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THE FIRST MOMENT OF TWISTED HECKE L-FUNCTIONS WITH
UNBOUNDED SHIFTS

SANDRO BETTIN

ABSTRACT. We compute the first moment of twisted Hecke L-functions of prime power level
going to infinity, uniformly in the conductor of the twist and in the vertical shift.

1. INTRODUCTION

L-functions associated to modular forms have been studied extensively with applications in
many directions of number theory. In this paper we focus on averages of Hecke L-functions
twisted by a primitive Dirichlet character x of conductor coprime with the level N. The (twisted)
L-functions associated to primitive forms of a given weight form an orthogonal family in the
sense of Katz and Sarnak [KS]. Thus, for a primitive Dirichlet character x with conductor ¢
coprime with IV, one expects that

h T
> L(1/2,f @) = Py (log N) + 0gk,(1), (1.1)
feH(N)

as N — oo, where P, , is a polynomial of degree @ Here, H}(N) denotes the subset of
Hi(N) consisting of primitive forms, where Hy(N) is the Hecke basis for Si(N), with Si(NV)
being the space of primitive cusp forms of weight k and relative to the subgroup I'o(N). Also,
the L-function L(s, f ® x) is normalized to have central point at s = %, that is if f(z) has Fourier

expansion ), an(!}")n(k_l)/2 then

f®X Zan s’ §R(S) > 1.

n>1

Finally, Zh indicates the harmonic average, that is

h O[f
R Z 2n(7.5)
k() fEHR(N

where (f, g) is Petersson’s inner product.

Duke [Duk] computed the asymptotics (1.1) in the case r = 1,2, provided that N is prime and
k = 2, with an error term of size O, (N -1/ 2+5). For the first moment, Ellenberg [Ell] improved
the bound for the error term to O(N —lde ) He needed this better estimate to tackle the problem
of finding all primitive solutions to the generalized Fermat equation a? + b* = c?.

In the pioneering work [IS], Iwaniec and Sarnak studied the first and second moment (both in
the level and the weight aspects) in the case of real characters. They showed that for r = 1,2 the
asymptotics (1.1) holds for all even k& > 2 and they relaxed also the condition on the primality

of N, replacing it by w(N) — 1 with N square-free, where ¢(n) is Euler’s totient function.

They studied this asymptotlc in an attempt to show that there are no Siegel zeros, proving that

the non-existence of such exceptional zeros would follow from the non-vanishing (with some
1
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additional lower bound) of strictly more than % of the central values of the Hecke L-functions

(asymptotically, when either the level or the weight goes to infinity).

The asymptotics for the (mollified) fourth moment was proved by Kowalski, Michel and
VanderKam [KMV] for prime levels. From this result they also deduced the non-vanishing of a
positive proportion of the central values of L(s, f)L(s, f ® x) for any fixed characters x. (For
other applications of results on moments of Hecke L-functions see, among others, [DFI], [KM]
and [Van].) Their work was later extended to prime powers by Balkanova [Bal|. Finally, the
asymptotic for the third moment was proven by Rouymi [Rou] in the case where the level is a
prime power.

Rather than computing moments at the central point, it is often useful to add shifts and
consider

h
> L2+ a1, f@X) - L(1/2+ am, f ® X),
FEHT(N)

as these reveal more clearly the combinatorics behind the main terms. Usually the shifts are
taken to be fixed (or less than ¢° for some small € > 0), however when studying the n-correlation
of zeros one would like to apply conjectures on moments of ratios of shifted L-functions and
integrate over the shifts. Thus, one needs to understand for what range of shifted parameters
the asymptotics for the moments still hold.

In this paper we shall consider the shifted first moment. Kamiya addressed this problem
in [Kam]|, showing that if N is prime and R(a) = 0 then

S L<%+a,f®x> ~1, (1.2)

JEHL(N)

for k € {2,4,6,8,10,14} and ¢T < N%_a, where T' := 14|3(«)|. The following theorem extends
the range of validity of (1.2) to ¢7" < N2~¢ with N a prime power, as well as allowing for a twist
of the form a,,(f) as needed for non-vanishing applications [BF]. We take k& = 2 for simplicity,
however the result is easily generalizable to all k.

Theorem 1.1. Let N = p” with p prime and v > 1 and let x be a primitive character modulo
q with (¢, N) = 1. Let |R(a)| < @ and write T =1+ |S(«)|. Then, if v > 2 and p|m then
M (a,x; N) = 0. In all other cases for all e > 0 we have

x(m)
mzte

M (e, x; N) = (1= 0u(p)) + O ((qTm) /AN ~1F%),

as N goes to infinity, where 6,(p) =0 if v =1, 6,(p) = I# if v=2 and d,(p) = % otherwise.

The proof is rather simple and is based on Petersson’s formula and on the functional equation
for the “twisted periodic zeta-function” which is the meromorphic continuation to C of

P ) = X > 13

with (a,c) =1, ¢ > 0, and x a primitive character modulo ¢q. Analogously to what happens in
the case where ¢ = 1, the functional equation relates F™* (8, X, %) with Fy(1 — s,%, —aq/c) where
F.(s,x,x) is the “twisted Hurwitz zeta-function”

(n)
Fi(s,x,x) := Xis, R(s) > 1, z €R. .
X n%;o 1) (1.4)
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2. PRELIMINARIES AND THE COMPUTATION OF THE MAIN TERM

Remark 2.1. Throughout the paper, we use the common convention in analytic number theory
that € denotes an arbitrarily small positive quantity that may vary from line to line.

We define T := |3(a)| + 1 and assume that T, m,q < N (otherwise the result is trivial)
and R(a) < @.
We shall show that

h
Muy(a,x;N) = > ag(m)L(3+ o, f®x) =
fEHL(N) m
where N is any integer. If N is prime and k = 2, then Hyo(N) = H5(N) and so we obtain
Theorem 1.1 in the case v = 1.
Next, we express L( +o,f® X) as a sum of length Y > ¢?T?N1+¢,

x(m)

1
ata

(qu)1/2>’

+ 05< N1l-e€

(2.1)

Lemma 2.1. Let f € Hp(N) and let x be a primitive Dirichlet character modulo q with (q, N) =
1. Lete >0 and let Y > ¢*T?N'*¢. Then

x(n n _
staf)=) T (Y) +0-a(N") (2.2)
n>1
for any A > 0, where
1 2 _gds

Proof. Exchanging the order of summation and integration and moving the line of integration
to —M for some M > 0 we see that the sum on the right hand side of (2.2) is equal to

ds

1
L(%+a,f®x)+2—m/(_M)es2L( + s+ a, f®x)Ys

By the functional equation
As. f @) = (VNg/27) T(s + (k= 1)/2)L(s, f @ X)
=wA(l—s,f®YX),
where |w| = 1 we see that the integral is bounded by (N¢*72/Y )M since

F(l - — S) T_2§R(8)e‘s‘
M1+ a+s)
by Stirling’s formula. The Lemma then follows by taking M large enough. O

Lemma 2.2 (Petersson’s formula). Let F be an orthonormal basis of So(N). Then, form,n > 1
we have

h . S(m,n;c A1 /mn
E ap(m)as(n) = .y + 2mi " E ( . )J1< p >, (2.4)
feF 02‘1, ’
Nle

where 0y, n =1 if m = n and 6,,,, = 0 otherwise.
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Applying Lemma (2.1) with Y = (mNg¢T)? and using Petersson’s formula we can write
M (c, x; N) as

n>1 M2 feF
_ x(m) <@> 5 Z x(n) S(m,n;c) 7 <47r\/mn>v<ﬁ> (25)
mate \Y n>1 nate e>1 ¢ Y/
- ]V‘c7

where S(m,n,c) is the Kloosterman sum. Now,

V(%) _ L /(2) e (Y/m)* % =1+ 0N~

211

for any A > 0, so we just need to bound the series on the last line of (2.5). By Weil’s bound,
S(m,n,c) <. (m,n,c)%c%“, and the bounds Ji(z) < x and V(z) <4 min(1,2=4) for any
A > 0, the contribution to the aforementioned series coming from the ¢ > C' is bounded by

Z JEan(a ( >‘<<Z%_i

Taking C' = NP with D fixed but large enough, we obtain that the contribution of these terms
is O4(N~2). Thus, opening the Kloosterman sum and exchanging the order of summation, we
arrive to

MTm(a, c,o,x;Y) +O(N?%)

Mm(a7X;N) - c ’ (26)

c¢<C,a (mod c),
Nlc  (a,c)=1

To(a, e, 0 x; Y ZX na/c <4w\£ﬁ>v<;) @7

_l’_
n>1 n2

where

3. THE TWISTED PERIODIC ZETA FUNCTION

In order to bound T}, (a, ¢, v, x) we need some properties of the twisted periodic zeta function
F*(s,X, %) defined in (1.3).

Lemma 3.1. Let (a,c) = 1 and let x be a primitive Dirichlet character modulo q. Then
F(S,X,%) s an entire function of s with the exception of a simple pole at s = 1 of residue
X(a)% if ¢ = q, where T(x) is the Gauss sum. Moreover F*(l — 8, X, %) satisfies the functional
equation
. a T(x) (s _ _aq mis _ aq
F (1_S7X7E> :F(s)ql—s (6 2 F*<37X7_?> +X(—1)€ 2 F*(‘%Xu?))? (31)

where Fy(s,x,x) is as defined in (1.4).

Proof. We start by decomposing F’ (s X, 9) into a linear combination of Hurwitz’s zeta functions,

)
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where for (s) > 1 the Hurwitz zeta function is defined by ((s,z) := >, ,~o(n +2)7%. The
Hurwitz zeta-function is holomorphic on C with the exception of a simple pole of residue 1 at
s = 1. Thus, F* (s, X, %) is entire apart from (possibly) a simple pole at s = 1. The residue is

cl_qu(g) <€_a> _ iq qu: : :106<(€1 +c€2Q)a>

and so it is 0 unless c|q in which case it is equal to

é > () e<%“> = %Y(aq/C)T(X%

by (3.12) of [IK] (and the following remark). It follows that the residue is Xx(a)7(x)/q if ¢ = ¢
and otherwise ™ (s, X, %) is entire.

The functional equation for the Hurwitz zeta function expresses ((1 — s,x) in terms of the
periodic zeta-function F'(s,x) := Y < e(nz)n™*:

s

C(1—s,2)=T(s)(e” 2 F(s,z)+ eﬂTiSF(s, —x)).
Thus, for R(s) < 0 we have

The inner sum is equal to 0 unless en = ag (mod ¢) and so

I(s) (i 1 & 14 4
F<1 —8,X, %) = C_sqsl_s Z e 2 Z E;:lx(f/)e<?a> e(—ei—q)

e=*+1 n=eaq-+rec,
n>0, reZ
I'(s) (mis ert/
- csql—s Z €2 Z Z () < >
e=+1 n= eaq—l—rc =1
n>0, reZ
1 _
- 1 Iy e Y L sar
e==+1 r+eaq/c>0 (T ™ an/C)
by (3.12) of [IK]. Equation (3.1) then follows. O

From the functional equation we can obtain the following “convexity bound” for F (s, X, %)

Corollary 3.1. Let x be a primitive character modulo q and let (a,c) = 1. Let —1 < R(s) <1
and let |s — 1| > € for some € > 0. Then

1 ifclaq,
F* (3,)(, %) < (q—l—q|s|)%—% (s)+e X {({qa}—1+§R(s +{ qa}—1+§R(s)—s> z'ch(q
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where {x} denotes the fractional part of x. In particular, if r > 1 and n1,..., N < 1 then we

have
cr

E N F™* (&Xng) <e 7’61+8(Q+q,3’)%_%%(8)+6’ (3 2)
& .
=1,
(@)1

Proof. Let 0.4 =1 if ¢ = q and 6.4 = 0 otherwise. Then for R(s) =1 + ¢ with € > 0 we have
P ) - 5, X0

By the functional equation (3.1), for R(s) = —¢ we have

F(SX%) _%W <1+ (q\s\)%+€( (1+s ——) +g(1+ q))

< (qISI)éJ“E({%}_I_e - {_%} >

if ¢ { ¢ and < (q|8|)%+5 otherwise. The Corollary then follows by the Phragmén-Lindel6f
theorem. 0

4. BOUNDING THE ERROR TERMS

We start by recalling the Mellin transform of J; (z),

1 (st
) =5 | i = N
i TE-3)
for any —1 < d < 0. We take § = —1 + ¢ for some small € > 0 and obtain
1 T s+1 9 —s na
=&l ) B e
Ami Jage T(3-3) \ ¢ rs1manztets Y

Now, using the integral representation (2.3) of V(x), we have

1 (£ 2 — s
Tm((% C,OZ,X;Y) = / #(l) / ew2m—§x
2(2mi)* J-14) T(5 — %) ¢/ Jo

><F< +a+ - +w X, >Y“’d—wd
2 w

We move the line of integration of the w-integral to ®(w) = ¢ without passing through any pole
(notice that we can assume ¢ # ¢ since we have N|c and (N,q) = 1). Thus, using (3.2) we

obtain
E e <—ma> Tn(a,c,o,x;Y)
C

(1] + [w] + |a])2|e*"T($)] |dwd

S w 0] 5

%cY // p 2 ]ws] < (gmT)
(e) |F2_§)| ‘w‘

by Stirling’s formula. Thus, by (2.6) we have

[NIES

(Ye),

Mo N) = X4 0, (gmyt /=),
mate
as desired.
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5. PRIME POWERS
We now consider the case of N = p” with v > 2.
Lemma 5.1. Let N = p” with p prime and v > 2. Let 6,(p) = # ifv=2and §,(p) =p~!
otherwise. Then, if (p,mn) =1 we have
h h h
Do Mmhm) = Y A mAp(n) = 8up) D Ap(m)As(n),
feH3, (N) JFE€H2,(N) fE€H,(N/p)
whereas if (p,mn) > 1 then the left hand side is equal to 0.
Proof. This is Remark 4 of [Rou]. O

By Lemma 2.1 and Lemma 5.1 we obtain that if N = p” with v > 2 then M,,,(a, x; N) =0
if (m,p) > 1 and otherwise

Mun(aiN) = 7 agm)L(1/2+ . f @ X) +

fE€H3,(N)
h
=) Y agm)L(1/2+a,f@x)+ (5.1)
f€H2(N/p)
+ 2 (5003 N) = ) oy 3 N/) + O(N ),

b
where

Bnplaxi) ==Y 30" Moy (i)
n>1 feHor (N)
with Y = (¢T'N)2. By (2.1), the first two terms on the right hand side of (5.1) are equal to
%(1—i)+0((qu)l/2N_l+5), thus we just need to bound the contribution of E,, ,(a, x; N).
Applying Petersson’s formula (2.4) and proceeding as in Section 2 we obtain

Enplaxi) =20 50 % e M) Tpplac/pas¥))

c<C, a (mod c)
Nle (a,c)= 1

with T}, (a, ¢, @, x;Y) asin (2.7) and C = NP for some large but fixed D. By the same arguments
as in the previous section (using (3.2) with » = p) we have

> <C/ >Tm/p(a7 ¢/p,a, x;Y/p) < plgm/pT)

a (mod c¢)
(a,c)=1

(NI

(Ye),

and so Ep, p(a, x; N) < (pgmT)/2N~1%¢. Inserting such bound in (5.1) we obtain Theorem 1.1
also in the prime powers case.
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