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Thermohaline layering on the microscale
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A theoretical model is developed which illustrates the dynamics of layering instability,
frequently realized in ocean regions with active fingering convection. Thermohaline
layering is driven by the interplay between large-scale stratification and primary
double-diffusive instabilities operating at the microscale – temporal and spatial scales
set by molecular dissipation. This interaction is described by a combination of direct
numerical simulations and an asymptotic multiscale model. The multiscale theory
is used to formulate explicit and dynamically consistent flux laws, which can be
readily implemented in large-scale analytical and numerical models. Most previous
theoretical investigations of thermohaline layering were based on the flux-gradient
model, which assumes that the vertical transport of density components is uniquely
determined by their local background gradients. The key deficiency of this approach
is that layering instabilities predicted by the flux-gradient model have unbounded
growth rates at high wavenumbers. The resulting ultraviolet catastrophe precludes the
analysis of such basic properties of layering instability as its preferred wavelength
or the maximal growth rate. The multiscale model, on the other hand, incorporates
hyperdiffusion terms that stabilize short layering modes. Overall, the presented theory
carries the triple advantage of (i) offering an explicit description of the interaction
between microstructure and layering modes, (ii) taking into account the influence
of non-uniform stratification on microstructure-driven mixing, and (iii) avoiding
unphysical behaviour of the flux-gradient laws at small scales. While the multiscale
approach to the parametrization of time-dependent small-scale processes is illustrated
here on the example of fingering convection, we expect the proposed technique to be
readily adaptable to a wide range of applications.

Key words: double diffusive convection

1. Introduction
Primary double-diffusive instabilities, which include fingering and diffusive

convection, are caused by unequal molecular diffusivities of individual density
components (Stern 1960). In the oceanographic context, the two major density
constituents of seawater are the temperature (T) and salinity (S), with the temperature
diffusivity exceeding that of salinity by two orders of magnitude. Given such a
disparity in molecular diffusivities, it is perhaps not surprising that, under favourable
conditions, double-diffusive processes can be highly vigorous and actively influence
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Thermohaline layering on the microscale 673

the water mass composition of the World Ocean (e.g. Schmitt 1994; Radko 2013). The
main subject of the present discussion is fingering convection, which occurs when both
temperature and salinity decrease with depth. The primary double-diffusive instability
in this regime is realized in the form of narrow (a few centimetres wide) vertically
elongated filaments known as salt fingers. However, an even more intriguing and
dynamically significant consequence of double diffusion is the spontaneous emergence
of secondary coherent structures, operating on spatial and temporal scales significantly
exceeding those of primary instability. These phenomena include intrusions (Stern
1967), collective instability waves (Stern 1969) and thermohaline staircases (Stern &
Turner 1969). The term ‘staircase’ in this context describes stacks of homogeneous
layers separated by sharp interfaces, frequently seen in vertical T–S profiles from
ocean regions particularly susceptible to double-diffusive convection (e.g. Zodiatis &
Gasparini 1996; Schmitt et al. 2005; Bryden et al. 2014).

The most common approach to the analysis of secondary double-diffusive
phenomena is based on the application of the flux-gradient laws (e.g. Stern, Radko
& Simeonov 2001; Stern & Simeonov 2002; Traxler et al. 2011). These laws, which
are inspired by Fick’s diffusion model, postulate that the microstructure-driven fluxes
of temperature and salinity (FT, FS) are proportional to the corresponding large-scale
gradients (∂Tls/∂z, ∂Sls/∂z):

FT =−KT
∂Tls

∂z
,

FS =−KS
∂Sls

∂z
.

 (1.1)

The significance of flux-gradient laws for the advancement of double-diffusive
convection theory is hard to overstate. These laws are the bedrock for models
of thermohaline interleaving (Stern 1967; Merryfield 2000; Ruddick & Kerr 2003;
Mueller, Smyth & Ruddick 2007; Smyth & Ruddick 2010), collective instability waves
(Stern et al. 2001; Stern & Simeonov 2002; Radko & Stern 2011) and thermohaline
layering (Radko 2003; Stellmach et al. 2011). It should also be mentioned that
double-diffusive models of this nature are not restricted to ocean science. Parallel
developments have been reported, for instance, in the astrophysical context, as recently
reviewed by Garaud (2018).

Nevertheless, it should be realized that flux-gradient laws are not universally
applicable. For instance, these laws are known to fail when the size of the
phenomenon of interest is comparable to the scale of microstructure which those laws
strive to parametrize. A recent study (Radko 2014) attempted to identify the range
of scales adequately represented by fingering flux-gradient laws. This investigation
has led to an estimate of the critical point-of-failure scale (Hpof ) below which the
flux-gradient model becomes suspect. It was shown that Hpof can be surprisingly large
– approximately 3 m for representative oceanic conditions – exceeding the molecular
heat dissipation scale by at least two orders of magnitude.

Unfortunately, the consequences of the failure of flux-gradient laws at small
scales (H . Hpof ) are not limited to benign quantitative errors. More ominous and
fundamental complications arise, for example, in models of thermohaline staircases
(Radko 2003, 2014; Stellmach et al. 2011). In these studies, linear analysis of the
flux-gradient laws reveals the existence of unstable horizontally uniform modes.
Numerical simulations confirm their existence and, furthermore, demonstrate that
these modes ultimately transform the initially uniform background gradient into
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674 T. Radko

a series of well-mixed layers – structures that are highly suggestive of oceanic
staircases. However, the analytical flux-gradient model erroneously predicts that
the growth rate of layering modes monotonically increases without bound with the
vertical wavenumber. Besides being unphysical, this result is inconsistent with direct
numerical simulations (DNS), which show that the wavelength of the fastest-growing
layering mode exceeds the salt-finger scale by more than an order of magnitude
(e.g. Radko 2014). The ultraviolet catastrophe of analytical solutions, apparently an
artifact of indiscriminate application of the flux-gradient laws to all scales, precludes
theoretical analyses of such basic properties of layering instability as its preferred
wavelength or the maximal growth rate.

It should be noted that it is not uncommon for the ultraviolet catastrophe to arise
in theoretical models of turbulent systems, and several attempts have been made
to alleviate its consequences. For instance, the simple remedy for the unphysical
behaviour of the flux-gradient laws employed in our previous investigations (Radko
2005, 2014; Radko et al. 2014) was the inclusion of scale-selective damping terms,
which stabilize short wavelengths and thereby eliminate the ultraviolet catastrophe.
Paparella & von Hardenberg (2012) argue that the ultraviolet catastrophe is caused
by up-gradient buoyancy fluxes driven by primary fingering instabilities. These
fluxes are countered at smaller scales by down-gradient mixing associated with
secondary fingering instabilities, which can be parametrized accordingly (Paparella
& von Hardenberg 2014). The model of layering in stratified one-component flows
(Balmforth, Llewellyn Smith & Young 1998b) incorporates the delayed response of
the vertical fluxes to changes in stratification, which ultimately stabilizes modes with
small wavelength.

The aforementioned models adopt an inherently heuristic approach to the problem
of failure of flux-gradient laws, which is based on the identification of potentially
significant stabilizing small-scale processes and their inclusion in the model
formulation. The resulting modifications, which are introduced on a case-by-case
basis, serve their immediate purpose by making the corresponding large-scale models
well-posed. However, the question arises whether a sufficiently generic algorithm
can be designed to resolve the problem of the ultraviolet catastrophe for a wide
class of problems and concurrently reduce arbitrariness in the selection of relevant
stabilizing models. The present study meets this challenge by developing fingering
flux laws using techniques of multiscale analysis. Multiscale modelling is a broad and
vibrant field with numerous applications in various physical sciences, as discussed,
for example, in the review by Mei & Vernescu (2010). Multiscale mechanics is
based directly on governing equations and it is, therefore, free of the empirical
parametrizations required by other analytical models of turbulent transport. Its methods
generally assume an analytical small-scale pattern and analyse its interaction with
large-scale flows, which ultimately leads to explicit evolutionary large-scale equations.
The analyses are based on the asymptotic expansion in powers of a small parameter
(ε), which represents the ratio of typical scales of the primary pattern (salt fingers
in our case) and those of larger structures (layering modes in the present study).
Multiscale models can be viewed as a mechanistic alternative to statistical theories of
turbulence (e.g. Krommes & Kim 2000; Farrell & Ioannou 2007; Tobias, Dagon &
Marston 2011) exemplified by studies of the spontaneous generation and maintenance
of large-scale jets in barotropic eddying flows (e.g. Marston, Conover & Schneider
2008; Srinivasan & Young 2012).

The simplest primary pattern used in multiscale mechanics is the Kolmogorov
model, represented by a parallel shear flow with sinusoidal velocity profile (e.g.
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Thermohaline layering on the microscale 675

Meshalkin & Sinai 1961; Manfroi & Young 1999, 2002; Balmforth & Young
2002, 2005; Radko 2014). However, multiscale methods have been generalized to
include more complicated two-dimensional patterns, including cellular, hexagonal or
dipolar structures (e.g. Gama, Vergassola & Frisch 1994; Vanneste 2000; Novikov &
Papanicolaou 2001; Radko 2011). Although less common, multiscale models based on
three-dimensional small-scale patterns have also been developed (Dubrulle & Frisch
1991; Wirth et al. 1995).

Perhaps the most significant limitation of conventional multiscale models is the
sensitive dependence of the obtained large-scale solutions on the assumed small-scale
patterns (e.g. Gama et al. 1994; Novikov & Papanicolaou 2001; Radko 2011). For
configurations in which small-scale fields are disorganized and time-dependent, as
in the present study, this sensitivity presents a major obstacle for the quantitative
representation of cross-scale interactions. To surmount this complication, a proposition
has recently been made (Radko 2016a) to construct small-scale patterns for multiscale
modelling using realistic, dynamically consistent flow fields – an approach that was
referred to as the average eddy model. Such small-scale structures can be readily
extracted from numerical simulations, and the resulting multiscale solutions offer a
transparent and unambiguous description of the interaction between microstructure and
large-scale stratification. In the present study, this version of the multiscale model is
employed to formulate generalized flux laws, which take into account non-uniformities
of the background stratification. These laws are then used to investigate the dynamics
of thermohaline layering.

An important feature of the present implementation of the multiscale method
is that the expansion is carried out beyond the leading order in the separation
parameter ε. We demonstrate that truncating the asymptotic series at the leading
order is equivalent to adopting the flux-gradient model with all its deficiencies.
However, extending the expansion to the next order in ε makes it possible to take
into account non-uniformities of the background stratification. While the proposed
model still assumes scale separation between fingers and layering modes (ε � 1),
its performance dramatically improves with the addition of higher-order components.
In particular, this generalization is shown to alleviate complications associated with
the failure of the flux-gradient model at small scales, most notably eliminating its
ultraviolet catastrophe. It should also be emphasized that, aside from the pragmatic
task of parametrizing salt fingers, the dynamics of double-diffusive convection in
non-uniform gradients is of interest in its own right (e.g. Balmforth, Casti & Julien
1998a). The present investigation attempts to concurrently address both aspects of the
problem.

This paper is organized as follows. In § 2, we describe the model configuration and
present illustrative numerical examples of thermohaline layering. The multiscale theory
of layering is formulated in § 3. In § 4, we examine linear large-scale solutions derived
using the multiscale model and compare them with their flux-gradient counterparts.
The parametric staircase model, which is based on the generalized flux laws, is
presented in § 5. In § 6, we draw conclusions and summarize our findings.

2. Formulation

In order to describe spontaneous layering in a doubly stratified fluid, the total
temperature and salinity fields (T∗tot, S∗tot) are separated into the background state
( ¯̄T∗, ¯̄S∗), representing uniform vertical gradients, and a departure (T∗, S∗) from them:
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676 T. Radko

T∗tot =
¯̄T∗ + T∗ = ATz∗ + AT0 + T∗,

S∗tot =
¯̄S∗ + S∗ = ASz∗ + AS0 + S∗,

}
(2.1)

where (AT, AT0, AS, AS0) are constants and the asterisks denote dimensional field
variables. Our focus is on the finger-favourable stratification ((∂ ¯̄T∗/∂z∗) = AT > 0,
(∂ ¯̄S∗/∂z∗)=AS > 0). In the present version of the theory, we ignore planetary rotation,
compressibility and the nonlinearity of the equation of state, and express the governing
Boussinesq equations of motion in terms of perturbations (T∗, S∗):

∂T∗

∂t∗
+ v∗ · ∇T∗ +w∗

∂ ¯̄T∗

∂z∗
= kT∇

2T∗,

∂S∗

∂t∗
+ v∗ · ∇S∗ +w∗

∂ ¯̄S∗

∂z∗
= kS∇

2S∗,

∂v∗

∂t∗
+ v∗ · ∇v∗ =−

1
ρ∗0
∇p∗ + g(αT∗ − βS∗)k+ ν∇2v∗,

∇ · v∗ = 0,


(2.2)

where v∗= (u∗, v∗,w∗) is the velocity, k is the vertical unit vector, p∗ is the dynamic
pressure, g is gravity, (α, β) are the thermal expansion and haline contraction
coefficients, (kT, kS) are the molecular diffusivities of heat and salt, and ρ∗0 is the
reference density.

To reduce the number of controlling parameters, system (2.2) is non-dimensionalized
using l = [kTν/(gα ∂ ¯̄T∗/∂z∗)]1/4, kT/l, l2/kT and ρ∗0νkT/l2 as the units of length,
velocity, time and pressure, respectively. These scales reflect characteristics of
individual salt fingers, and therefore the resulting non-dimensional system is most
appropriate for the analysis of microscale dynamics of double-diffusive convection
(e.g. Radko 2013). The expansion/contraction coefficients (α, β) are incorporated
in (T∗, S∗), and α(∂ ¯̄T∗/∂z∗)l is used as the scale for both temperature and salinity
perturbations:

αT∗→ α
∂ ¯̄T∗

∂z∗
lT, βS∗→ α

∂ ¯̄T∗

∂z∗
lS. (2.3a,b)

After non-dimensionalization, the governing equations (2.2) reduce to

∂T
∂t
+ v · ∇T +w=∇2T,

∂S
∂t
+ v · ∇S+

w
¯̄Rρ
= τ∇2S,

1
Pr

(
∂

∂t
v + v · ∇v

)
=−∇p+ (T − S)k+∇2v,

∇ · v = 0,


(2.4)

where ¯̄Rρ = [α(∂ ¯̄T∗/∂z∗)]/[β(∂ ¯̄S∗/∂z∗)] is the background density ratio, τ = kS/kT is
the diffusivity ratio and Pr = ν/kT is the Prandtl number. The specific calculations
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Thermohaline layering on the microscale 677

in this study are based on the two-dimensional (x, z) version of the Boussinesq
system (2.4):

∂T
∂t
+ J(ψ, T)+

∂ψ

∂x
=∇

2T,

∂S
∂t
+ J(ψ, S)+

1
¯̄Rρ

∂ψ

∂x
= τ∇2S,

∂

∂t
∇

2ψ + J(ψ,∇2ψ)= Pr
[
∂

∂x
(T − S)+∇4ψ

]
,


(2.5)

where ψ is the streamfunction, such that (u,w) = (−∂ψ/∂z, ∂ψ/∂x) and J(a, b) ≡
(∂a/∂x)(∂b/∂z)− (∂a/∂z)(∂b/∂x) is the Jacobian. Two-dimensional simulations carry
an obvious benefit of numerical efficiency, which affords a more comprehensive
exploration of the parameter space. It should also be noted that externally induced
large-scale flows (e.g. internal waves), which are ubiquitous in the ocean, favour
formation of salt sheets aligned in the direction of the background shear (Linden
1974; Kimura & Smyth 2007; Radko et al. 2015). In such cases, salt-finger dynamics
becomes effectively two-dimensional, which implies that analyses based on model
(2.5) are more oceanographically relevant.

To briefly describe the key features of fully developed fingering convection, we
present (figure 1) a typical numerical simulation. The two-dimensional model (2.5)
was integrated in time using the dealiased pseudospectral method (e.g. Stern et al.
2001; Stellmach et al. 2011) with periodic boundary conditions applied to the
streamfunction ψ and to the perturbation temperature and salinity fields (T, S) in
each spatial direction. The governing non-dimensional parameters for this experiment
are (Rρ, Pr, τ ) = (1.5, 7, 0.01). The domain size is 400 × 400, which corresponds
to 4 m × 4 m for representative oceanographic scales, and the numerical mesh
contains (Nx,Nz) = (6144, 6144) grid points. The evolution of the temperature field
T(x, y) from the initial state represented by a random low-amplitude distribution
of (T, S, ψ) is shown in figure 1(a–c). The first stage is characterized by the
development of primary fingering instabilities (figure 1a), which is followed by
the spontaneous emergence of a relatively large-scale horizontally uniform mode
(figure 1b). This mode monotonically grows in time, eventually producing two
well-defined mixed layers separated by thin high-gradient interfaces (figure 1c). Note
that the wavelength of the amplifying mode in figure 1 (L = 200) exceeds the scale
of individual fingers (L∼ 10) by more than an order of magnitude. The selection of
the preferred wavelength of layering modes remains one of the most intriguing and
fundamental unresolved problems in the theory of double-diffusive convection. The
flux-gradient model (Radko 2003) does not provide definitive answers in this regard,
erroneously predicting that the growth rate of layering modes monotonically increases
with wavenumber, motivating the following alternative approach.

3. Layering instability as a multiscale problem

The intent of this section is to explain the properties of large-scale patterns (e.g.
figure 1), which spontaneously emerge from initially homogeneous fingering fields
using techniques of asymptotic multiscale analysis. Theoretical development generally
follows Radko (2016a) and therefore here we present an abbreviated description of
the multiscale model.
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400

400
Ttot(x,z)(a)

®mean

z z

0

0

100

200

300

400

400

400
Ttot(x,z)(b)

®mean

z z

0

0

100

200

300

400

400

400
Ttot(x,z)(c)

®mean

z

x

z

0
0

100

200

300

400

FIGURE 1. Two-dimensional DNS for (Rρ, τ , Pr) = (1.5, 0.01, 7). The instantaneous
temperature fields (left panels) and horizontally averaged density profiles (right panels) are
shown for (a) t= 100, (b) t= 1450 and (c) t= 2040. Note the gradual amplification of the
large-scale mode and the transition of the system to a well-defined layered configuration.
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Thermohaline layering on the microscale 679

3.1. Formulation
First, the new large-scale spatial and temporal variables (Z, t2, t4) are introduced,
which are related to the original variables as follows:

Z = εz, t2 = ε
2t, t4 = ε

4t, (3.1a−c)

where ε is the expansion parameter representing the difference in spatial scales
of primary (fingering) and secondary (layering) instabilities. The derivatives in the
governing system (2.5) are replaced accordingly:

∂

∂t
→

∂

∂t
+ ε2 ∂

∂t2
+ ε4 ∂

∂t4
,

∂

∂z
→

∂

∂z
+ ε

∂

∂Z
. (3.2a,b)

We treat (x, z, t, Z, t2, t4) as independent variables and replace the z- and t-derivatives
in governing equations (2.5) using transformation (3.2), which results in

∂T
∂t
+ ε2 ∂T

∂t2
+ ε4 ∂T

∂t4
+ Jxz(ψ, T)+ εJxZ(ψ, T)+

∂ψ

∂x

=

(
∇

2
+ 2ε

∂2

∂z∂Z
+ ε2 ∂

2

∂Z2

)
T,

∂S
∂t
+ ε2 ∂S

∂t2
+ ε4 ∂S

∂t4
+ Jxz(ψ, S)+ εJxZ(ψ, S)+

1
¯̄Rρ

∂ψ

∂x

= τ

(
∇

2
+ 2ε

∂2

∂z∂Z
+ ε2 ∂

2

∂Z2

)
S,

∂

∂t
ς + ε2 ∂ς

∂t2
+ ε4 ∂ς

∂t4
+ Jxz(ψ, ς)+ εJxZ(ψ, ς)

= Pr
[
∂

∂x
(T − S)+

(
∇

2
+ 2ε

∂2

∂z∂Z
+ ε2 ∂

2

∂Z2

)
ς

]
,

ς =

(
∇

2
+ 2ε

∂2

∂z∂Z
+ ε2 ∂

2

∂Z2

)
ψ,



(3.3)

where Jxz(a, b)≡ (∂a/∂x)(∂b/∂z)− (∂b/∂x)(∂a/∂z) and JxZ(a, b)≡ (∂a/∂x)(∂b/∂Z)−
(∂b/∂x)(∂a/∂Z).

The basic state in the following model is represented by the fully developed and
statistically homogeneous fingering field, which varies only on small scales:

T̄ = T̄(x, z, t),
S̄= S̄(x, z, t),
ψ̄ = ψ̄(x, z, t).

 (3.4)

To examine the interaction of the basic field (3.4) with large scales, it is perturbed by
long-wavelength horizontally uniform temperature and salinity patterns (T0, S0). The
solution is sought in terms of a series in ε� 1:

T = T̄(x, z, t)+ T0(Z, t2, t4)+ εT1(x, z, Z, t, t2, t4)+ ε
2T2(x, z, Z, t, t2, t4)+ · · · ,

S= S̄(x, z, t)+ S0(Z, t2, t4)+ εS1(x, z, Z, t, t2, t4)+ ε
2S2(x, z, Z, t, t2, t4)+ · · · ,

ψ = ψ̄(x, z, t)+ εψ1(x, z, Z, t, t2, t4)+ ε
2ψ2(x, z, Z, t, t2, t4)+ · · · .


(3.5)
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680 T. Radko

When the expansion (3.5) is substituted into the governing system (3.3) and the
terms of the same order are collected, we discover that the individual components
(Ti, Si, ψi) allow for a solution in the following form:

Ti =
∂ iT0

∂Zi
T̃iT(x, z, t)+

∂ iS0

∂Zi
T̃iS(x, z, t),

Si =
∂ iT0

∂Zi
S̃iT(x, z, t)+

∂ iS0

∂Zi
S̃iS(x, z, t),

ψi =
∂ iT0

∂Zi
ψ̃iT(x, z, t)+

∂ iS0

∂Zi
ψ̃iS(x, z, t),

i= 1, 2, . . . . (3.6)

Thus, each term in the expansion represents a product of a modulating function,
which varies on large scales, and the corresponding rapidly varying variable. The latter
quantities (T̃iT, S̃iT, ψ̃iT, T̃iS, S̃iS, ψ̃iS) are referred to as the auxiliary functions. Note
that in (3.6) we included only terms that are linear in (T0, S0). The linearization was
largely motivated by considerations of simplicity and transparency since multiscale
models can incorporate large-scale nonlinearities in a relatively straightforward
manner (e.g. Gama et al. 1994; Novikov & Papanicolaou 2001). Furthermore, the
linearized model represents a natural starting point for any stability analysis, making
it possible to unambiguously determine the growth rates of unstable perturbations.
The expansions (3.5) and (3.6) are consistent with governing equations (3.3) as long
as the auxiliary functions satisfy partial differential equation (PDE) systems written
entirely in terms of small-scale independent variables. For instance, for the first-order
(i= 1) terms, the corresponding auxiliary PDE systems are

A

T̃1T

S̃1T

ψ̃1T

=
−

∂ψ̄

∂x
0
0

 , A

T̃1S

S̃1S

ψ̃1S

=


0

−
∂ψ̄

∂x
0

 , (3.7a,b)

where the linear homogeneous differential operator A in (3.7) is defined as follows:

A

fT
fS
fψ

≡


∂fT

∂t
+ J(ψ̄, fT)+ J( fψ , T̄)+

∂fT

∂x
−∇

2fT

∂fS

∂t
+ J(ψ̄, fS)+ J( fψ , S̄)+

1
¯̄Rρ

∂fS

∂x
− τ∇2fS

∂∇2fψ
∂t
+ J(ψ̄,∇2fψ)+ J( fψ ,∇2ψ̄)− Pr

[
∂

∂x
( fT − fS)+∇

4fψ

]


. (3.8)

The counterparts of auxiliary systems obtained for i = 2, 3, 4 (not shown) are
structurally similar to (3.7). Since the operator A involves only small-scale variables,
the auxiliary systems can be solved for (T̃iT, S̃iT, ψ̃iT, T̃iS, S̃iS, ψ̃iS), given proper
initial conditions. However, the ultimate objective of the multiscale analysis is the
evolutionary model for the components evolving on large scales (T0, S0). These
large-scale amplitude equations are obtained as solvability conditions at O(ε2) and
O(ε4), by averaging the governing equations (3.3) in small-scale variables. Two
solvability conditions are obtained at the second order, by averaging the O(ε2)
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Thermohaline layering on the microscale 681

components of the T–S equations in small-scale variables (x, z, t), which leads to

∂T0

∂t2
=K1

∂2T0

∂Z2
+K2

∂2S0

∂Z2
,

∂S0

∂t2
=K3

∂2T0

∂Z2
+K4

∂2S0

∂Z2
.

 (3.9)

Another two solvability conditions are encountered at the fourth order, where
averaging over small-scale variables results in

∂T0

∂t4
=K5

∂4T0

∂Z4
+K6

∂4S0

∂Z4
,

∂S0

∂t4
=K7

∂4T0

∂Z4
+K8

∂4S0

∂Z4
.

 (3.10)

The coefficients Kj ( j = 1, . . . , 8) are expressed in terms of auxiliary functions as
follows:

K1 = 1+
[〈
ψ̃1T

∂T̄
∂x
−
∂ψ̄

∂x
T̃1T

〉]
, K2 =

[〈
∂T̄
∂x
ψ̃1S −

∂ψ̄

∂x
T̃1S

〉]
,

K3 =

[〈
ψ̃1T

∂ S̄
∂x
−
∂ψ̄

∂x
S̃1T

〉]
, K4 = τ +

[〈
∂ S̄
∂x
ψ̃1S −

∂ψ̄

∂x
S̃1S

〉]
,

K5 =

[〈
ψ̃3T

∂T̄
∂x
−
∂ψ̄

∂x
T̃3T

〉]
, K6 =

[〈
∂T̄
∂x
ψ̃3S −

∂ψ̄

∂x
T̃3S

〉]
,

K7 =

[〈
ψ̃3T

∂ S̄
∂x
−
∂ψ̄

∂x
S̃3T

〉]
, K8 =

[〈
∂ S̄
∂x
ψ̃3S −

∂ψ̄

∂x
S̃3S

〉]
.



(3.11)

The angular brackets in (3.11) represent averaging in x and z and square brackets
represent averaging in time (t), over a period exceeding the typical time scale of
primary fingering instabilities. The counterparts of Kj ( j = 1, . . . , 8) in which the
averages are taken in space only will be denoted by K inst

j (t). System (3.9) represents
the multiscale analogue of the commonly used flux-gradient model (1.1), whereas
(3.10) adds the correction representing the influence of non-uniformities of large-scale
gradients on the vertical T–S transport.

At this point, the multiscale analysis is complete and we can safely return to the
original variables (z, t) by inverting transformation (3.1), which results in

∂T0

∂t
=K1

∂2T0

∂z2
+K2

∂2S0

∂z2
+K5

∂4T0

∂z4
+K6

∂4S0

∂z4
,

∂S0

∂t
=K3

∂2T0

∂z2
+K4

∂2S0

∂z2
+K7

∂4T0

∂z4
+K8

∂4S0

∂z4
.

 (3.12)

The asymptotic expansion leading to (3.12) could be readily extended to include even
higher-order components, which would certainly improve the accuracy of the model
and, most likely, extend its range of validity. Nevertheless, as we shall see shortly
(§ 4), even this minimal model makes it possible to represent basic features of layering
instability – the selection of the dominant layering wavelength and the growth rate.
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682 T. Radko

The stability of the large-scale system (3.12) is analysed using normal modes

(T0, S0)= (T̂0, Ŝ0) exp(λt) sin(mz), (3.13)

which produces the equation for the growth rate (λ) of layering modes:

λ2
+ λ(K1m2

−K5m4
+K4m2

−K8m4)+m4
(
K5K8m4

−K6K7m4
−K1K8m2

+K3K6m2
+K2K7m2

−K4K5m2
+K1K4 −K2K3

)
= 0. (3.14)

It should be emphasized that if the expansion (3.5) were truncated at the second order
(and thus effects represented by K5−8 were ignored), the dependence of the growth
rate on the vertical wavenumber would take a simple quadratic form λ ∝ m2. Such
a model would suffer from the ultraviolet catastrophe – the unbounded monotonic
increase of the growth rate with increasing wavenumber – and therefore would be
deficient in describing thermohaline layering. Fortunately, this unphysical feature does
not arise in the more general system (3.14), which takes into account the influence of
non-uniformities of large-scale stratification on vertical fluxes.

3.2. Calibration: the ensemble-averaging
The final step in the development of the multiscale model is the evaluation of
the transfer coefficients Kj in (3.12). Since these coefficients are determined by the
auxiliary functions, one of the calibration techniques involves the numerical integration
of the auxiliary problems in time. However, there is a fundamental complication in
pursuing this approach, which is frequently encountered in problems of this nature
– the instability of auxiliary problems. Since the auxiliary systems are linear, any
unstable modes can amplify indefinitely, precluding the integration of auxiliary
problems over long intervals of time. To address this difficulty, a suggestion was
recently made (Radko 2016a) to integrate auxiliary problems over finite periods and
then ensemble-average the results over a large number of realizations. This approach
affords the fully asymptotic reduction of the problem and was previously shown
to be accurate in their description of cross-scale interactions in various geophysical
systems (Radko 2016a; Radko & Kamenkovich 2017). However, the sheer number
of realizations (∼105) required for the reliable evaluation of the transfer coefficients
(Kj) makes the ensemble-averaging technique rather inefficient. Alternatively, these
coefficients could be calibrated by fitting the large-scale asymptotic model (3.12) to
the tendencies of large-scale modes diagnosed from DNS.

In this study, we considered both methods. The ensemble-averaging technique
was applied to a series of simulations performed with a relatively high diffusivity
ratio of τ = 1/3. This value of τ implies that the dissipation scales of salinity and
temperature are comparable, and therefore such simulations could be performed
using relatively modest computational grids. The results of the ensemble-averaging
calibration are shown in the second column of table 1. This calculation was carried out
for (Rρ, Pr, τ )= (1.5, 7, 1/3) using the computational domain of (Lx, Lz)= (300, 300)
resolved by the numerical grids of (Nx,Nz) = (256, 256) points. The governing
equations for the basic variables (T̄, S̄, ψ̄) were first integrated in time to t00 = 100,
producing a statistically equilibrated flow field. Afterwards, the computations of basic
variables were accompanied by the concurrent integrations of auxiliary functions
(T̃iT, T̃iS, T̃iψ , S̃iT, S̃iS, S̃iψ). The auxiliary problems were repeatedly solved over finite
intervals [t0, t0 +1T], where t0 = t00 + n1T . The length of each integration interval
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Thermohaline layering on the microscale 683

Ensemble Direct calibration
averaging

Ki (1.5, 1/3) (1.5, 1/3) (1.3, 0.01) (1.5, 0.01) (1.7, 0.01) (1.9, 0.01) (2.1, 0.01)

K1 −53.3 −61.3 −326.7 −149.8 −95.7 −51.6 −40.1
K2 92.0 107.4 507.0 259.0 227.1 160.0 121.0
K3 −66.8 −77.1 −431.8 −213.3 −139.2 −82.8 −63.7
K4 116.1 133.5 695.0 389.4 337.2 254.2 215.9
K5 −1.63× 104

−1.59× 104
−1.08× 105

−4.62× 104
−3.07× 104

−1.87× 104
−1.27× 104

K6 3.38× 104 3.19× 104 1.98× 105 9.61× 104 7.96× 104 5.82× 104 4.69× 104

K7 −1.81× 104
−1.98× 104

−1.52× 105
−6.84× 104

−4.86× 104
−2.80× 104

−2.14× 104

K8 3.86× 104 3.99× 104 3.03× 105 1.81× 105 1.29× 105 1.01× 105 7.95× 104

TABLE 1. Calibration of the multiscale model. The transfer coefficients Kj ( j= 1, . . . , 8)
are evaluated using the ensemble-averaging and the direct calibration methods for the
various values ( ¯̄Rρ, τ ) shown.

was set to 1T = 20 and the initial conditions (T̃, S̃) = (0, 0) were assumed for all
auxiliary functions at the beginning of each interval. The resulting records of K inst

j (t′),
where t′= t− t0, were ensemble-averaged over Ntot= 8× 105 realizations. The patterns
of K inst

j (t′) exhibit the tendency to converge in time to specific equilibrium values.
Their time averages over intervals 15< t′ < 20 were used as estimates of Kj , which
are listed in table 1.

3.3. Direct calibration
While the ensemble-averaging approach is of interest in its own right, the sheer
number of integrations required by this technique make its application to the
oceanographically motivated case (τ =0.01) unfeasible. The disparity in the dissipation
scales of salinity and temperature in this regime demands a much higher resolution for
τ = 0.01 than for τ = 1/3, which makes ensemble-averaging prohibitively expensive
even in two dimensions. To obtain the coefficients Kj for such cases, we adopted
the method which is referred to hereafter as direct calibration. The crux of this
approach is the introduction of appropriately designed trial functions T tr(z) and Str(z),
representing large-scale temperature and salinity fields, and the subsequent analysis
of the corresponding flux-convergence patterns. For instance, in order to evaluate the
coefficients K1 and K3, we chose the following trial functions:

T tr
= A((z− 1

4 Lz)
n
− ( 1

4 Lz)
n) for 0< z< 1

2 Lz,

T tr
=−A((z− 3

4 Lz)
n
− ( 3

4 Lz)
n) for 1

2 Lz < z< Lz,

Str
= 0,

 (3.15)

where n= 2. Note that the trial functions in (3.15), as well as their first derivatives,
are periodic in z and therefore compatible with the employed spectral model. The
calibration was performed using high-resolution DNS, in which the x-averaged
temperature and salinity fields were reset to the trial functions (3.15) at each time
step. The implementation of the resetting algorithm is particularly straightforward for
our spectral model, where the x-averages of field variables are represented by the
corresponding Fourier harmonics with zero horizontal wavenumbers (kx = 0). Prior to
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684 T. Radko

resetting the T–S averages to the assumed trial functions on each step, their temporal
tendencies (T tr

t , Str
t ) are evaluated at z= (1/4)Lz, z= (3/4)Lz and recorded. Assuming

that the temporal tendencies of the x-averages in DNS conform to the functional
form (3.12) suggested by the multiscale model, we arrive at

T tr
t |z=(1/4)Lz = 2K1A, T tr

t |z=(3/4)Lz =−2K1A,
Str

t |z=(1/4)Lz = 2K3A, Str
t |z=(3/4)Lz =−2K3A.

}
(3.16)

Thus, the coefficients K1 and K3 can be evaluated as follows:

K1 =
1

4A
[T tr

t |z=(1/4)Lz − T tr
t |z=(3/4)Lz], K3 =

1
4A
[Str

t |z=(1/4)Lz − Str
t |z=(3/4)Lz], (3.17a,b)

where square brackets represent averaging in time. To evaluate K5 and K7, we use the
trial functions (3.15) with n= 4, in which case the counterpart of (3.17) becomes

K5 =
1

48A
[T tr

t |z=(1/4)Lz − T tr
t |z=(3/4)Lz], K7 =

1
48A
[Str

t |z=(1/4)Lz − Str
t |z=(3/4)Lz]. (3.18a,b)

The coefficients (K2,K4,K6,K8) were similarly calibrated by assuming the trial
functions which represent variation in the salinity stratification:

Str
= A((z− 1

4 Lz)
n
− ( 1

4 Lz)
n) for 0< z< 1

2 Lz,

Str
=−A((z− 3

4 Lz)
n
− ( 3

4 Lz)
n) for 1

2 Lz < z< Lz,

T tr
= 0,

 (3.19)

where n= 2 was used to evaluate K2 and K4, while n= 4 led to the estimate of K6
and K8.

The coefficients Kj evaluated using direct calibration are listed in table 1 for a
series of simulations performed for various values of (Rρ, τ ). Each calculation was
extended in time long enough to obtain reliable statistically steady temporal averages
of (T tr

t , Str
t ). The computational domain chosen for those simulations was rather large,

particularly in terms of its vertical extent: (Lx, Lz)= (200, 400). This choice ensured
that the obtained values of Kj are consistent with the multiscale model, which assumes
clear scale separation between microstructure and slowly evolving large-scale modes
of interest.

The direct calibration procedure has been validated by comparing its predictions
with the corresponding estimates based on the ensemble-averaging method (§ 3.2).
For this, the direct calibration technique was first applied to the computationally
convenient case of τ = 1/3. The resulting values of Kj obtained using ensemble-
averaging and direct calibration are listed in columns two and three of table 1,
respectively. The results are mutually consistent, which instils confidence in the
adequate performance of both models. However, due to computational constraints,
no ensemble-averaging results are available for the oceanographically relevant
case of τ = 0.01, which is the primary focus of our investigation. Therefore, all
subsequent developments are based exclusively on the direct calibration method. The
calculations of Kj in this regime were performed using the numerical mesh with
(Nx,Nz)= (1536, 3072) grid points, which made it possible to resolve the dissipation
scale of salinity.
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Thermohaline layering on the microscale 685

4. Large-scale solutions
The objective of this section is the analysis of large-scale solutions of the parametric

system (3.12) and comparison of the results with corresponding estimates based on
the more conventional flux-gradient laws (e.g. Stern et al. 2001; Radko 2003; Traxler
et al. 2011). The flux-gradient model, written in our non-dimensional units (e.g.
Radko 2014), takes the form

∂T0

∂t
=
∂

∂z

(
Nu
(

1+
∂T0

∂z

))
,

∂S0

∂t
=
∂

∂z

(
Nu
γ

(
1+

∂T0

∂z

))
,

 (4.1)

where Nu is the Nusselt number and γ is the flux ratio. Both Nu and γ are assumed
to be controlled by the local large-scale density ratio, which in non-dimensional units
reduces to

Rρ =
(

1+
∂T0

∂z

)/(
1
¯̄Rρ
+
∂S0

∂z

)
. (4.2)

Based on a suite of high-resolution two-dimensional DNS and theoretical arguments,
Radko (2014) suggested the following specific parametrizations for Nu and γ :

γ ≈ aγ exp(bγRρ)+ cγ , (aγ , bγ , cγ )= (4.752,−3.318, 0.59),

Nu= γ

(
aS√

Rρ − 1
+ bS

)
, (aS, bS)= (136.9,−105.13).

 (4.3)

In order to facilitate the direct comparison of the growth rates realized in the
flux-gradient formulation and in the foregoing multiscale model, the formulation (4.1)
was linearized with respect to the uniform background T–S gradient by assuming
that the large-scale perturbations are weak: (∂T0/∂z), (∂S0/∂z)� 1. The linearization
reduces (4.1) to

∂T0

∂t
=K1fg

∂2T0

∂z2
+K2fg

∂2S0

∂z2
,

∂S0

∂t
=K3fg

∂2T0

∂z2
+K4fg

∂2S0

∂z2
,

 (4.4)

where

K1fg =

(
Rρ
∂Nu
∂Rρ
+Nu

)∣∣∣∣
Rρ=¯̄Rρ

, K2fg =

(
−R2

ρ

∂Nu
∂Rρ

)∣∣∣∣
Rρ=¯̄Rρ

,

K3fg =

(
Rρ
∂(γ −1)

∂Rρ
Nu+

Rρ
γ

∂Nu
∂Rρ
+

Nu
γ

)∣∣∣∣
Rρ=¯̄Rρ

,

K4fg =

(
−R2

ρ

∂(γ −1)

∂Rρ
Nu−

R2
ρ

γ

∂Nu
∂Rρ

)∣∣∣∣∣
Rρ=¯̄Rρ

.


(4.5)

Even a casual inspection of (4.4) and (3.12) indicates that the two formulations are
structurally similar. The fundamental difference between them is the notable absence
of the fourth-order derivatives in the flux-gradient model – components reflecting the
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1.0 1.2 1.4 1.6

R
=
®

1.8 2.0 2.2
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K2fg

K3fg

K4fg

2000

FIGURE 2. The transfer coefficients Kj fg, j = 1, . . . , 4, obtained using the parametric
flux-gradient model (solid curves) are plotted as a function of the background density ratio
¯̄Rρ along with the corresponding estimates obtained using the multiscale model (Kj) which
are indicated by dots.

influence of non-uniformities of large-scale T–S gradients on vertical fluxes. To make
this comparison more quantitative, in figure 2 we plot the flux-gradient coefficients
Kjfg, j = 1, . . . , 4, evaluated using (4.3) and (4.5) as a function of the density
ratio ( ¯̄Rρ). Superimposed on the flux-gradient coefficients are the corresponding
values of Kj obtained from the calibration of the multiscale model (table 1). The
general agreement between the two estimates indicates that the flux-gradient and
multiscale models are mutually consistent in terms of representing the effects of
large-scale property gradients. The multiscale model, however, presents a unique
opportunity to move beyond the flux-gradient formulation and adjust the flux laws by
including a correction associated with non-uniformities of property gradients. Since the
coefficients Kj, j= 5, . . . , 8, representing such non-uniformities have been evaluated
for a discrete set of density ratios (table 1), it also becomes desirable to formulate a
consistent model of Kj(

¯̄Rρ) for a continuous range of ¯̄Rρ . This was accomplished by
assuming the following closure form, motivated by theoretical arguments in Radko
(2008):

Kj(
¯̄Rρ)=

aj√
¯̄Rρ − 1

+ bj, j= 5, . . . , 8. (4.6)

The coefficients (aj, bj) were evaluated from the best fit of (4.6) to the values of
Kj, j= 5, . . . , 8, listed in table 1:

a5 =−1.09× 105, a6 = 1.70× 105, a7 =−1.49× 105, a8 =−2.56× 105,

b5 = 9.71× 104, b6 =−1.23× 105, b7 = 1.29× 105, b8 =−1.72× 105.

}
(4.7)

The resulting patterns of Kj(
¯̄Rρ) are shown in figure 3, along with the corresponding

discrete estimates derived from the multiscale model.
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1.0 1.2 1.4 1.6

R
=

®
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-3
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4
K5

K6

K7

K8

5
(÷ 105)

FIGURE 3. The biharmonic transfer coefficients Kj, j = 5, . . . , 8, obtained using the
multiscale model (dots) are plotted as a function of the background density ratio ¯̄Rρ along
with the corresponding empirical parametrization (4.6).

Having formulated the generalized flux laws, we now proceed to explore the
corresponding large-scale solutions. Of particular interest are the growth rates
of long-wavelength perturbations (λ) and their dependence on wavenumbers (m).
A typical growth rate pattern λ(m) is shown in figure 4(a), where λ was computed
using (3.14) for ¯̄Rρ = 1.5. For small m, the growth rates are characterized by two
real solutions. These branches coalesce at the bifurcation point mco, and for m>mco,
the growth rate attains a substantial imaginary component. Recalling that (i) the
multiscale theory leading to (3.12) has been developed within the context of long-wave
approximation (m� 1) and (ii) the microstructure-resolving DNS exhibit no evidence
of oscillatory variation of large-scale components, we assume that the obtained flux
laws become inapplicable for m> mco. Thus, the bifurcation point mco is interpreted
as a natural cutoff scale for the validity of the proposed model.

One of the key questions our study attempts to address is the selection of the
preferred wavelength of layering modes. Therefore, in figure 4(b) we present an
enlarged view of the growth rate pattern (figure 4a) which is focused on the region
with positive values of λ. For our investigation, the most significant feature of the
relation in figure 4(b) is the presence of the maximum in the growth rate at m=mmax,
representing the most rapidly amplifying large-scale mode. Figure 4(b) also presents
(dashed curve) the corresponding prediction based on the flux-gradient model (e.g.
Radko 2003). While the flux-gradient and multiscale models are mutually consistent
for very small wavenumbers (m< 0.01), their agreement rapidly deteriorates for larger
values of m. Unlike the generalized model, the flux-gradient theory predicts the growth
rate λ(m) which monotonically increases with wavenumber, making it impossible to
evaluate the spatial and temporal scales of dominant layering modes. The generalized
model (3.12), on the other hand, offers a reasonable estimate of relevant scales of
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-0.15
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¬

¬
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(÷ 10-3)

FIGURE 4. (a) The stability diagram for the basic state with ( ¯̄Rρ, Pr, τ )= (1.5, 7, 0.01).
The solid curves represent solutions of (3.14) with real growth rates (λ), which are realized
for small wavenumbers (m < mco). For large wavenumbers (m > mco) the growth rates
attain imaginary components and their real part is indicated by the dashed curve. (b) The
enlarged view of the stability diagram in (a), which is focused on the region with positive
growth rates. The wavenumber corresponding to the maximal growth rate is denoted by
mmax, whereas m0 represents the wavenumber of the mode with zero growth rate.

layering instability. For instance, the fastest-growing mode realized in the foregoing
DNS (figure 1) is characterized by the wavenumber of mmax = 3.14 × 10−2 and the
corresponding growth rate of λmax= 1.56× 10−3. These values are broadly consistent –
within a factor of two – with the estimate based on the multiscale model (figure 4b):
mmax = 1.81× 10−2 and λmax = 1.05× 10−3.

To explore the variation in the stability characteristics of layering modes with the
background density ratio, in figure 5(a) we present the mmax(

¯̄Rρ) relation, as well as
the corresponding patterns of the zero-growth-rate wavenumber (m0) and the cutoff
wavenumber (mco). Figure 5(a) indicates that the wavenumber of the most rapidly
amplifying mode (mmax) exhibits a rather modest sensitivity to ¯̄Rρ , varying at most
by a factor of two in the range of 1< ¯̄Rρ < 2. The variation in the maximal growth
rate (figure 5b) is much stronger. The growth rates can be as high as λ ∼ 6 × 10−3

for ¯̄Rρ = 1.2, which corresponds to the dimensional amplification time scale of a
day, and as low as λ ∼ 2.5 × 10−5 for ¯̄Rρ = 2, dimensionally equivalent to the time
scale of a year. It should be mentioned at this point that the majority of fingering
staircases observed in the ocean are characterized by relatively low density ratios 1.1<
¯̄Rρ < 1.7, as summarized, for example, by Radko (2013). This property could be a
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(÷ 10-3)

0

0.01

0.02

0.03
m

0.04

0.05

FIGURE 5. (a) The wavenumbers of the most rapidly amplifying mode (mmax) and the
mode of zero growth rate (m0), as well as the cutoff wavenumber (mco), are plotted as
a function of the background density ratio ¯̄Rρ using solid, dashed and dotted curves,
respectively. (b) The maximal growth rate of layering modes as a function of the density
ratio.

consequence of the dramatic reduction in the growth rates of layering modes for large
¯̄Rρ in figure 5(b).

5. The parametric model of thermohaline staircases

While the previous section addressed the linear stability of layering modes, a
question arises whether the proposed model can adequately represent the transition
of weakly perturbed large-scale gradients to fully developed staircases (e.g. figure 1).
Since the following discussion is exclusively focused on the dynamics of large-scale
stratification, we shall abandon the rather cumbersome double-bar notation, as well
as subscripts ‘0’, representing the leading-order terms in asymptotic expansion. To
place our results in the context of oceanic observations, the following results will
be expressed exclusively in dimensional units and the asterisks, previously denoting
dimensional variables, will be omitted. The conversion between dimensional and
non-dimensional units (§ 2) assumes the following parameters:

kT = 1.4× 10−7 m2 s−1, ν = 10−6 m2 s−1, g= 9.8 m s−2, α = 2× 10−4 K−1,

(5.1a−d)
which are representative of typical oceanic conditions.
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690 T. Radko

The proposed parametric model integrates the one-dimensional evolutionary
equations based on the generalized flux laws introduced in §§ 3 and 4:

∂T
∂t
= kT

∂

∂z

(
Nu(Rρ)

∂(Tbg + T)
∂z

)
+ kTd2K5(Rρ)

∂4T
∂z4
+ kTd2β

α
K6(Rρ)

∂4S
∂z4

,

∂S
∂t
= kT

α

β

∂

∂z

(
Nu(Rρ)
γ (Rρ)

∂(Tbg + T)
∂z

)
+ kTd2α

β
K7(Rρ)

∂4T
∂z4
+ kTd2K8(Rρ)

∂4S
∂z4

,

Rρ =
(
α
∂(Tbg + T)

∂z

)/(
β
∂(Sbg + S)

∂z

)
, d=

(
kTν

/(
gα
∂(Tbg + T)

∂z

))1/4

.


(5.2)

The flux-gradient components of evolutionary equations (5.2) are identical to those
used in our previous investigations (Radko 2005, 2014). These terms are fully
consistent with the estimates based on the multiscale model (e.g. figure 2) and
therefore no adjustment of the flux-gradient module is necessary. The biharmonic
components in (5.2) are introduced using the multiscale-derived formulation (4.6) in
an attempt to correct unphysical features of the flux-gradient model. The governing
equations were integrated in time using a spectral model analogous to that employed
in Radko (2005, 2007). At each time step, the Fourier harmonics with wavenumbers
exceeding the cutoff scale for the validity of the multiscale model (mco) were set
to zero. The evolving temperature and salinity fields eventually produce convective
top-heavy regions (∂ρtot/∂z> 0), which is a generic and well-documented property of
fully developed thermohaline staircases (e.g. Krishnamurti 2009 and Stellmach et al.
2011). To represent dynamics of these regions, we implemented a simple iterative
procedure, which replaces the T–S profiles in convectively unstable intervals by the
uniform values of temperature and salinity corresponding to their spatial averages
over the extent of each convecting zone.

Figure 6 presents a typical solution of the proposed model. This simulation was
performed using the uniform background gradient with

∂Tbg

∂z
= 0.01 ◦C m−1, Rρ bg ≡

(
α
∂Tbg

∂z

)/(
β
∂Sbg

∂z

)
= 1.5. (5.3a,b)

The computational domain of Lz = 30 m was resolved by Nz = 1024 grid points and
a small-amplitude random perturbation was used as the initial condition for T and S.
The integration of the governing equations in time reveals three distinct evolutionary
stages. The first stage (t< 10 days) represents the linear growth of unstable modes, in
which the perturbation becomes dominated by the most rapidly amplifying mode with
the wavelength of 3 m. During the layering phase (10 days< t< 25 days), this mode
transforms into a well-defined staircase, consisting of 10 convecting layers, separated
by high-gradient double-diffusive interfaces. The subsequent evolution of the staircase
(t>25 days) is characterized by the sequential mergers of layers, which systematically
decrease the number of layers and increase their average height. After two years, the
system evolves to the stable configuration with only one layer within the limits of our
computational domain.

The merging dynamics revealed by figure 6 appears to be a rather common
evolutionary feature of thermohaline staircases (e.g. Zodiatis & Gasparini 1996;
Radko 2005; Radko et al. 2014). In particular, Radko (2007) proposed to classify all
layer-merging events into two categories: (i) B-mergers, characterized by strengthening
of stronger interfaces at the expense of weaker ones, which gradually erode and
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FIGURE 6. The evolution of the vertical temperature profile in the one-dimensional
parametric model. Note the spontaneous appearance of well-defined layers and their
subsequent mergers. For ease of comparison with oceanographic measurements, the
total temperature and depth are referenced to Ttot ∼ 10 ◦C and z ∼ −500 m – values
representative of staircases in the main thermocline.

eventually disappear; and (ii) H-mergers, associated with the vertical drift and
coalescence of high-gradient interfaces. In order to determine the prevailing merging
mechanism in our one-dimensional parametric model, in figure 7 we present the
Hovmöller (space–time) diagram of the vertical temperature gradient (∂Ttot/∂z).
Figure 7 clearly reveals that the modelled staircase evolves through a series of
B-mergers. While the interfaces tend to maintain their position, the T–S variations
across interfaces change significantly in time. As a result, the relatively weak
interfaces successively vanish. While B-mergers are perhaps more widespread (e.g.
Radko et al. 2014), there are known examples of H-merger-dominated evolution,
such as the coarsening of diffusive staircases in the presence of large-scale external
shear (Radko 2016b). An interesting and largely unresolved question concerns the
processes that ultimately arrest the mergers of layers and lead to the formation of
stable quasi-steady staircases. Radko (2005) suggested that the critical height of layers
beyond which mergers cease – and even the very existence of such equilibrium height
– is highly sensitive to the chosen parametrization of convection in well-mixed layers.
Therefore, our ability to formulate a reliable predictive theory for the equilibrium
height of layers is contingent on the availability of accurate convective laws, the
development of which is in itself a broad and active area of research (e.g. Grossmann
& Lohse 2000; Ahlers, Grossmann & Lohse 2009).

6. Discussion
A fundamental problem in double-diffusive convection theory concerns the

development of flux laws, representing the influence of primary double-diffusive
instabilities on larger scales of motion. So far, this research area was dominated by
the analysis and application of flux-gradient laws, which assume a unique relation
between the finger-driven T–S transport and vertical property gradients. The models
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FIGURE 7. The Hovmöller (space–time) diagram of the temperature gradient for the
experiment in figure 6. Note the sequential mergers of layers associated with the growth
of relatively strong interfaces at the expense of weaker interfaces which gradually decay
and eventually disappear (the B-merger mechanism).

based on flux-gradient laws are commonly used to explain the dynamics of secondary
double-diffusive structures, including staircases, thermohaline intrusions and collective
instability waves. While such models perform adequately in systems characterized
by clear scale separation between double-diffusive microstructure and phenomena of
interest, they become increasingly unreliable when the scale separation is limited.

The case in point is the theory of thermohaline staircases. The previous attempts
to conceptualize thermohaline layering on the basis of flux-gradient laws have
yielded promising but incomplete results. The flux-gradient model (Radko 2003;
Stellmach et al. 2011) revealed that smoothly stratified temperature and salinity fields
are susceptible to the so-called gamma-instability. It was shown that amplifying
gamma-instability modes eventually transform the background stratification into a
series of homogeneous convecting layers separated by thin high-gradient interfaces –
structures that are reminiscent of the observed thermohaline staircases. Unfortunately,
the success of the flux-gradient model in explaining the general origin of staircases is
substantially hindered by its inability to represent some of the most basic properties of
layering. For instance, the flux-gradient laws lead to the erroneous conclusion that the
growth rate of layering modes monotonically increases with increasing wavenumber.
This unphysical feature makes the flux-gradient model fundamentally unsuitable for
predicting the wavelengths of dominant layering modes and their growth rates.

The present investigation attempts to correct the apparent limitations of the
flux-gradient model. We explore the possibility that the vertical eddy fluxes of
heat and salt are not uniquely determined by local large-scale gradients but are
also affected by the non-uniformities of T–S stratification. To take these effects into
account, we employed the method of multiscale analysis, which involves rewriting
the governing equations using two sets of spatial and temporal variables. In our
case, the first set of variables represents microscale variability driven by primary
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double-diffusive instability and the second set describes much larger layering modes.
The key step in the development of multiscale theory is the derivation of solvability
conditions which describe the evolution of the system entirely on large scales. The
application of the multiscale method to the problem of thermohaline layering made
it possible to formulate the generalized flux laws, which take into account the effects
of the non-uniformity of large-scale stratification. Stability analysis of the doubly
stratified basic state using the generalized flux model confirmed its superiority to
the flux-gradient parametrization. The proposed model alleviated the complications
associated with the ultraviolet catastrophe of flux-gradient laws, making it possible to
predict the wavelength and time scale of dominant layering modes. These predictions
are consistent with – and can be used to rationalize – the layering dynamics revealed
by microstructure-resolving DNS. With regard to the analysis of the wavelength of
dominant layering modes, it should be noted that the results obtained do not resolve
completely the question of step-size selection in fully equilibrated staircases. The
staircase dynamics is confounded by layer-merging events, which commonly occur in
young evolving staircases and which systematically increase the average layer height.
Nevertheless, the determination of the initial step heights offers a starting point for
the analysis and places a lower bound on this elusive characteristic.

Finally, it should be emphasized that, while the specific questions addressed here are
narrowly focused on the problem of thermohaline layering, the broader implications
of our study could be more fundamental and far-reaching. The problems involving the
interaction between phenomena operating on dissimilar spatial and temporal scales
are most common in fluid mechanics – see, for example, the discussion in Mei
& Vernescu (2010). Numerous examples include the propagation of sound waves
through inhomogeneous fluids, the interaction of planetary-scale circulations in the
oceans and atmospheres with geostrophic turbulence, and the dynamics of porous
media. In each application, the principal theoretical challenge is the development of
physically consistent representations of small-scale effects on larger scales of motion.
Such problems are usually solved on a case-by-case basis. However, it is our belief
that the success of a fairly generic multiscale approach adopted in the present study
could further stimulate the development of analogous models in other fluid dynamical
applications.
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