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Abstract—Principal Subspace Analysis (PSA)—and its sibling,
Principal Component Analysis (PCA)—is one of the most popular
approaches for dimensionality reduction in signal processing and
machine learning. But centralized PSA/PCA solutions are fast
becoming irrelevant in the modern era of big data, in which
the number of samples and/or the dimensionality of samples
often exceed the storage and/or computational capabilities of
individual machines. This has led to the study of distributed
PSA/PCA solutions, in which the data are partitioned across
multiple machines and an estimate of the principal subspace is
obtained through collaboration among the machines. It is in this
vein that this paper revisits the problem of distributed PSA/PCA
under the general framework of an arbitrarily connected network
of machines that lacks a central server. The main contributions of
the paper in this regard are threefold. First, two algorithms are
proposed in the paper that can be used for distributed PSA/PCA,
with one in the case of data partitioned across samples and
the other in the case of data partitioned across (raw) features.
Second, in the case of sample-wise partitioned data, the proposed
algorithm and a variant of it are analyzed, and their convergence
to the true subspace at linear rates is established. Third, extensive
experiments on both synthetic and real-world data are carried
out to validate the usefulness of the proposed algorithms. In
particular, in the case of sample-wise partitioned data, an MPI-
based distributed implementation is carried out to study the
interplay between network topology and communications cost as
well as to study the effects of straggler machines on the proposed
algorithms.

Index Terms—Distributed data, orthogonal iteration, principal
component analysis, principal subspace, straggler effect

I. INTRODUCTION

In the current world of machine learning, data tends to be
huge in both dimension and size, i.e., the number of samples.
To tackle the massiveness of dimension, measures have to be
taken to reduce the data dimensionality, which aids in storage
and subsequent processing of the data. Also, the massiveness
of size of the data makes it difficult to store and process the
data at a single location/machine and hence use of multiple
units has become inevitable. This motivates the need to explore
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distributed dimensionality reduction solutions, wherein one
can keep data distributed across machines and still process
them together. The most fundamental tool for dimension
reduction is Principal Component Analysis (PCA) [2], which
extracts a smaller set of uncorrelated features from the data
that carry maximum information. Quite often though, one only
needs a smaller set of features that approximate the data well
enough and uncorrelatedness is not a necessary condition.
This technique is more appropriately called Principal Subspace
Analysis (PSA), which falls under the larger umbrella of low-
rank approximation techniques [3]. PSA [4] is an unsupervised
learning technique that is used for dimension reduction of data,
before utilizing it for further applications like classification,
regression, etc., to help with faster processing and computa-
tions. These aforementioned reasons are the motivations for
this paper in which we explore PSA/PCA in a distributed
environment so as to derive a smaller set of important data
features efficiently when data is distributed across machines.

Mathematically speaking, for a data point x ∈ Rd, PSA
aims to represent it by a smaller r-dimensional vector x̃ ∈ Rr

(r ≪ d) such that it is an ‘efficient’ representation of x.
This is accomplished by finding an r-dimensional subspace,
represented by its orthonormal basis Q ∈ Rd×r, such that
x̃ = QTx has features that retain maximum information
contained in original data point x ∈ Rd. In other words,
when x is reconstructed from x̃ as Qx̃ = QQTx (subject
to QTQ = I), it has the minimum approximation error in
Frobenius norm. For data samples drawn from any distribution,
the directions that contain maximum information (energy) are
given by the leading eigenvectors of the covariance matrix
of that distribution [5]. This implies the subspace that would
retain the most amount of information is the one spanned
by those eigenvectors, i.e., the principal eigenspace. Thus,
dimension reduction that would result in a smaller set of
features can be achieved only when the said matrix Q is the
basis of the principal eigenspace of the data covariance matrix
Σ = E

[
xxT

]
. The PCA problem, in addition, requires Q to be

precisely the eigenvectors of Σ, as opposed to any orthonormal
basis of the principal eigenspace.

Even though principal eigenspace estimation is a well
studied problem when data is available at a single location,
the enormity of the amount of available data or inherent
distributed nature of the data generation like in Internet-of-
Things, from an array of sensors, etc., makes it absolutely
necessary to look for solutions for the case when data is
distributed across locations. Collating such data at one location
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can be prohibitive due to storage and computation constraints
and/or to maintain the privacy of data. It is in this regard that
we first and foremost aim to find solutions for PSA in a dis-
tributed setup. Interestingly, however, our algebraic approach
to the PSA problem ends up being applicable to distributed
PCA also in the case of the covariance matrix having distinct
eigenvalues. Nonetheless, to keep the exposition simple, we
mainly limit ourselves to usage of the term “distributed PSA”
in much of the remainder of this section.

Note that distributed setups can be broadly of two types: i)
when all the entities (data centers, sensors, etc.) are connected
to a central server, and ii) when the entities are connected
as an arbitrary network without any central server. The terms
distributed and decentralized are interchangeably used for both
these setups in the literature and are explained in more detail
in [6]. In this paper, we focus on the latter kind of setting with
no central server because of its more general architecture; here
onwards we use the term distributed for the setup and the term
nodes for the entities forming the distributed network.

Within any distributed setting, splitting of the data among
the nodes can happen in two ways: i) by samples, and ii)
by raw features. Sample-wise splitting means each node has
access to some but not all samples of the data, but each
sample has its full set of raw features. This kind of data
partitioning naturally occurs in cases like Internet-of-Things,
where devices are scattered geographically, each device (node)
carries a subset of the entire information (samples) spread
across the network and the data cannot be brought together for
reasons like privacy or communication bandwidth constraints.
The feature-wise splitting means each node has few features
for all samples of data. A natural example of this type of
data partitioning occurs in sensor array applications, where
different sensors capture different parts of the same signal.
In this paper, we consider both kinds of data partitioning and
propose distributed PSA algorithms for each of them. The end
goal in each case is to find the principal eigenspace of the
covariance matrix when data is distributed across a network.

A. Relationship to Prior Work

PCA and PSA are age-old tools for dimensionality reduction
with seminal work appearing as early as 1901 in [4]. In [2],
Hotelling proposed a solution for estimating the eigenvectors
of data covariance matrix to compress a set of data points.
Since then many more solutions for dimensionality reduction
have been proposed, which include iterative methods like
power method, orthogonal iteration [7], and Lanczos algo-
rithm [8]. These methods are shown to have convergence
guarantees for subspace estimation in case of symmetric
matrices, a category covariance matrices fall under. Data com-
pression has also been a topic of interest in the neural network
community, with autoencoders being an important tool for
data compression. The work in [5] showed that a single-
layer fully connected autoencoder that has linear activation
and squared error cost function will have weights given by
the space spanned by the eigenvectors, i.e., the eigenspace of
the input covariance matrix. Thus autoencoders are efficient
tools for principal eigenspace estimation.

In contrast to the centralized setting, solutions for PSA in
the distributed setup are very recent and few. As noted earlier,
the partitioning of data is possible in two ways: by features and
by samples. In the case when the partitioning is by features of
the data, each node estimates one or a subset of the features
of the eigenspace. For this particular kind of partitioning, the
work in [9] estimates top-r eigenvectors of the graph adjacency
matrix of a network, while another significant work in [10]
proposed an algorithm for estimation of top-r eigenvectors of
the covariance matrix sequentially, starting from the eigenvec-
tor corresponding to the largest eigenvalue. This sequential
approach slows down the convergence of the algorithm when
a higher-dimensional eigenspace needs to be estimated. To
speed up the subspace estimation process, an ideal situation
here would be to estimate all the basis vectors simultaneously
rather than one-by-one sequentially. Furthermore, the detailed
analysis of the subspace estimation algorithm in [10] given
in [11] shows that this sequential approach requires the (r+1)
largest eigenvalues of the covariance matrix to be distinct,
which is a strong condition. To address these issues for the
case of feature-wise partitioned data, we propose an algorithm
based on orthogonal iterations (OI) to find the principal
eigenspace of the covariance matrix simultaneously by using
a distributed QR factorization algorithm [12].

When data is partitioned by samples, even though each
node has access to few samples, the goal is that every node
estimates complete eigenspace of the covariance matrix of
the entire data. In addition, all nodes need to agree with
each other, i.e., a consensus in the network is an impor-
tant requirement for distributed solutions in this case. The
works in [13]–[15] give solutions for this particular kind of
distributed setup, proposing a variant of the power method.
These methods focus on extracting only the top eigenvector
and have been shown to converge at a linear rate by using
explicit consensus iterations [16] after each iteration of the
power method to ensure the nodes in the network agree with
each other. Although estimation of the next dominant eigen-
vectors can be done sequentially using the distributed power
method, the convergence analysis provided in these papers
are only for the dominant eigenvector. Additionally, similar to
feature-wise partitioned case, using distributed power method
for sequentially estimating the subspace basis vectors would
require distinct eigenvalues since that is a basic requirement
of power method for convergence. Another method for the
estimation of top eigenvector in distributed but streaming data
case was proposed in [17]. A recently proposed method in [18]
uses a Hebbian update rule in the distributed setting to find
top-r eigenvectors and is proved to converge linearly to a
neighbourhood of the true solution [19]. The review paper [20]
provides a detailed coverage of distributed PCA/PSA solutions
for both types of data partitioning, namely, by features and by
samples (referred to as DRO and DCO, respectively, therein).

Note that PSA is a nonconvex problem due to its nonconvex
constraint that the solution must lie on the Stiefel manifold.
Recently, some work has also been done for solving general
nonconvex problems in the distributed setting that can be
related to sample-wise distributed PSA problem in some sense.
The work in [21] does convex approximations of a nonconvex
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objective function but assumes that the constraint set is convex,
while [22] shows convergence to a stationary point of uncon-
strained nonconvex problems. The method in [23] also requires
the constraint set to be convex in case of nonconvex objective
functions. A recent work in [24] proposes a Riemannian gra-
dient descent method for optimization of nonconvex problems
over a Stiefel manifold in a distributed network. It is shown to
converge only to a stationary point of the nonconvex function.
Thus, none of these methods are directly applicable to the PSA
problem in the distributed setup. In this paper, we propose
an orthogonal iterations-based approach that uses consensus
averaging as a solution to the sample-wise distributed PSA
problem. This is an extension of the distributed power method
algorithm proposed as a subroutine in [13] to the case of r > 1
and is shown to converge to the eigenspace of the covariance
matrix at linear rate without the strong assumption of distinct
top-(r + 1) eigenvalues of the covariance matrix.

B. Our Contributions

The main contributions of this paper are i) a novel algorithm
for feature-wise distributed PSA called F-DOT, ii) a novel
algorithm for sample-wise distributed PSA called S-DOT
along with a variant SA-DOT that adaptively changes the
number of consensus iterations for each orthogonal iteration,
iii) theoretical convergence guarantees for S-DOT and SA-
DOT, iv) experiments that use Message Passing Interface
(MPI) [25] to understand communication cost in real-world
settings, and v) extensive numerical experiments to demon-
strate the efficiency of all the proposed algorithms as compared
to existing distributed and baseline methods.

The main goal of this paper is to find solutions for PSA
when data is partitioned either by features or by samples over
an arbitrary network of interconnected nodes. To fulfill the
purpose of dimension reduction in the distributed setting for
the two types of mentioned data splits, we propose algorithms
that would find the principal eigenspace of the data covariance
matrix even in the absence of a central entity that can collate
the data or co-ordinate among the nodes. Orthogonal iteration
(OI) is a very useful algorithm for eigenspace estimation in
centralized settings [7] and it also forms the fundamental
building block of all our proposed solutions. Maintaining
orthonormality in case of F-DOT and network consensus in
case of S-DOT and SA-DOT requires careful considerations
while adapting OI to the distributed setup. The theoretical
guarantees of the S-DOT and SA-DOT algorithms show that
our proposed solution has linear convergence rates for the
case of a subspace with r > 1, unlike the existing theoretical
results in the literature that only provide guarantees for the
case of r = 1. Extensive experimental results are presented
that further support our claims. Even though we do not provide
any theoretical guarantees for F-DOT algorithm, experimental
simulations demonstrate its efficiency. For extensive experi-
mental study, we have also simulated real-world distributed
networks using the MPI protocol as well as studied the effects
of various parameters associated with the algorithms like
network connectivity, data dimension, etc. Finally, as noted
earlier, since our distributed PSA developments are based on

OI, they generalize to the distributed PCA problem in the
case of distinct top-(r+1) eigenvalues of the covariance ma-
trix [26]. Going forward, however, we do not insist on distinct
eigenvalues and, as such, limit ourselves to the distributed PSA
problem.
Remark 1. During the revision of this paper, whose results
first appeared in [1], a related work [27] for distributed PSA of
sample-wise partitioned data appeared as a preprint. Both [27]
and our work are extensions of the ideas in our prior work [13].
The authors in [27] have made use of the idea of “gradient
tracking” from distributed optimization literature [21], [28]
to improve on the communications cost of distributed PSA.
When compared to this work, our method has the same
algorithmic complexity but the communications complexity
has an additional log factor. Nonetheless, the work in this
paper predates [27]; in addition, we also discuss feature-wise
partitioned data and carry out an extensive MPI-based imple-
mentation that helps study the impacts of different real-world
design choices and constraints on distributed PSA solutions.

C. Notation and Organization

The following notational convention is used throughout the
rest of this paper. We use the standard notation := to denote
definitions of terms. The notation | · | is used for both the
cardinality of a set and the absolute value of a real number.
Similarly, ∥·∥2 is used for both the ℓ2-norm of a vector and the
operator 2-norm of a matrix. The notation \ denotes the set
difference operation. Finally, we make use of the following
“Big–O” notation for scaling relations: f(n) = O(g(n)) if
∃co > 0, no : ∀n ≥ no, f(n) ≤ cog(n), and f(n) = Ω(g(n))
if g(n) = O(f(n)).

The rest of this paper is organized as follows: In Section II,
we describe and mathematically formulate the distributed
PSA problem for both kinds of data partitioning. Section III
describes the three proposed algorithms, while Section IV
provides convergence analysis of the S-DOT and SA-DOT
algorithms, and discusses the computational complexity and
communication cost of the three algorithms. We provide
numerical results in Section V to show efficacy of the proposed
methods and conclude in Section VI. The detailed proofs
of our main mathematical results are in Appendix A and
Appendix B.

II. PROBLEM FORMULATION

The goal of principal subspace analysis (PSA) is to
compress data without losing much information. Specifi-
cally, to compress a data point x ∈ Rd such that it has
only r (r ≪ d) features, PSA finds the r-dimensional
eigenspace spanned by the eigenvectors corresponding to the
r largest eigenvalues of the population covariance matrix
Σ = E

[
(x− E

[
x
]
)(x− E

[
x
]
)T
]
. If the resulting eigenspace

is given as Q =
[
q1, . . . ,qr

]
∈ Rd×r, then the reduced

set of features will be given by QTx. In practice the actual
distribution and hence Σ is unknown, and therefore a sample
covariance matrix is used instead. For the data matrix X =[
x1, . . . ,xn

]
∈ Rd×n with sample mean x̄ = 1

n

∑n
t=1 xt, the

sample covariance matrix is M = 1
n−1

∑n
t=1(xt − x̄)(xt −



4

x̄)T. Without loss of generality, we will assume x̄ = 0,
since even otherwise the sample mean can be easily computed
and subtracted from the samples, thus making the sample
covariance matrix M = 1

n

∑n
t=1 xtx

T
t = 1

nXXT. With the
goal of finding the subspace that can be used to reconstruct
data points with minimum error, PSA is formulated in the
centralized case as:

Qc = argmin
Qc∈Rd×r

f(Qc) = argmin
Qc∈Rd×r

∥(I−QcQ
T
c )X∥2F

such that QT
c Qc = I. (1)

The constraint QT
c Qc = I implies that the solution should lie

on the Stiefel manifold. This formulation returns an orthogonal
basis of the r-dimensional eigenspace of M. Not only do we
want a solution to the PSA problem (1) in this paper, we are
also looking at an added challenge of non-availability of data
at a single location, thus requiring to solve PSA in a distributed
manner. We consider the following distributed setup for this
problem: a network that is defined by an undirected graph
given as G = (N , E) where N = {1, 2, . . . , N} is the set of
nodes in the network and E is the set of edges (i, j). For each
node i, we record its neighbors (including itself) in the set
Ni = {j|(i, j) ∈ E} ∪ i.

A. The Types of Data Partitions

As mentioned earlier, data partitioning is most commonly
done in two major ways: by samples and by features. In
case of sample-wise distribution, mathematically, each node
i consists of a set of samples denoted by Xi ∈ Rd×ni such
that

∑N
i=1 ni = n. The local covariance matrix at node i is

thus Mi = 1
ni
XiX

T
i and it is straightforward to see that

nM =
∑N

i=1 niMi. Also, every node i maintains its own
copy Qs,i of the true estimate Qs in the absence of any central
server. Thus for node i, if we were to focus on local PSA only
then (1) can be re-written as follows:

Qs,i = argmin
Qs,i∈Rd×r

[
fi(Qs,i) :=

∥∥(I−Qs,iQ
T
s,i)Xi

∥∥2
F

]
such that QT

s,iQs,i = I. (2)

Through collaboration, however, the ultimate goal is that all
nodes reach the same estimate of the space spanned by the
eigenvectors of the global covariance matrix M, i.e., Qs,1 =
Qs,2 = . . . = Qs,N = Qs. Thus, the overall optimization
problem to be solved in the network is:

argmin
{QT

s,iQs,i=I}N
i=1

N∑
i=1

[
fi(Qs,i) :=

∥∥(I−Qs,iQ
T
s,i)Xi

∥∥2
F

]
such that Qs,1 = Qs,2 = . . . = Qs,N = Qs. (3)

Note that if Qs,1 = Qs,2 = . . . = Qs,N = Qs,∑N
i=1 fi(Qs,i) = f(Qs), which is consistent with the for-

mulation (1) of centralized PSA.
In the case of feature-wise partitioning, the view of dis-

tributed PSA is significantly different from the sample-wise
case. Here, for a data sample xt ∈ Rd, each node i has
access to some of the d features of the sample, i.e., node
i has access to a part Xi ∈ Rdi×n of the complete data

such that
∑N

i=1 di = d. The goal of distributed PSA in this
case is that each node i learns a part Qf,i ∈ Rdi×r of the
estimate of eigenspace of M by using its local data Xi and
collaborating with other nodes in such a way that Qf =[
QT

f,1, . . . ,Q
T
f,N

]T
represents the estimate of Q, the whole

r-dimensional eigenspace. Unlike the sample-wise partitioned
case, the centralized PSA formulation (1) is inseparable in the
feature-wise partitioned case.

It is well known that orthogonal iteration (OI) [7] is
an iterative method that finds the dominant r-dimensional
eigenspace of a symmetric matrix M at a linear rate under
the assumption that if λ1, . . . , λd are its eigenvalues then
the condition λ1 ≥ λ2 . . . ≥ λr > λr+1 ≥ . . . ≥ λd

holds true. In both cases of partitions described here, the
unavailability of X and hence M at a single location makes the
centralized OI solution unusable, unless the data is collected
at a single location. Since this is often impossible as discussed
before, we aim to modify OI such that it can be used in
distributed networks for both feature-wise and sample-wise
data partitions.

III. PROPOSED ALGORITHMS

Even though orthogonal iteration (OI) is a simple and
effective solution when the matrix whose eigenspace is to
be computed is available at a single location, using it in
either sample-wise or feature-wise data partitioned case has
its challenges. The sample-wise distributed case requires all
nodes in an arbitrarily connected network to reach a common
solution given by the eigenspace of M without having access
to entire matrix at any of the nodes. The nodes are only
allowed to collaborate with their immediate neighbors and not
exchange any raw data. In feature-wise case, consensus is not
a requirement but each node is required to compute a part of
the eigenvectors of M while it is not available in entirety at
any one node. Even though there is no common solution that
the nodes have to reach, collaboration is still a vital part here
to maintain the orthogonality of the estimated solution. We
propose algorithms to deal with these challenges and use OI
effectively in both kinds of data partitioning settings.

A. PSA for Sample-wise Partitioned Data

We begin with the setup where data is partitioned by
samples, i.e., each node has access to a few samples stored
in Xi, resulting in a local covariance matrix Mi. Ignoring
the scaling factors as those do not affect the eigenspace, one
can write M =

∑N
i=1 Mi. Under the eigengap assumption

required for OI, we first propose an algorithm Sample-wise
Distributed Orthogonal iTeration (S-DOT) that estimates the
dominant r-dimensional eigenspace of M at each node i
while using only its local data Mi and a subroutine called
consensus averaging [16]. The complete algorithm is given in
Algorithm 1.

S-DOT is a two-scale iterative method, where for each
iteration of OI (outer loop) performed locally at each node,
there is an inner loop of Tc consensus iterations. We define
Q

(t)
s,i as the estimate of Qs at node i after t iterations of the

outer loop. Now during the outer loop orthogonal iteration t,
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each node locally computes the product MiQ
(t−1)
s,i as given

in Step 5 of Algorithm 1. Then, we apply Tc iterations of
consensus averaging using a doubly stochastic weight matrix
W defined based on the graph topology to approximate
1
N

∑N
i=1 MiQ

(t−1)
s,i . It is known that if Tc → ∞, then the

averaging would be exact [16]. Let us assume for a moment
that Q

(t−1)
s,i = Q

(t−1)
s ∀i, then Step 5 at node i would be

Z
(0)
i = MiQ

(t−1)
s . Performing exact consensus averaging step

Z
(tc)
i =

∑
j∈Ni

wi,jZ
(tc−1)
j infinitely many times on these

resulting Z
(0)
i will result in Z

(∞)
i = 1

N

∑N
j=1 MjQ

(t−1)
s =

1
NMQ

(t−1)
s , which is the same as an update of centralized

OI at all nodes across the network. This shows that using
averaging consensus can lead to the eigenspace of the global
covariance matrix M at each node i. However, infinite con-
sensus iterations is not possible in the real world for any
t and hence after a finite number of consensus iterations
Tc, each V

(t)
s,i =

Z
(Tc)
i

[WTce1]i
, where e1 =

[
1, 0, . . . , 0

]T
,

incurs some error due to imperfect averaging, i.e., V
(t)
s,i =∑N

j=1 MjQ
(t−1)
s,j + E(t)

c,i . Quantifying the error E(t)
c,i , ∀i, t is

one of our main contributions in convergence analysis. In the
final step of the tth outer loop iteration, every node locally
performs a QR decomposition of V

(t)
s,i to ensure that the

estimated basis vectors are orthonormal.

Algorithm 1 Sample-wise Distributed Orthogonal Iteration

1: Input: W; Mi, i = 1, . . . , N
2: Initialize: Set t ← 0 and Q

(t)
s,i ← Qinit where Qinit ∈

Rd×r : QT
initQinit = I

3: while stopping criteria do
4: t← t+ 1
5: Z

(0)
i ←MiQ

(t−1)
s,i , i = 1, 2, . . . , N

6: Begin consensus loop: tc ← 0
7: while tc < Tc do
8: tc ← tc + 1
9: Z

(tc)
i ←

∑
j∈Ni

wi,jZ
(tc−1)
j

10: end while
11: V

(t)
s,i ←

Z
(tc)
i

[WTce1]i

12: Q
(t)
s,i,R

(t)
s,i ← QR factorization(V(t)

s,i)
13: end while
14: Return: Q(t)

s,i

It is well known that OI converges, i.e., the principal angle
between the subspaces spanned by Q and Q

(t−1)
s,i is larger than

that between Q and Q
(t)
s,i , and the convergence is at a linear

rate. Performing a large number of consensus iterations during
the initial orthogonal iterations (outer loop) would be of not
much consequence given that the quantities being averaged
have inherently huge errors. This implies that communication
costs between the nodes in the initial iterations of the outer
loop can be reduced without major loss to the final result.
This idea motivates us to consider an adaptive version of the
S-DOT algorithm, wherein the number of consensus iterations
per outer loop iteration increase with time. We call this variant
Sample-wise Adaptive Distributed Orthogonal iTeration (SA-
DOT). For SA-DOT, we define T̄c = [Tc,1, Tc,2, . . . , Tc,To

],

where To is the total number of outer loop iterations and
Tc,1 < Tc,2 . . . < Tc,To . In the tth outer iteration of SA-DOT,
we employ Tc,t averaging consensus at each site. The algo-
rithm flow for S-DOT and SA-DOT is otherwise congruent.
We show in our analysis and experiments the utility of this
adaptive method.

B. PSA for Feature-wise Partitioned Data

The other kind of data partition we consider in this paper
is feature-wise. In this case, each node i has access to a few
features of all the samples available in a data. As described
earlier, if the part of the data available at node i is Xi ∈
Rdi×n then the whole data matrix is X =

[
XT

1 , . . . ,X
T
N

]T
.

The goal is to find the dominant r-dimensional eigenspace of
M = XXT collaboratively such that each node computes the
features of the principal eigenspace corresponding to the data
features it carries. In other words, a node carrying the data
portion Xi ∈ Rdi×n will estimate the corresponding part of
Qf =

[
QT

f,1, . . . ,Q
T
f,N

]T
such that Qf,i ∈ Rdi×k. Similar

to the sample-wise data partitioned case, we operate under
the assumption that the eigenvalues of M follow the order
λ1 ≥ . . . λr > λr+1 ≥ . . . λd.

In order to develop our algorithm we recall that each
iteration in the centralized OI has two steps: an update step
that computes Q̃ = MQ followed by a QR orthonormalization
step. Taking a closer look at the update step when data is
partitioned by features, we have

MQ = XXTQ = X
[
XT

1 , . . . ,X
T
N

] Qf,1

...
Qf,N



= X
( N∑

i=1

XT
i Qf,i

)
=


X1

(∑N
i=1 X

T
i Qf,i

)
...

XN

(∑N
i=1 X

T
i Qf,i

)
 . (4)

This shows that the update step computation can be easily
distributed as follows: having access to Xi and Qf,i, each
node i computes XT

i Qf,i. This is followed by a round of
consensus averaging in the network to get the (approximate)
sum

∑N
i=1 X

T
i Qf,i at each node followed by computing

Vf,i = Xi

(∑N
i=1 X

T
i Qf,i

)
at each node i. But the or-

thonormalization step is not as straightforward as in Algo-
rithm 1 because no node has access to full set of vectors. To
tackle this, we use a distributed QR decomposition method
proposed in [12]. This method again uses the weight matrix
W and exchanges Vf,i among the nodes to orthonormalize
the eigenvectors without the need for any collation of Vf,i.
The use of distributed QR evades the necessity of computing
the eigenvectors sequentially as proposed in [10]. Our solu-
tion, called Feature-wise Distributed Orthogonal iTeration (F-
DOT), is given in Algorithm 2.

IV. CONVERGENCE ANALYSIS AND DISCUSSION

In the following, we provide a detailed analysis of the
convergence behavior of Sample-wise Distributed Orthogonal
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Algorithm 2 Feature-wise Distributed Orthogonal Iteration

1: Input: W; Xi, i = 1, . . . , N
2: Initialize: Set t ← 0 and Q

(t)
f,i ← Qinit, where Qinit ∈

Rd×r : QT
initQinit = I

3: while stopping rule do
4: t← t+ 1
5: Z

(tc)
i ← XT

i Q
t−1
f,i , i = 1, 2, . . . , N

6: Begin consensus loop: Set tc ← 0,
7: while tc < Tc do
8: tc ← tc + 1
9: Z

(tc)
i ←

∑
j∈Ni

wi,jZ
(tc−1)
j

10: end while
11: V

(t)
f,i ←

N
mXi

Z
(tc)
i

[Wtce1]i

12: Q
(t)
f,i,R

(t)
f,i ← Distributed QR(V(t)

f,i) [12]
13: end while
14: Return: Q(t)

f,i

iTeration (S-DOT) and Sample-wise Adaptive Distributed Or-
thogonal iTeration (SA-DOT). The results need an entity called
mixing time of the Markov chain associated with the doubly
stochastic matrix W. It is defined as

τmix = max
i=1,...,N

inf
t∈N

{
t : ∥eTi Wt − 1

N
1T∥2 ≤

1

2

}
, (5)

where 1 is a vector of ones. We also require the following
result from literature [9] that quantifies the convergence be-
haviour of matrix consensus as a function of the number of
consensus iterations.

Proposition 1. [9, Theorem 5] Define Z
(Tc)
i ∈ Rd×r

as the matrix at node i after Tc consensus iterations for
i ∈ {1, . . . , N}, where the initial value at each site i is Z

(0)
i .

Let Z =
∑N

i=1 Z
(0)
i , and define Z′ =

∑N
i=1

∣∣∣Z(0)
i

∣∣∣, such that
the (j, k) entry of Z′ is the sum of absolute values of the
(j, k)th entry of Z

(0)
i at all nodes i. For any δ > 0, and

Tc = O(τmix log δ
−1), the approximation error of averaging

consensus is
∥∥∥∥ Z

(Tc)
i

[WTce1]i
− Z

∥∥∥∥
F

≤ δ∥Z′∥F , ∀i.

The main theorem of this paper is based on an induction
argument, which utilizes the following theorem.

Lemma 1. Let Mi, i = 1, . . . , N, be the covariance matrix

available at node i, and define M :=
N∑
i=1

Mi. Suppose we

are at (to + 1)th ≤ To iteration of either S-DOT or SA-DOT,
where To is the maximum number of iterations. Next, define:

• Qc to be the eigenspace estimate computed by central-
ized OI after to iterations and Qs,i to be the estimate
computed after to iterations at node i by either S-DOT
or SA-DOT,

• Q′
c and Q′

s,i to be the eigenspace estimates from OI and
S-DOT / SA-DOT after (to + 1) orthogonal iterations,
respectively,

• K
(to)
c := V

(to)
T

c V
(to)
c = R

(to)
T

c R
(to)
c , where R

(to)
c

is the Cholesky decomposition of K
(to)
c , and V

(to)
c =

MQ
(to)
c = MQc, and

• the constants α :=
N∑
i=1

∥Mi∥2, γ :=

√
N∑
i=1

∥Mi∥22, and

β := max
to=1,...,To

∥∥∥R−1(to)

c

∥∥∥
2
.

Then for any ϵ ∈ (0, 1) and a fixed δ, if ∀i, i = 1, . . . , N , we
have

∥Qc −Qs,i∥F +
δγ
√
Nr

α
≤ 1

2α2β3
√
r(2α

√
r + δγ

√
Nr)

(6)
and

Tc = O(τmix log δ
−1), (7)

then the following is true:

∥∥Q′
c −Q′

s,i

∥∥
F
≤ (3αβ

√
r)4

(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)
,

(8)
where the parameter δ is given as:

• δ = α
γ
√
Nr

ϵTo

(
1

3
√
rαβ

)4To

for S-DOT, and

• δ = α
Toγ

√
Nr

ϵTo

(
1

3
√
rαβ

)4to
for SA-DOT.

The proof of Lemma 1 is provided in Appendix A. This
lemma states that if the difference between the estimate of the
eigenspace obtained using the S-DOT / SA-DOT algorithm
and that using the centralized OI is bounded at the beginning
of an iteration, then it remains bounded at the end of the
iteration too. Notice that the inequality (6) is trivially true
if the centralized OI and S-DOT / SA-DOT are initialized at
the same set of basis vectors. By induction, (6) and hence the
Lemma holds true for every subsequent iteration.

With this lemma in hand, we state our main theorem that
guarantees linear convergence of the proposed S-DOT and SA-
DOT algorithms.

Theorem 1. Let the eigenvalues of M be λ1, λ2, . . . , λd such
that λ1 ≥ . . . ≥ λr > λr+1 ≥ . . . λd and the true r-
dimensional principal eigenspace of M be represented by
Q. Assume OI, S-DOT and SA-DOT are all initialized to
Q

(0)
c = Q

(0)
s,i = Qinit, where Qinit is a random d × r matrix

with orthonormal columns, and let Qinit be such that it satisfies

|cos (θ)| = min
u∈Q,v∈Qinit

∣∣uTv
∣∣

∥u∥2∥v∥2
> 0. (9)

If during the tth S-DOT / SA-DOT iteration, the respective
algorithm runs:

• Tc consensus iterations in the case of S-DOT with Tc =

Ω
(
Toτmix log (3

√
rαβ) + Toτmix log(

1
ϵ ) + τmix log

(
γ
√
Nr
α

))
,

• Tc,t consensus iterations for SA-DOT with Tc,t =

Ω
(
tτmix log (3

√
rαβ) + Toτmix log (

1
ϵ ) + τmix log

(
To

γ
√
Nr
α

))
,

where ϵ ∈ (0, 1) and α, β, γ are as defined in Lemma 1, then
the following is true ∀i, i = 1, . . . , N :∥∥∥QQT −Q

(To)
s,i (Q

(To)
s,i )T

∥∥∥
2
≤ c

∣∣∣∣λr+1

λr

∣∣∣∣To

+ c′ϵTo , (10)

where c is a positive numerical constant, while c′ = 3 for
S-DOT and c′ = 2 for SA-DOT.
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A detailed proof of this theorem, which establishes that
∀i,Qs,i

t→ ±Q at a linear rate for both variants of our
proposed algorithm, is provided in Appendix B. Note that the
first term on the right-hand side of (10) decays geometrically
as a function of the rth eigengap of M in accordance with
the convergence behaviour of centralized OI, while the second
term is the error incurred due to inexact consensus in both S-
DOT and SA-DOT. Thus, Theorem 1 shows that with proper
initialization and an adequate fixed number of consensus steps
Tc per orthogonal iteration, S-DOT converges at a linear rate
to the true r-dimensional eigenspace of the global covariance
matrix M. As pointed out earlier, this incurs some unnecessary
communication overhead, which may limit the convergence
speed of the algorithm. The algorithm SA-DOT improves this
communication cost as it adaptively increases the number
of consensus iterations Tc,t with every orthogonal iteration
(notice the t in the definition of Tc,t).

A. Computation Complexity and Communication Cost

We now discuss the computation complexity and commu-
nication cost of the three algorithms. In the case of sample-
wise partitioned data, the local covariance matrices Mi are
computed only once before the start of the algorithm and
hence its computation does not affect the overall complexity
of S-DOT and SA-DOT algorithms. The two computationally
dominant steps in Algorithm 1 are Steps 5 and 12 requiring
O(d2r) and O(r2d) computations per iteration respectively, at
every node i ∈ {1, . . . , N}. Since d ≫ r, Step 5 dominates
the overall computational complexity of the algorithm, which
is O(d2rN) per iteration for all the N nodes in the network.
It is to be noted that Step 5 is an unavoidable step in any
OI or power-method based PSA algorithm for sample-wise
partitioned data.

In the case of feature-wise partitioned data, the number of
operations per iteration in Step 5 and Step 11 of Algorithm 2
is O(ndir) at each node i, making the total computational
cost of the two steps per iteration O(ndr). Furthermore,
the computational cost of Step 12 is O(r2 logN + r2d

N ) per
iteration. In the case of massive data, n ≫ d and hence
the computation cost per iteration is dominated by O(ndr).
Therefore, F-DOT does not work well with data that has
large number of samples. In the future we want to develop
distributed PSA algorithms that work with big data X that
has both large d and large n.

Now, let us assume that the cost of communicating one
Rd×r matrix in the network is one unit in the case of sample-
wise partitioned data. It is clear from Theorem 1 that for S-
DOT, Tc is a sum of three terms: the first and second terms
are proportional to the maximum number of S-DOT iterations
To and the third term is proportional to a constant. Also, in
the case of SA-DOT it is evident from Theorem 1 that Tc,t is
again a sum of three terms: the first term is proportional to the
current SA-DOT iteration index t, second term is proportional
to the maximum number of SA-DOT iterations To, and the
third term is proportional to log To. Since t ≤ To, the lower
bound of Tc,t can be written as Ω(To). It is to be noted
from (10) that To = O(log ( 1η )) for O(η) error. Thus, the lower

bound of both Tc and Tc,t can be written as Ω
(
log ( 1η )

)
. This

implies that the communication complexity for both S-DOT
and SA-DOT is O(ToTc,t) = O(log2 1

η ) per node, making the
total communication cost O(N log2 1

η ).
In the case of feature-wise partitioned data, message ex-

changes occur in two steps, namely Step 9 and Step 12. The
size of the message sent from node i in Step 9 is Rn×r,
while it is Rdi×r in Step 12. Let us assume that the cost
of communicating one r-dimensional vector in the network
is one unit. Thus, the communication cost of Step 9 per
outer loop iteration is O(nNTc), where Tc is the number
of consensus iterations, and that of Step 12 is O(dNr2Tps),
where Tps is the number of push-sum iterations used in
distributed QR. It is pointed out in [12] that for an O(η) error,
the number of push-sum iterations in a network of N nodes
is Tps = O(logN +log 1

η ). Assuming we use Tc = O(log 1
η ),

the total communication cost of F-DOT algorithm will be
O(nN log 1

η + dNr2 logN + dNr2 log 1
η ), which is linear in

the number of samples n and the total dimension d of the
data.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the convergence behavior of
S-DOT, SA-DOT and F-DOT algorithms through numerical
experiments. We generate an undirected connected network
having N nodes for each experiment with three different
topologies, viz., Erdős–Rényi, ring and star. If not specified,
the network topology would be Erdős-Rényi with network
connectivity parameter p. The weight matrix W used during
the consensus iterations is designed by using the local-degree
weights method described in [16]. The maximum number of
consensus iterations is set to 50, unless otherwise specified.
We also emulate real-world distributed synchronous networks
using MPI-based blocking point-to-point communications and
use that to calculate the number of point-to-point (P2P)
communications between different nodes of the network. Since
our experiments were carried out using Python on a distributed
cluster, we used the MPI for Python package [29] as a
wrapper around the Open MPI v2.1.1 implementation of the
MPI standard. The Open MPI implementation [30], in the
case one has both an IP network and at least one high-
speed network (such as InfiniBand), automatically switches
from TCP/IP to the higher-speed connection. The cluster we
utilized, the Amarel cluster of Rutgers, uses the Mellanox
InfiniBand fabric. The columns labeled “P2P” in all tables
in this section stand for the average number of point-to-point
communications per node for an experiment using MPI, which
is calculated using [31].

The default number of iterations for S-DOT, SA-DOT and
F-DOT is 200 in these tables and (K) represents 1000′s of P2P
communications. Furthermore, the P2P values for the central
node and peripheral nodes are marked separately for a star
network. The quantity ∆r =

∣∣∣λr+1

λr

∣∣∣ corresponds to the rth

eigengap of the global covariance matrix M. If Q̂ ∈ Rd×r is
an estimate of the eigenspace and the true low-rank principal
subspace is given by Q then the error metric used is the
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TABLE I: Comparison of P2P communications for S-DOT and
SA-DOT for different eigengaps

N Erdős–Rényi: p r ∆r Consensus Itr Tc P2P (K)

20 0.25 5 0.3 ⌈0.5t+ 1⌉ 34.88
t+ 1 40.54
2t+ 1 43.31
50 46.2

20 0.25 5 0.7 ⌈0.5t+ 1⌉ 37.37
t+ 1 43.44
2t+ 1 46.41
50 49.5

20 0.25 5 0.9 ⌈0.5t+ 1⌉ 36.47
t+ 1 42.38
2t+ 1 52.28
50 48.3

average of square of the sine of the principal angles between
Q̂ and Q, given as

E =
1

r

r∑
i=1

(1− σ2
i (Q

TQ̂)), (11)

where σi(Q
TQ̂) denotes the ith singular value of QTQ̂,

which gives the cosine of the ith principal angle. The squared-
sine distance is simply the chordal distance [32], which is
equivalent to the distance between the projection matrices of
Q and Q̂ quantified in Theorem 1.

A. Experiments Using Synthetic Data

In every experiment with synthetic data, samples were
generated such that each site i has ni = 500 data points in
R20, i.e., d = 20. Samples are randomly generated from the
Gaussian distribution with different rth eigengaps ∆r = λr+1

λr
.

The number of nodes used in the generated network were
N ∈ {10, 20} and we did 20 Monte-Carlo trials for each
experiment on synthetic data.

First, we show a comparison between the two variants of
the proposed algorithm, S-DOT and SA-DOT for sample-
wise partitioned data. Specifically we show the effects of
using varying number of consensus iterations (in the case
of SA-DOT) versus a fixed number of consensus iterations
(in the case of S-DOT) per orthogonal iteration in terms of
the average number of point-to-point communications (P2P)
per node. Table I lists P2P communications in the case of
different ∆r for fixed Tc = 50 consensus iterations for S-DOT
and varying iteration rules for SA-DOT. It is clear from the
table that using lesser number of consensus iterations in the
beginning can significantly reduce the communication cost. To
further depict the effect of different consensus iteration rules
on convergence results, Figure 1 provides a comparison for
two different eigengaps. The plots show how average error
across the nodes changes with the total number of iterations
in the network. In accordance with our theoretical results, for
a larger eigengap the convergence rate of orthogonal iterations
is slower and hence initial iterations have larger errors, which
implies having smaller number of communications initially is
indeed overall cost effective.

We also investigate the effect of network connectivity on
convergence of the two variants of our proposed algorithm S-
DOT and SA-DOT. For this we simulate Erdős-Rènyi network

(a) ∆r = 0.3 (b) ∆r = 0.9

Fig. 1: Comparison of S-DOT and SA-DOT for different
eigengaps in terms of average error.

TABLE II: Effect of network connectivity on P2P communi-
cations for S-DOT and SA-DOT

N Erdős–Rényi: p r ∆r Consensus Itr Tc P2P (K)

20 0.5 5 0.7 2t+ 1 90.66
50 96.7

20 0.25 5 0.7 2t+ 1 46.41
50 49.5

20 0.1 5 0.7 2t+ 1 22.97
50 24.5
min(5t+ 1, 200) 88.05

topology with different values of connectivity parameter p.
From the P2P column in Table II, we can conclude that
the number of point-to-point communication increases as p
increases. Also, different p leads to different mixing time τmix

for the corresponding weight matrix W for the underlying
network, which can also affect the error floor, as indicated
in Theorem 1. Results in Fig. 2b show that a sparser network
can lead to slower convergence. This confirms there is a direct
relation between network connectivity and performance of
the algorithms. For a sparser network, even though overall
communication cost will be lower, but the sparsity hampers
information diffusion and hence the final performance of the
algorithms.

We also demonstrate the performance of our algorithms
on ring and star topologies for sample-wise partitioned data.
Table III gives the parameter details and P2P communications
for a ring network. For star topology, the number of P2P
communications are different for the center node and other
(edge) nodes. In Table IV, the number of point-to-point
communication at the center node is equal to the sum of all
edge nodes, which creates a bottleneck effect at the central
node that can lead to slow convergence rate for an algorithm.
The results for ring topology in Fig. 3 show that S-DOT and
SA-DOT do not perform too well since ring topology is a

(a) p = 0.5 (b) p = 0.1

Fig. 2: Effect of network connectivity on algorithm perfor-
mance for sample-wise partitioned data.
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TABLE III: Parameters and P2P communication for ring
topology

N r ∆r Consensus Itr P2P (K)

20 5 0.7 2t+ 1 18.75
50 20
min(5t+ 1, 200) 71.88

TABLE IV: Parameters and P2P communication for star
topology

N r ∆r Consensus Itr Center P2P (K) Edge P2P (K)

20 5 0.7 2t+ 1 178.13 9.38
50 190 10
min(2t+ 1, 100) 332.5 17.5
min(5t+ 1, 100) 360.43 18.97
100 380 20

periodic Markov chain [33] that cannot converge to a steady-
state distribution. The steady-state distribution exists if the
Markov chain with a finite number of states is aperiodic and
irreducible, therefore, τmix →∞ for ring topologies.

Next, we investigate the effect of straggler nodes in a
network on convergence speed. The straggler effect delays
the job completion for distributed algorithms because of the
presence of a slow node in the network [34]. In this experi-
ment, we emulate the straggler effect by setting a 0.01 second
delay during each iteration at a randomly selected site i that
changes every iteration. Since our algorithms are designed
for synchronous networks, the impact of a straggler node is
significant on S-DOT and SA-DOT, as shown in Table V for
an Erdős-Rènyi topology. The execution time of experiments
shown in Table V indicates that a slow node can slow down
the job completion for the entire network to a good extent.
Speeding up the algorithms in the presence of straggler nodes
requires dealing with asynchronicity in the networks and we
leave that work for future.

Having demonstrated the dynamics of our proposed algo-

(a) Ring topology (b) Star topology

Fig. 3: Comparison of S-DOT and SA-DOT for ring and star
topologies in terms of average error.

TABLE V: Effect of straggler nodes on execution time of S-
DOT and SA-DOT

N p r ∆r Cons. Itr Time (in s) P2P (K) Straggler
10 0.5 5 0.7 2t+ 1 101.33 45 Yes

2t+ 1 5.18 45 No
50 108.56 48 Yes
50 19.5 48 No

20 0.25 5 0.7 2t+ 1 98.5 47.81 Yes
2t+ 1 5.08 47.81 No
50 105.59 51 Yes
50 5.74 51 No

rithms for sample-wise partitioning with respect to various
factors like network connectivity, eigengap, etc., we now show
the comparison of our algorithms with other existing work
in both centralized and distributed domains. We compare
with two centralized methods, orthogonal iteration (OI) [7],
where the whole subspace is estimated at once, and sequential
power method (SeqPM), where each basis vector of the r-
dimensional subspace is estimated sequentially. We also pro-
vide comparisons with some distributed algorithms, namely,
distributed Sanger’s algorithm (DSA), which is a recently pro-
posed Hebbian-based learning algorithm [19], distributed pro-
jected gradient descent (DPGD), which is a common gradient-
based method to solve constrained problems, sequential dis-
tributed power method (SeqDistPM), which is the distributed
version of SeqPM, and a recently proposed gradient tracking
based subspace estimation method called DeEPCA [27]. Note
that DPGD involves two significant steps per iteration: first is
a distributed gradient descent step at every node i that takes
the form

∑
j∈Ni

wijQj + α∇fi(Qi) as in [35] using trace
maximization of the function fi(Qi) = Tr(QT

i MiQi) as the
objective function. This is followed by a projection step at each
node to ensure the orthogonality constraint QT

i Qi = I, when
the orthogonalization is accomplished using QR decomposi-
tion. In these set of experiments, the number of nodes in the
network N was set to 10, with each node having ni = 1000
samples in R20, i.e., d = 20. The number of consensus
iterations used for S-DOT was 50 and was min(t + 1, 50)
in the tth iteration of SA-DOT.

The convergence guarantees for S-DOT and SA-DOT algo-
rithms show that estimation of the space spanned by the top
r eigenvectors of the global covariance matrix M depends
on the rth eigengap ∆r. Figure 4 shows the comparisons
for two different eigengaps and two values of r and all the
eigenvalues are distinct. It is clear that for all combinations of
∆r and r, the proposed methods significantly outperform the
sequential power methods (SeqPM, SeqDistPM) in terms of
total number of iterations (inner x outer) required to converge.
This is because the sequential methods compute one basis
vector at a time and since the other lower-order estimates are
still at their initial random values, they contribute a large error.
It is only when the last basis vector is getting estimated do the
errors come down significantly. There are no inner loops in
case of OI, SeqPM, DSA and DPGD and hence the number of
(outer x inner) loops are same as the number of outer loops. So
in all the figures showing comparison with the other methods,
the x-axis for OI, SeqPM, DSA and DPGD implies outer
loop only while for the other algorithms it implies (outer x
inner) loops. The methods DSA and DPGD both only converge
to a neighborhood of the true solution and hence have a
weaker performance compared to S-DOT and SA-DOT. Both
our methods clearly have slightly inferior performance than
DeEPCA in terms of total communication cost. This is due
to the additional log factor in the total communication cost
required by our proposed algorithm as compared to DeEPCA,
as discussed in Remark 1. Next, as asserted by our analysis, S-
DOT and SA-DOT only require λr and λr+1 to be distinct. To
investigate the effect on convergence when some of the other
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(a) r = 4,∆r = 0.4 (b) r = 4,∆r = 0.85

(c) r = 8,∆r = 0.4 (d) r = 8,∆r = 0.85

Fig. 4: Performance comparison of S-DOT and SA-DOT
with various centralized and distributed algorithms when all
eigenvalues are distinct.

(a) r = 4,∆r = 0.4 (b) r = 4,∆r = 0.85

(c) r = 8,∆r = 0.4 (d) r = 8,∆r = 0.85

Fig. 5: Performance comparison of S-DOT and SA-DOT with
various centralized and distributed algorithms in the case of
non-distinct eigenvalues.

eigenvalues are equal, we generate data from a distribution
such that λ1 = λ2 = . . . = λr > λr+1 (note that for finite
number of samples, the eigenvalues might not be exactly equal
but very close). It is clear from Figure 5 that the performance
of our algorithms remains the same and better than the other
algorithms in this case too.

Next, we demonstrate the convergence behaviour of F-
DOT algorithm for feature-wise partitioned data. There is not
much work done for distributed PSA in this setting except the
distributed power method (d-PM) in [10], which computes the
r-dimensional subspace sequentially by estimating one vector
at a time. Hence, we restrict comparison with only centralized

(a) r = 4,∆r = 0.4 (b) r = 4,∆r = 0.85

(c) r = 8,∆r = 0.4 (d) r = 8,∆r = 0.85

Fig. 6: Performance comparison of F-DOT with OI, SeqPM
and d-PM in the case of distinct eigenvalues.

OI, sequential power method (SeqPM) and d-PM. For this
comparison, we generate Erdős-Rènyi grapth with N = 10
nodes and connectivity parameter p = 0.5. The total dimension
of the samples is d = N , i.e., each node carries one feature
and n = 500 samples. Figure 6 shows the comparison of our
proposed algorithm F-DOT with OI for different eigenspace
dimensions r and eigengaps ∆r when all the eigenvalues of
the global covariance matrix M are distinct. It is evident
that in the case of feature-wise data partitioning our method
once again significantly outperforms SeqPM and d-PM, thus
emphasising the advantage of simultaneous estimation over
sequential methods.

B. Experiments Using Real-World Data

In this section we demonstrate the performance of our pro-
posed methods on real-world data for sample-wise partitioned
data. For this purpose, we choose four widely used public
datasets, viz., MNIST, CIFAR10, LFW and ImageNet. As
pointed out earlier, the computation complexity of F-DOT is
directly proportional to the number of samples n. Since all
these real-world data sets have large n, we omit those exper-
iments for feature-wise data partitioning case. The MNIST is
a database of handwritten digits [36]. It contains n = 50, 000
gray-scale samples with each sample of dimension d = 784.
The Canadian Institute For Advanced Research 10 (CIFAR-
10) dataset also consists of n = 50, 000 samples. Each sample
has a dimension of d = 1024 [37]. Labeled Faces in the Wild
(LFW) face database is mainly a public benchmark for face
recognition [38], consisting of gray-scale images of a number
of people’s faces in different poses, distinct angles, and various
light conditions. The number of training samples of LFW is
n = 13, 233, with dimension of each being d = 2914. The
final dataset we use is ImageNet [39]. It is a huge dataset
that contains 14 million color images over more than 20,000
categories. The dimension of the images are inconsistent and
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TABLE VI: Parameters and P2P communication for MNIST
experiments

N Erdős–Rényi: p r To Consensus Itr P2P (K)
20 0.25 5 400 t+ 1 82.61

2t+ 1 85.25
50 88

20 0.25 10 400 t+ 1 82.61
2t+ 1 85.25
50 88

100 0.05 5 200 t+ 1 43.88
2t+ 1 46.875
50 50

(a) N = 20, r = 5 (b) N = 100, r = 5

Fig. 7: Comparison of S-DOT and SA-DOT in terms of
communication cost for MNIST dataset.

hence we reshape the images into a uniform dimension of
d = 1024. For each of these datasets, we show the comparison
of P2P communications for S-DOT and SA-DOT. We also
demonstrate the performance of our proposed algorithms with
OI, SeqPM, DSA, DPGD, SeqDistPM, DeEPCA for MNIST
and CIFAR10. The size of LFW and ImageNet datasets are
too large to perform centralized OI and hence we leave out
that comparison.

1) MNIST: First, we compare the number of P2P com-
munications for the two proposed algorithms S-DOT
and SA-DOT in Table VI. Each node in the connected
network has ni =

⌊
50,000

N

⌋
local samples in R784.

Figure 7 shows that we can achieve faster convergence
with the SA-DOT algorithm compared to S-DOT (which
uses a constant Tc). Figure 8 demonstrates how the
average error of S-DOT and SA-DOT changes with the
number of total iterations as compared to other methods.
The number of nodes here is N = 10.

2) CIFAR10: Table VII shows the comparison for P2P
communications. Here, each node in the underlying

(a) r = 10 (b) r = 20

Fig. 8: Performance comparison of S-DOT and SA-DOT with
different centralized and distributed algorithms for MNIST
data.

TABLE VII: Parameters and P2P communication for CIFAR-
10 experiments

N Erdős–Rényi: p r To Consensus Itr P2P (K)
20 0.25 5 400 t+ 1 76.98

2t+ 1 79.44
50 82

20 0.25 7 400 t+ 1 76.98
2t+ 1 79.44
50 82

100 0.05 7 400 t+ 1 44.4
2t+ 1 98.4
50 101.12

(a) N = 20, r = 5 (b) N = 20, r = 7

Fig. 9: Comparison of S-DOT and SA-DOT in terms of
communication cost for CIFAR10 dataset.

connected network has ni =
⌊
50,000

N

⌋
local samples

in R1024 and the plots in Fig. 9 validate that SA-
DOT algorithm again outperforms S-DOT in terms of
communication cost. Figure 10 demonstrates how the
average error of S-DOT and SA-DOT changes with the
number of total iterations as compared to other methods.

3) LFW: The experiment parameters for LFW are provided
in Table VIII. Each node in the connected network has
ni =

⌊
13233
N

⌋
local samples in R2914 and r is set to be 7.

Results in Fig. 11 show how increasing number of con-
sensus iterations per orthogonal iteration causes slower
convergence because of unnecessary communications.

4) ImageNet: The experiment parameters are given in
Table IX, where each node in the connected network
has ni = 5000 local samples in R1024 and r is set to
be 5. The results for the ImageNet dataset are shown
in Fig. 12, which indicate that increasing the number of
consensus iterations faster helps achieve faster conver-
gence of the SA-DOT algorithm.

(a) r = 10 (b) r = 15

Fig. 10: Performance comparison of S-DOT and SA-DOT with
different centralized and distributed algorithms for CIFAR10
data.
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TABLE VIII: Parameters and P2P communication for LFW
experiments

N Erdős–Rényi: p r Consensus Itr P2P (K)
20 0.25 7 t+ 1 42.12

2t+ 1 45
50 48

20 0.5 7 t+ 1 82.49
2t+ 1 88.13
50 94

(a) N = 10, p = 0.5 (b) N = 20, p = 0.5

Fig. 11: Comparison of S-DOT and SA-DOT in terms of
communication cost for LFW dataset.

TABLE IX: Parameters and P2P communication for ImageNet
experiments

N Erdős–Rényi: p r Consensus Itr P2P (K)
10 0.5 5 t+ 1 35.1

2t+ 1 37.5
50 40

20 0.25 5 t+ 1 32.47
2t+ 1 34.69
50 37

100 0.05 5 t+ 1 47.91
2t+ 1 51.19
50 54.6

200 0.03 5 t+ 1 50.37
2t+ 1 53.81
50 57.4

(a) N = 10 (b) N = 20

(c) N = 100 (d) N = 200

Fig. 12: Comparison of S-DOT and SA-DOT in terms of
communication cost for ImageNet dataset

VI. CONCLUSION

In this paper, we addressed the problem of Principal Com-
ponent Analysis (PCA) in a distributed setting defined by
an arbitrarily connected network without any central server.
Data can be partitioned in different ways in a network and
here we considered two kinds of data partitioning: by sam-
ples and by features. For sample-wise partitioned data, we
proposed an algorithm Sample-wise Distributed Orthogonal
iTeration (S-DOT) and an adaptive variant of it called Sample-
wise Adaptive Distributed Orthogonal iTeration (SA-DOT).
Theoretical convergence guarantees for both these algorithms
were provided, which show that for sufficient number of
consensus iterations per orthogonal iteration, both S-DOT and
SA-DOT have a linear convergence rate. Numerical results
on synthetic as well as real-world data were presented to
further demonstrate the efficacy of our proposed algorithms.
Furthermore, we also proposed an algorithm for feature-wise
partitioned data called Feature-wise Distributed Orthogonal
iTeration (F-DOT). Even though we do not provide theoretical
guarantees for F-DOT, extensive numerical experiments on
synthetic data show the effectiveness of the proposed solution.

In the future, providing theoretical guarantees for F-DOT is
an obvious extension. Also, as pointed out earlier, in case of
data that has both high dimension and large number of samples
the proposed F-DOT algorithm will have high communication
and computation costs. Randomly block-wise partitioned data,
i.e., data partitioned by both samples and features, can be
a possible way to handle big data that is massive in both
dimension and size. Thus, block-partitioning is a probable
solution for such massive data and developing solutions for
such partitioning is a direction for future.

APPENDIX A
PROOF OF LEMMA 1

Let Vs,i be the value from Step 11 in Algorithm 1 during
the (to+1)th iteration of S-DOT and SA-DOT at node i and let
Vc = MQc be the corresponding value in case of centralized
OI. From Step 12, we know Q′

s,iRs,i = Vs,i. Similarly, in
case of OI we will have Q′

cRc = Vc. Thus Q′
c = VcR

−1
c ,

and Q′
s,i = Vs,iR

−1
s,i . Therefore,

(Q′
c −Q′

s,i) = VcR
−1
c −Vs,iR

−1
s,i

= VcR
−1
c −VcR

−1
s,i +VcR

−1
s,i −Vs,iR

−1
s,i

= Vc(R
−1
c −R−1

s,i ) + (Vc −Vs,i)R
−1
s,i . (12)

Using the triangle inequality, we obtain∥∥Q′
c −Q′

s,i

∥∥
F
≤∥Vc −Vs,i∥F ·max

i

∥∥R−1
s,i

∥∥
F
+

∥Vc∥F ·max
i

∥∥R−1
c −R−1

s,i

∥∥
F
. (13)

Therefore, if we want to bound
∥∥Q′

c −Q′
s,i

∥∥
F

we
need to bound ∥Vc −Vs,i∥F ,

∥∥R−1
s,i

∥∥
F

, ∥Vc∥F , and∥∥R−1
c −R−1

s,i

∥∥
F

. Let Vs =
∑N

i=1(MiQs,i) and note that
Vs,i = Vs + Ec,i, where Ec,i is the consensus error after
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Tc consensus iteration at node i. Suppose Z
(0)
i = MiQs,i ∈

Rd×r, then using Proposition 1, we have that

∥Ec,i∥F = ∥Vs,i −Vs∥F

=

∥∥∥∥∥∥MQs,i −
N∑
j=1

(MjQs,j)

∥∥∥∥∥∥
F

≤ δ∥Z′∥F , (14)

where Z′(j, k) =
∑N

i=1

∣∣∣Z(0)
i (j, k)

∣∣∣. We know

∥Z′∥2F =
n∑

j=1

r∑
k=1

(
N∑
i=1

∣∣∣Z(0)
i (j, k)

∣∣∣)2

. (15)

Using Cauchy-Schwarz inequality,
∣∣∣∑N

i=1 ai · 1
∣∣∣2 ≤(∑N

i=1 a
2
i

)
·N , we obtain

∥Z′∥2F ≤ N

n∑
j=1

r∑
k=1

N∑
i=1

∣∣∣Z(0)
i (j, k)

∣∣∣2
= N

N∑
i=1

∥∥∥Z(0)
i

∥∥∥2
F
= N

N∑
i=1

(∥MiQs,i∥2F ). (16)

Using the property ∥AB∥F ≤ ∥A∥2∥B∥F and the fact that
Qs,i are orthonormal matrices with rank r, we have

∥Z′∥2F ≤ N
N∑
i=1

(
∥Mi∥22 · ∥Qs,i∥2F

)
≤ N

(
N∑
i=1

∥Mi∥22

)
· r ≤ Nγ2r. (17)

Therefore,
∥Z′∥F ≤ γ

√
Nr. (18)

From (14) and (18) we have that

∥Ec,i∥F ≤ δγ
√
Nr. (19)

From (19) and Vs,i = Vs + Ec,i, we have

Vc −Vs,i = Vc − (Vs + Ec,i)

= MQc −
N∑
i=1

MiQs,i − Ec,i

=
N∑
i=1

Mi(Qc −Qs,i)− Ec,i. (20)

Therefore, we get

∥Vc −Vs,i∥F ≤
N∑
i=1

∥Mi(Qc −Qs,i)∥F + ∥Ec,i∥F

≤
N∑
i=1

∥Mi∥2∥Qc −Qs,i∥F + δγ
√
Nr

≤ αmax
i
∥Qc −Qs,i∥F + δγ

√
Nr. (21)

Next, we bound ∥Vc∥F and ∥Vs,i∥F as follows:

∥Vc∥F = ∥MQc∥F ≤ ∥M∥2∥Qc∥F

=

∥∥∥∥∥
N∑
i=1

Mi

∥∥∥∥∥
2

∥Qc∥F ≤
N∑
i=1

∥Mi∥2∥Qc∥F ≤ α
√
r,

(22)

and

∥Vs,i∥F = ∥Vs + Ec,i∥F

= ∥
N∑
i=1

(MiQs,i) + Ec,i∥F

≤

∥∥∥∥∥
N∑
i=1

(MiQs,i)

∥∥∥∥∥
F

+ δγ
√
Nr, from (19)

≤
N∑
i=1

∥MiQs,i∥F + δγ
√
Nr

≤
N∑
i=1

∥Mi∥2
√
r + δγ

√
Nr ≤ α

√
r + δγ

√
Nr.

(23)

Next, we bound
∥∥R−1

s,i

∥∥
F

and
∥∥R−1

c −R−1
s,i

∥∥
F

. Define Kc :=

VT
c Vc = RT

c Rc, and Ks,i := VT
s,iVs,i = RT

s,iRs,i.
Thus, Rc and Rs,i are non-singular matrices that denote the
Cholesky decomposition of symmetric matrices Kc and Ks,i,
respectively. For such non-singular matrices Rc and Rs,i, a
theorem by Wedin [40] states that

∥∥R−1
c −R−1

s,i

∥∥
2

≤ 1 +
√
5

2
∥Rc −Rs,i∥2 max

{∥∥R−1
c

∥∥2
2
,
∥∥R−1

s,i

∥∥2
2

}
. (24)

Another theorem in [41] states that if Kc = RT
c Rc, and

Ks,i = RT
s,iRs,i are Cholesky factorizations of symmetric

matrices, then

∥Rc −Rs,i∥F ≤
∥∥K−1

c

∥∥
2
∥Rc∥2∥Ks,i −Kc∥F

=
∥∥R−1

c

∥∥2
2
∥Rc∥2∥Ks,i −Kc∥F . (25)

Thus,

∥∥R−1
c −R−1

s,i

∥∥
2

≤ 1 +
√
5

2
max

{∥∥R−1
c

∥∥2
2
,
∥∥R−1

s,i

∥∥2
2

}∥∥R−1
c

∥∥2
2
∥Rc∥2∥Ks,i −Kc∥F .

(26)

Also, from the definitions of Kc and Ks,i, we know

Kc −Ks,i = VT
c Vc −VT

s,iVs,i

= VT
c Vc −VT

s,iVc +VT
s,iVc −VT

s,iVs,i. (27)



14

Therefore, we have

∥Kc −Ks,i∥F
≤ ∥Vc∥F ∥Vc −Vs,i∥F + ∥Vs,i∥F ∥Vc −Vs,i∥F
≤ (∥Vc∥F + ∥Vs,i∥F )∥Vc −Vs,i∥F
≤
(
α
√
r + α

√
r + δγ

√
Nr
)(

αmax
i
∥Qc −Qs,i∥F + δγ

√
Nr
)

= α2

(
2
√
r +

δγ
√
Nr

α

)(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)
.

(28)

Also, note that Vc = Q′
cRc, hence ∥Rc∥2 = ∥Vc∥2 ≤

∥Vc∥F ≤ α
√
r. Since β = max

to=1,...,To

∥∥∥R−1(to)

c

∥∥∥
2
, from (26)

and (28) we have

∥∥R−1
c −R−1

s,i

∥∥
2
≤ 1 +

√
5

2
max

{∥∥R−1
c

∥∥2
2
,
∥∥R−1

s,i

∥∥2
2

}
β2α
√
rα2

(
2
√
r +

δγ
√
Nr

α

)(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)

≤ 1 +
√
5

2
max

{
β2,
∥∥R−1

s,i

∥∥2
2

}
α3β2

√
r

(
2
√
r +

δγ
√
Nr

α

)

×

(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)
. (29)

The bound for
∥∥R−1

s,i

∥∥
2

is obtained as follows: The per-
turbation bound for singular values of a matrix [42] gives
σr(Rc) − σr(Rs,i) ≤ ∥Rc −Rs,i∥2, where σr(Rc) and
σr(Rs,i) represents the rth singular value of matrices Rc and
Rs,i respectively. As σr(Rc) =

∥∥R−1
c

∥∥−1

2
and σr(Rs,i) =∥∥R−1

s,i

∥∥−1

2
, we obtain that∥∥R−1

c

∥∥−1

2
−
∥∥R−1

s,i

∥∥−1

2
≤ ∥Rc −Rs,i∥2.

Thus, from (25)∥∥R−1
c

∥∥−1

2
≤
∥∥R−1

s,i

∥∥−1

2
+
∥∥R−1

c

∥∥2
2
∥Rc∥2∥Ks,i −Kc∥F

≤
∥∥R−1

s,i

∥∥−1

2
+ α3β2

√
r

(
2
√
r +

δγ
√
Nr

α

)

×

(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)
. (30)

Using the assumption ∥Qc −Qs,i∥F + δγ
√
Nr

α ≤
1

2α2β3
√
r(2α

√
r+δγ

√
Nr)

in (30), we get

∥∥R−1
c

∥∥−1

2
≤
∥∥R−1

s,i

∥∥−1

2
+

1

2β
. (31)

From our definition for β, we have β−1 ≤
∥∥R−1

c

∥∥−1

2
. So,

∥∥R−1
s,i

∥∥−1

2
+

1

2β
≥ β−1

=⇒
∥∥R−1

s,i

∥∥−1

2
≥ 1

2β
=⇒

∥∥R−1
s,i

∥∥
2
≤ 2β. (32)

Plugging-in the bound for
∥∥R−1

s,i

∥∥
2

into (29), we get∥∥R−1
c −R−1

s,i

∥∥
2
≤ 1 +

√
5

2
max

{
β2,
∥∥R−1

s,i

∥∥2
2

}
α3β2

√
r(

2
√
r +

δγ
√
Nr

α

)(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)

≤ 2
(
1 +
√
5
)
α3β4

√
r

(
2
√
r +

δγ
√
Nr

α

)

×

(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)
. (33)

We know that for any matrix X of rank r, ∥X∥F ≤√
r∥X∥2. Using this fact in (13), we obtain∥∥Q′

c −Q′
s,i

∥∥
F
≤
√
r∥Vc −Vs,i∥F ·max

i

∥∥R−1
s,i

∥∥
2
+

√
r∥Vc∥F ·max

i

∥∥R−1
c −R−1

s,i

∥∥
2
. (34)

Plugging in bounds for ∥Vc −Vs,i∥F ,
∥∥R−1

s,i

∥∥
F

, ∥Vc∥F , and∥∥R−1
c −R−1

s,i

∥∥
F

, we have

∥∥Q′
c −Q′

s,i

∥∥
F
≤ 2αβ

√
r

(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)

+ 2
(
1 +
√
5
)
αrα3β4

√
r

(
2
√
r +

δγ
√
Nr

α

)

×

(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)

=

(
2αβ
√
r + 4(1 +

√
5)α4β4r2 + 2

(
1 +
√
5
)

α4β4r
3
2
δγ
√
Nr

α

)(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)
. (35)

For the orthonormal matrix Q′
c, we know 1 = ∥Q′

c∥2 =∥∥MQcR
−1
c

∥∥
2
≤ ∥M∥2

∥∥R−1
c

∥∥
2
≤
∑N

i=1∥Mi∥2
∥∥R−1

c

∥∥
2
≤

αβ. Therefore α4β4 ≥ αβ ≥ 1. Recall that
• For S-DOT algorithm, we defined δ =

α
γ
√
Nr

ϵTo( 1
3αβ

√
r
)4To . Thus δγ

√
Nr

α = ϵTo( 1
3αβ

√
r
)4To ≤

ϵTo( 13 )
4To ≤ 1.

• For SA-DOT algorithm, we defined δ =
α

Toγ
√
Nr

ϵTo( 1
3αβ

√
r
)4to , where δγ

√
Nr

α =

ϵTo

To
( 1
3αβ

√
r
)4to ≤ ϵTo

To
( 13 )

4to ≤ 1.
Plugging these facts into (35), we can see that for both
algorithms:∥∥Q′

c −Q′
s,i

∥∥
F
≤

(
2α4β4r2 + 4(1 +

√
5)α4β4r2 + 2

(
1 +
√
5
)

α4β4r2

)(
max

i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)

≤
(
3αβ
√
r
)4(

max
i
∥Qc −Qs,i∥F +

δγ
√
Nr

α

)
.

■
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APPENDIX B
PROOF OF THEOREM 1

Let Qc be the estimate of Q obtained after To iterations of
centralized OI. Now, we know that ∀i,∥∥QQT −Qs,iQ

T
s,i

∥∥
2
≤
∥∥QQT −QcQ

T
c

∥∥
2
+∥∥QcQ

T
c −Qs,iQ

T
s,i

∥∥
2
. (36)

We drop the superscript of Qs,i here for convenience. The
first term on the right-hand side of (36) is the error of
centralized orthogonal iteration. It is proved in [7] that∥∥QQT −QcQ

T
c

∥∥
2
≤ c

∣∣∣λr+1

r

∣∣∣To

for some positive con-
stant c. We now bound the second term in (36). We know∥∥QcQ

T
c −Qs,iQ

T
s,i

∥∥
2
≤
∥∥QcQ

T
c −Qs,iQ

T
s,i

∥∥
F

. Now,

QcQ
T
c −Qs,iQ

T
s,i = QcQ

T
c −Qs,iQ

T
s,i +QcQ

T
s,i −QcQ

T
s,i.

Thus,∥∥QcQ
T
c −Qs,iQ

T
s,i

∥∥
F
≤
(
∥Qc∥2 + ∥Qs,i∥2

)
∥Qc −Qs,i∥F

≤ 2∥Qc −Qs,i∥F . (37)

We first prove that the assumption and hence the statement
of Lemma 1 hold true for all to < To in case of S-DOT. We
initialize OI and S-DOT with same value Qinit = Q

(0)
c = Q

(0)
s,i .

Therefore, we have
∥∥∥Q(0)

c −Q
(0)
s,i

∥∥∥
F
+ δγ

√
Nr

α = δγ
√
Nr

α ≤
ϵTo( 13 )

4To ≤ 1
2α2β3

√
r(2α

√
r+δγ

√
Nr)

. Thus the assumption of
Lemma 1 is true for to = 0. Through mathematical induction,
it can be shown that the assumption of the lemma is true for
all to < To. Now, applying Lemma 1 recursively for (to +1),
we obtain

∥∥∥Q(to+1)
c −Q

(to+1)
s,i

∥∥∥
F
+

δγ
√
Nr

α
≤ δγ

√
Nr

α

to∑
j=0

(3αβ
√
r)4j

∥∥∥Q(to)
c −Q

(to)
s,i

∥∥∥
F
≤ δγ

√
Nr

α

to∑
j=0

(3αβ
√
r)4j .

(38)

Note that (3αβ
√
r)4 > 3, and 1

(3αβ
√
r)4

< 1
3 . Then we have

1 − 1
(3αβ

√
r)4

> 1 − 1
3 = 2

3 , and (3αβ
√
r)4

(3αβ
√
r)4−1

< 3
2 . Applying

geometric series, we obtain

to∑
j=0

(3αβ
√
r)4j =

(3αβ
√
r)4(to+1) − 1

(3αβ
√
r)4 − 1

≤ (3αβ
√
r)4to

(3αβ
√
r)4

(3αβ
√
r)4 − 1

≤ 3

2
(3αβ

√
r)4to . (39)

Plugging (39) into (38), we have

∥∥∥Q(to)
c −Q

(to)
s,i

∥∥∥
F
≤ 3

2

δγ
√
Nr

α
(3αβ

√
r)4to . (40)

We now plug in δγ
√
Nr

α = ϵTo

(
1

3αβ
√
r

)4To

into (40). As
to < To and 3αβ

√
r > 3, we have∥∥∥Q(to)

c −Q
(to)
s,i

∥∥∥
F
≤ 3

2
ϵTo

(
1

3αβ
√
r

)4To

(3αβ
√
r)4to

≤ 3

2
ϵTo

(3αβ
√
r)4to

(3αβ
√
r)4To

≤ 3

2
ϵTo . (41)

From (37), we have∥∥QcQ
T
c −Qs,iQ

T
s,i

∥∥
F
≤ 2∥Qc −Qs,i∥F ≤ 3ϵTo . (42)

Therefore,∥∥QQT −Qs,iQ
T
s,i

∥∥
2
≤ c

∣∣∣∣λr+1

λr

∣∣∣∣To

+ 3ϵTo . (43)

This completes the proof for S-DOT.
For SA-DOT, we prove convergence in a similar way. We

first prove that the assumption and hence the statement of
Lemma 1 hold true for all to < To. For same initializa-
tion for OI and SA-DOT Qinit = Q

(0)
c = Q

(0)
s,i , we have∥∥∥Q(0)

c −Q
(0)
s,i

∥∥∥
F

+ δ(0)γ
√
Nr

α = δ(0)γ
√
Nr

α ≤ ϵTo

To
( 13 )

4to ≤
1

2α2β3
√
r(2α

√
r+δγ

√
Nr)

. Thus the assumption of Lemma 2 is
true for to = 0. Through mathematical induction, it can be
shown that the assumption of the lemma is true for all to < To.
Next, applying Lemma 1 recursively for T th

o iteration∥∥∥Q(To)
c −Q

(To)
s,i

∥∥∥
F
+
δ(To)γ

√
Nr

α
≤ γ
√
Nr

α

To∑
j=0

(3αβ
√
r)4jδ(j).

(44)
Plugging in δ(j) into (44), where δ(j) :=

α
Toγ

√
Nr

ϵTo

(
1

3
√
rαβ

)4j
, and ϵ ∈ (0, 1), we obtain

γ
√
Nr

α

To∑
j=0

(
3αβ
√
r
)4j

δ(j) =

To∑
i=0

(
3αβ
√
r
)4j ϵTo

To

(
1

3
√
rαβ

)4j

=
ϵTo

To

To∑
i=0

1 =
(To + 1)

To
ϵTo ≤ ϵTo .

(45)

Thus, ∥∥∥Q(To)
c −Q

(To)
s,i

∥∥∥
F
≤ ϵTo , (46)

and from (37), we have∥∥QcQ
T
c −Qs,iQ

T
s,i

∥∥
F
≤ 2∥Qc −Qs,i∥F ≤ 2ϵTo . (47)

Thus, ∥∥QQT −Qs,iQ
T
s,i

∥∥
2
≤ c

∣∣∣∣λr+1

λr

∣∣∣∣To

+ 2ϵTo .

This completes the proof for SA-DOT. ■
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