

where () is a function that is identically 1 for 0 < x < 1 and decays rapidly at
infinity.
Now, define
1 G(s) —2s, —
Vi(x) = — 2m) x4 ds.

)= g [ S om i )
The estimate (5) implies that V, g, s(z,t) = V*(x/t?) + O.(t *"227¢). In partic-
ular, we can replace V, g s(z,t) with V*(z/t?) in the above expression at the cost
of an error of size O.(T?*¢). Grouping the terms h and —h allows us to replace
e(—th/2mbniny) by 2cos(th/bniny) and the condition h # 0 is now replaced by
h > 0. Thus

. OéaOf_b w( hZTQ_E >
aprs(T Z Z 1 lia %Jrﬁn%ﬂ 3+6 7 Nabmynymaons

a b<TO amima—bnina=h>0 (ab) 2y my 1 ny
th 1Mo N1No t 9
(T g (D 0,70
o8 (bn1n2> 2 T O )

To the inner sum we apply our result on the quadratic divisor problem in the
form of Theorem 1.3 (using partial summation before and after applying the the-
orem) with

f(x,y,z):cos(%)@D(zZ:; 6), K(x)zV*(t%), Z=T"° and X =t.
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We then get four main terms

;,B,W,J(T) = Z{,ﬁ,'y,5(T) + Mg,a,'y 5( ) + Ma B, 57( ) + Mz,a,(g,'y(T) + &
with the error being bounded by

£ <. T2He(T? 4 Tat?),
Let us focus on the first main term. We have

* o C(l_'_&_ﬁ 1_'_/7 5 O‘gaﬁgbg
sro(T) =2 Z Z

C(2+Oé—5+”y J) (ga)1=B(gb)1—9
// t2 2ab faﬁ,v,é(%ﬂa,b,g) —1=A- 6‘I>< )d:Edt

where f, ~5(2,2;a,b,g) is equal to
1

2mi (1+e)

fg(l‘, x, S)g(S)C(]. +a— B + Y= 5 + S)g_sna,ﬁ,’y,(s,a,b(oa 07 S)dS,

f3 is the Mellin transform of f(z,y, z) with respect to z and Na,By.6,0, (U, U, 8) 1S &
finite Euler product defined as in (23). After a change of variable we have

~

fs(@,z,5) = 2° /OO cos(tu) (u*T* % u~! du.
0

The integral over u can be expressed as a convolution of Mellin transform®, so

fslz,2,5) = a* s ()T~ (s — 22) cos (g(s — 22))7522_8 dz.

271 (0)

We move the line of integration to Re(z) = —A for some large A > 0, collecting a

residue at z = 0 only (since ¥(z) has a simple pole of residue 1 at z = 0). Taking
A large enough with respect to € we obtain

]/”;(:E, x,s) = x°'(s) cos (g)t*s + Oy (2T,

since t < T. We can ignore the O-term as this contributes an error of size O 4(T~4).
Now we evaluate the integral over x obtaining

o) 2
/ V* < x )l‘_l_ﬁ_6+sd$‘ _ (tg\/(%)—ﬁ—é—ks(zﬂ.)ﬁ-i-é—s
0

t2g%ab
by the Mellin expression (8) for V*(x). Thus, we obtain

apr ()= M5 5(T) + 0T,

G(=2)

2

—B—=0+s

ISince [;° cos(tz)z® =t dz = t~*T'(w) cos(Z2) for 0 < R(w) < 1 and t > 0.
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where

agaBey ((1+a—B)C(1+v—0)
_QZZ galgﬁbgl‘s C2+a—-p+y-9)

— / /1+5> t/2m)~P %(ab)(ﬁﬂs)/?@ﬁ)SF(S)COS(%)

C(8)C(L+a—B+7 =08+ 8)apr6a5(0,0 s)@(%)dsdt.

Applying the functional equation ¢(1 — s) = 2(2m)*I'(s) cos(%)((s) and making
the change of variable s — 3 + § 4+ 2s we arrive to

(A+a—pB)¢d+v—-9)

aﬁ’yé

kok T —
wonol) = e ety —9)
1 t 4 G(s)
— | (=) (t/2m) P M, dsdt
i J 2 () @207 | M o) s,
where

ma,ﬁ,’yﬁ(‘s) = C(l +Oé—|—’}/—|—28)g<1 _B o — 28)

o aﬁ b
Z Z gal Bg sbgl 5— Sna,ﬁ,'y,&a,b((), 07 5 + 0+ 28).

In summary we have

aps(T) = M5 5(T)+ M5, s(T) + M55, (T) + Mg, 5. (T) + &,

where £ < T2+e(T2 4 T7+3),
On the other hand, proceeding identically to the above we also find that

T s T) =M s o p(T) + Mo 5(T)

FM s D AMY L (T)+E,
where £ <. T2+(T?" + T7+%) and where, for example,
(A+a—-p)¢(l+v—-9)

(2+a—-pB+7v-9)

®( ) Xowso 00t/20 0

(1+e)

Mi*(g,,%,@,a(T) -

1
271 R

G(s)

M_s5_—p—als)dsdt.

In view of (4) we get

o . (I+a—-pB)Cl+y—-9) 1 t s
wa(T) + M5 s alT) = ROy — %/}R@<T>(t/2ﬂ) -
G(s)

1re 5 (maﬁ,%g(s) + m,&,%,g,,a(s))dsdt —+ O€<TE).
+e
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It is a standard exercise to check that M, g 5(s) = M_s5_ _p_a(—s). Hence by

the residue theorem, noticing that the only pole in the strip —(1+¢) < Re(s) < 1+¢
(@) gpd — B2

Y

is at s = 0 as we assume that the function G(s) vanishes at —
C(L+a—p)d+7—9)
(2+a-B+v-0)

1 t
- —B—6 €
i /. @ () (/27) "M 5 0)dE + OL(TF).

oI+ M5 5 (T) =

The other terms combine in the same way. Hence we are left to show that

(A+a—pFed+y—90), Agalyy ,
(2+a—-3+v—90) Mapizal ZZ ;abg

«, 577 67a7b7
b)=1

which reduces to
aﬁbénavﬁvyvévayb(07 07 B + 5) = BO(,—67’Y7—B7GB’Y7—B704,—67I7'

By symmetry and multiplicativity, this is equivalent to

pyﬁna7677757py <O7 07 /8 _'_ 5) = Ba775777757pl/' (9)
From Lemma 6.9 of [10] we have
1 —1 p_ﬁ
—(1— ©0) _ ,—1pM -2p02)
Ba,ﬂi%*ﬁ,p” - <1 p2+a5+75) p,(ﬁJr,y) 1 (B p BV +p B )7

where
BO) — =4y _ p41)8

BW = (p=* +p" )" (p7" = p*?),
B® — pfa+57v+5<pﬁfw _ plfﬁf'y)_

On the other hand, using the definition of 74554(u, v, s) in (23), the left hand
side in (9) is equal to

puﬁ (pu(ﬁJr’Y) + Z p*j(ﬁJr“/)cp(Oé Fy oy =6, a— B4y — 5))

0<j<v
_ pvY — pP 1 1 1 -1
— vy _ o -
- P T pf(ﬁﬂ) -1 <1 p1+a+'y) (1 pH“f‘S) (1 p2+a5+75> ’
So (9) is equivalent to
p (T =) (1= p P 4 (p = p ) (1= pT ) (1 —p 'p")
—p ( BO _ 1M 4 2 B<2>)_

It is an easy exercise to check that the above holds by comparing the coefficients
of p°, p~! and p~2, and hence Theorem 1.1 follows.
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2.5. Proof of Theorem 1.2. In the remaining of the section, we shall show that
Za,ﬁ,'y,é,a,b = abZa,ﬁ,v,é,a,b(t) + OE (T_(l_ﬁ)/}’—a) (10)

fort <T,a,b < T and (a,b) = 1, and hence Theorem 1.1 will imply Theorem 1.2.
From (8) we have

~ 1 G(s) [t \2 Z Oa3(m)oy s(n)
Z — ) )
aﬁ’%&’mb(t) 271 [1) S (271') (ab)% (mn) $+s ds

am=bn

Since (a,b) = 1 we get

~ 1 G(S) / t\2, \ (11e) x= Ta5(bn)o, 5(an)
Za,ﬁ;y,é,a,b<t) /(1) (—) (ab) (1+)Z B n1+2“;5 ds. (11)

- 27 S 2T —
Let
— Ta,5(n)0y6(n)
Auals) = D T
n=1
B C(I+a+v+2s)((14+a+d+2s)C(1+8+v+2s)(1+ 8+ 09+ 2s)
C(2+a+ﬁ+’y+5+4s)
and
o0 o j j+1\,—7 (1425)
Baﬁ,%&a(s) _ H E]Z())U ,6(]7])}0'7,5(]7] A )Zj~(1+2 ) ’
p”||a Zj:O o-avﬁ(pj)o-%(s(p])p J 5

so that Aaﬂ,%g = Aaﬂﬁ,g(O), Ba,ﬁ,’y,&,a = Ba,ﬁ,%é,a(o) and

>~ 04.5(bn)o., 5(an)
Z n1+2’1 = Aaﬁ,%é(S)Baﬁ,%é,a(S>By75,a,57b<3)
n=1
Moving the line of integration in (11) to Re(s) = —1/4 + ¢, we cross only a simple

pole at s = 0. The zeros of G(s) at —(a—;”’), etc. cancel out various poles of the

zeta-functions. Bounding the new integral by absolute values we obtain
> _ _1 _3
Zapry5.ap(t) = (b)) AaprsBapsabysass + O (T 2(ab) 4)

and so (10) follows.

3. AN UNBALANCED QUADRATIC DIVISOR PROBLEM

As preparation for the proof of our quadratic divisor problem (Theorem 4.1) we
consider the first an “unbalanced” divisor problem where the variables mq, mo, nq, no
appearing in amyms — bnyny = h are (essentially) subject to the condition that
my1 < meo and n; < no. This assumption simplifies the decision on which variable
to apply Poisson summation formula. In the proof of this result we appeal to our
main technical ingredients: Watt’s theorem and the Weil bound.
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Proposition 3.1. Let A, B, My, My, N1, No, H > 1 and let M = MM,, N =
NiNs. Let Wy, fori=0,1,...,4, be smooth functions supported in [1,2] such that

VVi(j) < (ABMN)® for any fized j > 0. Let o, By be sequences of complex num-
bers supported on [A,2A] and [B,2B], respectively, and such that o, < A%, B <K
Bf. Let

o= amlmg—gmzih;éo afsWo <I}—lI>Wl <M'1>VV2 <M2>W3(N1)W4<N2)

where the sum runs over positive integers a,b, my, Mo, n1,ny and h. Assume that

we have My < My(ABMN)e, Ny < Ny(ABMN)® and H < (AB)2". Then
Se=M+E,

where

M= 3 () ()W) [ () w(R) o

avbvml sl 7h‘7d
(am1,bny)=d

and

£ <. (ABMNH?)T* (AB v Hi(A+ B)3 (ABMN)%>

Moreover, without any assumption on H the same result holds with the bound for
& being replaced by

£ <. (ABMNH?):"(ABH)i(A + B)% + (ABMN)*H?. (12)

Proof. First, we observe that we can assume there is 6 > 0 such that MN >
(AB)? and, for (12), H < (ABMN)2~? since otherwise the bound is trivial, and
that AM =< BN (otherwise the sum is empty when AMBNH is large enough).
Moreover, by symmetry we can assume BN; < AM;. To summarize, we have

AM = BN, MN > (AB)’ and BN, < AM,. (13)

Now, let d = (amy,bny) (note that this implies d|h). We can eliminate the
variable ny by writing am;ms — bnyne = +h as mg = +(h/d)am, /d (mod bny/d):

)3 WQ(MQ)W“(NQ)

am1m2n12b77?12n2::|:h
Mo amimse F h
— Wy (e Wy (R
Z 2 M2 4 bnlNQ
mo==£(h/d)ami/d (mod bni/d)
mo amiqmes _1
= wa (5 )wa( ) (1+0.((AM) ).
Z 2 MQ 4 bn1N2 + ( ( ) )

mo==x(h/d)am1/d (mod bni/d)
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The contribution of the error term to Sy is bounded by

H(AM)™"= )" > (AM)® <. H*(AM?,

=H amima—bnine==h,
amimeoxbnino<AM

and, thus, after applying Poisson’s summation and changing h into dh, we get

Se=) > Zo‘aﬁbWO(dh)Wl(Ml)W?’(Nl)

d<2H a,bymi,ni,h IEZ
(aml,bnl):d (14)

amy /d ¢
e(:Flh bnl/d)F(a’ b,my,ny,d, ) +O€(H2(AM) ),

where

d? o xd xd d?lx
F(a,b,mi,ni,d,1) = wa( () d
(a, b, 1,71 ) abminy /0 2 amq M, 4 bny Ny ¢ abminy v
[ bnix amix
_/0 W2<dM2)W4( N, )e(l:c)da:.
The term | = 0 corresponds to the main term (notice that the sum over d can

be extended to an infinite sum since Wy(-) is compactly supported in [1,2]). For
the terms with [ # 0, integration by parts implies

b idM.
Fla,b,mi,m,dyl) <o (AM) 5 (d‘/T\ZJan]\Z) bnf
AM N\JdM,
- (A ( )
< UMD\GnnN,) B,

for any fixed j > 0. Hence we can restrict the sum in (14) to 0 < |I| < L, where

AM

L=
dMs Ny

(AM)®.
Thus, we have
Sy =M+ Ry + O (H*(AM)?),

where

> 2 Zo‘“ﬁbw‘)(ZL)Wl(Ml)W?’(Nl)

d<2H a,b,mi,n1,h 0<|l|<L
(am1,bny)=d

amy/d
e(:F lh bnll//d )F(a, b,mi,ny, 1, d).
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From the definition of F', we have

Ry < Z/ s ay, [ Zal®)]dz,

d<2H Y T*=BN| ~AM;
where

Zeaw)= Y ) O‘aﬁbW()(dh)Wl(Ml)W?’(Nl)

a,bmi,n1,h 0<|l|<L
(aml,bnl):d

bn,x amix am, / d
Wa (St )Wa (S5 e F ik z
2\ )"V, e\ T g g ) o)
We can bound Z. 4 using the following lemma which we will prove in the next
subsection.

Lemma 3.1. Under the conditions of Proposition 3.1 (without the condition H <

(AB)2%%), the assumptions (13) and z =< jjﬂvjl , we have

A2B2H ;M;N;\ 5
Zsalw) e (AM) = <M;N;>2(BN1) <BN1+M1 min { 4, H}) (15)
Moreover, if H < (AB)2¢ and d < (AB)2(AM)™%%  then
A2BH? / MNy\ 5 1 N2H
c 16
Zs alw) < (AM)=2 ( M2N2> (B} (1+ AgBQ) (16)

We first assume that H < (AB)2*<. We apply (15) to the terms with d >
1
min {(AB) (AM)~100e (AMUILHYS | We integrate over < dNo/(AM;) and then
5
2

BMa
use the inequality > d>min(z,w) d=3 < 273 + w2 getting that the contribution of
these terms to R4 is

ABN):H

<. (AM)€< — (BNy)2 <BN1+M1m1n {4, H})

AMl NlH (AB)%
We think of the above expression as being of the form (I +17)(a+0b), expanding it

as [-a+1-b+I11-a+11I-bwe use the inequality min(A, H) < Aand min(A, H) < H
in the terms I1 - a and I1 - b respectively, getting,

5.1 1 5013
BeNeNHE | BINNCH |y pins i +
M, Ai Mz Ai M

<. (AM)a(

Subsequently in the first term we use BN; < AM;, in the second term we
use AM = (BN) and in the fourth term H < (AB)2*¢ together with M; <
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My(AM)F,
1.1 1 3 1 1
<. (AM)? (AB%NaHa +AYBIN?H + AYBY (NN1)§H>
Finally using the inequalities AM =< BN, N; < No(AM)® and H < (AB)%Jr€ we
conclude with the bound
11 1o 1 1.1
<. (BNH)?* (AB n AZBZNfH?) <. (BNH)?* (AB 4 Al (BN)ZH5>
lie 1.3 1 1
<. (ABMNH?)* (AB + HiASBS (ABMN)S).

For the other values of d we apply (16). The integration over z contributes
dM>/(BNi), while the sum over d is bounded using L d! <. (AB).

<(AB)2
Thus the contribution of these terms to Ry is

AM, 1 MiNy\ 3 1 NZH\ 1
ABHz( ) BM z<1 )
BN, M, N, (BM)> (14 55

Repeatedly using that AM =< BN we see that the above is

<. (AM)*®

1 1y 113 1 1.
<. ABH3(AM)*** + AABXHIN? (AM)?
<. (AMH)=* <AB + (ABH)T (ABMN)%>,

and so Proposition 3.1 follows in the case H < (AB)z <.

Without the assumption H < (AB)z* we apply (15) for all d, integrating over
x < dNy/(AM;) and obtain

M

1 1 N % 1
Ry <, (AM)EAEBE(—> H(BNI)E(BN1+AM1)
<. (AM)°AH(ABM,N,)2 (BN; + AM,)?,

since AM =< BN and BN; < AM;. Finally, since M; < My(AM)® and AM =
BN, we have AM; < A2(AM)2(AM) < A2(ABMN)i(AM)? and similarly for
BNy, thus

Ry <. (AM)*AH(AB)i(A + B)i(ABMN)X.

This is stronger than (12), so the proof of Proposition 3.1 is concluded. U

3.1. Proof of Lemma 3.1.
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3.1.1. Proof of (15). First, observe that we have

Zea) = XY awattbo( )W (G W)

dide=d a,b,mi,ni,h 0<‘l‘<L
(a,dg):17d|bn1
(am1,bny /d)=1

W, (Z%f)m(‘%x)e( =S lhbT/ld) o(lz).

dNa
AMy?

we have

By Weil’s bound and partial summation, for a < A/d; and = <

> () )

(ml,bnl/d):1

1 1 dM

<. (AM)*(ih, by /d) (b /d)§+5<1 + o 1),

b?’Ll

and thus

1 1yc di My
Zoalw) <o (AMY S 3" (1h,bna/d)? (bna/d)? (1+ = )

1

dide=d alh<ALH/d
bn1 < BNy, d|bn1

ALH

(bnq)2 ate < dlMl )

bn1
dido=d bn1 < BN

dlbn1

2 ((BNl)

(BN} H(BN -+ Mymin {4, 1Y),

ALH

2

ALH

3
2

<. (AMY + di M (BN,)?)

<. (AM)*®

since d; < A, d1§d<<H.

3.1.2. Proof of (16). To prove (16) we need Watt’s bound in the form given by [1].

Lemma 3.2. Let H,C,R,S,V,P > 1 and 6 < 1. Assume that

X = (REEP)% > (RSVPY,  (RS)?> max{HZC S—V],D(RSVP) }

Moreover, assume that a(y), 5(y) are complex valued smooth functions, supported
on the intervals [1, H| and [1,C], respectively, such that

0l (z), 80(x) < (62)"7

for any j > 0. Assume a,,bs are sequences of complex numbers supported on
[R,2R], [S,2S5], respectively, and such that a, < R, by < S°. Finally, assume
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that

8i+j

W%,s(fm Y) <ij 'y

for any i,j > 0, and 7, s(x,y) is supported on [V,2V] x [P,2P] for all v and s.
Then

S a(h)ﬁ(c)%,s(v,p)arbs@( = h;:_v)

h,c,r,s,u,p
(rv.,sp)=1
<5 HHCR(V + 5X) (14 Ié—g) : (1+ %) : (1 %)%HORSVP)?

In order to apply Lemma 3.2, we write Z; 4(z) as

Zy alz) = Z Z Z adlaﬁdSbWO(d—;> %) (dj\:[zM)W?)(dj\;T)

didz=dzds=d a,bymi,n1,h 0<|l|I<L
(am1,bn1)=1
(a,d2)=(b,ds)=1

Wy (T\’}f)m(a%;x)e( - lh%mll) e(lz).

Thus, we use Proposition 3.2 with

H ABM, N\ 5

Heo = L= (7) AM

o 0 Ly, ) AM)
A B My Ny
el Z oyl pit
RHdl, SHd37 <—>d2, Hd4,

and
ABMNA* .
(=) dewmm

since Lv < (ABMN)®. The conditions required by Lemma 3.2 are 454N >

(ABM;N;)?, which is satisfied since H < (AB)z*¢ and MN > (AB)®, and

dyds)2H2(ABMN)z d,d2BN,
A3 My N, M,

(AB)? > max {( (AM)E}.

Since M1 S MQ(AM)'E, N1 S NQ(AM)a, BN1 S AMh d1 < A,dg < B and
H < (AB)z*, this condition is satisfied if d < (AB)z(AM)~'%% Thus, under
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this condition we have

soser < o g (2 ) (0 i i)
<

ds N, BdIN2H N &
i) (1 )

<t (5 +B<%))< )

2
conr A (2,22
ABLH(@)a(l NfH)%
d H A3B2)
since My < My(AM)®, N; < Ny(AM)®, BNy < AM;, AM =< BN and H <
(AB)2 . This concludes the proof of the lemma.

1+

< (AM)*

4. THE QUADRATIC DIVISOR PROBLEM MAIN TERM

In this section we establish the quadratic divisor problem. This amounts to
using Proposition 3.1 and to a careful analysis of the main term. We will first
prove a rougher result and then deduce the slightly more flexible version stated in
the introduction.

Theorem 4.1. Let A, B, H, X, T > 1 with log(ABHX) < logT. Let a3 be
sequences of complex numbers supported on [A,2A] and [B,2B], respectively, and
such that oy < A%, B, < B°. Let f € C*(R%,) be such that
gitith
0xi 0yl D2k
for any i,5,k > 0. Moreover, assume f(x,y,z) is supported on [H,2H| as a

function of z for all z,y. Finally, let K € C®(Rsq) be such that KY(z) <,
T*(1+2)7(1+x/X?)" for any j,r > 0. Then, writing

fay,2) <<ige T°(1+z) " (1+y) 7 (1+2)7" (17)

Qq
S = Z %f(amlm% bn1n27 h’)K<m1m2n1n2),

a Y
amima—bnina=h>0 mymynyny
where the sum runs over positive integers a,b, my, ms, ni,ny and h, we have

S=Mup~rs+Mpa~ys+Mapgsy+ Mpasy+E, (18)

where

C(1+a_6 1+7 5 agaﬁgbg
M, =
AT 2 a =B —0) Xgl %:1 (9a)=7(g0)"™*
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o) l‘2 .
/ K(m)fa,ﬁ,%5<x7x;a7 ba g)xiﬁiédl}
0

with ﬁﬁ,%g as in (2), and & is bounded by
£ < T°(ABX?H?)7(AB + Hi(A + B)3(ABX?)%) (19)
if H< (AB)2*¢, and by
£ < T*(ABX2H*)3(ABH)i(A + B)i + T°H* (20)
m any case.
Proof. First notice that we can replace the assumption (17) by a stronger one,
oi+itk
0xt 0yl 02+
for any ¢, j,k,r > 0, since both § and the main terms M change by a negligible
amount when multiplying f by k(zy/ABX?T¢), where x(z) is a smooth function

which is identically 1 for x < 1 and decays faster than any polynomial at infinity.
We let g be a smooth function such that

g9(x) +g(1/x) =1
for all z € R and g(z) <, (1+ )" for any fixed r > 0 and > 1. We also require

that
(=5 7) =a(+ 57 =0

f(r,y,2) < T5(1+2) " (1 +y) (1 + 2) (1 + 2y/ABX?T*) ™"

Introducing the product

my ma ny 12
o) +9Gr) ) o (G) +9(5)) =
mo mq Mo ny
we obtain four roughly similar terms. For simplicity we will focus on only one of
them, say, the one with g(Z:t)g(1).
We apply a dyadic partition of unity to the sums over my, my, ny,no and h. Let
W be a smooth non-negative function supported in [1,2] such that

Sw(z) -

where M runs over a sequence of real numbers with #{M : Y ! < M <Y} <
log Y. With this partition of unity, we re-write our sum as

S= > S(My, My, Ny, Ny, H') + O(TH),
My ,M2,N1,No2,H'
where

S(M17 M27N17 N27H,)
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ey
- Z ﬁf(amlm% bning, h) K (mimaenins)
amimo—bnina=h>0 mymoning

my ny h my ™o ny Mg
G G G G G )
g<m2>g<n2) m) "\ ) ) AN )T,
Notice that we can assume H' =< H by our assumption on f. Using the estimates
for g and K we obtain

S: Z S(MhMQ,Nl,NQ,H/)+OA<T7A).

My,M3,N1,No,H'
My <M3T*¢, N1<N2T*®
M1 MoNyNo X2T¢

We now separate variables in S(Mj, My, N1, No, H') by introducing the Mellin
inversions,

f(z,y, h) ///fswzx *y~"h™*dsdwdz,
27T’l (e)

g(r) = — /()g(u)x “du and K(z) = K( Yz~ Vdv.

2m 2mi )

Note that g(x) has a simple pole at u = 0 with residue 1. Thus,

aaﬁb -z h
S(Ml,MQ,Nl,NQ> 27_” / /5) Z asbwh W(ﬁ)

amimg—bninga=h>0

—s—U—vV—a nm —s+uu6< )—wvu'\/( )—w+vu6( )
e W(Ml) V)" YN YN,

f(s w, 2)K (v)§(w)§(v)dsdwdzdudvdy.

Now we apply Proposition 3.1% to transform the above expression into

Qe o rbngx —sTu—v—p
hd zZ S—u—rv—o
27?2 / /E)/ asbw( ) ( d )

a,b,mi,ni,h,d
aml,bnl) d

e () W (G (G () ()

f(s, w, 2) K (0)§(u)§(v)dzdsdwdzdudvdy + E = Mg + &,

2To be more precise, we need to truncate the complex integrals at height £7°¢ before applying
Proposition 3.1 and re-extend them afterwards, as can be done at a negligible cost thanks to (21).
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say, where
& <. T*(ABX?H?)% (AB + H4(A + B)?(ABX?)%)
/( / ‘f s, w, 2) K (v)||dsdwdzdv|
< T°(ABX?H?)i (AB + Hi(A+ B)2(ABX?)3)
if H < (AB)z*¢, and
& <. T*(ABX?H?)%(ABH)i(A+ B)i + T°H?
in any case, since the bounds on the derivatives of f(x,y, z) give

]/C\(S, w, Z) Lok Te X 2Re(v) fyRe(2) ((ABXZ)Re(s) + (ABXQ)Re(w)) (21>
(4 Ish 1+ [wh) (1 + =) (1 +v) ™

for Re(s),Re(w),Re(z),Re(r) > € and any k > 0, using integration by parts k
times with respect to each variable.
Folding back the Mellin inversions we get

Mo—/ > Z;fé’w<%>w<%>w(ﬁ)m—a OB g+

a,b,mi,ni,h
(amq, bn1) d
abminixz abminix ab(myn,x)? dnq dmy
)k ( )9 (o))
f( d d d? g amix g bn,x
bnyx amiT\ g 5
W(sz)W< AN, )x dz.

This is summed over all Ny, Ny, My, M, and H' satisfying M; < MyT¢, Ny < NyT*
and M, MsNy Ny < X?T¢. These conditions can be removed at the cost of an error
of size O4(T~#). This allows us to extend the summation over all M, My, Ny, Ny
and H’, and thus to remove the partition of unity. In the remaining expression we
now make a linear change of the x variable which gives

Mi= > M

M1,M2,N1,N2,H’

/ Z 104a6b dm 1By T
al=Bpl—o

abm1 ni,h,d
(amq Iml) d

2 2

Flos, ) K () g (220) g (20 o34

ab T T
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We now prepare for the final evaluation of M by expressing g in terms of its Mellin
transform and f x,x,dh) as the inverse Mellin transform of fg(x x,s). Then

e ) (5 )atu)gto)e -5+t o

aaab 1— —1l—a+pf—2u_—1—v+0—2v
E Wd ml nq dl’deUd’U

(e)

a7b7m1 ;N1 7d
(am1,bnq)=d

Write ¢ = (a,b) so that a = ga’, b = gV and (a’,0/) = 1. In addition
(@'my,0ny) = d with d = gd'. Let k = (/,;my) and ¢ = (a’,ny), and write
my = km) and ny = ¢n}. Then using (a’,b') = 1, we see that (a'my,b'ny) =
El(a'm},b'n)). Thus d = gkld" for some d”. We re-parametrize the above sum by
summing over all g, all k|t/, ¢|a’ and adding the condition that (m/,b'/k) =1 and
(nf,d’/f) = 1. For notational simplicity we delete the extraneous superscripts ’
and ” in the resulting formula,

Ml :ﬁ /(:5) /('5) /14’6) /;OO J/[\‘g(x’ l" S)K<gf—2b)/g\(U)/g\(v)x65+u+v<(8)

Z —1+B+6—u—v—s Z Oégaﬁgb
9 al—Brupl—o+v
g (a,b)=1
dl—sk—a+ﬁ—2u—s£—'y+6—2v—s

Z Z 14+a—B+2u_1+vy—5+2v drdsdudv.

kb (mimi)—=d U "

La (m1,b/k)=

(nl,a/ﬁ):l

We now let

w=a—[F+2u and z2=7—0+2v.

In this way,
dl—s dl—s
Z m1+a B2u THy—5+2v - Z it Itz (22)
(mlvnl) d 1 (ml,nl) d 1 1
(ma,b/k)=1 (ma,b/k)=1
(n1,a/0)=1 (n1,a/0)=1

Since (a,b) = 1 the above Dirichlet series factors as

pls 1 1 \-1 1 \-1
H <Zpﬂ(2+w+z) Z W) H (1_p1+w> H (1_p1+z) .

ptb/k m,n>0, pla/t plb/k
pla/l min{m,n}=0

The expression in the first bracket is

1 -1 1 1
(1 - p1+w+z+s) < Z pm(1+w)+n(1+z) - Z pm(1+w)+n(1+z))

m,n>0 m,n>1
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_ (4 1 -1 1 1 \! 1 I ! 1 1
_< _p1+w+z+s) < _p1+z> ( _p1+w) < _p2+w+z)

and thus (22) is equal to
C(I4+w+z+s)C(1+w)C(1+2)

(@rwt )
H pw+z+s,z,w+ 2) H cp(w+ 2z + s,w,w+ z),
pla/l plb/k

where

1 1 1 \1
Cp(x’y’z):<1_p1+l‘><1_ﬁ><1_p2+z> '

Combining everything together we have obtained the following formula

(2mi)? / /< /me / Jafa ) ( b) glwgv)

(I+a—-F+y—0+2u+2v+s)((1+a—F+2u)(1+v—0+2v)
C2+a—p+v—050+2u+2v)

—B—d+u+tv 1+8+6—u—v—s agaﬁgbna,ﬁ,'y,(s,a,b(ua v, 5)
L Z 9 Z ql—Btupl—d+tv d.’EdeUd’U,
g (a,b)=1

where
na,ﬁ,w,é,a,b(% v, 3) = na,ﬁ,'y,&a(ua v, 5)77%5,04,B,b<u7 v, 3) (23>
and

Na,B,7,6,a (’LL, v, 5)

_ Z 677+572v73

la

Hcp(a—ﬁ—i—fy—5+2u—|—20+5,7—5+2v,a—6+7—5+2u+2v).
pla/t

Next we shift the line integration over u towards Re(u) = —1/4 + ¢/2 and that
of v towards Re(v) = —1/4 4+ /2. We collect the poles from v = 0 and v = 0,
and for the terms where only one of the two residues is taken we move the other
integral to the (—1/2+¢)-line so that for the three resulting error terms we always
have Re(u) + Re(v) = —1/2 + . We do not collect poles at u = —(a — 8)/2 and

= —(v — d)/2 since we ensured that g(—(a — 5)/2) = g(—(y — 9)/2) = 0. Since
]?3(:5,3:, s) <. T°H for Re(s) = 1+ &, this operation produces an error of size
O (Te(ABXQ)%H(A% + B%)), which is acceptable for £, and a main term equal
to

§(1+a_6 1+’7 5 Z Z O‘gaﬁgbg

_ )i
(24+a—-FB+~v—9) el B(gb)
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o) l‘2 .
/ K(m)fa,ﬁ,%é(xvx; a, b7 g)x7675dx7
0

where f;ﬂmg(x, x;a,b,g) is equal to
1
21 J (14
as desired. 0
Corollary 4.1. Let A, B, X, Z,T > 1 with Z > XT~° and log(ABXZ) < logT.
Let oy, By be sequences of complex numbers supported on [1, A] and [1, B], respec-
tively, and such that o, < A%, By, < B. Let f € C®(R3,) be such that
oititk ) 272\ —r
Oridyi O+ Ty )
for any i,j,k,r > 0. Let K € C®(Rxg) be such that KV (z) <, T¢(1 4 x)77(1 +

x/X%)™ for 0 < j < 2 and any r > 0. Then (18) holds with the error term &
bounded by

fg(l‘, x, S)g(S)C(l +a— B + Y= 5 + S)g_sna,ﬁ,’y,(s,a,b(oa 07 S)dS,

Flo..2) o T+ 2) (L4 9) 704+ 2) (14

€ <T*(AB)}XZ }(AB+ (A+ B)(AB)ix1Z 1),

Proof. We divide the summations over a, b, h using partitions of unity localizing
ax<A,bx A h < H' and notice that by (20) the error term coming from
the terms with A’'B’ < T*¢ is bounded by T°Xi1Z' <« T°X2Z~1 . For the
terms with A’B’ > T° we observe that the contribution from the terms with
H > T(AB )%X Z~1 is negligible, whereas for the remaining terms we have
H' < T7(A'B)2XZ' < (AB')2* and we can apply (19). Summing back over
the partitions of unity then gives the claimed result. 0
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