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a b s t r a c t

We consider a bipartite network consisting of job schedulers and parallel servers. Jobs
arrive at the schedulers following stochastic processes with unknown arrival rates, and
get routed to the servers, which execute the jobs with unknown service rates. The jobs
are elastic, as their ‘‘size’’, i.e., the amount of service needed for their completion, is
determined by the schedulers. After a job finishes execution, some utility is obtained
where the utility value depends on the job’s size through some underlying concave
utility function. We consider the setting where the utility functions are unknown apriori,
while a noisy observation of the utility value of each job is obtained upon its completion.
Our goal is to design a policy that makes job-size and routing decisions to maximize the
total utility obtained by the end of the time horizon T . We measure the performance of
a policy by regret, i.e., the gap between the expected utility obtained under the policy
and that under the optimal policy. We first establish an upper bound on the regret
of a generic policy, that consists of the cumulative difference in utility between the
job-size decisions of the policy and the solution to a static optimization problem, and
the total backlog of unfinished jobs at the end of the time horizon. We then propose
a policy that simultaneously controls the cumulative utility difference and backlog of
unfinished jobs, and achieves an order optimal regret of Õ(

√
T ). Our policy solves the

elastic job scheduling problem by extending the Stochastic Convex Bandit Algorithm
to handle unknown and stochastic constraints, and making routing decisions based on
the Join-the-Shortest-Queue rule. It also presents a principled approach to extending
algorithms for zeroth-order convex optimization to the settings with unknown and
stochastic constraints.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Job scheduling is a class of problems that study schedule construction and resource allocation to jobs over a set of
achines to optimize for performance objectives such as mean completion time [1,2], makespan [3,4], utility [4,5], and
ystem stability [6,7]. Due to the flexibility and versatility in its modeling and formulation, job scheduling has found a wide
ange of applications such as supply chain management [1], operating system optimization [2], and cloud computing [6–8].

In many job scheduling applications, the jobs to be scheduled are elastic, that is, the arriving jobs do not have a pre-
determined size or duration but instead their ‘‘sizes’’ are determined by the system scheduler [9,10], and the utility gained
from job completion depends on the ‘‘allocated’’ job size [8,11]. A typical example is training tasks for machine learning
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odels. The training process of many machine learning models (e.g. deep neural network) involves iterative procedures
uch as gradient descent [12,13]. The model’s performance resulting from the training (i.e., utility of the job) depends on
he number of iterations completed (i.e., size of the job) [14]. Thus, it is possible to take advantage of such elasticity to
ynamically determine the sizes of incoming jobs to achieve considerable gain in terms of the overall performance, as
escribed in [15,16].
An important element in the scheduling of elastic jobs is the jobs’ utility functions, i.e., the underlying relationship

etween the job size and the corresponding utility. Such utility functions are usually non-decreasing with respect to the
ob size, and are (approximately) concave, which reflects, for example, the observation that model performance increases
ith more training time while the marginal gain in performance diminishes with training time [17]. Moreover, the utility

unctions are often unknown apriori, but function values corresponding to job-size decisions can be observed. Again, using
achine learning training as an example, the training curve is typically unknown in advance, but the model performance
f a certain training time can be observed after a corresponding training task is completed [18,19]. While monotonicity
nd concavity have often been utilized to design scheduling algorithms with provable guarantees [8,11], the unknown
ature of the utility function has been overlooked by most works in the literature, which assume the utility functions to
e known beforehand.
In this paper, we study the problem of elastic job scheduling with unknown utility functions. We consider a discrete-

ime system of a bipartite network with K job schedulers and a set S of parallel servers. There are K classes of jobs, with
jobs of each class arriving at their corresponding job scheduler according to a discrete-time stochastic process with mean
rate λk. Each class is associated with some concave and monotonically non-decreasing underlying utility function fk. At
every time t , each job scheduler k decides for each incoming job j, the job size xj and its designated server, and then
routes the job to the queue of its designated server. The amount of offered service of server m is a random variable with
mean µm. After a job j of class k finishes its service at its designated server, we obtain a utility of fk(xj) and receive a noisy
observation of the function value fk(xj) + ϵj, where ϵj is a zero-mean noise and assumed to be independent for different
jobs. Note that the underlying utility functions {fk}, and the statistics of the arrival and service processes {λk}, {µk} are
initially unknown. The goal is to design a policy that makes job-size and routing (choice of designated server) decisions
based on observed information, in order to maximize the total utility obtained from jobs completed by the end of the time
horizon T . We adopt regret, which is equal to the difference between the utility obtained by the optimal policy and that
of our policy, as the performance metric. We start by establishing an upper bound on the regret of a generic policy that
consists of a term reflecting the cumulative gap with respect to the optimal solution to a static optimization problem and
another term reflecting the amount of unfinished workload at the end of the time horizon. Based on this, we propose a
policy that simultaneously controls the two terms and achieves order-optimal regret. In doing so, the main challenges we
face are that both the objective function and the constraints of the optimization problem are unknown, and the servers’
capacity needs to be effectively utilized to minimize the unfinished workload at the end of the time horizon. Finally, we
evaluate the empirical performance of our policy and compare it with a related gradient-based algorithm proposed in [20]
that can be adapted to the elastic job scheduling problem.

Specifically, our main contributions are as follows. First, we establish an upper bound on the regret of a generic policy
for the elastic job scheduling problem that consists of two terms: one is the cumulative utility difference between the
job-size decisions of the policy and the optimal solution to a static optimization problem, and the other is the total queue
length (of unfinished jobs) at servers at the end of the time horizon T . The objective function of the static optimization
problem is the sum of the utility functions, and constraints are specified by the statistics of the arrival and service
processes. Note that in the elastic job scheduling setting, the static optimization problem is not explicitly solvable as
the objective function is unknown and the constraints are unknown and stochastic. Second, we propose a policy that
achieves an order-optimal regret of Õ(

√
T )1 by combining ideas from the Stochastic Convex Bandit Algorithm [21] and

Join-the-Shortest-Queue routing. Although techniques in related fields such as bandit convex optimization [22] or bandits
with knapsack constraints [23,24] can be applied to the elastic job scheduling problem, the order-optimal Õ(

√
T ) regret

cannot be achieved by application of previous results in the literature (see Section 7 for a more detailed discussion).
Furthermore, our policy forms a principled approach to extending existing zeroth-order optimization algorithms (e.g. the
algorithm in [21]) to solving problems with unknown and stochastic constraints, which may be of independent interests.
In the literature, unknown and stochastic constraints are typically handled through primal–dual gradient-based methods.
When applied to zeroth-order optimization algorithms, such methods rely on using zeroth-order feedback to construct
approximate gradients, which leads to sub-optimal regret [20,25]. In contrast, our approach works with algorithms that
directly utilizes zeroth-order feedback [21,26] and enjoys order-optimal regret.

We conclude the introduction by giving a road map for the rest of the paper. We present the model and formal
definitions of the elastic job scheduling problem in Section 2. In Section 3, we prove a general upper bound on the regret.
n Section 4, we introduce the algorithm from [21] and extract the key results therein that will be useful in the design and
nalysis of our policy. The policy we propose for the elastic job scheduling problem is presented in Section 5. We evaluate
he empirical performance of our policy in Section 6. A discussion of related works and their relation to the elastic job
cheduling problem is presented in Section 7. Finally, we conclude the paper with some future directions in Section 8.

1 Õ(·) hides logarithmic factor of T .
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Fig. 1. Illustration of the system model of the elastic job scheduling problem.

2. Model and problem formulation

2.1. System model

Consider a discrete-time system with a set of job schedulers and a set of parallel servers that form a bipartite network
(see Fig. 1). We use U = {u1, . . . , uK } to denote the set of schedulers and S = {s1, . . . , sM} to denote the set of servers.
ach scheduler uk is connected to a subset Suk ⊆ S of servers. Each server has a buffer that stores the jobs to be processed.
here are K classes of elastic jobs in the system, where jobs of class k arrive at scheduler uk and are sent to a server in
uk for execution. At each time slot t , a set Ak(t) of class k jobs with |Ak(t)| = ak(t) arrive at scheduler uk. For each job
, its corresponding scheduler determines its size xj ∈ [0, B].2 which is the workload it will add to the server and can be
nterpreted as its resource requirement. The scheduler then sends job j to the buffer of a server sj ∈ Suk for execution,
hich we will refer to as j’s designated server. Server sm’s service rate at time t is denoted by cm(t). Each server executes
he jobs in a non-preemptive fashion. We assume that for each k, ak(t)′s form a sequence of i.i.d. bounded positive integer
andom variables, and for each m, cm(t)’s is a sequence of i.i.d. bounded non-negative random variables. We assume,
[ak(t)] = λk, E[cm(t)] = µm and 1 ≤ ak(t), λk, cm(t), µm ≤ C .3 We will refer to the jobs’ arrival rates λk’s and the
ervers’ service rates cm’s, as network statistics In this work, we consider the setting where the network statistics are
nknown, but the realizations of arrivals and service are observable (after they occur).
For each server sm, we use Qm(t) to denote the workload queued in the buffer of sm at time t . From the description

f the model, the amount of work arriving to Qm at time t is equal to the total size of the jobs that are sent to server sm
rom the schedulers. Hence, we can write the evolution of the workload process as follows where [·]

+
= max{·, 0}:

Qm(t + 1) = [Qm(t) +

K∑
k=1

∑
j∈Ak(t)

1{sj=sm} · xj − cm(t)]+. (1)

Each class k is associated with some underlying utility function fk that characterizes the relationship between the size
and the utility value obtained from jobs of class k. The underlying utility functions are unknown, but we can receive noisy
zeroth-order feedback on the utility functions. Specifically, after the server finishes executing a job of size x of class k, we
observe fk(x) + ϵ and obtain a utility of fk(x), where ϵ is a zero-mean bounded random noise with |ϵ| ≤ C .4 The noise
values of different jobs are independent. It is important to note that the utility of a job is received and observed at the
time of its completion rather than the time it is dispatched from the scheduler. We assume that for each job class k, its
underlying utility function fk has the following properties:

1. fk is monotonically non-decreasing and concave.
2. fk is bounded on the domain [0, B], i.e., ∀xj ∈ [0, B], fk(xj) ≤ C . fk(0) = 0.
3. fk is L-Lipschitz continuous, i.e., ∀0 ≤ x1, x2 ≤ B, |fk(x2) − fk(x1)| ≤ L · |x2 − x1|.

2.2. Problem formulation

Under the above system model, we study a finite-horizon elastic job scheduling problem. Given a time horizon T , we
seek a scheduling policy that determines the size of arriving jobs and their designated servers such that the total utility
obtained from the jobs that are completed in T time slots is maximized. Our scheduling policy needs to be admissible

2 B ∈ R+ is an upper bound on the jobs’ size. The job size takes value in R+ and needs not be an integer.
3 We restrict ak(t), cm(t) to be positive so that at each time we have at least one arrival from each class and the realized service rates are positive,
hich simplifies the description of the policy we propose. Our results can be shown without this restriction.
4 We use C to bound various bounded quantities without loss of generality, as C can be taken to be the maximum of realizations of arrivals and

ervice, and observations of utility values.
3
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uch that at each time t , the decisions it makes are only based on information observed prior to t , i.e., ak(τ )’s for τ ≤ t ,
m(τ )’s for τ < t and the utility observations obtained before t . Let Π be the collection of admissible policies. Policies in

Π do not have access to the underlying utility functions fk’s or the network statistics in advance, but can only learn them
through observations acquired from job executions. Let Π∗ be the set of all policies, including the ones that know the
underlying utility functions and network statistics. For a policy π , let U(π, T ) be the total utility obtained under policy
π , which is defined as the sum of utility obtained from jobs that have been completed by the end of the time horizon
T . Note that U(π, T ) is a random variable, the randomness of which comes from job arrivals, service rates, noisy utility
observations and the (possible) inherent randomness in the scheduling policy π . Instead of directly using U(π, T ), we
adopt the notion of regret as the measure of the quality of scheduling policies.

Definition 1 (Regret). The regret of scheduling policy π is defined as

R(π, T ) = sup
π∗∈Π∗

E[U(π∗, T )] − E[U(π, T )].

The regret R(π, T ) measures the gap between the expected utility obtained under π and the maximum utility achieved
by any (even non-admissible) policy. The goal of the elastic job scheduling problem is to design an admissible scheduling
policy with low regret.

Remark. (i). A crude criterion of low regret is that R(π, T ) = o(T ), i.e., the regret of π grows sub-linearly with T . If policy π

atisfies this criterion, then the time average utility achieved by π is asymptotically optimal as T → ∞. Applying the same
rgument as [27], it can be shown that there exists instance of the elastic job scheduling problem where no admissible
olicy can have regret lower than Θ(

√
T ). The regret of the policy we will propose has regret of order Õ(

√
T ), which

implies that it achieves order-optimal regret (ignoring logarithmic factors). (ii). Although the performance measure does
not explicitly depend on the unfinished workload in the servers at the end of the horizon T , such unfinished workload is
implicitly accounted for, since the utility U(π, T ) does not include the unfinished jobs in the queues at time T . This means
hat, to achieve low regret, we cannot blindly increase the job sizes without maintaining the stability of the system.

. General upper bound on the regret

The regret of a policy π involves the expected utility of the optimal policy in Π∗ and the expected utility of π . Due
o the dynamic nature of the elastic job scheduling problem, directly computing the regret is challenging. In this section,
e prove an upper bound on the regret for policies that satisfy a certain condition (the policy we propose satisfies the
ondition), which facilitates the analysis and design of our policy. The upper bound is constructed by establishing on
pper bound on the expected utility of the optimal policy, and a lower bound on the utility of a general policy.

.1. Upper bound on the optimal utility

Typically, the policy that achieves supπ∗∈Π∗ E[U(π∗, T )] is a dynamic programming-based policy that is intractable and
ifficult to compare to. Therefore, in this section, we relate the expected utility obtained by the best policy in Π∗ to the
ptimal value of a (essentially static) convex optimization problem. To begin with, we define a notion of capacity region
f the network, denoted by Λ. Intuitively, Λ can be interpreted as the set of job-size vector that can be supported by the
etwork in steady state (i.e., under infinite time horizon). It is formally defined as:

Λ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(x1, . . . , xK )

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

∃{α}km, s.t.∑
k λkαkmxk ≤ µm ∀sm,

αkm = 0, ∀sm /∈ Suk∑
m αkm = 1, ∀k

αkm ≥ 0, ∀k,m
0 ≤ xk ≤ B, ∀k

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

where the variables {αkm} can be considered to be the routing variables that determine how the jobs of each class are
distributed among the servers. Λ conforms with the capacity region in the network control literature and it is easy to see
that Λ is a convex set. Recall that B is the maximum possible size of a job. Consider the following optimization problem
P:

P : max
{xk}

K∑
k=1

λkfk(xk) (2)

s.t. (x1, . . . , xK ) ∈ Λ, (3)

xk ∈ [0, B], ∀k. (4)
4
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ntuitively, the optimization problem characterizes the job scheduling problem with full information in steady state. The
ecision variables {xk} can be interpreted as the steady-state size of jobs of class k. As the objective function of P is
oncave while the feasibility region is a convex set, it follows that P is a convex optimization problem. However, note
hat although P is convex when we view {xk} as optimization variables, it loses its convexity if we view {xk} and {αkm}

ointly as optimization variables, since the capacity region Λ involves constraints
∑

k λkαkmxk ≤ µm, which makes it
non-convex when viewed as a set over {xk} and {αkm}.

We proceed to show that the expected utility of any policy in Π∗ is upper-bounded by the optimal value of the P
times the time horizon T .

Theorem 1. supπ∗∈Π∗ E[U(π∗, T )] ≤ T · OPT (P).

Proof Sketch. For any given policy, we first take weighted averages of the sizes of jobs of each class under the policy
over the realizations of the arrival processes. We will then show that the averages satisfy the constraints of P , and by
the concavity of the underlying utility functions, the corresponding value of the objective function is no less than the
expected utility of the policy. Due to space constraints, we defer the complete proof to Appendix A.1.

It is worth pointing out that Theorem 1 does not imply that the optimal policy is a static one that assigns the execution
time of jobs according to the solution to the optimization problem P . Such policy would not achieve an expected utility
of T ·OPT . The reason is that due to the stochasticity of the system, the expected number of class k jobs completed before
T is not equal to λkT .

3.2. Lower bound on the general utility

We now give a lower bound on the expected utility achieved by policies that make job-size decisions independently
of the number of arrivals at the same time slot. As the policy we will propose satisfies this condition, combined with
Theorem 1, it will lead to an upper bound on the regret of our policy. More formally, let π be an arbitrary policy that, for
each t , decides on xk(t) independently of ak(t) for all k.5 On a generic sample path ω, let xk(t, ω) be size of class k jobs
decided by π at time t . Let Qm(T , ω) be the workload at server sm at the end of time horizon T under π . We will write
Eω[fk(xk(t, ω))] as E[fk(xk(t))] and Eω[Qm(T , ω)] as E[Qm(T )]. We have the following.

Proposition 1. E[U(π, T )] ≥
∑T

t=1
∑K

k=1 λkE[f (xk(t))] − L
∑M

m=1 E[Qm(T )].

Proof. If all the jobs were completed, then under π , due to the independence of arrivals and job size decisions, the
expected utility obtained would be

T∑
t=1

K∑
k=1

Eω[ak(t, ω)f (xk(t, ω))] =

T∑
t=1

K∑
k=1

λkEω[f (xk(t, ω))] =

T∑
t=1

K∑
k=1

λkE[f (xk(t))]

he utility actually achieved by π is equal to the difference between the aforementioned quantity and the utility of
ncomplete jobs in the queues of the servers at the end of the time horizon. Since the each fk is L-Lipschitz-continuous,
k(x) ≤ Lx. Thus, the expected total utility of incomplete jobs at the end of time horizon is upper bounded by∑M

m=1 E[Qm(T )]. □

Let x∗
= (x∗

1, . . . , x
∗

K ) be the optimal solution to P . It is straightforward to show the following corollary from Theorem 1
nd Proposition 1.

orollary 1. For any policy π that decides on xk(t) independently of ak(t), R(π, T ) ≤
∑T

t=1
∑K

k=1 λk · E[fk(x∗

k) − fk(xk(t))] +

L
∑M

m=1 E[Qm(T )].

Corollary 1 indicates that a policy can achieve low regret if it can (i). closely approximate the optimal solution to P ,
and at the same time, (ii). bound the queue lengths at the servers. The core challenge of achieving (i) lies in that in our
job scheduling problem, we do not know the network statistics {λk}, {cm}. Indeed, if the network statistics were known in
advance, then the feasibility region of P would also be known in advance. Solving P would become a stochastic zeroth-
order convex optimization problem, where we can apply the algorithm in [21] and achieve an order-optimal regret of
Õ(

√
T ). However, in the elastic job scheduling problem, the network statistics, and thus the feasibility region, are unknown

and stochastic. In other words, our problem has stochastic constraints, which makes the algorithm in [21] not applicable.
Furthermore, existing algorithms in stochastic zeroth-order optimization do not involve any scheduling component that
controls the queue lengths of the system (i.e., achieving (ii)). In the following, we will propose a scheduling policy that
adapts the techniques of [21], employs suitable network scheduling, and still achieves an order-optimal regret of Õ(

√
T )

for the elastic job scheduling problem.

5 Here we assume that the policy sets the size of all the class-k jobs at time t to be xk(t). Otherwise, we can take xk(t) as the average size of
he class-k jobs at time t and the results still hold.
5
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. Preliminaries

In this section, we review the Stochastic Convex Bandit Algorithm (SCBA) from [21] and extract the key results therein.
lthough the algorithm cannot handle the stochastic and unknown constraints, it can be used in conjunction with the
echnique developed in this paper to form a policy that achieves order-optimal regret for the elastic job scheduling
roblem. The Stochastic Convex Bandit Algorithm is a generalization of the ellipsoid algorithm [28] to stochastic zeroth-
rder convex optimization problems. Formally, let X ⊆ Rd be a compact convex set, and f (x) : X ↦→ R be a convex and
-Lipschitz continuous function on X . In [21], the Stochastic Convex Bandit Algorithm aims at solving the optimization
roblem

min
x

f (x) (5)

s.t. x ∈ X . (6)

with access to a noisy zeroth-order oracle on f . Specifically, if we query the oracle at x, we observe f̂ (x) := f (x) + ϵ
where ϵ is a zero-mean σ -sub-Gaussian random variable and the noise values of different queries are independent. Let
x∗ be the optimal solution. SCBA outputs a sequence of queries x(1), . . . , x(T ) (with T being the time horizon of SCBA,
i.e., the total number of queries), where each query x(t) is computed based on observations obtained from queries before
t , such that

∑T
t=1 f (x(t)) − f (x∗) = Õ(

√
T ) with high probability. We use the one-dimensional special case (d = 1) to

emonstrate the workflow of the algorithm. As d = 1, the feasibility region X is essentially an interval [l0, r0]. SCBA
roceeds in epochs. It maintains a target region [l, r] that contains the optimal solution x∗, with high probability. At every
poch, it choose three points that uniformly span the target region. It then repeatedly queries the points and construct a
onfidence interval around the underlying function value of each point. Next, it shrinks the target region by eliminating an
rea that is unlikely to contain x∗ based on the confidence intervals.6 Specifically, at a generic epoch τ with target region

[lτ , rτ ] the algorithm executes the following steps (where two intervals [l1, u1] and [l2, u2] are γ -separated if l1 > u2+γ ):

1. Let wτ = rτ − lτ . Set xl := lτ +
wτ

4 , xc := lτ +
wτ

2 , xr := lτ +
3wτ

4 .
2. For i = 1, . . .; γi = 1/2i:

(a) Query xl, xc , xr for ⌈σ log T 2/γ 2
i ⌉ times. Let f̄ (xl), f̄ (xc), f̄ (xr ) be the empirical mean of observations of

f (xl), f (xc), f (xr ), respectively.
(b) Set confidence intervals [LBxl ,UBxl ] := [f̄ (xl) − γi/2, f̄ (xl) + γi/2], [LBxc ,UBxc ] := [f̄ (xc) − γi/2, f̄ (xc) + γi/2],

[LBxr ,UBxr ] := [f̄ (xr ) − γi/2, f̄ (xr ) + γi/2].
(c) If [LBxl ,UBxl ] is γi-separated with [LBxc ,UBxc ] or [LBxr ,UBxr ], eliminate [lτ , xl] from the target region (by setting

lτ to xl) and proceed to the next epoch.
(d) If [LBxr ,UBxr ] is γi-separated with [LBxc ,UBxc ] or [LBxl ,UBxl ], eliminate [xr , rτ ] from the target region (by

setting rτ to xr ) and proceed to the next epoch.
(e) Otherwise, increment i and repeat step (2).

ote that in step 2(a), each point xl, xc, xr is queried multiple times but each time counts as one query, i.e., the sequence
f queries output by the algorithm will have multiple copies of xl, xc, xr . For example, we arrive at step 2(a) for some γi

and xl, xc, xr at t . Then, SCBA will output x(t + 1) = · · · = x(t + ⌈σ log T 2/γ 2
i ⌉) as xl, x(t + ⌈σ log T 2/γ 2

i ⌉ + 1) = · · · =

x(t + 2⌈σ log T 2/γ 2
i ⌉) as xc , and x(t + 2⌈σ log T 2/γ 2

i ⌉ + 1) = · · · = x(t + 3⌈σ log T 2/γ 2
i ⌉) as xr . In high-dimension cases,

the algorithm follows the same road map but uses more sophisticated methods for the selection of query points and the
shrinking of target regions. Proposition 2 summarizes the performance guarantee of SCBA.

Proposition 2 (Theorem 1 of [21]). The Stochastic Convex Bandit Algorithm (SCBA) outputs a sequence of queries x(t), t =

1, . . . , T such that
∑T

t=1 f (x(t)) − f (x∗) = O(Lσ
√
T log T ) with probability at least 1 − 1/T . Moreover, it follows that

T
t=1 E[f (x(t))] − f (x∗) = O(Lσ

√
T log T ).

The original setting in [21] assumes that the oracle gives unbiased observations of the objective function. However,
in our solution framework for the elastic job scheduling problem that will be described in the next section, we do not
have unbiased observations of the objective function. Thus, we need to extend SCBA to more general settings, where
observations may be biased.

We can see from the high-level description above that the query point selection and target region shrinking are agnostic
to how the confidence intervals are obtained. The algorithm would have a similar performance guarantee as long as the
confidence intervals used (Step 2(b)) have a certain guarantee of accuracy. Therefore, if we have a procedure that for
any x, takes in a number of (possibly biased) observations of f (x) from the oracle and outputs a confidence interval
[LBx,UBx] that is sufficiently accurate, then SCBA would still work in conjunction with the procedure, albeit without the
availability of unbiased observations. The aforementioned accuracy requirement of the procedure is formalized in the
following definition. Informally speaking, a procedure is qualified if based on a large enough number observations, it can

6 The shrinkage of target region is a step that explicitly relies on the knowledge of the feasibility region in advance.
6
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onstruct a confidence interval with width bounded by some quantity that decreases with the number of observations,
nd the confidence interval contains the true value with high probability.

efinition 2. For a given function f with domain X , an observation oracle and σ > 0, a procedure is qualified if for any
∈ X , γ > 0, 0 < δ ≤ 1/2, given ⌈

σ log(1/δ)
γ 2 ⌉ observations of f (x) from the oracle, the procedure outputs a confidence

interval [LBx,UBx] such that UBx − LBx ≤ γ and P{f (x) ∈ [LBx,UBx]} ≥ 1 − δ.

Definition 2 can be seen as a generalization of the availability of unbiased observations, i.e., the original setting of [21].
Since for the setting of [21], if each observation is unbiased with noise being an independent zero-mean σ -sub-Gaussian
random variable, then for any γ > 0, 0 < δ ≤ 1/2, given ⌈

σ log(1/δ)
γ 2 ⌉ such observations, it follows from Hoeffding’s

nequality that the confidence intervals used in Step 2(b) satisfy the condition P{f (x ∈ [LBx,UBx])} ≥ 1 − δ. In particular,
n Step 2(b), we take δ = 1/T 2 and have that each confidence interval constructed by the algorithm contains the true
alue with probability at least 1− 1/T 2, which, combined with the union bound, implies that all the confidence intervals
ontain the true value with probability at least 1 − 1/T . Moreover, inspecting the analysis of [21], we can see that SCBA
ould have the same performance guarantee as in Proposition 2 as long as some qualified procedure is available. As a
oncrete example, in the one dimensional special case, a qualified procedure can replace Step 2(b) without compromising
he performance of the algorithm. We summarize this generalized performance guarantee of SCBA in Proposition 3.

roposition 3. The Stochastic Convex Bandit Algorithm (SCBA), in conjunction with a qualified procedure, outputs a sequence
f queries x(t), t = 1, . . . , T such that

∑T
t=1 f (x(t)) − f (x∗) = O(Lσ

√
T log T ) with probability at least 1 − 1/T .

roof. The proposition follows from a similar analysis as in [21]. We defer more details to Appendix A.2. □

Note that if we are maximizing a concave function f over X (cf. (5), (6)), then a similar guarantee holds with
T
t=1 f (x(t)) − f (x∗) replaced by

∑T
t=1 f (x

∗) − f (x(t)).

. The scheduling policy

In this section, we propose our scheduling policy for the elastic job scheduling problem — the Confidence Interval-based
oin-the-Shortest-Queue (CI-JSQ) policy. The CI-JSQ policy has two components: an optimization component that makes
ob-size decisions at each time slot, and a routing component that selects a designated server for each job following
he Join-the-Shortest-Queue rule. Assuming that the utility observations are obtained immediately after the job-size
ecisions, i.e., there is no feedback delay, we introduce the optimization component in Section 5.1 and the routing
omponent in Section 5.2. We next analyze the performance of the policy in Section 5.3. Finally, we remove the no-
eedback delay assumption and extend the policy to the original setting of the elastic job scheduling problem where the
tility observations of the jobs are obtained after the jobs’ completion in Section 5.4.

.1. The optimization component

In Corollary 1, we show that a policy can achieve low regret if it can make job-size decisions close to the optimal
olution to P and control the queue length of the system. Therefore, the optimization component of our policy should
e able to closely track the optimal solution to P . Despite the similarity of the observation model of P and that assumed
y the algorithm of [21], we cannot directly apply the algorithm due to the unknown and stochastic constraints of P .
n this section, we develop techniques that make SCBA applicable, so that the query point output by SCBA can be used
s job-size decisions. Our techniques, in conjunction with SCBA, form the optimization component of our policy for the
lastic job scheduling problem.
The overall framework of our approach is that, first, we move the stochastic constraint x ∈ Λ of P in to a penalty

erm in the objective function and form a (essentially equivalent) transformed optimization problem P̃ . The transformed
ptimization problem no longer has any stochastic constraints, but unlike utility values, unbiased observations of the
enalty term are not available. We thus develop a confidence interval construction procedure and show that under the
bservation model of our problem, the procedure is ‘‘qualified’’ according to Definition 2. Therefore, we can use our
onfidence interval construction procedure in conjunction with SCBA to compute job-size decisions for the elastic job
cheduling problem.

.1.1. The transformed optimization problem
For ease of notation, we use the vector x to denote (x1, . . . , xK ), λ to denote the arrival rates {λk} and µ to denote

he service rates {µm}. We define the function ∆(x, Λ) as the l1-distance of x to the capacity region Λ, i.e., ∆(x, Λ) :=

rgminx′∈Λ

∑K
k=1 |xk − x′

k|. ∆(x, Λ) corresponds to a notion of constraint violation, i.e., how far away a job-size vector is
rom the capacity region of the network. We will use ∥ · ∥ to denote the l norm and ∥ · ∥ is reserved for the Euclidean
1 1

7
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l2) norm. Note that the Lipschitz continuity in this paper is defined with respect to the Euclidean norm. The transformed
roblem P̃ is presented at the top of the page (with P shown on the left for reference).

P : max
x

K∑
k=1

λkfk(xk)

s.t. x ∈ Λ,

xk ∈ [0, B], ∀k.

⏐⏐⏐⏐⏐⏐⏐⏐⏐
P̃ : max

x
F (x) :=

K∑
k=1

λkfk(xk) − C(L + 1)∆(x, Λ)

s.t. xk ∈ [0, B], ∀k.

The optimization problem P̃ is constructed by replacing the constraint x ∈ Λ of P by a penalty term in the objective
function that penalizes the constraint violation of x through ∆(x, Λ). The optimization variables of P̃ only consist of job-
size variables {xk} but not routing variables {αkm}. As P̃ does not involve stochastic constraints, it may be more amenable
to SCBA. To formally justify this, in the following lemmas, we show that P̃ satisfies the requirement of SCBA in form,
i.e., it is a convex optimization problem with Lipschitz objective function. Furthermore, P and P̃ have the same set of
optimal solutions. The proof of the lemmas is deferred to Appendix B.

Lemma 1. ∆(x, Λ) is a convex function of x, and thus F (x) is a concave function of x.

Lemma 2. ∆(x, Λ) is
√
K-Lipschitz continuous, thus F (x) is KL + C(L + 1)

√
K-Lipschitz continuous.

Lemma 3. P̃ is a convex optimization problem with the same set of optimal solutions as P .

5.1.2. Construction of confidence intervals
The transformed optimization problem is more amenable to the algorithm of [21] as it does not involve unknown

stochastic constraints. However, in the elastic job scheduling problem, observation of the objective function F of P̃ is not
readily available as after making job-size decision x, we only observe (noisy) utility values fk(xk)’s but not ∆(x, Λ). We get
around this roadblock by a procedure that constructs confidence interval around F (x) using observations of utility function
values and realizations of network statistics. We then show that the procedure is qualified according to Definition 2, and
thus can be used in conjunction with SCBA.

Before formally presenting the confidence interval construction procedure, we first make explicit what the observation
oracle (Definition 2) of the elastic job scheduling algorithm is. Recall the system model in Section 2, under the current
assumption that the utility values are immediately observable after making the job-size decision, at each time t , under
job-size decision x(t), we observe noisy utility values {f̂k(xk(t))}′s,7 realizations of job arrivals ak(t)’s, and realizations of
offered service cm(t)’s. We will refer to the observations corresponding to x(t) at t , i.e., {f̂k(xk(t))} for each k, {ak(t)} for
each k, {cm(t)} for each m as the set of query observations corresponding to x(t), and will often group them together
as {f̂k(xk(t)), ak(t), cm(t)}. Note that one set of query observations (and one query of SCBA) corresponds to the job-size
decision of one time slot in the elastic job scheduling problem. Based on this, we can interpret the observation model
of the elastic job scheduling problem as an oracle that outputs a set of query observations {f̂k(xk), ak, cm} when we query
the oracle at x, where E[f̂k(xk)] = fk(xk), E[ak] = λk, and E[cm] = µm. Note that although ak’s and cm’s are not dependent
on the point of query x, we can still include them in the output of the oracle.

In SCBA, confidence intervals of the function values are constructed based on the results of repeated queries at the same
point, which means we may make the same job-size decisions for multiple time slots. For this purpose, our procedure
needs to take as input the query observations of multiple consecutive slots (e.g. {f̂k(xk(t)), ak(t), cm(t)}, . . . , {f̂k(xk(t ′)),
ak(t ′), cm(t ′)} with x(t) = x(t + 1) = · · · = x(t ′) = x) and output a confidence interval [LBx,UBx] around the true value
of F (x). Thus, the input to the confidence interval construction procedure can be considered as independent sets of query
observations corresponding to a same generic job-size vector x. As the observations {f̂k(xk)} come from utility observations
of the jobs, and observations {ak}, {cm} correspond to the realizations of the arrival and service processes, all values of
the query observations lie in the interval [0, C].

The details of the confidence interval construction procedure are shown in Algorithm 1. Since for a given network
topology, the set Λ is fully parameterized by the arrival rates {λ}k and service rates {µ}m, we will write the function
∆(x, Λ) equivalently as ∆(x, λ, µ), where λ and µ are the vector representation of arrival rates and service rates
respectively. The intuition behind Algorithm 1 is that, as the observations {f̂k(xk)}, {ak} and {cm} are independent and
unbiased samples of {fk(xk)}, {λ}k and {µ}m, we can construct confidence intervals of each component of {fk(xk)}, {λ}k and
{µ}m such that the true values are constrained to lie in the intervals with high probability. As we will show, the objective
function F is Lipschitz continuous with respect to those components. Hence, confidence intervals around {fk(xk)}, {λ}k and
{µ}m can be translated into a confidence interval around F (x). More specifically, the construction procedure first computes
the empirical means of the samples, and then constructs a lower and an upper estimate for fk(xk)’s (Line 3), λk’s (Line 5)
and µm’s (Line 8). For notational simplicity, we assume the lower and upper estimates of utility values are all in [0, C],

7 As we set the size of all class-k jobs at t to be x(t), we may receive multiple observations of f̂k(xk(t)). It suffices to use one of them for the
uery observations of x(t). The assumption that there is at least one arrival of each class was made so that we obtain at least one observation for
ach class every time, which simplifies the presentation of the policy.
8
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nd the estimates of λk and µm are all in [1, C]. Otherwise, we can simply project the estimates into the interval [0, C]

or [1, C] and the results still hold since the true values of those components lie in the corresponding interval. Then, the
lower estimate LBx of F (x) is computed by combining the lower estimates of utilities and upper estimates of constraint
violation, while the upper estimate UBx is computed by combining the upper estimates of utilities and the lower estimates
of constraint violation. Note that in lines 9 and 10, ∆(x, λU , µL) (∆(x, λL, µU )) is the constraint violation of x with respect
o the capacity region of a network with arrival rates λU (λL) and service rates µL (µU ), and can be computed by solving
simple linear program (see Appendix C).

Algorithm 1 Confidence Interval Construction

Input: For a given x, independent sets of observations {f̂k(xk), ak, cm}’s; Width parameter γ̄ > 0.
Output: Confidence Interval [LBx,UBx] for F (x)
1: for k = 1, . . . , K do
2: f̄k(xk) := empirical mean of the observations f̂k(xk)’s.
3: f Lk (xk) := f̄k(xk) − γ̄ /2, f Uk (xk) := f̄k(xk) + γ̄ /2.
4: λ̄k := empirical mean of the observations ak’s.
5: λL

k := λ̄k − γ̄ /2, λU
k := λ̄k + γ̄ /2.

6: for m = 1, . . . ,M do
7: µ̄m := empirical mean of the observations cm’s.
8: µL

m := µ̄m − γ̄ /2, µU
m := µ̄m + γ̄ /2

9: LBx :=
∑K

k=1 λL
kf

L
k (xk) − C(L + 1)∆(x, λU , µL).

10: UBx :=
∑K

k=1 λU
k f

U
k (xk) − C(L + 1)∆(x, λL, µU ).

We now establish the validity of the confidence interval construction procedure, showing that it can be used in
conjunction with SCBA to solve P̃ .

Proposition 4. For function F , σ = C2D2 log(2K +M), Algorithm 1 is a qualified confidence interval construction procedure.

Proof. Recalling Definition 2, to prove the proposition, we will show that for any x ∈ [0, B]K , γ > 0, 0 < δ ≤ 1/2,
given ⌊

σ log(1/δ)
γ 2 ⌋ independent sets of query observations {f̂k(xk), ak, cm}’s, Algorithm 1 with width parameter γ̄ = γ /D

outputs a confidence interval [LBx,UBx] such that UBx − LBx ≤ γ and P{F (x) ∈ [LBx,UBx]} ≥ 1 − δ. The proof proceeds
in three steps. First, in Lemma 4, we show that the confidence interval output by Algorithm 1 has bounded width. Next,
n Lemma 5, we prove that if the utility values and network statistics are contained in their lower and upper estimates
sed in the procedure, then the constructed confidence interval contains the true value of F (x). The proof of Lemmas 4
nd 5 is deferred to Appendix B.

emma 4. For any x ∈ [0, B]K , UBx − LBx ≤ Dγ where D = 3CK + C(L + 1)(KB + M).

emma 5. If for all k, fk(xk) ∈ [f Lk (xk), f
U
k (xk)], λk ∈ [λL

k, λ
U
k ] and for all m, µm ∈ [µL

m, µU
m], then F (x) ∈ [LBx,UBx]

Finally, based on the two lemmas, we show that the confidence interval construction procedure is qualified by
stablishing that the utility values and network statistics are contained in their lower and upper estimates with high
robability. Specifically, given a width parameter of value γ /D, by Lemma 4, the confidence interval output by Algorithm
satisfies UBx − LBx ≤ γ . Furthermore, as the noise of each utility observation is a variable bounded in [0, C], if given

σ log(1/δ)
γ 2 ⌉ ≥

log((2K+M)/δ)
(γ /D)2

independent samples of fk(xk), by Hoeffding’s inequality, the lower and upper estimates used by
Algorithm 1 satisfies P{fk(xk) ∈ [f Lk (xk), f

U
k (xk)]} ≥ 1 − δ/(2K + M). The same holds for {λk} and {µm}. Hence, by union

ound, with probability at least 1 − δ, all the components of {fk(xk)}, {λk} and {µm} lie in the lower and upper estimates
sed in Algorithm 1. Therefore, invoking Lemma 5, we have P{F (x) ∈ [LBx,UBx]} ≥ 1 − δ, and conclude the proof. □

To summarize, for the optimization component of the policy, we consider the transformed optimization problem P̃
ssociated with the elastic job scheduling problem. The optimization component uses Algorithm 1 in conjunction with
CBA to make job-size decisions. Starting from t = 1, each job-size decision x(t) = (x1(t), . . . , xK (t)) corresponds to
query output by SCBA. Algorithm 1 takes the query observations as input and computes the confidence intervals as

equired by SCBA to generate subsequent queries. The size of each class-k job in Ak(t) is set to xk(t), which makes the job
ize decisions of one time slot exactly correspond to one query of SCBA. The time-horizon of the elastic job scheduling
roblem is thus the same as the time horizon of SCBA. Note that the decision made at time t by the optimization
omponent is based on query observations at 1, . . . , t − 1, which makes it independent of the arrivals at t . Hence, our
olicy satisfies the condition of Corollary 1. We give the detailed workflow of the optimization component of our policy
n Appendix D.
9
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.2. The routing component

The routing component of our policy chooses a designated server for each job. It is based on a Join-the-Shortest-
ueue type rule. At time t , we route all the class k jobs that arrived, to the server with the smallest queue length
workload backlog) among the ones to which scheduler uk is connected to. More formally, each job j ∈ Ak(t) is sent
o the server sj such that sj ∈ argminsm∈Suk

Qm(t). Note that our scheduling component can be interpreted as a special
ase of Back-Pressure routing in the context of a single-hop network. Combining the optimization component (Section 5.1
nd Appendix D) and the routing component, we summarize our policy, CI-JSQ, for the elastic job scheduling problem in
lgorithm 2.
At each time t , we can construct a set of routing variables {αkm(t)} in the definition of the capacity region Λ based

n the decisions made by Algorithm 2 by setting α
jsq
km(t) := 1 if the jobs in Ak(t) are sent to server sm and α

jsq
km(t) := 0

otherwise. The set of routing variables will be used in the analysis of the policy.

Algorithm 2 The CI-JSQ Policy

1: for t = 1, . . . , T do
2: x(t) := the job size vector output by SCBA on P̃ using Algorithm 1 as the confidence interval construction procedure.
3: for k = 1, . . . , K do
4: Set the size of each job in Ak(t) to xk(t), i.e., the k-th coordinate of x(t).
5: Send the jobs in Ak(t) to server sj ∈ argminsm∈Suk

Qm(t)

5.3. Performance analysis

In this section, we analyze the theoretical performance guarantee of the CI-JSQ policy. We will show that the policy
chieves Õ(

√
T )-regret. From Corollary 1, we can see that the upper bound on the regret can be decomposed into two terms∑T

t=1
∑K

k=1 λkE[fk(x∗

k)−fk(xk(t))] and L
∑M

m=1 E[Qm(T )]. The first term tracks the cumulative loss with respect to the utility
functions, which we will refer to as utility regret, while the second term tracks the queue backlog at the end of the time
horizon, which we will refer to as queueing regret. To analyze the regret of the CI-JSQ policy, we first invoke the regret
guarantee of the optimization component to provide bounds on the utility regret and cumulative constraint violation∑T

t=1 ∆(x(t), Λ). Subsequently, based on the cumulative constraint violation and properties of the routing component,
we bound the queueing regret.

In the following, we will show that the utility regret
∑T

t=1
∑K

k=1 λk[fk(x∗

k) − fk(xk(t))], cumulative constraint violation
T
t=1 ∆(x(t), Λ), and the queueing regret

∑M
m=1 Qm(T ) are all in Õ(

√
T ) with probability at least 1− 1/T (or 1− O(1/T )).

hat the expectation of these quantities are in Õ(
√
T ) immediately follow from the with-high-probability bounds since

they are all almost surely bounded by O(T ). To avoid unnecessary repetition, we will only state the with-high-probability
ounds and it should be understood that the bounds also hold in expectation.

.3.1. Utility regret
To bound the utility regret, we start from the performance guarantee of the optimization component which will give

bound on
∑T

t=1
∑K

k=1 Fk(x
∗

k) − Fk(xk(t)), where F is the objective function of P̃ . Note that this does not directly lead to
a bound on the utility regret

∑T
t=1
∑K

k=1 λk[fk(x∗

k) − fk(xk(t))], which is essentially with respect to the objective function
of P . We further use the structure of F to bound the utility regret.

Lemma 6. The job size vectors x(t), t = 1, . . . , T of the CI-JSQ policy satisfy
∑T

t=1 F (x
∗)− F (x(t)) = Õ(

√
T ) with probability

t least 1 − 1/T , where x∗ is the optimal solution to P̃ .

roof. The lemma directly follows from Proposition 4, which establishes that Algorithm 1, and the generalized
erformance guarantee of SCBA (Proposition 3). □

Recall that from Lemma 3, the optimal solution x∗ to P̃ is also optimal for P . Thus, we can bound the utility regret
ased on Lemma 6 by exploiting the structure of F .

heorem 2. The job size vectors x(t), t = 1, . . . , T of the CI-JSQ policy satisfy
∑T

t=1
∑K

k=1 λk[fk(x∗

k) − fk(xk(t))] = Õ(
√
T )

with probability at least 1 − 1/T .

Proof. Recall that x∗
∈ Λ, which implies that ∆(x∗, Λ) = 0. Thus, we obtain

T∑
F (x∗) − F (x(t)) =

T∑ K∑
λk[fk(x∗

k) − fk(xk(t))] + C(L + 1)
T∑

∆(x(t), Λ) (7)

t=1 t=1 k=1 t=1

10
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T∑
t=1

K∑
k=1

λk[fk(x∗

k) − fk(xk(t))]. (8)

Invoking Lemma 6, we conclude the proof. □

5.3.2. Queueing regret
The queueing regret measures the unfinished workload in the servers at the end of the time horizon. It is related

to the excess workload generated by the jobs that the servers cannot process before T . This latter quantity has close
connection to the cumulative constraint violation

∑T
t=1 ∆(x(t), Λ). Therefore, to analyze the queueing regret, we first

study the cumulative constraint violation, on which a bound can be recovered from Lemma 6 and will provide a handle
n the queueing regret.

emma 7.
∑T

t=1 ∆(x(t), Λ) = Õ(
√
T ) with probability at least 1 − 1/T .

Proof Sketch. Similarly as in the proof of Theorem 2, we start from the performance guarantee with respect to F and show
that the cumulative constraint violation

∑T
t=1 ∆(x(t), Λ) can be upper bounded by a constant times

∑T
t=1 F (x

∗)− F (x(t)).
We defer the details to Appendix B.

Lemma 7 establishes that the cumulative constraint violation under the zeroth-order scheduling policy is of order
Õ(

√
T ). Under the interpretation of Λ as the capacity region of the network, each term ∆(x(t), Λ) represents the excess

orkload that cannot be handled by the network. The cumulative constraint violation can thus be considered as the total
xcess workload injected by the end of the time horizon T . As the excess workload (constraint violation) is defined with
espect to the full capacity region of the network, a bound on total excess workload can only translate to a bound on total
orkload backlog at T under a routing policy that effectively utilizes the service capacity of a network. We will show that
he routing component of the CI-JSQ policy enjoys such property, and thus establish the bound on the queueing regret of
I-JSQ.
To do so, we first prove some preliminary properties of the routing component of the CI-JSQ policy. We will use the

uadratic Lyapunov function of queue length (workload) ∥Q (t)∥2
=
∑M

m=1 Q
2
m(t). By the dynamics of the workload process

1), under the CI-JSQ policy, the one slot drift of the quadratic Lyapunov function satisfies

1
2
∥Q (t + 1)∥2

−
1
2
∥Q (t)∥2

≤

M∑
m=1

Qm(t) ·

[
K∑

k=1

ak(t)α
jsq
km(t)xk(t) − cm(t)

]
+ C1, (9)

ith C1 being a constant independent of T , and the routing variables {α
jsq
km(t)} are the ones associated with the CI-JSQ

olicy. Inequality (9) is formally justified in Appendix B.
In the network scheduling and routing literature, the stability of queues is usually established by showing that the

ight-hand-side of (9) is upper-bounded by some non-positive quantity and thus the Lyapunov function of queue lengths
as non-positive one-slot conditional expected drift. In the analysis of queue length regret of the CI-JSQ policy, the
forementioned argument does not work since the job-size variable xk(t)’s may not be in the network capacity region, so
he right-hand-side of (9) may not be non-positive. Instead, we will analyze the upper bound of the drift (9) in a different
pproach, showing that although the one-slot drift may be positive at some time slots, the cumulative drift is upper-
ounded throughout the whole time horizon. This is done in Lemma 8, the proof of which is deferred to Appendix B.

emma 8. With probability at least 1 − O(1/T ), for all t ,
M∑

m=1

Qm(t) ·

[
K∑

k=1

ak(t)α
jsq
km(t)xk(t) − cm(t)

]
≤

M∑
m=1

Qm(t)(C3C2 + C4)
√
T log T ,

here C2, C3, C4 are constants independent of T .

Now, we are ready to prove that the queueing regret of CI-JSQ is in Õ(
√
T ) with high probability.

heorem 3. Under the CI-JSQ policy,
∑M

m=1 Qm(T ) = Õ(
√
T ) with probability at least 1 − O(1/T ).

Proof. Let C0 be a constant such that C0 ≥ 2M
√
C0(C3C2 + C4) + 2C1, e.g., C0 = 4M2(C3C2 + C4 + 2C1)2. We will show

by induction that ∥Q (t)∥2
≤ C0T log2(T + 1) for t = 1, . . . , T . The theorem will then follow from that

∑M
m=1 Qm(T ) ≤

√
M∥Q (T )∥. The base case of the induction (t = 1) holds trivially. Assume that the statement holds for τ = 1, . . . , t .

Summing over (9) for τ = 1, . . . , t and using Lemma 8, we have

∥Q (t + 1)∥2
≤ 2

t∑ M∑
Qm(τ ) · (C3C2 + C4)

√
T log T + 2C1T
τ=1 m=1

11



X. Fu and E. Modiano Performance Evaluation 152 (2021) 102229

1

5

s
s

C
r
s
F

t
t
c
s
o
j
d
a
e

≤2M
√
C0T log T · (C3C2 + C4)

√
T log T + 2C1T (10)

=2M
√
C0(C3C2 + C4)T log2 T + 2C1T , (11)

where we have used the induction hypothesis in (10). As C0 ≥ 2M
√
C0(C3C2 + C4) + 2C2, we have from (11) that ∥Q (t +

)∥ ≤ C0
√
T log T . Thus, we finish the induction and conclude the proof. □

Combining Theorems 2 and 3 and Corollary 1, we have that the CI-JSQ policy achieves Õ(
√
T ) regret, which we formally

summarize in the following theorem.

Theorem 4. Let πCI−JSQ denote the CI-JSQ policy. R(πCI−JSQ , T ) = Õ(
√
T ).

5.3.3. Remarks
• Computational Aspect: The main computational cost of the CI-JSQ policy comes from the confidence interval con-

struction procedure and SCBA. As SCBA is a generalization of the ellipsoid algorithm, it has a similar computational
complexity as the ellipsoid algorithm. We refer the reader to [21] for a more detailed that front. For the confidence
interval construction procedure, the most computational intensive steps are computing the functions ∆(x, λL, µU )
and ∆(x, λU , µL) (Lines 9 and 10 of Algorithm 1). Each of the function can be computed by solving a linear program.
Due to space limitation, we defer further details to Appendix C.

• Relation to Zeroth-order Optimization with Stochastic Constraints: We believe that the recipe of constructing
a transformed optimization problem by converting the stochastic constraints as a penalty term in the objective
function, designing a procedure that outputs confidence interval of the value of the transformed objective function
using observations available in the problem setting, and using it in conjunction with SCBA can be extended to
handle more general zeroth-order optimization problems. The recipe may also be able to work with other algorithms
for zeroth-order optimization, extending them to handle unknown and stochastic constraints, of which a common
example is the capacity constraints in network routing and scheduling. In previous works, unknown and stochastic
constraints are typically handled through primal–dual gradient-based methods. When applied to zeroth-order
optimization problems, those methods rely on using zeroth-order feedback to construct approximate gradients. Such
approximation has large variance when the feedback is noisy and it typically leads to sub-optimal regret [20,25]. In
contrast, our approach works with algorithms that directly utilizes zeroth-order feedback [21,26], which are more
robust against noisy feedback and can achieve order-optimal regret.

• Dependence of Regret on Dimension: Although the CI-JSQ policy achieves optimal regret with respect to the time
horizon T , its regret dependence on dimension (number of job classes), which is dominated by the regret bound
of SCBA can be large and sub-optimal. We further discuss the implication of this in simulations. Improving the
dependence of the regret on number of classes is an important future direction.

.4. Dealing with feedback delay

So far, we have assumed that the utility observations are immediately available after job size decisions. In the original
etting, the utility values are observed after the completion of the jobs. We now extend the CI-JSQ policy to deal with
uch feedback delay.
We propose an episodic version of the CI-JSQ policy (E-CI-JSQ) that achieves the same order of Õ(

√
T )-regret. In the E-

I-JSQ policy, the time horizon is divided into ⌊T/(KB)⌋ episodes with each episode having KB slots. The job-size decision
emains unchanged during an episode. In each episode, the E-CI-JSQ policy designates the first job of each class as a
ampling job. The sampling jobs receive priority service at the servers while the other jobs get served in a First-Come-
irst-Serve order. Note that as the size of each job is at most B and the realized service rate at each time is at least 1, we

have that for any job-size decision x, it takes the system at most KB time slots to complete one job of each class. Hence,
he sampling jobs always complete by the end of each episode. Therefore, for each episode, the utility observations of
he sampling jobs and the realizations of arrivals and services at the first slot of the episode can be used as a sample for
onstructing confidence intervals. Based on this, at the episode level, the confidence interval construction procedure can
till be used in conjunction with SCBA to compute job-size decisions for the E-CI-JSQ policy. Note that here only the utility
bservations of the sampling jobs are fed into the confidence interval construction procedure. Since we only update the
ob-size decision vector for ⌊T/(KB)⌋ times (every episode), the time horizon of SCBA is set to be ⌊T/(KB)⌋. The routing
ecisions are still made based on the Join-the-Shortest-Queue rule. Unlike the job-size decisions, the routing decisions
re still updated every time slot. The details of the E-CI-JSQ policy are shown in Algorithm 3. The E-CI-JSQ policy also
njoys Õ(

√
T )-regret, the proof of which is shown in Appendix A.3.

6. Simulations

In this section, we evaluate the empirical performance of the CI-JSQ policy. We will first study the behavior of the
job size decisions and queue length under the policy, and then compare its regret performance with the policy proposed
in [20].
12
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Algorithm 3 The E-CI-JSQ Policy

1: for t = 1, . . . , T do
2: if t is the first slot of an episode then
3: x(t) := the vector output by Algorithm 1 in conjunction with SCBA (with time horizon ⌊T/(KB)⌋) on P̃ executed

at the episodic level.
4: Set one job of each class as sampling job that will receive priority service.
5: else
6: Keep the job-size decision vector unchanged, i.e., x(t) := x(t − 1).
7: for k = 1, . . . , K do
8: Set the size of jobs in Ak(t) as xk(t).
9: Send the jobs in Ak(t) to server sj ∈ argminsm∈Suk

Qm(t)

Fig. 2. Instantaneous Utility and Queue Length of CI-JSQ under Different Noise Levels.

6.1. Instantaneous utility and queue length

We construct a bipartite network with 10 job schedulers (corresponding to 10 job classes) and 20 parallel servers.
The links between job schedulers and servers are randomly generated with each scheduler having expected degree 6
(i.e., connected to 6 servers). At every time slot, the arrival rate of each class is a uniform random variable in {2, 3, 4, 5}
hile the service rate of each server is a uniform random variable in [2, 4]. We assign an underlying utility function to
ach class of one of the four types: fk(r) = akr (linear function), fk(r) = ak

√
r + bk − ak

√
bk (square root function),

k(r) = −akr2 + bkr (quadratic function), fk(r) = ak log(bkr + 1) (logarithmic function). The time horizon is set to
T = 100000 slots. We vary the level of the observation noise from 0 (no noise) to 1 (each observation is corrupted
with noise that is uniformly distributed in [−1, 1]).

We first plot the instantaneous utility of the policy with time in Fig. 2(a). The instant utility at time t is defined as∑K
k=1 λkfk(xk(t)) where {xk(t)} is the job-size decision by the CI-JSQ policy. The optimal value of the optimization problem

P corresponding to our simulation setup is 22. From Fig. 2(a), we see that the instantaneous utility of the CI-JSQ converges
to the optimal value under all noise levels, where the convergence time increases with the noise level.

Next, we plot the evolution of (total) queue length with time in Fig. 2(b) under CI-JSQ. For most of the time, the queue
length of CI-JSQ stays at a low level, suggesting that the job-size vector approaches the optimal from within the capacity
region. Furthermore, we can observe that generally higher noise levels result in larger fluctuation in queue length.

6.2. Regret performance

We proceed to evaluate the regret performance of the CI-JSQ policy. As the utility of the optimal dynamic policy is
difficult to compute, we use T ·OPT (P) as an approximation to the optimal utility. In addition to the previously constructed
10-class network, we apply the policies to another larger network with 50 classes (job schedulers) and 100 servers (all
other parameters are the same as the previous small network) to evaluate the policies’ scalability with respect to the
network size.

Algorithm for Comparison: We compare our CI-JSQ policy to the Gradient-Sampling Max-Weight (GSMW) policy
proposed in [20]. The GSMW policy is a general policy for network utility maximization with unknown utility function.
Applied to the elastic job scheduling problem, GSMW uses observations of utility value to construct approximate gradient
of the utility function, i.e. ∇fk(x) ≃

f̂k(x+δ)−f̂k(x−δ)
2δ and also employs Join-the-Shortest-Queue routing. GSMW policy can

nly achieve a sub-optimal Õ(T 3/4)-regret for the elastic job scheduling problem. For completeness, we provide further
details and discussion of the GSMW policy in Appendix E.

We plot the regrets of CI-JSQ and GSMW in the 10-class and 50-class networks in Figs. 3 and 4 respectively. We
an see that in the 10-class network, when the noise level is 0, GSMW and CI-JSQ have comparable regret performance.
13
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Fig. 3. Regret of CI-JSQ and GSMW under different noise levels in the 10-class network.

Fig. 4. Regret of CI-JSQ and GSMW under different noise levels in the 50-class network.

However, CI-JSQ gradually outperforms GSMW by larger margin as the noise level increases. This can be attributed to
that CI-JSQ directly utilizes the utility value observations rather than using them to construct approximate gradients for
job-size decisions, which is more robust to noise in the observations. On the other hand, GSMW scales better than CI-JSQ
with the network size, as can be seen from Fig. 4. Indeed, as mentioned before, one drawback of the CI-JSQ policy is
that, despite achieving optimal regret with respect to the time horizon T , its regret bound has large dependence on the
imension (i.e., number of classes in the elastic job scheduling problem) of the problem.

. Related works

In this section, we survey existing results in the related fields and discuss the potential of applying those results to
olve the elastic job scheduling problem.

.1. Zeroth-order/bandit convex optimization

Zeroth-order convex optimization refers to the problem of minimizing a convex function f over a (known) convex
nd compact domain X with access to a zeroth-order oracle of f [21,27–31]. At each iteration t , we are allowed to
14
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uery a point x(t) and receive noisy/noiseless feedback f̂ (x(t)) with E[f̂ (x(t))] = f (x(t)). The goal is to design algorithms
with low regret or optimization error over a time horizon of T . The noiseless feedback scenario was studied in [28].
For the noisy feedback scenario, which is more relevant to the setting of the elastic job scheduling problem, a regret
lower bound of Ω(

√
T ) has been established even for simple functions such as linear [27] and quadratic [30] functions.

While the algorithm with order-optimal regret for linear functions was proposed in [27], the stochastic convex bandit
algorithm [21] is the state-of-the-art algorithm that achieves order-optimal regret for general convex functions. Bandit
convex optimization considers a more challenging setting, where an adversary chooses a sequence of functions f1, . . . , fT
nd at each time t we receive noisy feedback of ft (xt ). The goal is to minimize the regret compared to the best fixed
oint, i.e., E[

∑T
t=1 fk(xt )] − minx∈X

∑T
t=1 ft (x). The setting is harder than the zeroth-order convex optimization one and

he regret bounds achieved by algorithms in the literature are typically larger. For general convex functions, Õ(T 3/4)-regret
s achieved by algorithms in [22] and [32]. The algorithm in [33] improves the bound to Õ(T 8/13). For strongly convex and
mooth functions, [34] achieves Õ(

√
T )-regret. Algorithms proposed for zeroth-order or bandit convex optimization rely

on the feasibility region X to be known in advance, which prevents them from being applied to the elastic job scheduling
problem.

7.2. Bandits with knapsacks

Bandits with knapsacks problem [23,24,35] is a version of the multi-armed bandits where each arm is associated
with a reward and a resource consumption vector. When an arm is pulled, we obtain noisy observations of the arm’s
reward and resource consumption vector. The goal is to maximize the total reward over a time horizon T subject to
napsack constraints, that the total resource consumption does not exceed some budget. Let m be the number of arms.

The state-of-art algorithms achieve a regret of Õ(
√
mT ), which matches the lower bound of the problem.

We briefly discuss the potential of applying bandits with knapsack algorithms to the elastic job scheduling problem.
he knapsack constraints share similarity with the constraints in the elastic job scheduling problem. However, in the
andits with knapsacks problem, the decision region is a discrete set of arms whereas in our problem the decision region
s a continuous set. Therefore, in order to apply the algorithms in [23,24] to our problem, we need to discretize the
ecision region, and thereby creating a correspondence between job-sizes and arms. For intuitive argument, assume that
he decision region is uniformly discretized into m arms, then the discretization will incur O(1/m) error every time slot,
hich will accumulate to O(T/m)-regret over the time horizon. Combining this with the inherent regret of the algorithms,
e see that applying bandit with knapsack algorithms would achieve O(

√
mT +T/m)-regret for the elastic job scheduling

roblem. The optimal number of arms is m = O(T 1/3), which leads to O(T 2/3)-regret that is worse than the Õ(
√
T ) of

I-JSQ. This can be attributed to that bandits with knapsack techniques do not take advantage of the concavity of the
tility functions.

.3. Reinforcement learning

Reinforcement learning studies finite-horizon Markov Decision Processes (MDPs) with unknown dynamics. Recently,
here have been several works that propose reinforcement learning methods [36–40] that explicitly learn the parameters
f the MDPs through empirical observations and have provable regret bounds. Our elastic job scheduling problem can
e modeled in the MDP framework, with the state being the queue lengths and the action being the job-size decision.
owever, applying state-of-the art reinforcement learning methods cannot achieve an order-optimal regret bound of

˜ (
√
T ). For example, the UCRL algorithm proposed in [36] has a regret bound of Õ(S

√
AT ) where S is the cardinality of the

state space, A is the cardinality of the action space and T is the time horizon. Since in the elastic job scheduling problem,
our state space and action space are both continuous, to apply UCRL, we must first perform necessary discretization.
Even if we ignore the discretization error from state space and focus on the action space (set of job-size decisions), by
discretizing the set of job-size decisions into A actions, similar to the preceding argument with bandits with knapsacks,
the resulting discretization error leads to a regret of O(T/A). Combining this with the inherent regret of UCRL, we arrive
at a total regret of Õ( TA + S

√
AT ). Selecting the optimal value of A that minimizes the regret bound (A = O(T 1/3)), the

resulting regret is still Õ(T 2/3), which is worse than the Õ(
√
T ) regret achieved by our CI-JSQ algorithm. The key reason is

hat reinforcement learning methods are designed for general MDPs and do not exploit the special structure of the elastic
ob scheduling problem. The lower bounds [36,37] proposed in reinforcement learning also do not apply since the problem
nstances constructed to prove the lower bounds do not satisfy the properties of the elastic job scheduling problem.

.4. Network utility maximization and queueing bandits

Network utility maximization (NUM) is class of problems that study allocating network resources (e.g. traffic rates,
ink bandwidth) so as to maximize overall network utility [41–44]. If we view the job size in the elastic job scheduling
roblem as traffic rate, then philosophically, the elastic job scheduling problem can be considered as one instance of
UM in single-hop networks, with the unknown stochastic constraints corresponding to network stability constraints in
tochastic NUM formulations [43,44]. As most previous works on NUM focus on the setting where the utility functions
re known in advanced, their results cannot be applied to the elastic job scheduling problem. An exception is the GSMW
lgorithm proposed in [20]. However, as discussed before, GSMW can only achieve a sub-optimal regret of Õ(T 3/4) in the
lastic job scheduling problem.
15
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.5. Queueing bandits

Queueing bandits studies the problem of routing unit-size packets to servers to minimize the expected queue length
queueing regret with respect to the optimal policy) in a multi-server system with each server having an unknown service
ate [45–48]. It is in principle similar to the classical multi-armed bandit problem, but the queueing dynamics make the
ueueing regret exhibit more complex behavior than the regret in classical bandit problems [45–48]. The techniques
herein are not applicable for the elastic job scheduling problem as queueing bandits does not involve making decisions
n job sizes.

. Conclusion

In this paper, we have studied the problem of elastic job scheduling with unknown utility functions. We established an
pper bound on the regret of a generic policy that consists of cumulative utility difference between the job-size decisions
f the policy and the optimal solution to a static optimization problem, and the total queue length at servers at the end
f the time horizon T . The upper bound connects the elastic job scheduling problem to zeroth-order convex optimization
ith bandit feedback and routing for network stability. Based on the connection, we proposed a policy that achieves
n order-optimal regret of Õ(

√
T ) by simultaneously bounding the cumulative utility difference and controlling the total

ueue length. The policy can also be interpreted as a principled approach to enabling existing algorithms for zeroth-order
onvex optimization with bandit feedback [21,26] to handle parameterized unknown and stochastic constraints.
Although our policy achieves order-optimal regret with respect to the time-horizon T , its does not scale well with the

umber of job classes, which is mainly due to the regret bound of the Stochastic Convex Bandit Algorithm embedded
n the policy, that has large dependence on the dimension of the problem. While improving the regret dependence on
imension for general zeroth-order convex optimization is a challenging problem and little progress has been made [26],
pecial structural properties of the elastic job scheduling problem, e.g., the separability of the objective function of P ,
an be exploited to design policies with better dependence on dimension (number of job classes). We leave this as an
mportant direction for future research.
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ppendix A. Proof of theorems and propositions

.1. Proof of Theorem 1

roof. For any given policy, we first take weighted averages of the sizes of jobs of each class under the policy over the
ealizations of the arrival processes. We will then show that the averages satisfy the constraints of P , and by the concavity
f the underlying utility functions, the corresponding value of the objective function is no less than the expected utility
f the policy.
To facilitate the proof, we define the following optimization problem P ′:

P ′
: max

{rk},{bkm}

K∑
k=1

λkfk(
rk
λk

) (A.1)

s.t.
∑
m

bkm = rk, ∀k (A.2)∑
k

bkm ≤ µm ∀m (A.3)

bkm = 0, ∀sm /∈ Suk (A.4)

bkm ≥ 0, ∀k,m (A.5)

0 ≤ rk ≤ Bλk, ∀k. (A.6)

P ′ can be interpreted as an reformulation of P ′ where rk is the total load of class k jobs (i.e., λkxk) and bkm is the class
k load routed to server sm (i.e., λkαkmxk). The reason that we define such a reformulation is that while P is convex over
{xk} as optimization variables but possibly non-convex over {xk} and {αkm}, P ′ is convex over both {rk} and {bkm}.

We now argue that P and P ′ are equivalent. For any feasible {x}k solution to P , since (x1, . . . , xK ) ∈ Λ, we have there
exists {α} such that {x} , {α} satisfy the conditions of Λ. It follows that we can construct a feasible solution to P ′ by
km k km

16
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etting rk = λkxk and bkm = αkmrk. Similarly, given any feasible solution to P ′, we can construct a corresponding feasible
olution to P by setting xk = rk/λk. Thus, we establish the equivalence of P and P ′.
Proceeding to the proof of Theorem 1, for an arbitrary π ∈ Π∗, consider a sample path ω of an execution of π . Let

k(t, ω) be the number of job arrivals of class k at t , cm(t, ω) be the realization of the service rate of sm at t on the sample
ath ω. Define Nk(ω) :=

∑T
t=1 ak(t, ω) be the total number of class k jobs that arrived before T , and Cm(ω) :=

∑T
t=1 cm(t, ω)

e the total offered service of server m. Further, we define x̄k(ω) to be the average (over all arrived jobs of class k) amount
f service that class k-jobs received before T . Note that x̄k(ω) here is the average of received service rather than job-size
ecision made by the policy. For a job that is finished before T , its received service is equal to the its job size, otherwise
ts received service is smaller than its size determined by the policy. Let U(π, T , ω) be the utility achieved under policy
under sample path ω. By Jensen’s inequality, we have U(π, T , ω) ≤

∑K
k=1 Nk(ω)fk(x̄k(ω)).

For each k, define xk :=
∑

ω p(ω)Nk(ω)x̄k(ω)/
∑

ω′ p(ω′)Nk(ω′) with p(ω) being the probability mass of ω.8 We claim
hat (x1, . . . , xK ) is a feasible solution to P . Indeed, for each sample path ω, define rk(ω) :=

Nk(ω)x̄k(ω)
T and cm(ω) :=

Cm(ω)
T .

t follows from the physical constraints of the network that there exists {bkm(ω)} such that
∑

m bkm(ω) = rk(ω) for
all k and

∑
k bkm(ω) ≤ cm(ω) for all m. Also, {bkm(ω)} satisfy (A.3) and (A.4). Hence, setting rk :=

∑
ω p(ω)rk(ω),

bkm :=
∑

ω p(ω)bkm(ω) and noting that by definition cm =
∑

ω p(ω)cm(ω), we have {rk}, {bkm} is a feasible solution to
P ′. Therefore, (x1, . . . , xK ) with xk =

rk
λk

is feasible to P . The claim follows from the fact that Tλk =
∑

ω p(ω)Nk(ω).
Finally, we complete the proof by establishing that

∑
ω U(π, T , ω) ≤

∑K
k=1 Tλkfk(xk). The theorem will then follow

from the feasibility of (x1, . . . , xK ). Indeed, we use Tλk =
∑

ω p(ω)Nk(ω) and have,∑
ω

p(ω)U(π, T , ω) ≤

K∑
k=1

∑
ω

p(ω)Nk(ω)fk(x̄k(ω))

=

K∑
k=1

Tλk

∑
ω p(ω)Nk(ω)fk(x̄k(ω))∑

ω′ p(ω′)Nk(ω′)
≤

K∑
k=1

Tλkfk(xk),

here the last inequality follows from Jensen’s inequality. □

.2. Proof of Proposition 3

roof. The proof of Proposition 3 essentially follows from the same analysis as Theorem 1 of [21]. Since results of [21]
are not the contribution of this paper, we do not reiterate the analysis here but instead present the main idea behind the
proof of Theorem 1 of [21] and demonstrate how it can be applied to prove Proposition 3.

The proof of Theorem 1 of [21] consists mainly of a probability argument and a geometry argument. The probability
argument establishes that each confidence interval constructed throughout the algorithm contains the true value with
probability 1 − 1/T 2. In the original setting of [21], the argument holds since for each query, the algorithm receives a
noisy but unbiased observation of the function value with the noise being a zero-mean σ -sub-Gaussian random variable.
Applying the union bound, it follows that all the confidence intervals contain the true value with probability 1 − 1/T .
Since an error probability of 1/T does not affect the order of expected regret, based on the probability argument, the
analysis can be carried on in a deterministic fashion assuming that all the confidence intervals contain the true value.
Next, the geometry argument (c.f. the one dimensional special case in Section 4) establishes that: (i). the optimal point is
always contained in the target region and never eliminated, and (ii). the elimination procedure shrinks the target region
fast enough so that the query points (Step 2(a)), which always lie in the target region, approach the optimal point quickly
and the regret accumulated through the queries can be bounded by Õ(

√
T ). Note that the geometry argument holds as

ong as the confidence intervals used by the algorithms have widths bounded by the parameter γi (c.f. Step 2) and contain
he true function value.

Now, if we plug in a qualified procedure to SCBA, the probability argument holds by taking δ in Definition 2 as 1/T 2. The
rocedure constructs confidence intervals that satisfies the width requirement by setting the parameter γ in Definition 2
s the desirable width value (γi) throughout the execution of the algorithm. Thus, the geometry argument also holds. It
ollows that, even without unbiased observations, a qualified procedure in conjunction with the Stochastic Convex Bandit
lgorithm has the regret guarantee, which proves Proposition 3. □

.3. Proof of regret bound of E-CI-JSQ

In this section, we prove the regret bound of the episodic CI-JSQ policy, which is formally summarized in the following
heorem.

heorem 5. Let πE−CI−JSQ denote the E-CI-JSQ policy. R(πE−CI−JSQ ) = Õ(
√
KBT ) = Õ(

√
T ).

8 For ease of notation, we assume ω lies in a discrete set.
17
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roof. We index the episodes with e = 1, . . . , ⌊T/(KB)⌋ and denote the job-size vector in episode e as x(e). We first
laim that the job-size decision sequence at each episode x(e), e = 1, . . . , ⌊T/(KB)⌋, is equivalent to the query sequence
utput by SCBA (with horizon ⌊T/(KB)⌋) in conjunction with the confidence interval construction procedure (Algorithm

1). Indeed, for the SCBA and the confidence interval construction procedure to work at an episodic level, for each episode
e, we need the set of query observations {f̂k(xk(e)), ak(e), cm(e)} corresponding to x(e) to be available by the start of the
ext episode e + 1. {ak(e)} ({cm(e)}) correspond to realized arrivals (services) for each class (server) and can be taken as
he realizations of any time slot during the episode. The utility observations {f̂k(xk(e))} may not be available right after
he job-size decisions are made because of the feedback delay. However, since we designate the first job of each class
t the beginning of each episode as a sampling job and the sampling jobs receive priority services, the queueing delay
xperienced by the sampling jobs are only caused by other sampling jobs in the queue. As each job has size at most B, there
re K sampling jobs in each episode, and the realized service of each server is lower bounded by 1, with probability one,
ll the sampling jobs of one episode finish execution in KB time (the length of an episode). It follows that we receive the
tility observations of the sampling jobs, i.e., {f̂k(xk(e))} by the end of the episode e. Therefore, the set of query observations
f̂k(xk(e)), ak(e), cm(e)} is available to SCBA and the confidence interval construction procedure before computing x(e+ 1).
ence, the job-size decision sequence at the episode level is equivalent to the query sequence computed by SCBA (with
orizon ⌊T/(KB)⌋) in conjunction with Algorithm 1.
Using Propositions 3 and 4, we have

∑⌊T/(KB)⌋
e=1 F (x∗)−F (x(e)) = Õ(

√
T/(KB)) both in expectation and with probability at

least 1−⌊T/(KB)⌋. Since the job-size decision remains unchanged during each episode, for E-CI-JSQ,
∑T

t=1 F (x
∗)−F (x(t)) =

KBÕ(
√
T/(KB)) = Õ(

√
KBT ) = Õ(

√
T ). Therefore, we can carry out the same analysis as in Theorems 2 and 3, and show

that the regret of the E-CI-JSQ policy is also in Õ(
√
T ). □

Appendix B. Proof of lemmas

B.1. Proof of Lemma 1

Proof. We show the first part of the lemma. The second part follows immediately from the first part since F is the
sum of concave utility functions minus C(L + 1) times ∆. Consider any x, y, we will show that for any 0 ≤ p ≤ 1,
p∆(x, Λ)+(1−p)∆(y, Λ) ≥ ∆(px+(1−p)y, Λ). As Λ is a closed convex set, there exist z1, z2 such that ∆(x, Λ) = ∥x−z1∥1
and ∆(y, Λ) = ∥y − z2∥1. Then, using the convexity of l1 norm, we have

p∆(x, Λ) + (1 − p)∆(y, Λ) = p∥x − z1∥1 + (1 − p)∥y − z2∥1 ≥ ∥px + (1 − p)y − pz1 − (1 − p)z2∥1.

lso, z = pz1 + (1 − p)z2 ∈ Λ. It follows from the definition of ∆ that

p∆(x, Λ) + (1 − p)∆(y, Λ) ≥ ∥px + (1 − p)y − pz1 − (1 − p)z2∥1 ≥ ∆(px + (1 − p)y, Λ). □

.2. Proof of Lemma 2

roof. Again, we prove the first part of the lemma, and the second part follows from the first by definition. Consider
wo vectors x and y, w.l.o.g., assume ∆(x, Λ) ≥ ∆(y, Λ). As Λ is a closed convex set, there exist x′, y ′ such that
x − x′

∥1 = ∆(x, Λ) and ∥y − y ′
∥1 = ∆(y, Λ). We have

∆(x, Λ) − ∆(y, Λ) = ∥x − x′
∥1 − ∥y − y ′

∥1

≤ ∥x − y ′
∥1 − ∥y − y ′

∥1 (B.1)

≤ ∥x − y∥1 ≤
√
K∥x − y∥, (B.2)

where Inequality (B.1) follows from the definition of ∆(·, Λ) and Inequality (B.2) follows from Cauchy–Schwarz inequality.
Therefore, the function ∆(·, Λ) is

√
K -Lipschitz Continuous (with respect to the Euclidean norm). □

.3. Proof of Lemma 3

roof. By Lemma 1, ∆ is a convex function. It follows that the objective function of P̃ is concave. As the constraint
∀k, xk ∈ [0, B] is easily seen to be convex, it follows that P̃ is a convex problem.

We now proceed to prove that P and P̃ have the same set of optimal solutions. Let x̃∗ be an optimal solution to P̃ .
e first show that x̃∗

∈ Λ. For the sake of contradiction, if x̃∗
̸∈ Λ, i.e., ∆(x̃∗

, Λ) > 0, then there exists x′
̸= x̃∗ such that

∈ Λ and ∥x̃∗
− x∥ = ∆(x̃∗

, Λ). As each fk is monotonically non-decreasing and L-Lipschitz continuous, we have
K∑

λkfk(x̃∗

k) −

K∑
λkfk(xk) ≤

∑
∗

λkL|x̃∗

k − xk|

k=1 k=1 k:x̃k≥xk
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I

≤ CL
∑

k:x̃∗k≥xk

|x̃∗

k − xk|

≤ CL∥x̃∗
− x∥1

< C(L + 1)∆(x̃∗
, Λ). (B.3)

t follows from (B.3) that
K∑

k=1

λkfk(xk) − C(L + 1)∆(x, Λ) >

K∑
k=1

λkfk(x̃∗

k) − C(L + 1)∆(x̃∗, Λ),

which contradicts that x̃∗ is optimal for P̃ . Therefore, x̃∗
∈ Λ, which implies that ∆(x̃∗

, Λ) = 0. It follows that
F (x̃∗) =

∑K
k=1 λkfk(x̃∗

k). We now claim that x̃∗ is also optimal for P . Indeed, if not, then there exists x ∈ Λ such that∑K
k=1 λkfk(xk) >

∑K
k=1 λkfk(x̃∗

k). As ∆(x, Λ), this implies that F (x) > F (x̃∗), which again contradicts that x̃∗ is optimal for
P̃ .

On the other hand, as we have established that any optimal solution x̃∗ to P̃ must satisfy ∆(x̃∗
, Λ) = 0, which means

that it is also feasible for P . Therefore, an optimal solution to P must also be optimal for P̃ . We thereby establish the
equivalence between optimal solutions of P̃ and P . □

B.4. Proof of Lemma 4

Proof. We need to show that

UBx − LBx =

K∑
k=1

[λU
k f

U
k (xk) − λL

kf
L
k (xk)] + C(L + 1)

(
∆(x, λU , µL) − ∆(x, λL, µU )

)
≤ Dγ .

For the first component, we have

λU
k f

U
k (xk) − λL

kf
L
k (xk)

=(λ̄k +
γ

2
)(f̄k(xk) +

γ

2
) − (λ̄k −

γ

2
)(f̄k(xk) −

γ

2
)

=γ (f̄k(xk) + λ̄k +
γ

4
) ≤ 3Cγ ,

where in the last inequality we have used that all the observations lie in the interval [0, C] and γ ≤ C , which is an implicit
upper bound on γ since we have restricted the lower and upper estimates to be in [0, C].

For the second component, for fixed µ, consider λ = (λ1, . . . , λK ) and λ′
= (λ′

1, . . . , λ
′

K ) where λ and λ′ only differ at
the kth component with λ′

k > λk. Then for any x in the capacity region corresponding to λ, we construct x′ such that x′ only
differ with x at the kth component and x′

k = [xk−B(λ′

k−λk)/λk]
+. From the structure of the capacity region, it is easy to see

that x′
∈ Λ and ∥x−x′

∥1 ≤ B(λ′

k −λk)/λk ≤ B(λ′

k −λk). It follows that for fixed x, µ, ∆(x, λ′, µ)−∆(x, λ, µ) ≤ B(λ′

k −λk).
Using a similar argument, we can show that for fixed λ, consider two different service rate vectors µ = (µ1, . . . , µK ) and
µ′

= (µ′

1, . . . , µ
′

K ) that only differ at the kth component with µ′

k > µk, ∆(x, λ, µ) − ∆(x, λ, µ′) ≤ B(µ′

k − µk). It follows
that ∆(x, λU , µL) − ∆(x, λL, µU ) ≤ (KB + M)γ . Combine the two parts, we have

UBx − LBx ≤ 3CKγ + C(L + 1)(KB + M)γ = Dγ . □

B.5. Proof of Lemma 5

Proof. We note that
∑K

k λkfk(xk) increases component-wise with λ. Also, from the definition of Λ, for a fixed x, the
function ∆(x, λ, µ) decreases component-wise with λ while increases component-wise with µ. Therefore, we have if for
all k, fk(xk) ∈ [f Lk (xk), f

U
k (xk)], λk ∈ [λL

k, λ
U
k ] and for all m, µm ∈ [µL

m, µU
m],

LBx =

K∑
k=1

λL
kf

L
k (xk) − C(L + 1)∆(x, λU , µL)

≤ F (x) =

K∑
k=1

λkfk(xk) − C(L + 1)∆(x, λ, µ)

≤ UBx =

K∑
k=1

λU
k f

U
k (xk) − C(L + 1)∆(x, λL, µU ). □
19



X. Fu and E. Modiano Performance Evaluation 152 (2021) 102229

B

P
a∑

w

C

B

A
r
v

.6. Proof of Lemma 7

roof. For each t , let x′(t) be the projection of x(t) onto Λ with respect to l1-norm, i.e., ∥x(t) − x′(t)∥1 = ∆(x(t), Λ)
nd x′(t) ∈ Λ. Since x′(t) is feasible to P while x∗ is the optimal solution to P , we have for each t ,

∑K
k=1 λkfk(x∗

k) ≥
K
k=1 λkfk(x′

k(t)). Then, again, starting from (7), we have
T∑

t=1

F (x∗) − F (x(t)) (B.4)

=

T∑
t=1

K∑
k=1

λk[fk(x∗

k) − fk(xk(t))] + C(L + 1)
T∑

t=1

∆(x(t), Λ)

≥

T∑
t=1

K∑
k=1

λk[fk(x′

k(t)) − fk(xk(t))] + C(L + 1)
T∑

t=1

∆(x(t), Λ)

≥

T∑
t=1

K∑
k=1

λk∇fk(x′

k(t))[x
′

k(t) − xk(t)] + C(L + 1)
T∑

t=1

∆(x(t), Λ) (B.5)

≥ −

T∑
t=1

K∑
k=1

λkL|x′

k(t) − xk(t)| + C(L + 1)
T∑

t=1

∆(x(t), Λ) (B.6)

≥ − CL
T∑

t=1

∆(x(t), Λ) + C(L + 1)
T∑

t=1

∆(x(t), Λ) (B.7)

= C
T∑

t=1

∆(x(t), Λ), (B.8)

here in (B.5), ∇fk(x′

k(t)) is a subgradient of fk at x′

k(t) and it follows from the concavity of fk, (B.6) follows from the
Lipschitz-continuity of fk (which implies that |∇fk(x′

k(t))| ≤ L), and (B.7) follows from the definition of x′ and that λk ≤ C .
ombining (B.8) with Lemma 6, we conclude the proof of the lemma. □

.7. Proof of inequality (9)

1
2
∥Q (t + 1)∥2

−
1
2
∥Q (t)∥2

=

M∑
m=1

⎛⎝⎡⎣Qm(t) +

K∑
k=1

∑
j∈Ak(t)

1{sj=sm} · xj(t) − cm(t)

⎤⎦+⎞⎠2

− Qm(t)2

≤

M∑
m=1

⎛⎝Qm(t) +

K∑
k=1

∑
j∈Ak(t)

1{sj=sm} · xj(t) − cm(t)

⎞⎠2

− Qm(t)2

=

M∑
m=1

(
Qm(t) +

K∑
k=1

ak(t)α
jsq
km(t)xk(t) − cm(t)

)2

− Qm(t)2

≤

M∑
m=1

Qm(t) ·

[
K∑

k=1

ak(t)α
jsq
km(t)xk(t) − cm(t)

]
+ C1.

B.8. Proof of Lemma 8

Let {αkm} be any other routing variables that satisfy the constraints in the definition of Λ. First, from Line 5 of
lgorithm 2, we have that the routing component of CI-JSQ minimizes the upper bound of queue-length drift over all
outing choices in the network scheduling and routing literature. That is, under the CI-JSQ policy, for all t and any routing
ariables {αkm},

M∑
Qm(t)

[
K∑

ak(t)α
jsq
km(t)xk(t) − cm(t)

]
≤

M∑
Qm(t)

[
K∑

ak(t)αkmxk(t) − cm(t)

]
. (B.9)
m=1 k=1 m=1 k=1
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Let x̃(t) ∈ Λ be the job-size vector such that ∥x(t) − x̃(t)∥1 = ∆(x(t), Λ). As x̃ ∈ Λ, there exists {αkm} such that∑K
k=1 λkαkmx̃k(t) − µm ≤ 0 for all m. Using (B.9), we have,

M∑
m=1

Qm(t) ·

[
K∑

k=1

ak(t)α
jsq
km(t)xk(t) − cm(t)

]
+ C1

≤

M∑
m=1

Qm(t) ·

[
K∑

k=1

ak(t)αkmxk(t) − cm(t)

]
+ C1.

=

M∑
m=1

Qm(t) ·

[
K∑

k=1

ak(t)αkmx̃k(t) − cm(t) + ak(t)αkm(xk(t) − x̃k(t))

]
+ C1

=

M∑
m=1

Qm(t) ·

[
K∑

k=1

ak(t)αkmx̃k(t) − cm(t)

]
+

M∑
m=1

Qm(t) ·

[
K∑

k=1

ak(t)αkm|xk(t) − x̃k(t)|

]
+ C1

≤

M∑
m=1

Qm(t) ·

[
C2∆(x(t), Λ) +

K∑
k=1

ak(t)αkmx̃k(t) − cm(t)

]
+ C1, (B.10)

where C2 = KC is another constant independent of T .
From (B.10), we can see that the upper bound on the drift is smaller than or equal to the product of queue length and

a term of
∑K

k=1 ak(t)αkmx̃k(t)− cm(t) and another involving the constraint violation ∆(x(t), Λ). A cumulative upper bound
on the latter term can be established from Lemma 7. Invoking Lemma 7, we have that there exists a constant (independent
of T ) C3 such that

∑T
t=1 ∆(x(t), Λ) ≤ C3

√
T log T with probability at least 1−1/T . In the subsequent analysis, we can thus

focus on the set of sample paths where
∑T

t=1 ∆(x(t), Λ) ≤ C3
√
T log T , as the remaining set where the condition is not

atisfied has probability at most 1/T . We next proceed to bound the former term
∑K

k=1 ak(t)αkmx̃k(t)− cm(t). Let ∆̃(t) :=
M
m=1

∑K
k=1 ak(t)αkmx̃k(t)−cm(t). ∆̃(t) can be considered as a stochastic version of the quantity

∑K
k=1 λkαkmx̃k(t)−µm ≤ 0

hich has been shown to be less than or equal to zero. {∆̃(t)}t=1,...,T is a stochastic process and we use {Ft} to denote
its natural filtration. Note that the job sizes xk(t) and x̃k(t) are determined by information up to t − 1, and are thus

t−1-measurable. While ak(t)’s, cm(t)’s are independent of Ft−1. Hence, we have that

E[∆̃(t) | Ft−1] = E

[
M∑

m=1

K∑
k=1

ak(t)αkmx̃k(t) − cm(t) | Ft−1

]
=

M∑
m=1

K∑
k=1

λkαkmx̃k(t) − µm ≤ 0.

Also, as ak(t)’s, cm(t)’s, αkm, x̃k(t) are all bounded, ∆̃(t) is also bounded with probability 1. It follows that St :=
∑t

τ=1 ∆̃(τ )
is a super-martingale with bounded increment. Therefore, by Azuma–Hoeffding Inequality, we have that with probability
at least 1 − 1/T , St ≤ C4

√
T log T for all t = 1, . . . , T for some constant C4 independent of T . Thus, we can again restrict

urselves to the set of sample paths on which both
∑t

τ=1 ∆(x(τ ), Λ) ≤ C3
√
T log T and

∑t
τ=1 ∆̃(τ ) ≤ C4

√
T log T for all

= 1, . . . , T .

ppendix C. Computation aspect of CI-JSQ

In this section, we show that for given x, λ, µ, ∆(x, λ, µ) can be obtained by solving the following linear program LP∆.

LP∆ : max
{yk,bkm}

K∑
k=1

yk (C.1)

s.t.
∑
m

bkm = λkyk, ∀k (C.2)∑
k

bkm ≤ µm ∀m (C.3)

bkm = 0, ∀sm /∈ Suk (C.4)

bkm ≥ 0, ∀k,m (C.5)

0 ≤ yk ≤ xk, ∀k. (C.6)

Let {y∗

k} (or y∗) be the optimal solution to LP∆, the following proposition shows that we can obtain the value of
(x, λ, µ) by solving LP∆.

roposition 5. For given x, λ, µ, ∆(x, λ, µ) =
∑K

k=1(xk − y∗

k).
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roof. Let Λ be the capacity region of the network with the network statistics being λ, µ. First, if x ∈ Λ, then from the
efinition, we see that the optimal solution to LP∆ can be obtained by setting y∗

k = xk, b∗

km = αkmλkxk, where {αkm} is a
set of routing variables that makes the constraints of Λ satisfied with x. It follows that

∑K
k=1(xk − y∗

k) = ∆(x, λ, µ) = 0.
If x ̸∈ Λ. Let x′

∈ Λ be a job-size vector such that ∥x − x′
∥1 = ∆(x, λ, µ). Note that by definition of ∆, x′ must satisfy

x′

k ≤ xk for all k, otherwise we can decrease some x′

k that violates this and obtain a x′ that still lies in Λ but with a smaller
1-distance to x. Hence, we have

∑K
k=1 x

′

k =
∑K

k=1 xk −∆(x, λ, µ). Note that x′
∈ Λ, so we can define variables {αkm} such

hat {α′

km}, {x′

k} satisfy the constraints of Λ. By setting bkm = α′

kmλkx′

k, we see that {x′

k}, {bkm} are feasible to LP∆. It follows
hat

K∑
k=1

(xk − y∗

k) ≤

K∑
k=1

(xk − x′

k) = ∥x − x′
∥1∆(x, λ, µ). (C.7)

On the other hand, as {y∗

k} satisfies the constraints of LP∆, y∗
∈ Λ (as manifested by setting αkm = bkm/

∑
m bkm) and

∥x − y∗
∥1 =

∑K
k=1(xk − y∗

k). Thus, from the definition of x′, we have

∥x − y∗
∥1 =

K∑
k=1

(xk − y∗

k) ≤ ∥x − x′
∥1 =

K∑
k=1

(xk − x′

k) = ∆(x, λ, µ). (C.8)

Combining (C.7) and (C.8), we have ∆(x, λ, µ) =
∑K

k=1(xk − y∗

k). □

Appendix D. Workflow of the optimization component of CI-JSQ

In this section, we present the workflow of the optimization component of the CI-JSQ for the elastic job scheduling
algorithm using the one-dimensional case in Section 4.

Initially, at t = 1, CI-JSQ starts with the target region (of the zeroth epoch of SCBA) [l0, r0] = [0, B]. Then, it repeatedly
executes the following steps:

1. Let wτ = rτ − lτ . Set xl := lτ +
wτ

4 , xc := lτ +
wτ

2 , xr := lτ +
3wτ

4 .
2. For i = 1, . . .; γi = 1/2i:

(a) Let t be the current time slot. Set job-size decisions x(t + 1) = · · · = x(t + ⌈σ log T 2/γ 2
i ⌉) as xl.

(b) Feed the query observations to Algorithm 1 and obtain confidence interval [LBxl ,UBxl ] for xl.
(c) Set job-size decisions x(t + ⌈σ log T 2/γ 2

i ⌉ + 1) = · · · = x(t + 2⌈σ log T 2/γ 2
i ⌉) as xc .

(d) Feed the query observations to Algorithm 1 and obtain confidence interval [LBxc ,UBxc ] for xc .
(e) Set the job-size decisions x(t + 2⌈σ log T 2/γ 2

i ⌉ + 1) = · · · = x(t + 3⌈σ log T 2/γ 2
i ⌉) as xr .

(f) Feed the query observations to Algorithm 1 and obtain confidence interval [LBxr ,UBxr ] for xr .
(g) If [LBxl ,UBxl ] is γi-separated with [LBxc ,UBxc ] or [LBxr ,UBxr ], eliminate [lτ , xl] from the target region (by setting

lτ to xl) and proceed to the next epoch.
(h) If [LBxr ,UBxr ] is γi-separated with [LBxc ,UBxc ] or [LBxl ,UBxl ], eliminate [xr , rτ ] from the target region (by

setting rτ to xr ) and proceed to the next epoch.
(i) Otherwise, increment i and repeat step (2).

ppendix E. Gradient sampling max weight

We explain in more detail how to apply the GSMW policy in [20] to the elastic job scheduling problem. For simplicity
f description of the policy, we assume that every time slot, there are at least two job arrivals of each class and utility
alues are observable immediately after the injection of jobs. The pseudo-code of the GSMW policy on our problem is
hown in Algorithm 4.
The GSMW policy can be considered as a first-order primal dual algorithm that solves the optimization problem P

ssociated with the elastic job scheduling problem. The primal variables are the job-sizes and GSMW uses (noisy) utility
alue observations to construct approximate gradient of the utility functions (Line 6). The dual variables are the queue
engths and are updated based on network dynamics. The authors in [20] analyze the regret of GSMW when the utility
bservations are noiseless and show that by setting V = O(

√
T ), α = O(T ), δ = O(1/

√
T ), GSMW achieves Õ(

√
T )-

egret. However, when the utility observations are noisy, Õ(
√
T )-regret is no longer achievable due to the variance of the

approximate gradient ∇̂fk(x̂k(t)). Following a similar analysis in [20], it can be shown that the optimal parameter regime
under noisy observations is α = O(T ), V = O(

√
T ), δ = O(T 1/4) and GSMW achieves Õ(T 3/4)-regret.
22
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Algorithm 4 The Gradient Sampling Max-Weight Policy

Input: Parameters V , δ, α

1: Initialize: x̂k(0) = δ.
2: for t = 1, 2, . . . , T do
3: for k = 1, . . . , K do
4: uk injects one job of size r̂k(t) + δ, another of size r̂k(t) − δ, and all other jobs of size r̂k.
5: The designate server of class k is chosen as sk(t) ∈ argminsm∈Suk

Qm(t).

6: Observe f̂k(r̂k(t) + δ) and f̂k(r̂k(t) − δ) and compute ∇̂fk(x̂k(t)) :=
fk(x̂k(t)+δ)−fk(x̂k(t)−δ)

2δ
7: Update queue lengths according to x(t) and the network dynamics.
8: for k = 1, . . . , K do
9: x̂k(t + 1) := P[δ,B−δ]

[
x̂k(t) +

1
α
(V · ∇̂fk(x̂k(t)) − Qsk(t) (t))

]
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