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ABSTRACT: Arctic staircases mediate the heat transport from the warm water of Atlantic origin to the cooler waters of
the Arctic mixed layer. For this reason, staircases have received much due attention from the community, and their heat
transport has been well characterized for systems in the absence of external forcing. However, the ocean is a dynamic
environment with large-scale currents and internal waves being omnipresent, even in regions shielded by sea ice. Thus, we
have attempted to address the effects of background shear on fully developed staircases using numerical simulations. The
code, which is pseudospectral, solves the governing equations for a Boussinesq fluid with temperature and salinity in a
shearing coordinate system. We find that—unlike many other double-diffusive systems—the sheared staircase requires
three-dimensional simulations to properly capture the dynamics. Our simulations predict shear patterns that are consistent
with observations and show that staircases in the presence of external shear should be expected to transport heat and salt at
least twice as efficiently as in the corresponding nonsheared systems. These findings may lead to critical improvements in the

representation of microscale mixing in global climate models.
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1. Introduction

Double-diffusive staircases remain a subject of both aca-
demic interest and global climate significance. Staircases are
regions characterized by well-mixed convective layers sepa-
rated by sharp interfaces. The name ‘staircase’ derives from
the step-like appearance of temperature and salinity profiles
through these layers. These staircases appear throughout the
World Ocean (Foster and Carmack 1976; Neal et al. 1969;
Boldrin and Rabbitti 1990), but the focus of this paper will be
on the nature of the staircases in the Arctic thermocline. In the
Arctic Ocean, warm and salty Atlantic water enters the Arctic
basin and subducts beneath the colder and fresher waters of the
upper Arctic. In much of the Arctic, there are also Pacific
waters that sit below the mixed layer and above the Atlantic
layer. At the top of the Atlantic Water layer is a thermocline,
where the temperature and salinity increase with depth. In this
region, staircases have been observed by Neal et al. (1969) and
Neshyba et al. (1971) and more recently by Timmermans et al.
(2008), Stranne et al. (2017), and Shibley et al. (2017). Of in-
terest to climate studies, these staircases mediate the heat
transport from the warm water of Atlantic origin to the Arctic
halocline and therefore serve as an important process in de-
termining the heat flux from the Atlantic water upward to the
sea ice. Indeed, if all the heat from the Atlantic layer was
transported into the mixed layer, it would be more than enough
to melt the Arctic sea ice (Turner 2010). Thus, the heat and
salinity fluxes of these staircases are of great interest to the
scientific community. These have been characterized from a
number of different studies, including a compilation by Kelley
(1990) and more recently in a number of numerical experi-
ments by Flanagan et al. (2013). Modeling the staircase fluxes
properly is integral to understanding these systems, as shown
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by Bebieva and Timmermans (2019), who compared 1D models
with different transport dynamics to observations in Arctic wa-
ters and demonstrated the paramount significance of staircase-
induced mixing. Despite their importance in global models [see,
e.g., the experiment by Turner and Veronis (2004)], the origin
and behavior of these staircases are not well understood.

It is generally accepted that the formation and maintenance
of thermohaline staircases requires double-diffusive processes
(Stern 1969; Walin 1964). Double-diffusive convection (DDC)
occurs in a fluid with multiple components (hereafter assumed
to be temperature and salinity) with different molecular dif-
fusivities and in which the system is stably stratified in density.
The nondimensional parameter used to characterize double-
diffusive convection is the density ratio:
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where T* is the temperature, S* is the salinity, a* is the thermal
expansion coefficient, and B* is the haline contraction coeffi-
cient. As this paper will use both dimensional and nondimen-
sional quantities, we use an asterisk to denote dimensional
quantities. There are two primary forms of DDC: fingering
convection, which occurs for a system that has warm and salty
water overlying colder and fresher waters, and diffusive con-
vection, which occurs for the opposite case [see Radko (2013) for
more details]. The Arctic thermocline is of the latter configu-
ration, so that will be the focus here. A linear stability analysis of
an incompressible system reveals that water is unstable to dif-
fusive convectionif 1 < R;l = 1.14. Many experimental (Turner
and Stommel 1964; Marmorino and Caldwell 1976) and nu-
merical (Noguchi and Niino 2010) studies have shown that
double-diffusive staircases arise naturally from the smaller-scale
diffusive convection in this range. In the Arctic thermocline, the
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density ratio is measured to be in the range 2 = R;l =7 (Shibley
et al. 2017), well outside the range of linear instability. Thus, the
origin of these staircases has remained a mystery.

Several plausible mechanisms for the production of these
staircases have been proposed. In the presence of weak hori-
zontal gradients, a region with a large density ratio can be
susceptible to intrusions (Bebieva and Timmermans 2017).
These interleaving structures do resemble double-diffusive
staircases and may have the potential to slowly evolve into
true staircases over time. Additionally, it has been shown in
experiments that when such regions are heated from below,
staircases may generate spontaneously (Turner 1968), and such
behavior could arise naturally from the warm Atlantic water
entering the Arctic basin. Another possible model for the
Arctic thermocline is the thermohaline-shear instability, the
theory of which was developed by Radko (2019). In this in-
stability, the presence of vertical shear serves to extend the
region of instability to higher density ratios. Radko (2016) and
Brown and Radko (2019) showed that the addition of shear can
lead to the development of staircases in systems that would not
form staircases spontaneously in the absence of shear. The
addition of shear to the model is appropriate as steady currents
and internal waves both serve as ubiquitous sources of shear in
the World Ocean. However, the effects of shear on the prop-
erties of an existing staircase remain woefully unexplored.

We thus turn to determining the effects of shear on such
systems. A useful review of the effects of shear on diffusive
convection is given by Kelley et al. (2003), and we will describe
our system with similar terminology. We characterize the
magnitude of shear with the Richardson number:
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where du*/0z* is the vertical shear and N* is the Brunt—Viisild
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where p* is the density perturbation away from the reference
density p} and g* is the acceleration due to gravity. Typically, a
fluid with Ri < 1/4 is susceptible to shear instabilities, but much
higher Richardson numbers (~10) were sufficient to trigger the
thermohaline-shear instability (Radko 2016). Thus, it is im-
perative to characterize the effects of such shear on the prop-
erties of double-diffusive staircases. The effects of shear on
DDC have been studied numerically (Yang et al. 2016;
Zaussinger and Kupka 2018), analytically (Smyth and Kimura
2007; Konopliv et al. 2018), and experimentally (Linden 1974;
Wells et al. 2001, though these experiments were for the salt-
fingering case). In particular, Zaussinger and Kupka (2018)
were able to confirm the formation of layers in their bounded
shear flow problem for strongly stratified flows of Arctic rele-
vance (density ratios of 2-3).

This study uses numerical simulations to analyze the effect
of shear on Arctic staircases and on the heat flux from diffusive
convection. We find that models without shear underpredict
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thermal fluxes by a factor of 2 and haline fluxes by a factor of 3
for shear that is characteristic of the ocean. In addition, we also
show that two-dimensional simulations of this phenomenon
are inadequate to reproduce this result, showing instead a 25%
decrease in the fluxes for the sheared case. This dissimilarity
between two- and three-dimensional dynamics is in contrast to
typical double-diffusive systems, which are often well repre-
sented by two-dimensional studies (see, e.g., Flanagan et al.
2013). The inability of two-dimensional models to fully capture
the dynamics of the interaction between shear and convection
has also been reported for one-component fluids. For instance,
Lipps (1971) showed that vertical shear causes convection to
transport momentum upgradient, which steepens shear and
inhibits convection. This artifact, which is also realized in
double-diffusive two-dimensional simulations, is inconsistent
with observations of oceanographic staircases in the presence
of static shear (see, e.g., Simpson et al. 1979; Padman 1994),
which show that the convecting layers typically transport mo-
mentum downgradient.

This paper is organized as follows: section 2 contains the
governing equations and formulation of the problem. Our
nondimensionalization is also defined in section 2. The sim-
ulations are presented in section 3, which includes compari-
sons to observations, and we conclude with some discussion in
section 4.

2. Governing equations and formulation

We perform numerical simulations with a Fourier-based
pseudospectral code. This code is a modification of the model
(PADDI) commonly used in earlier studies of thermohaline
staircases (Traxler et al. 2011; Brown and Radko 2019). The
present version is designed to represent effects of external
shear. This model evolves temperature, salinity, and velocity
for an incompressible fluid with a linear equation of state in a
triply periodic domain. The quantities are evolved temporally
using a combined third-order Adams-Bashforth scheme and
backward differentiation formula. The pressure is calcu-
lated using the Patterson-Orszag method to ensure in-
compressibility (Orszag 1969). The code used in this work
uses a 3/2 dealiasing scheme. For details on the implementation
of all these methods and their use in spectral and psuedo-
spectral codes, the authors recommend a review of Canuto
et al. (2007).

These simulations integrate the Boussinesq governing
equations in the absence of planetary rotation (see, e.g., Baines
and Gill 1969):
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where u* = (u*, v¥, w¥) is the velocity, p* is the pressure, T* is
the temperature perturbation away from a background tem-
perature field given by 97 */az*z* + T, S* is the salinity per-
turbation relative to the background salinity field given by
aS™/az*z* + Si, v* is the dynamic viscosity, and % and « are
the diffusivities of temperature and salinity, respectively. The
background temperature and salinity gradients are assumed to
be predetermined and constant. The choice of excluding the
effects of planetary rotation is justified by the small scales of
convective cells in the staircase—typically on the order of 2—
4m. Carpenter and Timmermans (2014) did investigate the
effects of externally imposed rotation on diffusive staircases
and found that—though they may be of importance for some
deep staircases in the Arctic—the effect of rotation is weak for
the staircases of the upper thermocline, which is the focus of
this discussion. We will use X, y, and Z to denote the unit vectors
in the x, y, and z directions, respectively. The density pertur-
bation p* away from the uniform reference value pj is de-
fined as

aT* aS*
p* —p’g[a* (T*Jr{?z—*z*) + B* (S* +Ez*):| . 8)

This system can be nondimensionalized using the typical
nondimensionalization for double-diffusive problems (see,
e.g., Radko 2013). We let the unit of length [/] be defined as

1/4

K7V

(] )

g*a*

The reader may recognize that the associated thermal Rayleigh
number for a convective layer is equal to its height in [/] to
the fourth power. We define the time unit as [t] = [I]Z/K";, the
temperature unit as [T] = [[]|97T*/9z*|, the salinity unit as [S]
= (a*/B*)[T], the density unit as [p]=p}a*[T], and the
pressure unit as [p] Ep?;K’;V*/[I]Z. For any dimensional re-
sults, the values of these units are taken to be [/] = 0.01 m,
[] = 7145, [T] = 1 X 107*C, and [S] = 6.25 X 10~* psu,
which are typical for the ocean, and the thermal and haline
perturbations are taken relative to T, = 0°C and S; = 35psu,
respectively. Additionally, for the purpose of calculating
the fluxes, the density is assumed to be pf =10°kgm~?, and
the specific heat capacity of water is assumed to be
ct=4200Tkg '°C"'. This results in the following nondi-
mensional equations:

1 /ou N 2
—(—+u- =-Vp+(T—-9S)z+
Pr(at u Vu) Vp+(T - 8)z+ Vu, (10)
%+quT—W=V2T, an
‘2—f+ u-VS—wR;! =7V, (12)
V-u=0, (13)
p=—(T-2)+(S—Ry'z), (14
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where Pr=v*/k% is the Prandtl number, 7= «¥/x% is the in-
verse Lewis number, and Ry = [a*(dT*/9z*)]/[B*(95/0z*)] is
the density ratio of the background gradients. In this work,
we consider only diffusive convection, where 47 */dz* <0
and 85¥/9z* <0.

To simulate the effects of external shear, a linear back-
ground shear flow is introduced, given by ux, where

u=Az, (15)

where A is the constant nondimensional shear rate. We can
express A in terms of the background Richardson number, Ri:
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To introduce this background velocity, the system of governing

equations is transformed into the sheared frame of reference,
denoted with tildes:

(16)
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We then decompose the velocity field into the background
component and the perturbation in the sheared reference
frame iz as u=u + Azx. Thus, the governing equations become
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where the V operator is still defined in terms of the original,
nonsheared system:

9 9 0 d 9 0 ~d
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Our spectral solutions to the governing equations then have
the form

(25)
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where Ny, N,, and N, are the total number of Fourier modes in
the %, y, and 7 directions, and k,, k,, and k, are the lowest,
nonzero wavenumbers in the domain, which is of size (I'y, T'),
I',). The use of this method was introduced by Rogallo (1981)
for the purpose of investigating homogenous turbulence and is
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FIG. 1. The initial temperature and salinity profiles for a simulation with R;l =5. The inset shows a magnified view
of the high-gradient region near the interface.

described in detail in Canuto et al. (2007). Note that the
Fourier modes are periodic in the Z direction, which is sheared
with the mean flow. This proves to be problematic for inte-
grating the system for an extended time as the grid will deform
substantially. To address this problem, we introduce a re-
mapping step as described in Canuto et al. (2007). When the
simulation has evolved such that I',A 7T is an integer multiple of
I, (i.e., the top-left point of the domain is directly over the
bottom right), each (I, m, n) mode is shifted in phase by mul-
tiplying by exp[—ilk,At(z — Zmia)], where zpmiq is the vertical
midpoint of the domain, which serves to reorient the simula-
tion to be vertical once again.

Each simulation is initialized by a single-layer staircase.
Because the domain is vertically periodic, this effectively
describes a staircase of infinite vertical extent with layers the
size of the domain. The layer consists of a uniform temperature
and salinity (seeded with small perturbations) with a high-
gradient interface. This interface is smoothed slightly to avoid
numerical issues, as shown in Fig. 1. Each simulation is
300 units tall (and thus, the thermal Rayleigh number is 8.1 X
10%), which is equivalent to a dimensional height of 3 m. This
is a reasonable choice for typical layer height in the upper
thermocline of the Arctic, as shown in Shibley et al. (2017),
who reported the results of an extensive survey of mean layer
heights throughout the Arctic, finding them to typically be in
the range of 0.5-3 m. The simulations are not sensitive to the
exact structure of the initial conditions, as long as the step
structure is sufficiently sharp.

We performed a total of eight three-dimensional simulations
with density ratios of Ry = [3, 5, 7] and with and without a shear
characterized by Ri = 10. Six of these simulations were per-
formed with 7 = 0.1, and two with 7 = 0.04 for Ry, = 5, with and
without shear, to accommodate computational limitations; our
Prandtl number is chosen to be 10. This allows us to simulate
parameters characteristic of the upper Arctic thermocline,
which sees density ratios in the range 2-7 and has Richardson
numbers of approximately 10 on average (Cole et al. 2014).
The true value of 7 in the ocean is closer to 0.005; however,
because the compositional diffusion length scale is the smallest
physical scale in the system, it determines our minimum reso-
lution. Other studies (see, e.g., Kimura and Smyth 2007,
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Carpenter et al. 2012) have shown that lower values of 7 behave
in a qualitatively similar way but tend to have higher fluxes
than higher 7 simulations. Our simulations have a domain that
spans 300 X 150 X 300 units in x, y, and z, respectively, resolved
by 768 X 384 X 1536 grid points. The increased number of grid
points in the vertical direction is designed to account for the
grid deformation caused by the shearing coordinate system.
There are some limitations of this setup in addition to the
typical implications of incompressible studies of microstruc-
ture in the absence of planetary rotation. In particular, because
the perturbations are periodic in the vertical direction, this
constrains the height of the individual layers to be—at max-
imum—3 m, and this cannot change during the simulation as
one might naturally expect the layers to evolve. Thus, there is
no means for using this manner of simulation to address the
typical scales of layers in the Arctic; however, the setup is
reasonable for evaluating the flux through a staircase with a
fixed step height.

3. Results

The simulation parameters are tabulated in Table 1 along
with the time-averaged turbulent fluxes and the time-averaged
thicknesses of the interface, which are defined in section 3a.
Though the interface thicknesses are given in nondimensional
units, they can also be interpreted as being in centimeters for
oceanic values.

a. Turbulent fluxes of heat and salt

We quantify the turbulent heat and salt transport by taking
the product of the vertical velocity and the thermal and haline
perturbations and average that quantity over space and time.
These quantities are defined as follows:

1 1+At

F ()= EJ,,A, (wT)dr, @7
1+ At

F(1)= E.[H,<WS> ar, (28)

where the angled brackets indicate the average over the entire
physical domain of the simulation and A¢ defines the averaging
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TABLE 1. The list of simulations and their associated turbulent fluxes and interfaces thicknesses.

Ry} Ri T Fr Fs Fi(Wm™?) Fsx 1077 [m (psu) s 1] hr hs h, h, hylhg
3 0 0.1 19.45 7.61 0.11 0.67 14.10 9.05 10.11 — 1.56
3 10 0.1 3747 16.50 0.22 1.44 8.30 6.27 5.58 22.60 1.32
5 0 0.1 12.88 4.80 0.08 0.42 16.54 9.90 9.44 — 1.67
5 10 0.1 25.12 14.46 0.15 1.27 10.22 7.22 6.71 24.92 1.42
5 0 0.04 21.35 5.59 0.13 0.49 11.64 6.06 5.39 — 1.92
5 10 0.04 66.49 33.01 0.39 2.89 5.86 4.03 3.74 17.14 1.46
7 0 0.1 10.91 3.99 0.06 0.35 21.18 12.30 22.87 — 1.72
7 10 0.1 18.17 10.96 0.11 0.96 14.33 10.11 9.64 31.49 1.42

window, here set to be 10. The temporal average is used be-
cause the fluxes—in particular, the haline flux—vary strongly
in time. The nondimensional turbulent fluxes are related to the
Nusselt numbers Nuy and Nug (the nondimensional ratio of
total flux to diffusive flux) by

and haline flux, F5'= Fg[[][S]/[¢], respectively. In addition, we are
also interested in characteristic fluxes through the convective
layers. For this, we take an average from ¢ = 50 to ¢ = 250, which
we will denote with an overbar as Fr and Fs for the thermal and
haline fluxes, respectively. The choice of this time range is de-
signed to allow for enough time to develop overturning convec-

Nu, -1=Fp, 29 tion and enough convective overturns to develop substantial

Fy statistics. We can estimate the overturning time by taking the ratio

Nug—1= R (30)  of the length traversed by a convective overturn (approximately
0

and the nondimensional fluxes can be converted into their di-
mensional forms as the turbulent heat flux, Ff= ey Fr[TVH,

*

[s]

twice the initial height of a convective cell, which is 300) and di-
viding by the characteristic velocity (approximately 100), which
yields an overturning time of 6 time units. Thus, beginning our
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t

FI1G. 2. The (top) thermal and (bottom) haline fluxes of the three-dimensional Ri = 10 cases
(solid lines) and the Ri =  cases (dashed lines). These fluxes are calculated using running
averages using a window 20 time units wide.
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FIG. 3. A typical profile of the sheared simulation with Ry = 5 showing the (top left) temperature field, (top right)
salinity field, (bottom left) local Richardson number, and (bottom right) u field. The profiles are taken at ¢ = 68,
after the convective onset has stabilized. The initial conditions are shown as dashed lines. Note that while the
simulated domain extends from 0 to 300 in z, it is possible to use the periodicity of the perturbations to construct the

field below the interface as well.

window at ¢+ = 50 ensures at least 8 convective overturns and
ending at ¢+ = 250 provides at least 30 convective overturns to
establish a reasonable statistical average.

The short-window flux averages are shown in Fig. 2 for both
the sheared and the nonsheared cases. Early times (¢ < 20) are
characterized by the development of overturning convection.
The temperature diffuses across the interface more rapidly
than the salinity, i.e., lowering the temperature at the top of the
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layer and raising the temperature at the bottom (as seen, for
example, in Fig. 3). This has the effect of raising the density at
the top of the layer, resulting in the development of an unstable
boundary at the interface, which then begins to overturn. As
the simulations evolve, diffusive processes dominate at the
interfaces, weakening the gradients of temperature and salin-
ity; however, convection dominates in the layers, steepening
the interfaces. These processes occur at different rates for
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FIG. 4. A volume rendering of the salinity field at the interface
for the simulation with 7 = 0.04, R, 1'=5, and no externally im-
posed shear. The interface is located midway through the figure,
and the opacity is chosen to highlight the interface.

temperature and salinity due to the differences in diffusivity
and buoyancy of the two fields. During this time, the simulation
fluxes grow substantially for both cases to comparable values
for a given density ratio. This behavior is similar for both
sheared and nonsheared flows. The simulations with lower
density ratio (which are therefore closer to convective insta-
bility) show larger initial fluxes.

After the onset of convective instability, the behavior of the
sheared and nonsheared systems show substantial differences
from ¢ = 20 to t = 50. The nonsheared simulations show a brief
decrease in both thermal and haline fluxes by nearly a factor of
2 from the peak; however, the haline fluxes of the cases with
Ri = 10 continue to grow until about ¢ = 50, and the weakening
of the thermal fluxes is lesser than in the nonsheared case.
Conversely, the nonsheared simulations show decreasing
fluxes from the peak near ¢ = 20 to ¢ = 50. This may be due to
differences at the interface between the layers, the dynamics of
which are quite different between the two cases, a fact that will
be explored in more depth in section 3b. The interface must
support the same net transport (diffusive plus turbulent) as the
convective region. In the nonsheared case, the interfacial
transport is largely diffusive in nature, but the additional appli-
cation of shear could excite shear instabilities. The structure of
the layer is shown in Fig. 3, which illustrates several horizontally
averaged quantities, denoted with angled brackets and a sub-
script 4. We define the interface thickness of a generic field g as

9q
—|_‘dz
q J q|’
99 . 99
Jdz 0z

€2))

where dg/dz represents the vertical derivative of the back-
ground field (e.g., 9T/9z = —1,88/9z = =R, ', dploz =1 — R, ",
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and 0u/0z = A). These locations are shown in Fig. 3 with black
dotted lines. The time-averaged thickness for each simulation
is provided in Table 1. The thermal boundary layer is thicker
than the haline boundary layer in all cases. This is consistent
with the observations by Sommer et al. (2013), which had
comparable density ratios—even though the observed stair-
cases were in Lake Kivu rather than the Arctic—and the
simulations by Carpenter et al. (2012). We also investigate
the ratio of these and find it is typically around 1.5, with the
sheared simulations showing substantially sharper thermal in-
terfaces by up to nearly a factor of 2. The ratio of iz to hg
decreases in the sheared simulations by between 15% and
25%, although there does not appear to be a systematic trend
with density ratio.

Close inspection of the properties of the interface reveal that
it is subject to the Holmboe instability. This instability was
theorized by Holmboe (1962) for a stably stratified fluid with a
finite-width velocity interface. Such a system—even outside of the
requisite conditions of the Kelvin—-Helmholtz instability—can
spontaneously develop and amplify traveling waves on this
interface. The conditions for this amplification can be char-
acterized in terms of the ratio between the thicknesses of the
velocity interface and the density interface, A,/h,, and the
Richardson number at the interface. We define a local
Richardson number as

g* dp* oT aS
Py Z _ 0z 9z

L oux\ ou\’
(61*> <£>
and plot the horizontal average of this quantity in Fig. 3 to
construct a Richardson number profile, finding a typical value
of 3 at the interface. This is associated with an averaged shear
of 5.84 for Ry =5, Ri = 10, which becomes roughly 0.008 st
in dimensional units. Polyakov et al. (2019) measured the shear
values in the interfaces for staircases in the Arctic ocean,
finding shear on the order of 0.01s™', which is remarkably
consistent with our results even though their work focused on
intrusive processes, which may have different dynamics than
the sheared staircase considered here. Under such circum-
stances, the Holmboe instability can only be dominant for
hulh, > 2 (see, e.g., Alexakis 2005; Smyth and Carpenter 2019).
For all the shearing simulations in this study, as listed in
Table 1, this ratio is typically 4, well within a reasonable range
to excite this instability and substantially altering the nature of
the double-diffusive interface from the case without shear.
After t = 50, all simulations achieve a steady behavior (see
Fig. 2), which we use to characterize the fluxes of these systems.
Taking the ratio of Fr(Ri=10) to Fr(Ri=«) and of the
analogous haline fluxes, we find in general that both fluxes are
substantially increased in the sheared case. The thermal flux for
the sheared cases with 7 = 0.1, is typically a factor of 2 higher
than the case without shear, ranging from 1.93 for R, = 3,1.95
for Rj! = 5,10 1.66 for Ry! = 7. The increase in haline fluxes is
larger, ranging from 2.17 for R;! =3, 3.01 for R;! =5, to 2.75
for R;! =7. The fluxes do appear to slowly decrease in time,
which is due to the slow diffusive smoothing of the interface.

+ R(;l) | o
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FIG. 5. A volume rendering of the salinity field at the interface
for the simulation with 7 = 0.04, R;! =5, and externally imposed
shear. The color and opacity scales are identical to those of Fig. 4.

b. Morphology

We show the morphology of the interface in Figs. 4 and 5,
which reveal clear differences between the sheared and non-
sheared cases. The sheared cases generally have anisotropic
structures that are extended in the y direction (the cross-stream
direction) but have short wavelengths in the x direction. A
relevant comparison can be made to Blass et al. (2019), who
simulated single-component convection in the presence of
shear. They found—in their shear-dominated regime—the
development of large-scale convective rolls with strong signa-
tures at the interfaces, but those are quite distinct from the
small-scale features found here, which are likely attributed to
the Holmboe instability instead. The development of these
small-scale structures substantially perturbs the interface, as is
evident in Fig. 5. The interfaces in the nonsheared case show
almost no motion; the interfaces in the sheared case appear to
have small wave structures. Of greatest relevance, the motions
across the interface permit greater transport through the in-
terfaces themselves because the Holmboe waves distort the
diffusive interface, which produces a larger surface area for
diffusion. We attribute the limiting factor of the system to
the interface because the mixing time scale of the interface
(primarily diffusive) is much longer than that of the con-
vective layer (primarily advective). However, it is true that
shear serves to both strengthen the convection and promote
more diffusive flux through the interface, and thus it is
difficult to confidently attribute the increased fluxes pri-
marily to any individual region of the system. The increase
in convective transport in the sheared simulations is re-
vealed (Fig. 5) by the more active small-scale turbulence.
Though this behavior is generally consistent with the
“shear-dominated regime”” described by Blass et al. (2019), it is
likely that the effects seen here are unique to the staircase
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FIG. 6. Slices of the density field [S— T — (R;' — 1)z] of the
simulations with 7 = 0.04, R;! = 5 both (left) without and (right)
with externally imposed shear. These slices are taken near the ends
of the simulations, where ¢ ~ 250. (top) The side view, where we
have only focused on the 40 length units around the interface, and
(bottom) the top view at z = 0.

setup as the boundaries of their work would not be subject to
the Holmboe instability.

We also show the p field in Fig. 6. In this figure, the structure
of the interface is more clearly shown in both the sheared and
nonsheared cases. The former case highlights a much more
defined interface, where the crests of the Holmboe instability
appear starkly against the typical interface structure. The latter
case shows a diffusive interface with only small density per-
turbations above and below. It is perhaps surprising that the
more turbulent interface is sharper in density, but this is a
common feature in double-diffusive systems, where turbulence
tends to mix density upgradient and sharpens density inter-
faces. The interface perturbations appear to favor extended
structures in the y direction with shorter extents in the x di-
rection, giving the instability a quasi-two-dimensional struc-
ture; however, it is not possible to approximate this system in
two dimensions, as is discussed in the appendix.

Figure 7 shows the inherent properties of the interface itself.
In this, we include the total flux of buoyancy averaged over the
interface, which we define as the region where the vertical
gradient of density is greater than half its maximum, a region a
few dimensionless length units thick. We designate the spatial
average over this region with angled brackets and a subscript i.
The buoyancy flux is given by the following (in dimensional
and nondimensional forms):

as* _aS*
ok Gk gk | R Qo
F'=g*B*p} {w S§* — i (az* + az*>}

% Tk
wT—x?(aT +8T >:|,
Jz*  dz*

Fb:Pr(wsfq-a—SJm-Rg‘7wT+£71). (34)
0z a9z

(33)

— g¥yEpE
gap()

The total fluxes include both the turbulent fluxes and the dif-
fusive fluxes. Note that while the average of 97/dz over the
entire domain is zero by construction, such is not the case
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FIG. 7. (top) The total flux of temperature averaged over the interface for each simulation.
The sheared simulations are plotted with solid lines, and the nonsheared simulations with
dashed lines. Note that the fluxes of all the nonsheared simulations are very small by com-
parison and so are difficult to distinguish on this plot because they overlap near zero. (bottom
left) The horizontally averaged density ratio profile for each simulation, using the same color
and dashed scheme as in the flux figure. Note that the figure is zoomed in on the 40 length units
around the interface. (bottom right) The horizontally averaged Richardson number profile
for the sheared cases plotted in the same manner as the density ratio.

locally. Both the sheared and nonsheared simulations are
plotted, but the sheared interface shows total fluxes that are
much larger than the case without shear. This is due to the
nature of the way the Holmboe waves (as described in
section 3a) transport material through vertical oscillations,
which is inherently a reversible mixing process that leads to
very little net transport across the interface even though the
instantaneous transport appears to be much larger than the
stable interface from the case without shear.

We also show horizontally averaged profiles for the density
ratio and the Richardson number in order to characterize the
properties of the interfaces across the simulations. Here, we
use the local definition of the density ratio Rp‘l. The density
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ratio at the interface tends to be approximately the same as the
global background density ratio. However, the sheared simu-
lations do show higher density ratios, which is needed for the
sharper density interfaces to exist. There do not appear to be
many systematic changes in the Richardson number at the in-
terface, which is typically in the range of 2-3, regardless of the
global stratification of the system. This number is substantially
less than the global value of the Richardson number, which is
10 for all the sheared cases. The interfaces do appear thicker in
the cases with larger density ratios, and this behavior is also
apparent in the trend of 4 in Table 1. This is consistent with
the expected behavior of more stable stratification leading to
weaker convection and therefore thicker interfaces.
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FIG. 8. Turbulent kinetic energy production at time ¢ =~ 100 for cases with R;! =5and Ri =
10 in (left) three dimensions and (right) two dimensions. The contributions due to buoyancy
(blue), local shear (cyan), and viscous dissipation (dotted green) are averaged horizontally

shown as a function of the vertical coordinate.

c. Energetics

To address the physical reasoning for the increase in stair-
case fluxes with shear, we turn to arguments of energetics. The
contributions of various physical processes to the production
and dissipation of kinetic energy can be determined by taking
u - (9/at)u from Eq. (10):

19,

u +1f1
2

-
5= Vﬁzz—Wﬁ£+Pr[—V~ﬁp

+w(T —8)+1u- V], (35)
where we have generalized % to be a quasi-steady function of z
that is evaluated by taking the horizontal average of our sim-
ulation. This choice permits us to identify sources of kinetic
energy caused by local shear, which is largely concentrated
near the interfaces. The sources and sinks of the turbulent ki-
netic energy are given as follows: —widu/dz is the effect on
kinetic energy by the local shear, —PrV - up is the reduction of
kinetic energy by work done by the fluid, Prw(T — S) is the
production of kinetic energy by buoyancy, and Prii - Vu is the
dissipation due to viscous effects.

To evaluate the energetics of the system, we take the hori-
zontal averages of these terms and present them in Fig. 8. We
also include a comparison in this figure to two-dimensional
simulations, which are described in more detail in the
appendix. However, it is evident from both the energetics and
the general behavior of the two-dimensional simulations that
these two setups are qualitatively different and that two-
dimensional work is insufficient to simulate this phenome-
non. In the three-dimensional case, it can be seen that shear
promotes the production of turbulent kinetic energy every-
where, but in the two-dimensional case, the shear serves to
counteract the production caused by buoyancy. In energy
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balance in the three-dimensional case, this kinetic energy is lost
to dissipation, as is expected. In the two-dimensional case,
however, the buoyancy produces kinetic energy, which is re-
duced in roughly equal measure by the shear. This effect shows
that the shear is, in effect, using the kinetic energy produced by
buoyancy in order to transport the velocity upgradient in the
simulation. This result was found for general two-dimensional
convection in the presence of shear by Lipps (1971) and is
described in more detail in the appendix.

4. Conclusions

Vertical shear affects the heat flux through the Arctic ther-
mohaline staircases. The thermal and haline fluxes are shown
to increase by approximately a factor of 2 between cases with
and without shear for a Richardson number of 10. We attribute
this effect to structural changes in the interfaces of this system,
which show a strong concentration of shear, consistent with the
observations by Polyakov et al. (2019). We have found that our
simulations produce comparable shear values and patterns as
in the ocean. These interfaces are stable to the traditional
double-diffusive instability with density ratios of 3-10 and to
many shear instabilities with Richardson numbers of 2-3.
However, we do see the development of a Holmboe instability
at the interface, which shows features that are extended in the
cross-stream direction but are smaller scale in the streamwise
direction.

Estimates of heat transport based on laboratory-derived flux
laws suggest that double diffusive convection adds approxi-
mately 0.22 W m ™2 heat transport to the sea ice in the Canadian
Basin (Timmermans et al. 2008), but this is based on estimates
from Kelley (1990), which do not include the effects of shear.
Nonsheared direct numerical simulations by Flanagan et al. (2013)
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FIG. Al. The thermal fluxes of the two-dimensional cases, with Ri = o« in black, Ri = 40 in
red, Ri = 10 in orange, and Ri = 2.5 in yellow. These fluxes are calculated using running
averages using a window 20 time units wide. (top) Simulations with a density ratio of 3,

(middle) those with a density ratio of 5, and (bottom) those with a density ratio of 7.

suggest that these values may underestimate the heat flux by a
factor of 2. The addition of shear’s contribution to that heat
flux, depending on the shear regime, may be significant enough
to increase that value by an additional factor of 2. According to
Kwok and Untersteiner (2011), the addition of approximately
1Wm™? can explain why the sea ice is melting at its current
rate. The shear-induced intensification of double-diffusive
transport revealed by our study can account for a substantial
fraction of the required heat flux with the lowest 7 simulation
with shear showing a heat flux of 0.4 W m™~2. Extrapolating to
oceanographic values of 7, assuming a simple power law in
terms of 7, predicts fluxes in excess of 1 W m 2. Admittedly, this
is a crude estimate based only on our R;! =5 simulations and
does not take into account the potential effects of intermittent
shear, but it is suggestive that the effect of shear may be sufficient
to compensate for all of the missing flux in this region. Since it is
the goal of every environmental prediction system to present the
most accurate forecast, the diapycnal mixing driven by a com-
bination of shear and diffusive convection should be taken into
account in operational and climate Arctic models. The results
from this paper may assist in a more accurate prediction of when
the Arctic may be sea ice free.

This research promotes several topics for future work. One
additional consideration is the effect of 7, which Kimura and
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Smyth (2007) showed could have a quantitative impact on the
final fluxes, with their 7 = 0.04 simulations having half the
thermal flux of their 7 = 0.01 simulation. Thus, it is possible
that decreasing 7 for our three-dimensional simulations to 7 =
0.01 could potentially increase these fluxes and may have an
effect on the ratio of the flux with shear to that without.
Another possible avenue of future work is the possibility of
strong shear disrupting thermohaline staircases, which has
empirical support from observations (Padman 1994; Guthrie
et al. 2017). Such analysis would require investigating the
three-dimensional simulations at a variety of Richardson
numbers to determine the conditions of staircase collapse. The
analysis of the effects of time-dependent shear, associated with
internal waves, also represents an intriguing avenue of
investigation.
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FIG. A2. The horizontally averaged velocity profile for all simulations with R;! = 5: (left) three-dimensional
simulations and (right) two-dimensional simulations. The color coding of the lines matches that of Fig. Al. The

dashed lines show the initial linear shear profile.

have contributed to the research results reported within this
paper (http://www.tacc.utexas.edu).

Datasets produced in this study are available in Mendeley
Data: Brown, Justin (2020), “Diffusive Staircases in Shear:
Data from Numerical Simulations,”” Mendeley Data, V2, doi:
10.17632/h87kvdzkv2.2.

APPENDIX

Two-Dimensional Simulations

We performed twelve two-dimensional simulations for all
possible combinations of the density ratios of Ry = [3, 5, 7] and
Richardson numbers of Ri = [«, 40, 10, 2.5], where a
Richardson number of % represents a nonsheared case. This
allows us to characterize a larger range of physical parameters
and permits us to use a higher resolution in order to achieve
7 of 0.005, roughly consistent with the Arctic. Most of these
simulations have 1024 Fourier modes on each side and
resolve a domain that is 300 length units in the horizontal x
direction and in the vertical z direction. The simulations with
Ry = 3 proved to have more fine-scale features and so were
resolved with 2048 Fourier modes on a side. In these cases, the
factor limiting vertical resolution is the compositional diffusion
scale rather than the grid deformation.

In Fig. Al, we investigate the trends of the long-window
thermal and haline flux averages at equilibrium as a function of
the density ratio and the Richardson number. The trend of
fluxes as a function of density ratio has been well understood
(see, e.g., Flanagan et al. 2013) with larger density ratios gen-
erally having lower fluxes. This phenomenon is due to larger
density ratios (for a given thermal gradient) indicating a more
strongly stratified system, which is thus less susceptible to
convection. Unlike in the three-dimensional case, the addition
of shear in the two-dimensional case can lower the fluxes by
about 25%. As we will show, this effect is due to the interaction
of convection and shear in different dimensionality, a subject
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initially broached by Lipps (1971). And we can demonstrate
this behavior most clearly by investigating the velocity struc-
ture in both systems.

Figure A2 shows the general structure of the velocity profile
as a function of depth in all simulations with R; ! = 5. The main
qualitative difference between two- and three-dimensional
simulations is that the velocity within a layer is well mixed in
the three-dimensional case, which reduces the shear inside the
convective layer, but the opposite happens in two dimensions.
The two-dimensional case tends instead to steepen shear
within the convective layer, which tends to weaken and can
reverse the shear at the interface. This is inconsistent with
observations of shear in staircase interfaces, such as those of
Polyakov et al. (2019). This turns out to be a general property
of two-dimensional convection, which is shown most clearly in
Lipps (1971), who displays how the addition of shear has a
tendency to stabilize convection by upgradient transport of
momentum within a convective region. It is thus suggestive that
the regime of turbulence as measured in studies like those of
Padman (1994) and Polyakov et al. (2019) is only achieved in
three-dimensional studies, and while the response of two-
dimensional staircases to the effects of shear are academically
interesting, it holds little practical value in oceanography.
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