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THE FIRST MOMENT OF TWISTED HECKE L-FUNCTIONS WITH

UNBOUNDED SHIFTS

SANDRO BETTIN

Abstract. We compute the first moment of twisted Hecke L-functions of prime power level
going to infinity, uniformly in the conductor of the twist and in the vertical shift.

1. Introduction

L-functions associated to modular forms have been studied extensively with applications in
many directions of number theory. In this paper we focus on averages of Hecke L-functions
twisted by a primitive Dirichlet character χ of conductor coprime with the level N . The (twisted)
L-functions associated to primitive forms of a given weight form an orthogonal family in the
sense of Katz and Sarnak [KS]. Thus, for a primitive Dirichlet character χ with conductor q
coprime with N , one expects that

∑h

f∈H∗
k
(N)

L(1/2, f ⊗ χ)r = Pr,k,χ(logN) + oq,k,r(1), (1.1)

as N → ∞, where Pr,k,χ is a polynomial of degree r(r−1)
2 . Here, H∗

k(N) denotes the subset of
Hk(N) consisting of primitive forms, where Hk(N) is the Hecke basis for Sk(N), with Sk(N)
being the space of primitive cusp forms of weight k and relative to the subgroup Γ0(N). Also,
the L-function L(s, f ⊗ χ) is normalized to have central point at s = 1

2 , that is if f(z) has Fourier

expansion
∑

n≥1 an(f)n
(k−1)/2 then

L(s, f ⊗ χ) :=
∑

n≥1

an(f)χ(n)n
−s, ℜ(s) > 1.

Finally,
∑h indicates the harmonic average, that is

∑h

f∈Hk(N)∗

αf =
∑

f∈Hk(N)∗

αf

2π(f, f)

where (f, g) is Petersson’s inner product.
Duke [Duk] computed the asymptotics (1.1) in the case r = 1, 2, provided that N is prime and

k = 2, with an error term of size Oε

(

N−1/2+ε
)

. For the first moment, Ellenberg [Ell] improved

the bound for the error term to O
(

N−1+ε
)

. He needed this better estimate to tackle the problem

of finding all primitive solutions to the generalized Fermat equation a2 + b2 = cp.
In the pioneering work [IS], Iwaniec and Sarnak studied the first and second moment (both in

the level and the weight aspects) in the case of real characters. They showed that for r = 1, 2 the
asymptotics (1.1) holds for all even k ≥ 2 and they relaxed also the condition on the primality

of N , replacing it by ϕ(N)
N → 1 with N square-free, where ϕ(n) is Euler’s totient function.

They studied this asymptotic in an attempt to show that there are no Siegel zeros, proving that
the non-existence of such exceptional zeros would follow from the non-vanishing (with some
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additional lower bound) of strictly more than 1
4 of the central values of the Hecke L-functions

(asymptotically, when either the level or the weight goes to infinity).
The asymptotics for the (mollified) fourth moment was proved by Kowalski, Michel and

VanderKam [KMV] for prime levels. From this result they also deduced the non-vanishing of a
positive proportion of the central values of L(s, f)L(s, f ⊗ χ) for any fixed characters χ. (For
other applications of results on moments of Hecke L-functions see, among others, [DFI], [KM]
and [Van].) Their work was later extended to prime powers by Balkanova [Bal]. Finally, the
asymptotic for the third moment was proven by Rouymi [Rou] in the case where the level is a
prime power.

Rather than computing moments at the central point, it is often useful to add shifts and
consider

∑h

f∈H∗
k
(N)

L(1/2 + α1, f ⊗ χ) · · ·L(1/2 + αm, f ⊗ χ),

as these reveal more clearly the combinatorics behind the main terms. Usually the shifts are
taken to be fixed (or less than qε for some small ε > 0), however when studying the n-correlation
of zeros one would like to apply conjectures on moments of ratios of shifted L-functions and
integrate over the shifts. Thus, one needs to understand for what range of shifted parameters
the asymptotics for the moments still hold.

In this paper we shall consider the shifted first moment. Kamiya addressed this problem
in [Kam], showing that if N is prime and ℜ(α) = 0 then

∑h

f∈H∗
k
(N)

L

(

1

2
+ α, f ⊗ χ

)

∼ 1, (1.2)

for k ∈ {2, 4, 6, 8, 10, 14} and qT ≪ N
1

2
−ε, where T := 1+|ℑ(α)|. The following theorem extends

the range of validity of (1.2) to qT ≪ N2−ε with N a prime power, as well as allowing for a twist
of the form am(f) as needed for non-vanishing applications [BF]. We take k = 2 for simplicity,
however the result is easily generalizable to all k.

Theorem 1.1. Let N = pν with p prime and ν ≥ 1 and let χ be a primitive character modulo

q with (q,N) = 1. Let |ℜ(α)| ≪ 1
logN and write T = 1 + |ℑ(α)|. Then, if ν ≥ 2 and p|m then

Mm(α, χ;N) = 0. In all other cases for all ε > 0 we have

Mm(α, χ;N) =
χ(m)

m
1

2
+α

(1− δν(p)) +Oε((qTm)1/2N−1+ε),

as N goes to infinity, where δν(p) = 0 if ν = 1, δν(p) =
1

p−p−1 if ν = 2 and δν(p) =
1
p otherwise.

The proof is rather simple and is based on Petersson’s formula and on the functional equation
for the “twisted periodic zeta-function” which is the meromorphic continuation to C of

F ∗
(

s, χ,
a

c

)

:=
∑

n≥1

χ(n) e
(

na
c

)

ns
ℜ(s) > 1 (1.3)

with (a, c) = 1, c > 0, and χ a primitive character modulo q. Analogously to what happens in
the case where q = 1, the functional equation relates F ∗

(

s, χ, ac
)

with F∗(1− s, χ,−aq/c) where
F∗(s, χ, x) is the “twisted Hurwitz zeta-function”

F∗(s, χ, x) :=
∑

n+x>0

χ(n)

(n+ x)s
, ℜ(s) > 1, x ∈ R. (1.4)
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2. Preliminaries and the computation of the main term

Remark 2.1. Throughout the paper, we use the common convention in analytic number theory

that ε denotes an arbitrarily small positive quantity that may vary from line to line.

We define T := |ℑ(α)| + 1 and assume that T,m, q ≪ N100 (otherwise the result is trivial)
and ℜ(α) ≪ 1

logN .

We shall show that

Mm(α, χ;N) :=
∑h

f∈Hk(N)

af (m)L
(

1
2 + α, f ⊗ χ

)

=
χ(m)

m
1

2
+α

+Oε

((qTm)1/2

N1−ε

)

, (2.1)

where N is any integer. If N is prime and k = 2, then H2(N) = H∗
2 (N) and so we obtain

Theorem 1.1 in the case ν = 1.
Next, we express L

(

1
2 + α, f ⊗ χ

)

as a sum of length Y ≫ q2T 2N1+ε.

Lemma 2.1. Let f ∈ Hk(N) and let χ be a primitive Dirichlet character modulo q with (q,N) =
1. Let ε > 0 and let Y ≫ q2T 2N1+ε. Then

L
(

1
2 + α, f

)

=
∑

n≥1

χ(n)af (n)

n
1

2
+α

V
( n

Y

)

+Oε,A(N
−A) (2.2)

for any A > 0, where

V (x) :=
1

2πi

∫

(2)
es

2

x−s ds

s
. (2.3)

Proof. Exchanging the order of summation and integration and moving the line of integration
to −M for some M > 0 we see that the sum on the right hand side of (2.2) is equal to

L
(

1
2 + α, f ⊗ χ

)

+
1

2πi

∫

(−M)
es

2

L
(

1
2 + s+ α, f ⊗ χ

)

Y s ds

s
.

By the functional equation

Λ(s, f ⊗ χ) :=
(√

Nq/2π
)s

Γ(s+ (k − 1)/2)L(s, f ⊗ χ)

= ωΛ(1− s, f ⊗ χ),

where |ω| = 1 we see that the integral is bounded by (Nq2T 2/Y )M , since

Γ(1− α− s)

Γ(1 + α+ s)
≪ T−2ℜ(s)e

|s|2

2

by Stirling’s formula. The Lemma then follows by taking M large enough. �

Lemma 2.2 (Petersson’s formula). Let F be an orthonormal basis of S2(N). Then, for m,n ≥ 1
we have

∑h

f∈F

af (m) af (n) = δm,n + 2πi−k
∑

c≥1,
N |c

S(m,n; c)

c
J1

(

4π
√
mn

c

)

,
(2.4)

where δm,n = 1 if m = n and δm,n = 0 otherwise.
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Applying Lemma (2.1) with Y = (mNqT )2 and using Petersson’s formula we can write
Mm(α, χ;N) as

Mm(α, χ;N) =
∑

n≥1

χ(n)

n
1

2
+α

(

∑h

f∈F

af (m) af (n)

)

V
( n

Y

)

=
χ(m)

m
1

2
+α

V
(m

Y

)

− 2π
∑

n≥1

χ(n)

n
1

2
+α

∑

c≥1,
N |c

S(m,n; c)

c
J1

(

4π
√
mn

c

)

V
( n

Y

)

,
(2.5)

where S(m,n, c) is the Kloosterman sum. Now,

V
(m

Y

)

=
1

2πi

∫

(2)
es

2

(Y/m)s
ds

s
= 1 +O(N−A)

for any A > 0, so we just need to bound the series on the last line of (2.5). By Weil’s bound,

S(m,n, c) ≪ε (m,n, c)
1

2 c
1

2
+ε, and the bounds J1(x) ≪ x and V (x) ≪A min(1, x−A) for any

A > 0, the contribution to the aforementioned series coming from the c > C is bounded by

∑

c>C

1

c
3

2
−ε

∑

n≥1

m
1

2

nℜ(α)

∣

∣

∣
V
( n

Y

)∣

∣

∣
≪ m

1

2Y

C
1

2
−ε

.

Taking C = ND with D fixed but large enough, we obtain that the contribution of these terms
is OA(N

−2). Thus, opening the Kloosterman sum and exchanging the order of summation, we
arrive to

Mm(α, χ;N) =
χ(m)

m
1

2
+α

− 2π
∑

c≤C,
N |c

∑

a (mod c),
(a,c)=1

e(ma/c)

c
Tm(a, c, α, χ;Y ) +O(N−2),

(2.6)

where

Tm(a, c, α, χ;Y ) :=
∑

n≥1

χ(n) e(na/c)

n
1

2
+α

J1

(

4π
√
mn

c

)

V
( n

Y

)

. (2.7)

3. The twisted periodic zeta function

In order to bound Tm(a, c, α, χ) we need some properties of the twisted periodic zeta function
F ∗

(

s, χ, ac
)

defined in (1.3).

Lemma 3.1. Let (a, c) = 1 and let χ be a primitive Dirichlet character modulo q. Then

F
(

s, χ, ac
)

is an entire function of s with the exception of a simple pole at s = 1 of residue

χ(a) τ(χ)q if c = q, where τ(χ) is the Gauss sum. Moreover F ∗
(

1− s, χ, ac
)

satisfies the functional

equation

F ∗
(

1− s, χ,
a

c

)

= Γ(s)
τ(χ)

q1−s

(

e−
πis

2 F∗

(

s, χ,−aq

c

)

+ χ(−1)e
πis

2 F∗

(

s, χ,
aq

c

))

, (3.1)

where F∗(s, χ, x) is as defined in (1.4).

Proof. We start by decomposing F
(

s, χ, ac
)

into a linear combination of Hurwitz’s zeta functions,

F ∗
(

s, χ,
a

c

)

=
1

(cq)s

cq
∑

ℓ=1

χ(ℓ) e

(

ℓa

c

)

ζ

(

s,
ℓ

cq

)

,
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where for ℜ(s) > 1 the Hurwitz zeta function is defined by ζ(s, x) :=
∑

n+x>0(n + x)−s. The
Hurwitz zeta-function is holomorphic on C with the exception of a simple pole of residue 1 at
s = 1. Thus, F ∗

(

s, χ, ac
)

is entire apart from (possibly) a simple pole at s = 1. The residue is

1

cq

cq
∑

ℓ=1

χ(ℓ) e

(

ℓa

c

)

=
1

cq

q
∑

ℓ1=1

χ(ℓ1)

c−1
∑

ℓ2=0

e

(

(ℓ1 + ℓ2q)a

c

)

and so it is 0 unless c|q in which case it is equal to

1

q

q
∑

ℓ=1

χ(ℓ) e

(

ℓa

c

)

=
1

q
χ(aq/c)τ(χ),

by (3.12) of [IK] (and the following remark). It follows that the residue is χ(a)τ(χ)/q if q = c
and otherwise F ∗

(

s, χ, ac
)

is entire.
The functional equation for the Hurwitz zeta function expresses ζ(1 − s, x) in terms of the

periodic zeta-function F (s, x) :=
∑

n≥1 e(nx)n
−s:

ζ(1− s, x) = Γ(s)(e−
πis

2 F (s, x) + e
πis

2 F (s,−x)).

Thus, for ℜ(s) < 0 we have

F
(

1− s, χ,
a

c

)

=
Γ(s)

(cq)1−s

cq
∑

ℓ=1

χ(ℓ) e

(

ℓa

c

)(

e−
πis

2 F

(

s,
ℓ

cq

)

+ e
πis

2 F

(

s,− ℓ

cq

))

=
Γ(s)

(cq)1−s

∑

ǫ=±1

eǫ
πis

2

∑

n≥1

1

ns

cq
∑

ℓ=1

χ(ℓ) e

(

ℓaq − ǫn

cq

)

.

The inner sum is equal to 0 unless ǫn ≡ aq (mod c) and so

F
(

1− s, χ,
a

c

)

=
Γ(s)

c−sq1−s

∑

ǫ=±1

eǫ
πis

2

∑

n=ǫaq+rc,
n>0, r∈Z

1

ns

q
∑

ℓ′=1

χ(ℓ′) e

(

ℓ′a

c

)

e

(

−ǫ
nℓ′

cq

)

=
Γ(s)

c−sq1−s

∑

ǫ=±1

eǫ
πis

2

∑

n=ǫaq+rc,
n>0, r∈Z

1

ns

q
∑

ℓ′=1

χ(ℓ′) e

(

−ǫrℓ′

q

)

=
Γ(s)

q1−s

∑

ǫ=±1

eǫ
πis

2

∑

r+ǫaq/c>0

1

(r + ǫaq/c)s
χ(−ǫr)τ(χ)

by (3.12) of [IK]. Equation (3.1) then follows. �

From the functional equation we can obtain the following “convexity bound” for F
(

s, χ, ac
)

.

Corollary 3.1. Let χ be a primitive character modulo q and let (a, c) = 1. Let −1 ≤ ℜ(s) ≤ 1
and let |s − 1| > ε for some ε > 0. Then

F ∗
(

s, χ,
a

c

)

≪ε (q + q|s|) 1

2
− 1

2
ℜ(s)+ε ×

{

1 if c | q,
(

{ qa
c

}−1+ℜ(s)−ε
+
{

− qa
c

}−1+ℜ(s)−ε
)

if c ∤ q,
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where {x} denotes the fractional part of x. In particular, if r ≥ 1 and η1, . . . , ηcr ≪ 1 then we

have
cr
∑

a=1,
(a,c)=1

ηaF
∗
(

s, χ,
a

c

)

≪ε rc
1+ε(q + q|s|) 1

2
− 1

2
ℜ(s)+ε.

(3.2)

Proof. Let δc,q = 1 if c = q and δc,q = 0 otherwise. Then for ℜ(s) = 1 + ε with ε > 0 we have

F ∗
(

s, χ,
a

c

)

− δc,q
χ(a)τ(χ)/q

s− 1
≪ε 1.

By the functional equation (3.1), for ℜ(s) = −ε we have

F ∗
(

s, χ,
a

c

)

− δc,q
χ(a)τ(χ)/q

s− 1
≪ 1 + (q|s|) 1

2
+ε

(

ζ
(

1 + ε,−aq

c

)

+ ζ
(

1 + ε,
aq

c

))

,

≪ (q|s|) 1

2
+ε

(

{qa

c

}−1−ε
+

{

−qa

c

}−1−ε
)

if c ∤ q and ≪ (q|s|) 1

2
+ε otherwise. The Corollary then follows by the Phragmén-Lindelöf

theorem. �

4. Bounding the error terms

We start by recalling the Mellin transform of J1(x),

J1(x) =
1

2πi

∫

(−δ)
2s−1 Γ

(

s+1
2

)

Γ
(

3
2 − s

2

)x−s ds,

for any −1 < δ < 0. We take δ = −1 + ε for some small ε > 0 and obtain

Tǫ(a, c, α, χ;Y ) =
1

4πi

∫

(−1+ε)

Γ
(

s+1
2

)

Γ
(

3
2 − s

2

)

(

2π

c

)−s
∑

n≥1

χ(n) e
(

na
c

)

m
s

2n
1

2
+α+ s

2

V
( n

Y

)

ds.

Now, using the integral representation (2.3) of V (x), we have

Tm(a, c, α, χ;Y ) =
1

2(2πi)2

∫

(−1+ε)

Γ
(

s+1
2

)

Γ
(

3
2 − s

2

)

(

2π

c

)−s ∫

(2)
ew

2

m− s

2×

× F

(

1

2
+ α+

s

2
+ w,χ,

a

c

)

Y w dw

w
ds.

We move the line of integration of the w-integral to ℜ(w) = ε without passing through any pole
(notice that we can assume c 6= q since we have N |c and (N, q) = 1). Thus, using (3.2) we
obtain

∑

a (mod c),
(a,c)=1

e

(

ma

c

)

Tm(a, c, α, χ;Y )

≪ (qm)
1

2 (cY )ε
∫

(ε)

∫

(ε)

(|s|+ |w|+ |α|) 1

2 |ew2

Γ
(

s
2

)

|
|Γ
(

2− s
2

)

|
|dw ds|
|w| ≪ (qmT )

1

2 (Y c)ε,

by Stirling’s formula. Thus, by (2.6) we have

Mm(α, χ;N) =
χ(m)

m
1

2
+α

+Oε

(

(qmT )
1

2 /N1−ε
)

,

as desired.
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5. Prime powers

We now consider the case of N = pν with ν ≥ 2.

Lemma 5.1. Let N = pν with p prime and ν ≥ 2. Let δν(p) =
1

p−p−1 if ν = 2 and δν(p) = p−1

otherwise. Then, if (p,mn) = 1 we have
∑h

f∈H∗
2k

(N)

λf (m)λf (n) =
∑h

f∈H2k(N)

λf (m)λf (n)− δν(p)
∑h

f∈H2k(N/p)

λf (m)λf (n),

whereas if (p,mn) > 1 then the left hand side is equal to 0.

Proof. This is Remark 4 of [Rou]. �

By Lemma 2.1 and Lemma 5.1 we obtain that if N = pν with ν ≥ 2 then Mm(α, χ;N) = 0
if (m, p) > 1 and otherwise

Mm(α, χ;N) =
∑h

f∈H2k(N)

af (m)L(1/2 + α, f ⊗ χ) +

− δν(p)
∑h

f∈H2k(N/p)

af (m)L(1/2 + α, f ⊗ χ) +

+
χ(p)

p
1

2
+α

(Em,p(α, χ;N) − δν(p)Em,p(α, χ;N/p)) +O(N−2),

(5.1)

where

Em,p(α, χ;N) := −
∑

n≥1

∑h

f∈H2k(N)

χ(n)af (m)af (pn)

n
1

2
+α

V
(pn

Y

)

with Y = (qTN)2. By (2.1), the first two terms on the right hand side of (5.1) are equal to
χ(m)

m
1
2
+α

(1− 1
pν
)+O((qTm)1/2N−1+ε), thus we just need to bound the contribution of Em,p(α, χ;N).

Applying Petersson’s formula (2.4) and proceeding as in Section 2 we obtain

Em,p(α, χ;N) := 2π
∑

c≤C,
N |c

1

c

∑

a (mod c),
(a,c)=1

e

(

ma

c

)

Tm/p(a, c/p, α, χ;Y/p)

with Tm(a, c, α, χ;Y ) as in (2.7) and C = ND for some large but fixedD. By the same arguments
as in the previous section (using (3.2) with r = p) we have

∑

a (mod c),
(a,c)=1

e

(

ma

c/p

)

Tm/p(a, c/p, α, χ;Y/p) ≪ p(qm/pT )
1

2 (Y c)ε,

and so Em,p(α, χ;N) ≪ (pqmT )1/2N−1+ε. Inserting such bound in (5.1) we obtain Theorem 1.1
also in the prime powers case.
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