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Abstract. Let K be an inversive difference-differential field and L a
(not necessarily inversive) finitely generated difference-differential field
extension of K. We consider the natural filtration of the extension L/K
associated with a finite system η of its difference-differential generators
and prove that for any intermediate difference-differential field F , the
transcendence degrees of the components of the induced filtration of F
are expressed by a certain numerical polynomial χK,F,η(t). This poly-
nomial is closely connected with the dimension Hilbert-type polynomial
of a submodule of the module of Kähler differentials ΩL∗|K where L∗

is the inversive closure of L. We prove some properties of polynomials
χK,F,η(t) and use them for the study of the Krull-type dimension of the
extension L/K. In the last part of the paper, we present a generalization
of the obtained results to multidimensional filtrations of L/K associated
with partitions of the sets of basic derivations and translations.

Keywords: Difference-differential field · difference-differential module ·
Kähler differentials · dimension polynomial.

1 Introduction

Dimension polynomials associated with finitely generated differential field ex-
tensions were introduced by E. Kolchin in [4]; their properties and various ap-
plications can be found in his fundamental monograph [5, Chapter 2]. A similar
technique for difference and inversive difference field extensions was developed
in [7], [8], [12], [13] and some other works of the author. Almost all known re-
sults on differential and difference dimension polynomials can be found in [6]
and [10]. One can say that the role of dimension polynomials in differential and
difference algebra is similar to the role of Hilbert polynomials in commutative
algebra and algebraic geometry. The same can be said about dimension poly-
nomials associated with difference-differential algebraic structures. They appear
as generalizations of their differential and difference counterparts and play a key
role in the study of dimension of difference-differential modules and extensions
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of difference-differential fields. Existence theorems, properties and methods of
computation of univariate and multivariate difference-differential dimension po-
lynomials can be found in [15], [6, Chapters 6 and 7], [14], [19] and [20].
In this paper we prove the existence and obtain some properties of a univari-
ate dimension polynomial associated with an intermediate difference-differential
field of a finitely generated difference-differential field extension (see Theorem
2 that can be considered as the main result of the paper). Then we use the
obtained results for the study of the Krull-type dimension of such an extension.
In particular, we establish relationships between invariants of dimension poly-
nomials and characteristics of difference-differential field extensions that can be
expressed in terms of chains of intermediate fields. In the last part of the paper
we generalize our results on univariate dimension polynomials and obtain multi-
variate dimension polynomials associated with multidimensional filtrations indu-
ced on intermediate difference-differential fields. (Such filtrations naturally arise
when one considers partitions of the sets of basic derivations and translations.)
Note that we consider arbitrary (not necessarily inversive) difference-differential
extensions of an inversive difference-differential field. In the particular case of
purely differential extensions and in the case of inversive difference field extensi-
ons, the existence and properties of dimension polynomials were obtained in [11]
and [13]. The main problem one runs into while working with a non-inversive dif-
ference (or difference-differential) field extension is that the translations are not
invertible and there is no natural difference (respectively, difference-differential)
structure on the associated module of Kähler differentials. We overcome this
obstacle by considering such a structure on the module of Kähler differentials
associated with the inversive closure of the extension. Finally, the results of
this paper allow one to assign a dimension polynomial to a system of algebraic
difference-differential equations of the form fi = 0, i ∈ I (fi lie in the alge-
bra of difference-differential polynomials K{y1, . . . , yn} over a ground field K)
such that the difference-differential ideal P generated by the left-hand sides is
prime and the solutions of the system should be invariant with respect to the
action of a group G that commutes with basic derivations and translations. As
in the case of systems of differential or difference equations, the dimension poly-
nomial of such a system is defined as the dimension polynomial of the subfield of
the difference-differential quotient field K{y1, . . . , yn}/P whose elements remain
fixed under the action of G. Using the correspondence between dimension poly-
nomials and Einstein’s strength of a system of algebraic differential or difference
equations established in [16] and [6, Chapter 6] (this characteristic of a system
of PDEs governing a physical field was introduced in [1]), one can consider this
dimension polynomial as an expression of the Einstein’s strength of a system of
difference-differential equations with group action.

2 Preliminaries

Throughout the paper Z, N and Q denote the sets of all integers, all non-negative
integers and all rational numbers, respectively. As usual, Q[t] will denote the ring
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of polynomials in one variable t with rational coefficients. By a ring we always
mean an associative ring with a unity. Every ring homomorphism is unitary
(maps unit onto unit), every subring of a ring contains the unity of the ring.
Every module is unitary and every algebra over a commutative ring is unitary
as well. Every field is supposed to have characteristic zero.

A difference-differential ring is a commutative ring R considered together
with finite sets ∆ = {δ1, . . . , δm} and σ = {α1, . . . , αn} of derivations and in-
jective endomorphisms of R, respectively, such that any two mappings of the set
∆
⋃
σ commute. The elements of the set σ are called translations and the set

∆
⋃
σ will be referred to as a basic set of the difference-differential ring R, which

is also called a ∆-σ-ring. We will often use prefix ∆-σ- instead of the adjective
”difference-differential”. If all elements of σ are automorphisms of R, we say that
the ∆-σ-ring R is inversive. In this case we set σ∗ = {α1, . . . , αn, α

−1
1 , . . . , α−1n }

and call R a ∆-σ∗-ring.

If a ∆-σ-ring R is a field, it is called a difference-differential field or a ∆-σ-
field. If R is inversive, we say that R is a ∆-σ∗-field.

In what follows, Λ will denote the free commutative semigroup of all power
products λ = δk11 . . . δkmm αl11 . . . α

ln
n where ki, lj ∈ N (1 ≤ i ≤ m, 1 ≤ j ≤ n). Furt-

hermore, Θ and T will denote the commutative semigroups of power products
δk11 . . . δkmm and αl11 . . . α

ln
n (ki, lj ∈ N), respectively. If λ = δk11 . . . δkmm αl11 . . . α

ln
n ∈

Λ, we define the order of λ as ord λ =
∑m
i=1 ki +

∑n
j=1 lj and set Λ(r) = {λ ∈

Λ | ord λ ≤ r} for any r ∈ N.

If the elements of σ are automorphisms, then Λ∗ and Γ will denote the free
commutative semigroup of all power products µ = δk11 . . . δkmm αl11 . . . α

ln
n with

ki ∈ N, lj ∈ Z and the free commutative group of power products γ = αl11 . . . α
ln
n

with l1, . . . , ln ∈ Z, respectively. The order of such elements µ and γ are defined
as ord λ =

∑m
i=1 ki +

∑n
j=1 |lj | and ord γ =

∑n
j=1 |lj |, respectively. We also set

Λ∗(r) = {µ ∈ Λ∗ | ord µ ≤ r} (r ∈ N).

A subring (ideal) S of a ∆-σ-ring R is said to be a difference-differential (or
∆-σ-) subring of R (respectively, difference-differential (or ∆-σ-) ideal of R) if
S is closed with respect to the action of any operator of ∆

⋃
σ. In this case the

restriction of a mapping from ∆
⋃
σ on S is denoted by same symbol. If S is a

∆-σ-subring R, we also say that R is a ∆-σ-overring of S. If S is a ∆-σ-ideal of
R and for any τ ∈ T , the inclusion τ(a) ∈ S implies that a ∈ S, we say that the
∆-σ-ideal S is reflexive or that S is a ∆-σ∗-ideal of R.

If L is a ∆-σ-field and K a subfield of L which is also a ∆-σ-subring of L, then
K is said to be a ∆-σ-subfield of L; L, in turn, is called a difference-differential
(or ∆-σ-) field extension or a ∆-σ-overfield of K. In this case we also say that
we have a ∆-σ-field extension L/K.

If R is a ∆-σ-ring and S ⊆ R, then the intersection of all ∆-σ-ideals of R
containing the set S is, obviously, the smallest ∆-σ-ideal of R containing S. This
ideal is denoted by [S]; as an ideal, it is generated by the set {λ(x) |x ∈ S, λ ∈ Λ}.
If S is finite, S = {x1, . . . , xk}, we say that the ∆-σ-ideal I = [S] is finitely
generated, write I = [x1, . . . , xk] and call x1, . . . , xk ∆-σ-generators of I.
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If K is a ∆-σ-subfield of the ∆-σ-field L and S ⊆ L, then the intersection
of all ∆-σ-subfields of L containing K and S is the unique ∆-σ-subfield of L
containing K and S and contained in every ∆-σ-subfield of L with this property.
It is denoted by K〈S〉. If S is finite, S = {η1, . . . , ηs} we write K〈η1, . . . , ηs〉 for
K〈S〉 and say that this is a finitely generated ∆-σ-extension of K with the set of
∆-σ-generators {η1, . . . , ηs}. It is easy to see that K〈η1, . . . , ηs〉 coincides with
the field K({ληi |λ ∈ Λ, 1 ≤ i ≤ s}). (If there might be no confusion, we often
write λη for λ(η) where λ ∈ Λ and η is an element of a ∆-σ-ring.)

Let R1 and R2 be two difference-differential rings with the same basic set
∆
⋃
σ. (More rigorously, we assume that there exist injective mappings of the

sets ∆ and σ into the sets of derivations and automorphisms of the rings R1 and
R2, respectively, such that the images of any two elements of ∆

⋃
σ commute.

We will denote the images of elements of ∆
⋃
σ under these mappings by the

same symbols δ1, . . . , δm, α1, . . . , αn). A ring homomorphism φ : R1 −→ R2 is
called a difference-differential (or ∆-σ-) homomorphism if φ(τa) = τφ(a) for
any τ ∈ ∆

⋃
σ, a ∈ R. It is easy to see that the kernel of such a mapping is a

∆-σ∗-ideal of R1.
If R is a ∆-σ-subring of a ∆-σ-ring R∗ such that the elements of σ act as

automorphisms of R∗ and for every a ∈ R∗ there exists τ ∈ T such that τ(a) ∈ R,
then the ∆-σ∗-ring R∗ is called the inversive closure of R.

The proof of the following result can be obtained by mimicking the proof of
the corresponding statement about inversive closures of difference rings, see [10,
Proposition 2.1.7].

Proposition 1. (i) Every ∆-σ-ring has an inversive closure.
(ii) If R∗1 and R∗2 are two inversive closures of a ∆-σ-ring R, then there exists
a ∆-σ-isomorphism of R∗1 onto R∗2 that leaves elements of R fixed. .
(iii) If a ∆-σ-ring R is a ∆-σ-subring of a ∆-σ∗-ring U , then U contains an
inversive closure of R.
(iv) If a ∆-σ-ring R is a field, then its inversive closure is also a field.

If K is an inversive difference-differential field and L = K〈η1, . . . , ηs〉, then
the inversive closure of L is denoted by K〈η1, . . . , ηs〉∗. Clearly, this ∆-σ∗-field
coincides with the field K({µηi|µ ∈ Λ∗, 1 ≤ i ≤ s}).

Let R be a ∆-σ-ring and U = {ui | i ∈ I} a family of elements of some ∆-σ-
overring of R. We say that the family U is ∆-σ-algebraically dependent over R,
if the family {λui |λ ∈ Λ, i ∈ I} is algebraically dependent over R. Otherwise,
the family U is said to be ∆-σ-algebraically independent over R.

If K is a ∆-σ-field and L a ∆-σ-field extension of K, then a set B ⊆ L is said
to be a∆-σ-transcendence basis of L overK ifB is∆-σ-algebraically independent
over K and every element a ∈ L is ∆-σ-algebraic over K〈B〉 (that is, the set
{λa |λ ∈ Λ} is algebraically dependent over K〈B〉). If L is a finitely generated
∆-σ-field extension of K, then all ∆-σ-transcendence bases of L over K are finite
and have the same number of elements (the proof of this fact can be obtained by
mimicking the proof of the corresponding properties of difference transcendence
bases, see [10, Section 4.1]). In this case, the number of elements of any ∆-σ-
transcendence basis is called the difference-differential (or ∆-σ-) transcendence
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degree of L over K (or the ∆-σ-transcendence degree of the extension L/K); it
is denoted by ∆-σ-trdegK L.

The following theorem proved in [15] generalizes the Kolchin’s theorem on
differential dimension polynomial (see [5, Chapter II, Theorem 6]) and also the
author’s theorems on dimension polynomials of difference and inversive difference
field extensions (see [10, Theorems 4.2.1 and 4.2.5]).

Theorem 1. With the above notation, let L = K〈η1, . . . , ηs〉 be a ∆-σ-field
extension of a ∆-σ-field K generated by a finite set η = {η1, . . . , ηs}. Then there
exists a polynomial χη|K(t) ∈ Q[t] such that
(i) χη|K(r) = trdegK K({ληj |λ ∈ Λ(r), 1 ≤ j ≤ s}) for all sufficiently large
r ∈ Z (that is, there exists r0 ∈ Z such that the equality holds for all r > r0).

(ii) degχη|K ≤ m+ n and χη|K(t) can be written as χη|K(t) =
m+n∑
i=0

ai

(
t+ i

i

)
,

where ai ∈ Z.
(iii) d = degχη|K , am+n and ad do not depend on the set of ∆-σ-generators η
of L/K (am+n = 0 if d < m+ n). Moreover, am+n = ∆-σ-trdegK L.

The polynomial χη|K(t) is called the ∆-σ-dimension polynomial of the ∆-σ-
field extension L/K associated with the system of ∆-σ-generators η . We see
that χη|K(t) is a polynomial with rational coefficients that takes integer values
for all sufficiently large values of the argument. Such polynomials are called
numerical; their properties are thoroughly described in [6, Chapter 2]. The in-
variants d = degχη|K and ad (if d < m+ n) are called the ∆-σ-type and typical
∆-σ-transcendence degree of L/K; they are denoted by ∆-σ-typeK L and ∆-σ-
t. trdegK L, respectively.

3 Dimension polynomials of intermediate
difference-differential fields. The main theorem

The following result is an essential generalization of Theorem 1. This genera-
lization allows one to assign certain numerical polynomial to an intermediate
∆-σ-field of a ∆-σ-field extension L/K where K is an inversive ∆-σ-field. (We
use the notation introduced in the previous section.)

Theorem 2. Let K be an inversive ∆-σ-field with basic set ∆
⋃
σ where ∆ =

{δ1, . . . , δm} and σ = {α1, . . . , αn} are the sets of derivations and automorphisms
of K, respectively. Let L = K〈η1, . . . , ηs〉 be a ∆-σ-field extension of K genera-
ted by a finite set η = {η1, . . . , ηs}. Let F be an intermediate ∆-σ-field of the
extension L/K and for any r ∈ N, let Fr = F

⋂
K({ληj |λ ∈ Λ(r), 1 ≤ j ≤ s}).

Then there exists a numerical polynomial χK,F,η(t) ∈ Q[t] such that
(i) χK,F,η(r) = trdegK Fr for all sufficiently large r ∈ N;

(ii) degχK,F,η ≤ m+n and χK,F,η(t) can be written as χK,F,η(t) =
m+n∑
i=0

ci

(
t+ i

i

)
where ci ∈ Z (1 ≤ i ≤ m+ n).
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(iii) d = degχK,F,η(t), cm+n and cd do not depend on the set of ∆-σ-generators
η of the extension L/K. Furthermore, cm+n = ∆-σ-trdegK F .

The polynomial χK,F,η(t) is called a ∆-σ-dimension polynomial of the inter-
mediate field F associated with the set of ∆-σ-generators η of L/K.

The proof of Theorem 2 is based on properties of difference-differential modu-
les and the difference-differential structure on the module of Kähler differentials
considered below. Similar properties in differential and difference cases can be
found in [2] and [10, Section 4.2], respectively.

Let K be a ∆-σ-field and Λ the semigroup of power products of basic ope-
rators introduced in section 2. Let D denote the set of all finite sums of the
form

∑
λ∈Λ aλλ where aλ ∈ K (such a sum is called a ∆-σ-operator over K; two

∆-σ-operators are equal if and only if their corresponding coefficients are equal).
The set D can be treated as a ring with respect to its natural structure of a left
K-module and the relationships δa = aδ + δ(a), αa = α(a)α for any a ∈ K,
δ ∈ ∆, α ∈ σ extended by distributivity. The ring D is said to be the ring of
∆-σ-operators over K.

If A =
∑
λ∈Λ aλλ ∈ D, then the number ordA = max{ordλ | aλ 6= 0} is

called the order of the ∆-σ-operator A. In what follows, we treat D as a filtered
ring with the ascending filtration (Dr)r∈Z where Dr = 0 if r < 0 and Dr = {A ∈
D | ordA ≤ r} if r ≥ 0.

Similarly, if a ∆-σ-field K is inversive and Λ∗ is the semigroup defined in
section 2, then E will denote the set of all finite sums

∑
µ∈Λ∗ aµµ where aµ ∈ K.

Such a sum is called a ∆-σ∗-operator over K; two ∆-σ∗-operators are equal if
and only if their corresponding coefficients are equal. Clearly, the ring D of ∆-
σ-operators over K is a subset of E . Moreover, E can be treated as an overring
of D such that α−1a = α−1(a)α−1 for every α ∈ σ, a ∈ K. This ring is called
the ring of ∆-σ∗-operators over K.

The order of a ∆-σ∗-operator B =
∑
µ∈Λ∗ aµµ is defined in the same way as

the order of a ∆-σ-operator: ordB = max{ordµ | aµ 6= 0}. In what follows the
ring E is treated as a filtered ring with the ascending filtration (Er)r∈Z such that
Er = 0 if r < 0 and Er = {B ∈ E | ordB ≤ r} if r ≥ 0.

If K is a ∆-σ-field, then a difference-differential module over K (also cal-
led a ∆-σ-K-module) is a left D-module M , that is, a vector K-space where
elements of ∆

⋃
σ act as additive mutually commuting operators such that

δ(ax) = a(δx) + δ(a)x and α(ax) = α(a)αx for any δ ∈ ∆, α ∈ σ, x ∈ M ,
a ∈ K. We say that M is a finitely generated ∆-σ-K-module if M is finitely
generated as a left D-module.

Similarly, if K is a ∆-σ∗-field, then an inversive difference-differential module
over K (also called a ∆-σ∗-K-module) is a left E-module (that is, a ∆-σ-K-
module M with the action of elements of σ∗ such that α−1(ax) = α−1(a)α−1x
for every α ∈ σ). A ∆-σ∗-K-module M is said to be finitely generated if it is
generated as a left E-module by a finite set whose elements are called ∆-σ∗-
generators of M .

If M is a ∆-σ-K-module (respectively, a ∆-σ∗-module, if K is a ∆-σ∗-field),
then by a filtration of M we mean an exhaustive and separated filtration of



Hilbert-type dimension polynomials 7

M as a D- (respectively, E-) module, that is, an ascending chain (Mr)r∈Z of
vector K-subspaces of M such that DrMs ⊆Mr+s (respectively, ErMs ⊆Mr+s)
for all r, s ∈ Z, Mr = 0 for all sufficiently small r ∈ Z, and

⋃
r∈ZMr = M .

A filtration (Mr)r∈Z of a ∆-σ-K- (respectively, ∆-σ∗-K) module M is said to
be excellent if every Mr is a finite dimensional vector K-space and there exists
r0 ∈ Z such that Mr = Dr−r0Mr0 (respectively, Mr = Er−r0Mr0) for any r ≥ r0.
Clearly, if M is generated as a D- (respectively, E-) module by elements x1, . . . xs,
then (

∑s
i=1Drxi)r∈Z (respectively, (

∑s
i=1 Erxi)r∈Z) is an excellent filtration of

M ; it is said to be the natural filtration associated with the set of generators
{x1, . . . , xs}.

If M ′ and M ′′ are ∆-σ-K- (respectively, ∆-σ∗-K-) modules, then a mapping
f : M ′ →M ′′ is said to be a ∆-σ-homomorphism if it is a homomorphism of D-
(respectively, E-) modules. If M ′ and M ′′ are equipped with filtrations (M ′r)r∈Z
and (M ′′r )r∈Z, respectively, and f(M ′r) ⊆ M ′′r for every r ∈ Z, then f is said to
be a ∆-σ-homomorphism of filtered ∆-σ-K- (respectively, ∆-σ∗-K-) modules.

The following two statements are direct consequences of [6, Theorem 6.7.3]
and [6, Theorem 6.7.10], respectively.

Theorem 3. With the above notation, let K be a ∆-σ-field, M a finitely ge-
nerated ∆-σ-K-module, and (Mr)r∈Z the natural filtration associated with some
finite system of generators of M over the ring of ∆-σ-operators D. Then there
is a numerical polynomial φ(t) ∈ Q[t] such that:

(i) φ(r) = dimKMr for all sufficiently large r ∈ Z.

(ii) deg φ ≤ m + n and φ(t) can be written as φ(t) =
m+n∑
i=0

ai

(
t+ i

i

)
where

a0, . . . , am+n ∈ Z.

(iii) d = deg φ(t), an and ad do not depend on the finite set of generators of
the D-module M the filtration (Mr)r∈Z is associated with. Furthermore, am+n

is equal to the ∆-σ-dimension of M over K (denoted by ∆-σ-dimKM), that
is, to the maximal number of elements x1, . . . , xk ∈ M such that the family
{λxi |λ ∈ Λ, 1 ≤ i ≤ k} is linearly independent over K.

Theorem 4. Let f : M ′ → M ′′ be an injective homomorphism of filtered ∆-σ-
K-modules M ′ and M ′′ with filtrations (M ′r)r∈Z and (M ′′r )r∈Z, respectively. If
the filtration of M ′′ is excellent, then the filtration of M ′ is excellent as well.

PROOF OF THEOREM 2

Let L = K〈η1, . . . , ηs〉 be a ∆-σ-field extension of a ∆-σ∗-field K. Let L∗ be
the inversive closure of L, that is, L∗ = K〈η1, . . . , ηs〉∗. Let M = ΩL∗|K , the
module of Kähler differentials associated with the extension L∗/K. Then M can
be treated as a ∆-σ∗-L∗-module where the action of the elements of ∆

⋃
σ∗ is

defined in such a way that δ(dζ) = dδ(ζ) and α(dζ) = dα(ζ) for any ζ ∈ L∗,
δ ∈ ∆, α ∈ σ∗ (see [2] and [12, Lemma 4.2.8]).
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For every r ∈ N, let Mr denote the vector L∗-subspace of M generated by all

elements dζ where ζ ∈ K(
s⋃
i=1

Λ∗(r)ηi). It is easy to check that (Mr)r∈Z (Mr = 0

if r < 0) is the natural filtration of the ∆-σ∗-L∗-module M associated with the
system of ∆-σ∗-generators {dη1, . . . , dηs} .

Let F be any intermediate∆-σ-field of L/K, Fr = F
⋂
K({ληj |λ ∈ Λ(r), 1 ≤

j ≤ s}) (r ∈ N) and Fr = 0 if r < 0. Let E and D denote the ring of ∆-σ∗-
operators over L∗ and the ring of ∆-σ-operators over L, respectively. Let N be
the D-submodule of M generated by all elements of the form dζ with ζ ∈ F (by
dζ we always mean dL∗|Kζ). Furthermore, for any r ∈ N, let Nr be the vector
L-space generated by all elements dζ with ζ ∈ Fr and Nr = 0 if r < 0.

It is easy to see that (Nr)r∈Z is a filtration of the ∆-σ-L-module N , and
if M ′ =

∑s
i=1Ddηi, then the embedding N → M ′ is a homomorphism of fil-

tered D-modules. (M ′ is considered as a filtered D-module with the excellent
filtration (

∑s
i=1Drdηi)r∈Z.) By Theorem 4, (Nr)r∈Z is an excellent filtration of

the D-module N . Applying Theorem 3 we obtain that there exists a polynomial
χK,F,η(t) ∈ Q[t] such that χK,F,η(t)(r) = dimK Nr for all sufficiently large r ∈ Z.

As it is shown in [17, Chapter V, Section 23], elements ζ1, . . . , ζk ∈ L∗ are
algebraically independent over K if and only if the elements dζ1, . . . , dζk are
linearly independent over L∗. Thus, if ζ1, . . . , ζk ∈ Fr (r ∈ Z) are algebrai-
cally independent over K, then the elements dζ1, . . . , dζk ∈ Nr are linearly in-
dependent over L∗ and therefore over L. Conversely, if elements dx1, . . . , dxh
(xi ∈ Fr for i = 1, . . . , h) are linearly independent over L, then x1, . . . , xh
are algebraically independent over K. Otherwise, we would have a polyno-
mial f(X1, . . . , Xh) ∈ K[X1, . . . , Xh] of the smallest possible degree such that

f(x1, . . . , xh) = 0. Then df(x1, . . . , xh) =
∑h
i=1

∂f
∂Xi

(x1, . . . , xh)dxi = 0 where
not all coefficients of dxi are zeros (they are expressed by polynomials of degree
less than deg f). Since all the coefficients lie in L, we would have a contradiction
with the linear independence of dx1, . . . , dxh over L.
It follows that dimLNr = trdegK Fr for all r ∈ N. Applying Theorem 3 we
obtain the statement of Theorem 2. �

Clearly, if F = L, then Theorem 2 implies Theorem 1. Note also that if
an intermediate field F of a finitely generated ∆-σ-field extension L/K is not
a ∆-σ-subfield of L, there might be no numerical polynomial whose values for
sufficiently large integers r are equal to trdegK(F

⋂
K({ληj |λ ∈ Λ(r), 1 ≤ j ≤

s})). Indeed, let ∆ = {δ} and σ = ∅. Let L = K〈y〉, where the ∆-σ-generator y is
∆-σ-independent over K, and let F = K(δ2y, . . . , δ2ky, . . . ). Then Λ = {δi | i ∈
N}, Λ(r) = {1, δ, . . . , δr}, Fr = F

⋂
K(λy |λ ∈ Λ(r)) and trdegK Fr = [ r2 ] (the

integer part of r2 ), which is not a polynomial of r. In this case, the function φ(r) =

trdegK Fr is a quasi-polynomial, but if one takes F = K(δ2y, . . . , δ2
k

y, . . . ), then
trdegK Fr = [log2 r].
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4 Type and dimension of difference-differential field
extensions

Let K be an inversive difference-differential (∆-σ-) field with a basic set ∆
⋃
σ

where ∆ = {δ1, . . . , δm} and σ = {α1, . . . , αn} are the sets of derivations and au-
tomorphisms of K, respectively. Let L = K〈η1, . . . , ηs〉 be a ∆-σ-field extension
of K generated by a finite set η = {η1, . . . , ηs}. (We keep the notation introduced
in section 2.)

Let U denote the set of all intermediate ∆-σ-fields of the extension L/K and

BU = {(F,E) ∈ U× U |F ⊇ E}.

Furthermore, let Z denote the ordered set Z
⋃
{∞} (where the natural order on

Z is extended by the condition a <∞ for any a ∈ Z).

Proposition 2. With the above notation, there exists a unique mapping
µU : BU → Z such that

(i) µU(F,E) ≥ −1 for any pair (F,E) ∈ BU .
(ii) If d ∈ N, then µU(F,E) ≥ d if and only if trdegE F > 0 and there exists

an infinite descending chain of intermediate ∆-σ-fields

F = F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊇ · · · ⊇ E (1)

such that
µU(Fi, Fi+1) ≥ d− 1 (i = 0, 1, . . . ). (2)

Proof. In order to show the existence and uniqueness of the desired mapping
µU, one can just mimic the proof of the corresponding statement for chains of
prime differential ideals given in [3, Section 1] (see also [11, Proposition 4.1] and
[13, Section 4] where similar arguments were applied to differential and inversive
difference field extensions, respectively). Namely, let us set µU(F,E) = −1 if
F = E or the field extension F/E is algebraic. If (F,E) ∈ BU, trdegE F > 0 and
for every d ∈ N, there exists a chain of intermediate ∆-σ-fields (1) with condition
(2), we set µU(F,E) =∞. Otherwise, we define µU(F,E) as the maximal integer
d for which condition (ii) holds (that is, µU(F,E) ≥ d). It is clear that the
mapping µU defined in this way is unique. �

With the notation of the last proposition, we define the type of a ∆-σ-field
extension L/K as the integer

type(L/K) = sup{µU(F,E) | (F,E) ∈ BU}. (3)

and the dimension of the ∆-σ-extension L/K as the number

dim(L/K) = sup{q ∈ N | there exists a chain F0 ⊇ F1 ⊇ · · · ⊇ Fq such that
Fi ∈ U and

µU(Fi−1, Fi) = type(L/K) (i = 1, . . . , q)}. (4)

It is easy to see that for any pair of intermediate ∆-σ-fields of L/K such that
(F,E) ∈ BU, µU(F,E) = −1 if and only if the field extension E/F is algebraic.
It is also clear that if type(L/K) <∞, then dim(L/K) > 0.
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Proposition 3. With the above notation, let F and E be intermediate ∆-σ-
fields of a ∆-σ-field extension L = K〈η1, . . . , ηs〉 generated by a finite set η =
{η1, . . . , ηs}. Let F ⊇ E, so that (F,E) ∈ BU. Then for any integer d ≥ −1, the
inequality µU(F,E) ≥ d implies the inequality deg(χK,F,η(t) − χK,E,η(t)) ≥ d.
(χK,F,η(t) and χK,E,η(t) are the ∆-σ-dimensions polynomials of the fields F and
E associated with the set of ∆-σ-generators η of L/K.)

Proof. We proceed by induction on d. Since deg(χK,F,η(t)−χK,E,η(t)) ≥ −1 for
any pair (F,E) ∈ BU and deg(χK,F,η(t) − χK,E,η(t)) ≥ 0 if trdegE F > 0, our
statement is true for d = −1 and d = 0. (As usual we assume that the degree of
the zero polynomial is −1.)

Let d > 0 and let the statement be true for all nonnegative integers less than
d. Let µU(F,E) ≥ d for some pair (F,E) ∈ BU, so that there exists a chain
of intermediate ∆-σ-fields (1) such that µU(Fi, Fi+1) ≥ d − 1 (i = 0, 1, . . . ).
If deg(χK,Fi,η(t) − χK,Fi+1,η(t)) ≥ d for some i ∈ N, then deg(χK,F,η(t) −
χK,E,η(t)) ≥ deg(χK,Fi,η(t) − χK,Fi+1,η(t)) ≥ d, so the statement of the pro-
position is true.

Suppose that deg(χK,Fi,η(t)− χK,Fi+1,η(t)) = d− 1 for every i ∈ N, that is,

χK,Fi,η(t) − χK,Fi+1,η(t) =
d−1∑
j=0

a
(i)
j

(
t+ j

j

)
where a

(1)
0 , . . . , a

(i)
d−1 ∈ Z, a

(i)
d−1 > 0.

Then

χK,F,η(t)− χK,Fi+1,η(t) =

i∑
k=0

(χK,Fk,η(t)− χK,Fk+1,η(t)) =

d−1∑
j=0

b
(i)
j

(
t+ j

j

)

where b
(i)
0 , . . . , b

(i)
d−1 ∈ Z and b

(i)
d−1 =

∑i
k=0 a

(k)
d−1. Therefore, b

(0)
d−1 < b

(1)
d−1 < . . .

and limi→∞ b
(i)
d−1 = ∞. On the other hand, deg(χK,F,η(t) − χK,Fi+1,η(t)) ≤

deg(χK,F,η(t)−χK,E,η(t)). If deg(χK,F,η(t)−χK,E,η(t)) = d−1, that is, χK,F,η(t)−

χK,E,η(t) =
d−1∑
j=0

cj

(
t+ j

j

)
for some c0, . . . , cd−1 ∈ Z, then we would have

b
(i)
d−1 < cd−1 for all i ∈ N contrary to the fact that limi→∞ b

(i)
d−1 = ∞. Thus,

deg(χK,F,η(t)− χK,E,η(t)) ≥ d, so the proposition is proved. �

The following theorem provides a relationship between the introduced cha-
racteristics of a finitely generated ∆-σ-extension and the invariants of its ∆-σ-
dimension polynomial introduced by Theorem 2.

Theorem 5. Let K be an inversive difference-differential (∆-σ-) field with ba-
sic set ∆

⋃
σ where ∆ = {δ1, . . . , δm} and σ = {α1, . . . , αn} are the sets of

derivations and automorphisms of K, respectively. Let L be a finitely generated
∆-σ-field extension of K. Then

(i) type(L/K) ≤ ∆-σ-typeK L ≤ m+ n.

(ii) If ∆-σ-trdegK L > 0, then type(L/K) = m+n, dim(L/K) = ∆-σ-trdegK L.

(iii) If ∆-σ-trdegK L = 0, then type(L/K) < m+ n.
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Proof. Let η = {η1, . . . , ηs} be a system of ∆-σ-generators of L over K and
for every r ∈ N, let Lr = K({ληi |λ ∈ Λ(r), 1 ≤ i ≤ s}). Furthermore, if
F is any intermediate ∆-σ-field of the extension L/K, then Fr (r ∈ N) will
denote the field F

⋂
Lr. By Theorem 2, there is a polynomial χK,F,η(t) ∈ Q[t]

such that χK,F,η(r) = trdegK Fr for all sufficiently large r ∈ N, deg χK,F,η ≤
m+ n, and this polynomial can be written as χK,F,η(t) =

∑m+n
i=1 ai

(
t+i
i

)
where

a0, . . . , am+n ∈ Z and am+n = ∆-σ-trdegK F . Clearly, if E and F are two
intermediate ∆-σ-fields of L/K and F ⊇ E, then χK,F,η(t) ≥ χK,E,η(t). (This
inequality means that χF (r) ≥ χE(r) for all sufficiently large r ∈ N. As it
is first shown in [18], the set W of all differential dimension polynomials of
finitely generated differential field extensions is well ordered with respect to this
ordering. At the same time, as it is proved in [6, Chapter 2], W is also the set
of all ∆-σ-dimension polynomials associated with finitely generated ∆-σ-field
extensions).

Note that if F ⊇ E and χK,F,η(t) = χK,E,η(t), then the field extension F/E
is algebraic. Indeed, if x ∈ F is transcendental over E, then there exists r0 ∈ N
such that x ∈ Fr for all r ≥ r0. Therefore, trdegK Fr = trdegK Er+trdegEr Fr >
trdegK Er for all r ≥ r0 hence χK,F,η(t) > χK,E,η(t) contrary to our assumption.

Since deg(χK,F,η(t)− χK,E,η(t)) ≤ m+ n for any pair (F,E) ∈ BU, the last
proposition implies that type(L/K) ≤ ∆-σ-typeK L ≤ m+n. If ∆-σ-trdegK L =
0, then type(L/K) ≤ ∆-σ-typeK L < m+n. Thus, it remains to prove statement
(ii) of the theorem.

Let ∆-σ-trdegK L > 0, let element x ∈ L be ∆-σ-transcendental over K
and let F = K〈x〉. Clearly, in order to prove that type(L/K) = m + n it is
sufficient to show that µU(F,K) ≥ m+ n. This inequality, in turn, immediately
follows from the consideration of the following m+ n strictly descending chains
of intermediate ∆-σ-fields of F/K.

F = K〈x〉 ⊃ K〈δ1x〉 ⊃ K〈δ21x〉 ⊃ · · · ⊃ K〈δ
i1
1 x〉 ⊃ K〈δ

i1+1
1 x〉 ⊃ · · · ⊃ K ,

K〈δi11 x〉 ⊃ K〈δi1+1
1 x, δi11 δ2x〉 ⊃ K〈δi1+1

1 x, δi11 δ
2
2x〉 ⊃ . . .K〈δi1+1

1 x, δi11 δ
i2
2 x〉 ⊃

K〈δi1+1
1 x, δi11 δ

i2+1
2 x〉 ⊃ · · · ⊃ K〈δi1+1

1 x〉 ,
. . .

K〈δi1+1
1 x, δi1+1

1 δi2+1
2 x, . . . , δi1+1

1 . . . δ
im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δimm x〉 ⊃ K〈δi1+1

1 x,

, . . . , δi1+1
1 . . . δ

im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δim+1

m x, δi1+1
1 . . . δ

im−1+1
m−1 δimm (α1−1)x〉 ⊃

⊃ · · · ⊃ K〈δi1+1
1 x, . . . , δi1+1

1 . . . δ
im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δimm (α1 − 1)2x〉 ⊃

⊃ · · · ⊃ K〈δi1+1
1 x, . . . , δi1+1

1 . . . δ
im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δimm (α1 − 1)im+1x〉 ⊃

· · · ⊃ K〈δi1+1
1 x, . . . , δi1+1

1 . . . δ
im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δimm (α1 − 1)im+1+1x〉 ⊃

· · · ⊃ K〈δi1+1
1 x, δi1+1

1 δi2+1
2 x, . . . , δi1+1

1 . . . δ
im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δim+1

m x〉 ,
. . .

K〈δi1+1
1 x, . . . , δi1+1

1 . . . δ
im−1+1
m−1 δim+1

m (α1 − 1)im+1+1 . . . (αn−1 − 1)im+n−1x〉 ⊃
K〈δi1+1

1 x, . . . , δi1+1
1 . . . δ

im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δimm (α1 − 1)im+1+1 . . .

(αn−1−1)im+n−1+1(αn−1)x〉 ⊃ · · · ⊃ K〈δi1+1
1 x, . . . , δi1+1

1 . . . δ
im−1+1
m−1 x, δi1+1

1 . . .

δ
im−1+1
m−1 δimm (α1−1)im+1+1 . . . (αn−1−1)im+n−1+1(αn−1)im+nx〉 ⊃ · · · ⊃ K〈δi1+1

1 x,
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. . . , δi1+1
1 . . . δ

im−1+1
m−1 x, δi1+1

1 . . . δ
im−1+1
m−1 δimm (α1−1)im+1+1 . . . (αn−1−1)im+n−1+1x〉 .

These m+n chains show that µU(F,K) ≥ m+n, hence type(L/K) = m+n.
Furthermore, if ∆-σ-trdegK L = k > 0 and x1, . . . , xk is a ∆-σ-transcendence ba-
sic of L overK, then every xi (2 ≤ i ≤ k) is∆-σ-independent overK〈x1, . . . , xi−1〉.
Therefore, the above chains show that µU(K〈x1〉,K) = µU(K〈x1, x2〉,K〈x1〉) =
· · · = µU(K〈x1, . . . , xk〉,K〈x1, . . . , xk−1〉) = m + n, hence dim(L/K) ≥ k = ∆-
σ-trdegK L.

In order to prove the opposite inequality, suppose that F0 ⊇ F1 ⊇ · · · ⊇ Fp
is an ascending chain of intermediate ∆-σ-fields of the extension L/K such that
µU(Fi, Fi+1) = type(L/K) = m + n for i = 0, . . . , p − 1. Clearly, in order to
prove our inequality, it is sufficient to show that p ≤ k.

For every i = 0, . . . , p, the ∆-σ-dimension polynomial χK,Fi,η(t), whose exis-

tence is established by Theorem 2, can be written as χK,Fi,η(t) =
m+n∑
j=0

a
(i)
j

(
t+ j

j

)
where a

(i)
j ∈ Z (0 ≤ i ≤ p − 1, 0 ≤ j ≤ m + n). Then χK,F0,η(t) − χK,Fp,η(t) =

p∑
i=1

(χK,Fi−1,η(t)− χK,Fi,η(t)) =

p∑
i=1

m+n∑
j=0

(a
(i−1)
j − a(i)j )

(
t+ j

j

)
=

(a
(0)
m+n − a

(p)
m+n)

(
t+m+ n

m+ n

)
+ o(tm+n) where o(tm+n) denotes a polynomial of

degree at most m+ n− 1.

Since µU(Fi, Fi+1) = m + n (0 ≤ i ≤ p − 1), we have deg(χK,Fi,η(t) −
χK,Fi+1,η(t)) = m + n (see Proposition 3). Therefore, a

(0)
m+n > a

(1)
m+n > · · · >

a
(p)
m+n, hence

a
(0)
m+n − a

(q)
m+n =

p∑
i=1

(a
(i−1)
m+n − a

(i)
m+n) ≥ p.

On the other hand, χK,F0,η(t) − χK,Fp,η(t) ≤ χK,L,η(t) =
m+n∑
i=0

ai

(
t+ i

i

)
where

am+n = ∆-σ-trdegK L. Therefore, p ≤ a
(0)
m+n − a

(p)
m+n ≤ k = σ-trdegK L. This

completes the proof of the theorem. �

5 Multivariate dimension polynomials of intermediate
difference-differential field extensions

In this section we present a result that generalizes both Theorem 2 and the
theorem on multivariate dimension polynomial of a finitely generated differential
field extension associated with a partition of the basic set of derivations, see [9,
Theorem 4.6].

LetK be a difference-differential (∆-σ-) field with basic sets ∆ = {δ1, . . . , δm}
and σ = {α1, . . . , αn} of derivations and automorphisms, respectively. Suppose
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that these sets are represented as the unions of p and q nonempty disjoint sub-
sets, respectively (p, q ≥ 1):

∆ = ∆1

⋃
· · ·
⋃
∆p, σ = σ1

⋃
· · ·
⋃
σq, (5)

∆1 = {δ1, . . . , δm1}, ∆2 = {δm1+1, . . . , δm1+m2}, . . . , ∆p = {δm1+···+mp−1+1,
. . . , δm}, σ1 = {α1, . . . , αn1}, σ2 = {αn1+1, . . . , αn1+n2}, . . . ,
σq = {αn1+···+nq−1+1, . . . , αn}; (m1 + · · ·+mp = m; n1 + · · ·+ nq = n).

For any element λ = δk11 . . . δkmm αl11 . . . α
ln
n ∈ Λ (ki, lj ∈ N; we use the notation

of section 2), the order of λ with respect to a set ∆i (1 ≤ i ≤ p) is defined as
m1+···+mi∑

µ=m1+···+mi−1+1

kµ; it is denoted by ordi λ. (If i = 1, the last sum is replaced by

m1∑
µ=1

kµ.) Similarly, the order of λ with respect to a set σj (1 ≤ j ≤ q), denoted

by ord′j λ, is defined as

n1+···+nj∑
ν=n1+···+nj−1+1

lν . (If j = 1, the last sum is

n1∑
ν=1

lν .)

If r1, . . . , rp+q ∈ N, we set

Λ(r1, . . . , rp+q) = {λ ∈ Λ| ordi λ ≤ ri (1 ≤ i ≤ p) and ord′j λ ≤ rp+j(1 ≤ j ≤ q)}.

Furthermore, for any permutation (j1, . . . , jp+q) of the set {1, . . . , p + q}, let
<j1,...,jp+q be the lexicographic order on Np+q such that (r1, . . . , rp+q) <j1,...,jp+q
(s1, . . . , sp+q) if and only if either rj1 < sj1 or there exists k ∈ N, 1 ≤ k ≤ p+ q,
such that rjν = sjν for ν = 1, . . . , k and rjk+1

< sjk+1
.

If A ⊆ Np+q, then A′ will denote the set of all (p+ q)-tuples a ∈ A that are
maximal elements of this set with respect to one of the (p+q)! orders <j1,...,jp+q .
Say, if A = {(1, 1, 1), (2, 3, 0), (0, 2, 3), (2, 0, 5), (3, 3, 1), (4, 1, 1), (2, 3, 3)} ⊆ N3,
then A′ = {(2, 0, 5), (3, 3, 1), (4, 1, 1), (2, 3, 3)}.

Theorem 6. With the above notation, let F be an intermediate ∆-σ-field of a
∆-σ-field extension L = K〈η1, . . . , ηs〉 generated by a finite family η = {η1, . . . , ηs}.
Let partitions (5) be fixed and for any r1, . . . , rp+q ∈ Np+q, let

Fr1,...,rp+q = F
⋂
K(

s⋃
j=1

Λ(r1, . . . , rp+q)ηj).

Then there exists a polynomial in p + q variables ΦK,F,η ∈ Q[t1, . . . , tp+q] such
that

(i) ΦK,F,η(r1, . . . , rp+q) = trdegK K(
s⋃
j=1

Λ(r1, . . . , rp+q)ηj)

for all sufficiently large (r1, . . . , rp+q) ∈ Np+q. (That is, there exist r
(0)
1 , . . . , r

(0)
p+q ∈

N such that the equality holds for all (r1, . . . , rp+q) ∈ Np+q with ri ≥ r
(0)
i ,

1 ≤ i ≤ p+ q.) ;
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(ii) degti Φη ≤ mi (1 ≤ i ≤ p), degtp+j Φη ≤ nj (1 ≤ j ≤ q) and Φη(t1, . . . , tp+q)
can be represented as

Φη =

m1∑
i1=0

. . .

mp∑
ip=0

n1∑
ip+1=0

. . .

nq∑
ip+q=0

ai1...ip+q

(
t1 + i1
i1

)
. . .

(
tp+q + ip+q

ip+q

)
(6)

where ai1...ip+q ∈ Z.
(iii) Let Eη = {(i1, . . . , ip+q) ∈ Np+q | 0 ≤ ik ≤ mk for k = 1, . . . , p, 0 ≤
ip+j ≤ nj for j = 1, . . . , q, and ai1...ip+q 6= 0}. Then d = deg Φη, am1...mpn1...nq ,
elements (k1, . . . , kp+q) ∈ E′η, the corresponding coefficients ak1...kp+q , and the
coefficients of the terms of total degree d do not depend on the choice of the set
of ∆-σ-generators η. Furthermore, am1...mpn1...nq = ∆-σ-trdegK L.

Proof. We will mimic the method of the proof of Theorem 2 using the results
on multivariate dimension polynomials of ∆-σ-L-modules. Let D be the ring
of ∆-σ-operators over L considered as a filtered ring with (p + q)-dimensional
filtration {Dr1,...,rp+q | (r1, . . . , rp+q) ∈ Zp+q} where for any r1, . . . , rp+q ∈ Np+q,
Dr1,...,rp+q is the vector L-subspace of D generated by Λ(r1, . . . , rp+q), and
Dr1,...,rp+q = 0 if at least one ri is negative. If M is a ∆-σ-L-module, then a
family {Mr1,...,rp+q |(r1, . . . , rp+q) ∈ Zp+q} of vector K-subspaces of M is said to
be a (p+ q)-dimensional filtration of M if

(i) Mr1,...,rp+q ⊆Ms1,...,sp+q whenever ri ≤ si for i = 1, . . . , p+ q.

(ii)
⋃

(r1,...,rp+q)∈Zp+q Mr1,...,rp+q = M .

(iii) There exists (r
(0)
1 , . . . , r

(0)
p+q) ∈ Zp such that Mr1,...,rp+q = 0 if ri < r

(0)
i for

at least one index i.

(iv) Dr1,...,rp+qMs1,...,sp+q ⊆Mr1+s1,...,rp+q+sp+q for any (p+q)-tuples (r1, . . . , rp+q),
(s1, . . . , sp+q) ∈ Zp+q,

If every vector L-space Mr1,...,rp+q is finite-dimensional and there exists an
element (h1, . . . , hp) ∈ Zp such that Dr1,...,rp+qMh1,...,hp+q = Mr1+h1,...,rp+q+hp+q

for any (r1, . . . , rp+q) ∈ Np+q, the filtration {Mr1,...,rp+q |(r1, . . . , rp+q) ∈ Zp+q}
is called excellent. Clearly, if z1, . . . , zk is a finite system of generators of a ∆-
σ-L-module M , then {

∑k
i=1Dr1,...,rp+qzi|(r1, . . . , rp+q) ∈ Zp+q} is an excellent

(p+ q)-dimensional filtration of M .

Let L∗ be the inversive closure of L. As we have seen, the module of Kähler
differentials ΩL∗|K can be equipped with a structure of a ∆-σ∗-L-module such
that β(dζ) = dβ(ζ) for any ζ ∈ L∗, β ∈ ∆

⋃
σ (d = dL∗|K). Let M ′ denote

a D-submodule
∑s
i=1Ddηi of M treated as a filtered D-module with the na-

tural (p + q)-dimensional filtration {M ′r1,...,rp+q |(r1, . . . , rp+q) ∈ Zp+q} where

M ′r1,...,rp+q =
∑s
i=1Dr1,...,rp+qdηi. Let N be a D-submodule of M ′ generated by

all elements dζ where ζ ∈ F and for any r1, . . . , rp+q ∈ N, let Nr1,...,rp+q be
the vector L-space generated by all elements dζ where ζ ∈ Fr1,...,rp+q . Setting
Nr1,...,rp+q = 0 if (r1, . . . , rp+q) ∈ Zp+q \Np+q, we get a (p+q)-dimensional filtra-
tion of the ∆-σ-L-module N , and the embedding N →M ′ becomes a homomor-
phism of (p+ q)-filtered ∆-σ-L-modules. Now, one can mimic the proof of The-
orem 3.2.8 of [12] to show that the filtration {Nr1,...,rp+q |(r1, . . . , rp+q) ∈ Zp+q}
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is excellent. The result of Theorem 6 immediately follows from the fact that
dimLNr1,...,rp+q = trdegK Fr1,...,rp+q for all (r1, . . . , rp+q) ∈ Np+q (as it is menti-
oned in the proof of Theorem 2, a family (ζi)i∈I of elements of L (in particular, of
Fr1,...,rp+q ) is algebraically independent over K if and only if the family (dζi)i∈I
is linearly independent over L) and the result of [12, Theorem 3.5.8] (it states
that under the above conditions, there exists a polynomial ΦK,F,η(t1, . . . , tp+q) ∈
Q[t1, . . . , tp+q] such that Φη(r1, . . . , rp+q) = dimLNr1,...,rp+q for all sufficiently
large (r1, . . . , rp+q) ∈ Zp+q and ΦK,F,η(t1, . . . , tp+q) satisfies conditions (ii) of
Theorem 6. Statement (iii) of Theorem 6 can be obtained in the same way as
statement (iii) of Theorem 2 of [13].)
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