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ABSTRACT: Arctic staircases mediate the heat transport from the warm water of Atlantic origin to the cooler waters of

the Arctic mixed layer. For this reason, staircases have received much due attention from the community, and their heat

transport has been well characterized for systems in the absence of external forcing. However, the ocean is a dynamic

environment with large-scale currents and internal waves being omnipresent, even in regions shielded by sea ice. Thus, we

have attempted to address the effects of background shear on fully developed staircases using numerical simulations. The

code, which is pseudospectral, solves the governing equations for a Boussinesq fluid with temperature and salinity in a

shearing coordinate system. We find that—unlike many other double-diffusive systems—the sheared staircase requires

three-dimensional simulations to properly capture the dynamics. Our simulations predict shear patterns that are consistent

with observations and show that staircases in the presence of external shear should be expected to transport heat and salt at

least twice as efficiently as in the corresponding nonsheared systems. These findingsmay lead to critical improvements in the

representation of microscale mixing in global climate models.
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1. Introduction

Double-diffusive staircases remain a subject of both aca-

demic interest and global climate significance. Staircases are

regions characterized by well-mixed convective layers sepa-

rated by sharp interfaces. The name ‘‘staircase’’ derives from

the step-like appearance of temperature and salinity profiles

through these layers. These staircases appear throughout the

World Ocean (Foster and Carmack 1976; Neal et al. 1969;

Boldrin and Rabbitti 1990), but the focus of this paper will be

on the nature of the staircases in the Arctic thermocline. In the

Arctic Ocean, warm and salty Atlantic water enters the Arctic

basin and subducts beneath the colder and fresher waters of the

upper Arctic. In much of the Arctic, there are also Pacific

waters that sit below the mixed layer and above the Atlantic

layer. At the top of the Atlantic Water layer is a thermocline,

where the temperature and salinity increase with depth. In this

region, staircases have been observed by Neal et al. (1969) and

Neshyba et al. (1971) and more recently by Timmermans et al.

(2008), Stranne et al. (2017), and Shibley et al. (2017). Of in-

terest to climate studies, these staircases mediate the heat

transport from the warm water of Atlantic origin to the Arctic

halocline and therefore serve as an important process in de-

termining the heat flux from the Atlantic water upward to the

sea ice. Indeed, if all the heat from the Atlantic layer was

transported into themixed layer, it would bemore than enough

to melt the Arctic sea ice (Turner 2010). Thus, the heat and

salinity fluxes of these staircases are of great interest to the

scientific community. These have been characterized from a

number of different studies, including a compilation by Kelley

(1990) and more recently in a number of numerical experi-

ments by Flanagan et al. (2013). Modeling the staircase fluxes

properly is integral to understanding these systems, as shown

by Bebieva and Timmermans (2019), who compared 1Dmodels

with different transport dynamics to observations in Arctic wa-

ters and demonstrated the paramount significance of staircase-

induced mixing. Despite their importance in global models [see,

e.g., the experiment by Turner and Veronis (2004)], the origin

and behavior of these staircases are not well understood.

It is generally accepted that the formation and maintenance

of thermohaline staircases requires double-diffusive processes

(Stern 1969; Walin 1964). Double-diffusive convection (DDC)

occurs in a fluid with multiple components (hereafter assumed

to be temperature and salinity) with different molecular dif-

fusivities and in which the system is stably stratified in density.

The nondimensional parameter used to characterize double-

diffusive convection is the density ratio:

R21
r 5

b*
›S*

›z*

a*
›T*

›z*

, (1)

whereT* is the temperature, S* is the salinity, a* is the thermal

expansion coefficient, and b* is the haline contraction coeffi-

cient. As this paper will use both dimensional and nondimen-

sional quantities, we use an asterisk to denote dimensional

quantities. There are two primary forms of DDC: fingering

convection, which occurs for a system that has warm and salty

water overlying colder and fresher waters, and diffusive con-

vection, which occurs for the opposite case [seeRadko (2013) for

more details]. The Arctic thermocline is of the latter configu-

ration, so that will be the focus here. A linear stability analysis of

an incompressible system reveals that water is unstable to dif-

fusive convection if 1#R21
r # 1:14.Many experimental (Turner

and Stommel 1964; Marmorino and Caldwell 1976) and nu-

merical (Noguchi and Niino 2010) studies have shown that

double-diffusive staircases arise naturally from the smaller-scale

diffusive convection in this range. In the Arctic thermocline, theCorresponding author: Justin M. Brown, jmbrown2@nps.edu
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density ratio is measured to be in the range 2#R21
r # 7 (Shibley

et al. 2017), well outside the range of linear instability. Thus, the

origin of these staircases has remained a mystery.

Several plausible mechanisms for the production of these

staircases have been proposed. In the presence of weak hori-

zontal gradients, a region with a large density ratio can be

susceptible to intrusions (Bebieva and Timmermans 2017).

These interleaving structures do resemble double-diffusive

staircases and may have the potential to slowly evolve into

true staircases over time. Additionally, it has been shown in

experiments that when such regions are heated from below,

staircases may generate spontaneously (Turner 1968), and such

behavior could arise naturally from the warm Atlantic water

entering the Arctic basin. Another possible model for the

Arctic thermocline is the thermohaline–shear instability, the

theory of which was developed by Radko (2019). In this in-

stability, the presence of vertical shear serves to extend the

region of instability to higher density ratios. Radko (2016) and

Brown andRadko (2019) showed that the addition of shear can

lead to the development of staircases in systems that would not

form staircases spontaneously in the absence of shear. The

addition of shear to the model is appropriate as steady currents

and internal waves both serve as ubiquitous sources of shear in

the World Ocean. However, the effects of shear on the prop-

erties of an existing staircase remain woefully unexplored.

We thus turn to determining the effects of shear on such

systems. A useful review of the effects of shear on diffusive

convection is given by Kelley et al. (2003), and we will describe

our system with similar terminology. We characterize the

magnitude of shear with the Richardson number:

Ri5
N*2�
›u*

›z*

�2
, (2)

where ›u*/›z* is the vertical shear andN* is the Brunt–Väisälä
frequency, given by

N*252
g*
r
0
*

›r*
›z*

, (3)

where r* is the density perturbation away from the reference

density r
0
* and g* is the acceleration due to gravity. Typically, a

fluid with Ri, 1/4 is susceptible to shear instabilities, but much

higherRichardson numbers (;10) were sufficient to trigger the

thermohaline–shear instability (Radko 2016). Thus, it is im-

perative to characterize the effects of such shear on the prop-

erties of double-diffusive staircases. The effects of shear on

DDC have been studied numerically (Yang et al. 2016;

Zaussinger and Kupka 2018), analytically (Smyth and Kimura

2007; Konopliv et al. 2018), and experimentally (Linden 1974;

Wells et al. 2001, though these experiments were for the salt-

fingering case). In particular, Zaussinger and Kupka (2018)

were able to confirm the formation of layers in their bounded

shear flow problem for strongly stratified flows of Arctic rele-

vance (density ratios of 2–3).

This study uses numerical simulations to analyze the effect

of shear on Arctic staircases and on the heat flux from diffusive

convection. We find that models without shear underpredict

thermal fluxes by a factor of 2 and haline fluxes by a factor of 3

for shear that is characteristic of the ocean. In addition, we also

show that two-dimensional simulations of this phenomenon

are inadequate to reproduce this result, showing instead a 25%

decrease in the fluxes for the sheared case. This dissimilarity

between two- and three-dimensional dynamics is in contrast to

typical double-diffusive systems, which are often well repre-

sented by two-dimensional studies (see, e.g., Flanagan et al.

2013). The inability of two-dimensional models to fully capture

the dynamics of the interaction between shear and convection

has also been reported for one-component fluids. For instance,

Lipps (1971) showed that vertical shear causes convection to

transport momentum upgradient, which steepens shear and

inhibits convection. This artifact, which is also realized in

double-diffusive two-dimensional simulations, is inconsistent

with observations of oceanographic staircases in the presence

of static shear (see, e.g., Simpson et al. 1979; Padman 1994),

which show that the convecting layers typically transport mo-

mentum downgradient.

This paper is organized as follows: section 2 contains the

governing equations and formulation of the problem. Our

nondimensionalization is also defined in section 2. The sim-

ulations are presented in section 3, which includes compari-

sons to observations, and we conclude with some discussion in

section 4.

2. Governing equations and formulation

We perform numerical simulations with a Fourier-based

pseudospectral code. This code is a modification of the model

(PADDI) commonly used in earlier studies of thermohaline

staircases (Traxler et al. 2011; Brown and Radko 2019). The

present version is designed to represent effects of external

shear. This model evolves temperature, salinity, and velocity

for an incompressible fluid with a linear equation of state in a

triply periodic domain. The quantities are evolved temporally

using a combined third-order Adams–Bashforth scheme and

backward differentiation formula. The pressure is calcu-

lated using the Patterson–Orszag method to ensure in-

compressibility (Orszag 1969). The code used in this work

uses a 3/2 dealiasing scheme. For details on the implementation

of all these methods and their use in spectral and psuedo-

spectral codes, the authors recommend a review of Canuto

et al. (2007).

These simulations integrate the Boussinesq governing

equations in the absence of planetary rotation (see, e.g., Baines

and Gill 1969):

›u*

›t*
1u* � =*u*52

=*p*
r
0
*

1 g*(a*T*2b*S*)ẑ

1 n*=*2u*, (4)

›T*

›t*
1u* � =*T*1w*

›T*

›z*
5k

T
*=*2T*, (5)

›S*
›t*

1 u* � =*S*1w*
›S*

›z*
5 k

S
*=*2S*, (6)

=* � u*5 0, (7)
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where u*[ (u*, y*, w*) is the velocity, p* is the pressure, T* is

the temperature perturbation away from a background tem-

perature field given by ›T*/›z*z*1T0
*, S* is the salinity per-

turbation relative to the background salinity field given by

›S*/›z*z*1S0*, n* is the dynamic viscosity, and k
T
* and k

S
* are

the diffusivities of temperature and salinity, respectively. The

background temperature and salinity gradients are assumed to

be predetermined and constant. The choice of excluding the

effects of planetary rotation is justified by the small scales of

convective cells in the staircase—typically on the order of 2–

4m. Carpenter and Timmermans (2014) did investigate the

effects of externally imposed rotation on diffusive staircases

and found that—though they may be of importance for some

deep staircases in the Arctic—the effect of rotation is weak for

the staircases of the upper thermocline, which is the focus of

this discussion.Wewill use x̂, ŷ, and ẑ to denote the unit vectors

in the x, y, and z directions, respectively. The density pertur-

bation r* away from the uniform reference value r
0
* is de-

fined as

r*5 r
0
*

"
2a*

 
T*1

›T*

›z*
z*

!
1b*

 
S*1

›S*

›z*
z*

!#
. (8)

This system can be nondimensionalized using the typical

nondimensionalization for double-diffusive problems (see,

e.g., Radko 2013). We let the unit of length [l] be defined as

[l][
k
T
*n*

g*a*

�����›T*›z*

�����

0
BBBB@

1
CCCCA

1/4

. (9)

The readermay recognize that the associated thermal Rayleigh

number for a convective layer is equal to its height in [l] to

the fourth power. We define the time unit as [t][ [l]2/k
T
*, the

temperature unit as [T][ [l]j›T*/›z*j, the salinity unit as [S]
[ (a*/b*)[T], the density unit as [r][ r

0
*a*[T], and the

pressure unit as [p][ r
0
*k

T
*n*/[l]2. For any dimensional re-

sults, the values of these units are taken to be [l] 5 0.01 m,

[t] 5 714 s, [T] 5 1 3 10248C, and [S] 5 6.25 3 1024 psu,

which are typical for the ocean, and the thermal and haline

perturbations are taken relative to T0
*5 08C and S0

*5 35 psu,

respectively. Additionally, for the purpose of calculating

the fluxes, the density is assumed to be r
0
*5 103kgm23, and

the specific heat capacity of water is assumed to be

cp*5 4200 J kg21 8C21. This results in the following nondi-

mensional equations:

1

Pr

�
›u

›t
1u � =u

�
52=p1 (T2S)ẑ1=2u , (10)

›T

›t
1u � =T2w5=2T , (11)

›S

›t
1u � =S2wR21

0 5 t=2S , (12)

= � u5 0, (13)

r52(T2 z)1 (S2R21
0 z) , (14)

where Pr[ n*/k
T
* is the Prandtl number, t[k

S
*/k

T
* is the in-

verse Lewis number, and R0 [ [a*(›T*/›z*)]/[b*(›S*/›z*)] is

the density ratio of the background gradients. In this work,

we consider only diffusive convection, where ›T*/›z*, 0

and ›S*/›z*, 0.

To simulate the effects of external shear, a linear back-

ground shear flow is introduced, given by ux̂, where

u5Az , (15)

where A is the constant nondimensional shear rate. We can

express A in terms of the background Richardson number, Ri:

Ri5
2g*a*

›T*

›z*
1 g*b*

›S*

›z*�
›u*

›z*

�2
5
Pr(R21

0 2 1)

A2
. (16)

To introduce this background velocity, the system of governing

equations is transformed into the sheared frame of reference,

denoted with tildes:

~x5 x2Azt , (17)

~y5 y , (18)

~z5 z , (19)

~t5 t . (20)

We then decompose the velocity field into the background

component and the perturbation in the sheared reference

frame ~u as u[ ~u1Azx̂. Thus, the governing equations become

1

Pr

�
›~u

›~t
1 ~u � =u

�
52=p1 (T2 S)ẑ1=2~u , (21)

›T

›~t
1 ~u � =T2w5=2T , (22)

›S

›~t
1 ~u � =S2wR21

0 5 t=2S , (23)

= � u5 0, (24)

where the = operator is still defined in terms of the original,

nonsheared system:

=5

�
›

›x
,
›

›y
,
›

›z

�
5

�
›

›~x
,
›

›~y
,
›

›~z
2A~t

›

›~x

�
. (25)

Our spectral solutions to the governing equations then have

the form

q5 �
Nx

l52Nx

�
Ny

m52Ny

�
Nz

n52Nz

q
l,m,n

(t) exp(ilk
x
~x1 imk

y
~y1 ink

z
~z) ,

(26)

whereNx,Ny, andNz are the total number of Fourier modes in

the ~x, ~y, and ~z directions, and kx, ky, and kz are the lowest,

nonzero wavenumbers in the domain, which is of size (Gx, Gy,

Gz). The use of this method was introduced by Rogallo (1981)

for the purpose of investigating homogenous turbulence and is

JUNE 2021 BROWN AND RADKO 1917

Brought to you by Naval Postgraduate School, Dudley Knox Library | Unauthenticated | Downloaded 05/25/21 12:43 AM UTC



described in detail in Canuto et al. (2007). Note that the

Fourier modes are periodic in the ~z direction, which is sheared

with the mean flow. This proves to be problematic for inte-

grating the system for an extended time as the grid will deform

substantially. To address this problem, we introduce a re-

mapping step as described in Canuto et al. (2007). When the

simulation has evolved such that GzAT is an integer multiple of

Gx (i.e., the top-left point of the domain is directly over the

bottom right), each (l, m, n) mode is shifted in phase by mul-

tiplying by exp[2ilkxAt(z2 zmid)], where zmid is the vertical

midpoint of the domain, which serves to reorient the simula-

tion to be vertical once again.

Each simulation is initialized by a single-layer staircase.

Because the domain is vertically periodic, this effectively

describes a staircase of infinite vertical extent with layers the

size of the domain. The layer consists of a uniform temperature

and salinity (seeded with small perturbations) with a high-

gradient interface. This interface is smoothed slightly to avoid

numerical issues, as shown in Fig. 1. Each simulation is

300 units tall (and thus, the thermal Rayleigh number is 8.1 3
109), which is equivalent to a dimensional height of 3m. This

is a reasonable choice for typical layer height in the upper

thermocline of the Arctic, as shown in Shibley et al. (2017),

who reported the results of an extensive survey of mean layer

heights throughout the Arctic, finding them to typically be in

the range of 0.5–3m. The simulations are not sensitive to the

exact structure of the initial conditions, as long as the step

structure is sufficiently sharp.

We performed a total of eight three-dimensional simulations

with density ratios ofR05 [3, 5, 7] and with and without a shear

characterized by Ri 5 10. Six of these simulations were per-

formed with t5 0.1, and two with t5 0.04 forR05 5, with and

without shear, to accommodate computational limitations; our

Prandtl number is chosen to be 10. This allows us to simulate

parameters characteristic of the upper Arctic thermocline,

which sees density ratios in the range 2–7 and has Richardson

numbers of approximately 10 on average (Cole et al. 2014).

The true value of t in the ocean is closer to 0.005; however,

because the compositional diffusion length scale is the smallest

physical scale in the system, it determines our minimum reso-

lution. Other studies (see, e.g., Kimura and Smyth 2007;

Carpenter et al. 2012) have shown that lower values of t behave

in a qualitatively similar way but tend to have higher fluxes

than higher t simulations. Our simulations have a domain that

spans 3003 1503 300 units in x, y, and z, respectively, resolved

by 7683 3843 1536 grid points. The increased number of grid

points in the vertical direction is designed to account for the

grid deformation caused by the shearing coordinate system.

There are some limitations of this setup in addition to the

typical implications of incompressible studies of microstruc-

ture in the absence of planetary rotation. In particular, because

the perturbations are periodic in the vertical direction, this

constrains the height of the individual layers to be—at max-

imum—3m, and this cannot change during the simulation as

one might naturally expect the layers to evolve. Thus, there is

no means for using this manner of simulation to address the

typical scales of layers in the Arctic; however, the setup is

reasonable for evaluating the flux through a staircase with a

fixed step height.

3. Results

The simulation parameters are tabulated in Table 1 along

with the time-averaged turbulent fluxes and the time-averaged

thicknesses of the interface, which are defined in section 3a.

Though the interface thicknesses are given in nondimensional

units, they can also be interpreted as being in centimeters for

oceanic values.

a. Turbulent fluxes of heat and salt

We quantify the turbulent heat and salt transport by taking

the product of the vertical velocity and the thermal and haline

perturbations and average that quantity over space and time.

These quantities are defined as follows:

F
T
(t)[

1

2Dt

ð t1Dt

t2Dt

hwTidt0 , (27)

F
S
(t)[

1

2Dt

ðt1Dt

t2Dt

hwSi dt0 , (28)

where the angled brackets indicate the average over the entire

physical domain of the simulation and Dt defines the averaging

FIG. 1. The initial temperature and salinity profiles for a simulation withR21
r 5 5. The inset shows a magnified view

of the high-gradient region near the interface.
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window, here set to be 10. The temporal average is used be-

cause the fluxes—in particular, the haline flux—vary strongly

in time. The nondimensional turbulent fluxes are related to the

Nusselt numbers NuT and NuS (the nondimensional ratio of

total flux to diffusive flux) by

Nu
T
2 15F

T
, (29)

Nu
S
2 15

F
S

tR21
0

, (30)

and the nondimensional fluxes can be converted into their di-

mensional forms as the turbulent heat flux, FT
*5 r

0
*cp*FT [l][T]/[t],

and haline flux, FS
*5FS[l][S]/[t], respectively. In addition, we are

also interested in characteristic fluxes through the convective

layers. For this, we take an average from t5 50 to t5 250, which

we will denote with an overbar as FT and FS for the thermal and

haline fluxes, respectively. The choice of this time range is de-

signed to allow for enough time to develop overturning convec-

tion and enough convective overturns to develop substantial

statistics.We can estimate the overturning time by taking the ratio

of the length traversed by a convective overturn (approximately

twice the initial height of a convective cell, which is 300) and di-

viding by the characteristic velocity (approximately 100), which

yields an overturning time of 6 time units. Thus, beginning our

TABLE 1. The list of simulations and their associated turbulent fluxes and interfaces thicknesses.

R21
0 Ri t FT FS FT

* (Wm22) FS
*3 1027 [m (psu) s21] hT hS hr hu hT/hS

3 ‘ 0.1 19.45 7.61 0.11 0.67 14.10 9.05 10.11 — 1.56

3 10 0.1 37.47 16.50 0.22 1.44 8.30 6.27 5.58 22.60 1.32

5 ‘ 0.1 12.88 4.80 0.08 0.42 16.54 9.90 9.44 — 1.67

5 10 0.1 25.12 14.46 0.15 1.27 10.22 7.22 6.71 24.92 1.42

5 ‘ 0.04 21.35 5.59 0.13 0.49 11.64 6.06 5.39 — 1.92

5 10 0.04 66.49 33.01 0.39 2.89 5.86 4.03 3.74 17.14 1.46

7 ‘ 0.1 10.91 3.99 0.06 0.35 21.18 12.30 22.87 — 1.72

7 10 0.1 18.17 10.96 0.11 0.96 14.33 10.11 9.64 31.49 1.42

FIG. 2. The (top) thermal and (bottom) haline fluxes of the three-dimensional Ri5 10 cases

(solid lines) and the Ri 5 ‘ cases (dashed lines). These fluxes are calculated using running

averages using a window 20 time units wide.
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window at t 5 50 ensures at least 8 convective overturns and

ending at t 5 250 provides at least 30 convective overturns to

establish a reasonable statistical average.

The short-window flux averages are shown in Fig. 2 for both

the sheared and the nonsheared cases. Early times (t, 20) are

characterized by the development of overturning convection.

The temperature diffuses across the interface more rapidly

than the salinity, i.e., lowering the temperature at the top of the

layer and raising the temperature at the bottom (as seen, for

example, in Fig. 3). This has the effect of raising the density at

the top of the layer, resulting in the development of an unstable

boundary at the interface, which then begins to overturn. As

the simulations evolve, diffusive processes dominate at the

interfaces, weakening the gradients of temperature and salin-

ity; however, convection dominates in the layers, steepening

the interfaces. These processes occur at different rates for

FIG. 3. A typical profile of the sheared simulation withR05 5 showing the (top left) temperature field, (top right)

salinity field, (bottom left) local Richardson number, and (bottom right) u field. The profiles are taken at t 5 68,

after the convective onset has stabilized. The initial conditions are shown as dashed lines. Note that while the

simulated domain extends from 0 to 300 in z, it is possible to use the periodicity of the perturbations to construct the

field below the interface as well.

1920 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Brought to you by Naval Postgraduate School, Dudley Knox Library | Unauthenticated | Downloaded 05/25/21 12:43 AM UTC



temperature and salinity due to the differences in diffusivity

and buoyancy of the two fields. During this time, the simulation

fluxes grow substantially for both cases to comparable values

for a given density ratio. This behavior is similar for both

sheared and nonsheared flows. The simulations with lower

density ratio (which are therefore closer to convective insta-

bility) show larger initial fluxes.

After the onset of convective instability, the behavior of the

sheared and nonsheared systems show substantial differences

from t5 20 to t5 50. The nonsheared simulations show a brief

decrease in both thermal and haline fluxes by nearly a factor of

2 from the peak; however, the haline fluxes of the cases with

Ri5 10 continue to grow until about t5 50, and the weakening

of the thermal fluxes is lesser than in the nonsheared case.

Conversely, the nonsheared simulations show decreasing

fluxes from the peak near t 5 20 to t 5 50. This may be due to

differences at the interface between the layers, the dynamics of

which are quite different between the two cases, a fact that will

be explored in more depth in section 3b. The interface must

support the same net transport (diffusive plus turbulent) as the

convective region. In the nonsheared case, the interfacial

transport is largely diffusive in nature, but the additional appli-

cation of shear could excite shear instabilities. The structure of

the layer is shown in Fig. 3, which illustrates several horizontally

averaged quantities, denoted with angled brackets and a sub-

script h. We define the interface thickness of a generic field q as

h
q
[

��������
G
z

›q

›z
›q

›z
1

›q

›z

��������
, (31)

where ›q/›z represents the vertical derivative of the back-

ground field (e.g., ›T/›z521, ›S/›z52R21
0 , ›r/›z5 12R21

0 ,

and ›u/›z5A). These locations are shown in Fig. 3 with black

dotted lines. The time-averaged thickness for each simulation

is provided in Table 1. The thermal boundary layer is thicker

than the haline boundary layer in all cases. This is consistent

with the observations by Sommer et al. (2013), which had

comparable density ratios—even though the observed stair-

cases were in Lake Kivu rather than the Arctic—and the

simulations by Carpenter et al. (2012). We also investigate

the ratio of these and find it is typically around 1.5, with the

sheared simulations showing substantially sharper thermal in-

terfaces by up to nearly a factor of 2. The ratio of hT to hS
decreases in the sheared simulations by between 15% and

25%, although there does not appear to be a systematic trend

with density ratio.

Close inspection of the properties of the interface reveal that

it is subject to the Holmboe instability. This instability was

theorized by Holmboe (1962) for a stably stratified fluid with a

finite-width velocity interface. Such a system—even outside of the

requisite conditions of the Kelvin–Helmholtz instability—can

spontaneously develop and amplify traveling waves on this

interface. The conditions for this amplification can be char-

acterized in terms of the ratio between the thicknesses of the

velocity interface and the density interface, hu/hr, and the

Richardson number at the interface. We define a local

Richardson number as

Ri
l
52

g*

r
0
*

›r*

›z*�
›u*

›z*

�2
5

Pr

�
›T

›z
2 12

›S

›z
1R21

0

�
�
›u

›z

�2
, (32)

and plot the horizontal average of this quantity in Fig. 3 to

construct a Richardson number profile, finding a typical value

of 3 at the interface. This is associated with an averaged shear

of 5.84 for R21
0 5 5, Ri 5 10, which becomes roughly 0.008 s21

in dimensional units. Polyakov et al. (2019) measured the shear

values in the interfaces for staircases in the Arctic ocean,

finding shear on the order of 0.01 s21, which is remarkably

consistent with our results even though their work focused on

intrusive processes, which may have different dynamics than

the sheared staircase considered here. Under such circum-

stances, the Holmboe instability can only be dominant for

hu/hr. 2 (see, e.g., Alexakis 2005; Smyth and Carpenter 2019).

For all the shearing simulations in this study, as listed in

Table 1, this ratio is typically 4, well within a reasonable range

to excite this instability and substantially altering the nature of

the double-diffusive interface from the case without shear.

After t 5 50, all simulations achieve a steady behavior (see

Fig. 2), which we use to characterize the fluxes of these systems.

Taking the ratio of FT(Ri5 10) to FT(Ri5‘) and of the

analogous haline fluxes, we find in general that both fluxes are

substantially increased in the sheared case. The thermal flux for

the sheared cases with t 5 0.1, is typically a factor of 2 higher

than the case without shear, ranging from 1.93 forR21
0 5 3, 1.95

for R21
0 5 5, to 1.66 for R21

0 5 7. The increase in haline fluxes is

larger, ranging from 2.17 for R21
0 5 3, 3.01 for R21

0 5 5, to 2.75

for R21
0 5 7. The fluxes do appear to slowly decrease in time,

which is due to the slow diffusive smoothing of the interface.

FIG. 4. A volume rendering of the salinity field at the interface

for the simulation with t 5 0.04, R21
0 5 5, and no externally im-

posed shear. The interface is located midway through the figure,

and the opacity is chosen to highlight the interface.
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b. Morphology

We show the morphology of the interface in Figs. 4 and 5,

which reveal clear differences between the sheared and non-

sheared cases. The sheared cases generally have anisotropic

structures that are extended in the y direction (the cross-stream

direction) but have short wavelengths in the x direction. A

relevant comparison can be made to Blass et al. (2019), who

simulated single-component convection in the presence of

shear. They found—in their shear-dominated regime—the

development of large-scale convective rolls with strong signa-

tures at the interfaces, but those are quite distinct from the

small-scale features found here, which are likely attributed to

the Holmboe instability instead. The development of these

small-scale structures substantially perturbs the interface, as is

evident in Fig. 5. The interfaces in the nonsheared case show

almost no motion; the interfaces in the sheared case appear to

have small wave structures. Of greatest relevance, the motions

across the interface permit greater transport through the in-

terfaces themselves because the Holmboe waves distort the

diffusive interface, which produces a larger surface area for

diffusion. We attribute the limiting factor of the system to

the interface because the mixing time scale of the interface

(primarily diffusive) is much longer than that of the con-

vective layer (primarily advective). However, it is true that

shear serves to both strengthen the convection and promote

more diffusive flux through the interface, and thus it is

difficult to confidently attribute the increased fluxes pri-

marily to any individual region of the system. The increase

in convective transport in the sheared simulations is re-

vealed (Fig. 5) by the more active small-scale turbulence.

Though this behavior is generally consistent with the

‘‘shear-dominated regime’’ described by Blass et al. (2019), it is

likely that the effects seen here are unique to the staircase

setup as the boundaries of their work would not be subject to

the Holmboe instability.

We also show the r field in Fig. 6. In this figure, the structure

of the interface is more clearly shown in both the sheared and

nonsheared cases. The former case highlights a much more

defined interface, where the crests of the Holmboe instability

appear starkly against the typical interface structure. The latter

case shows a diffusive interface with only small density per-

turbations above and below. It is perhaps surprising that the

more turbulent interface is sharper in density, but this is a

common feature in double-diffusive systems, where turbulence

tends to mix density upgradient and sharpens density inter-

faces. The interface perturbations appear to favor extended

structures in the y direction with shorter extents in the x di-

rection, giving the instability a quasi-two-dimensional struc-

ture; however, it is not possible to approximate this system in

two dimensions, as is discussed in the appendix.

Figure 7 shows the inherent properties of the interface itself.

In this, we include the total flux of buoyancy averaged over the

interface, which we define as the region where the vertical

gradient of density is greater than half its maximum, a region a

few dimensionless length units thick. We designate the spatial

average over this region with angled brackets and a subscript i.

The buoyancy flux is given by the following (in dimensional

and nondimensional forms):

F
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�
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The total fluxes include both the turbulent fluxes and the dif-

fusive fluxes. Note that while the average of ›T/›z over the

entire domain is zero by construction, such is not the case

FIG. 5. A volume rendering of the salinity field at the interface

for the simulation with t 5 0.04, R21
0 5 5, and externally imposed

shear. The color and opacity scales are identical to those of Fig. 4.

FIG. 6. Slices of the density field [S2T2 (R21
0 2 1)z] of the

simulations with t 5 0.04, R21
0 5 5 both (left) without and (right)

with externally imposed shear. These slices are taken near the ends

of the simulations, where t ’ 250. (top) The side view, where we

have only focused on the 40 length units around the interface, and

(bottom) the top view at z 5 0.
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locally. Both the sheared and nonsheared simulations are

plotted, but the sheared interface shows total fluxes that are

much larger than the case without shear. This is due to the

nature of the way the Holmboe waves (as described in

section 3a) transport material through vertical oscillations,

which is inherently a reversible mixing process that leads to

very little net transport across the interface even though the

instantaneous transport appears to be much larger than the

stable interface from the case without shear.

We also show horizontally averaged profiles for the density

ratio and the Richardson number in order to characterize the

properties of the interfaces across the simulations. Here, we

use the local definition of the density ratio R21
r . The density

ratio at the interface tends to be approximately the same as the

global background density ratio. However, the sheared simu-

lations do show higher density ratios, which is needed for the

sharper density interfaces to exist. There do not appear to be

many systematic changes in the Richardson number at the in-

terface, which is typically in the range of 2–3, regardless of the

global stratification of the system. This number is substantially

less than the global value of the Richardson number, which is

10 for all the sheared cases. The interfaces do appear thicker in

the cases with larger density ratios, and this behavior is also

apparent in the trend of hT in Table 1. This is consistent with

the expected behavior of more stable stratification leading to

weaker convection and therefore thicker interfaces.

FIG. 7. (top) The total flux of temperature averaged over the interface for each simulation.

The sheared simulations are plotted with solid lines, and the nonsheared simulations with

dashed lines. Note that the fluxes of all the nonsheared simulations are very small by com-

parison and so are difficult to distinguish on this plot because they overlap near zero. (bottom

left) The horizontally averaged density ratio profile for each simulation, using the same color

and dashed scheme as in the flux figure.Note that the figure is zoomed in on the 40 length units

around the interface. (bottom right) The horizontally averaged Richardson number profile

for the sheared cases plotted in the same manner as the density ratio.
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c. Energetics

To address the physical reasoning for the increase in stair-

case fluxes with shear, we turn to arguments of energetics. The

contributions of various physical processes to the production

and dissipation of kinetic energy can be determined by taking

~u � (›/›t)~u from Eq. (10):

1

2

›

›t
~u2 1

1

2
~u � =~u2 52 ~w~u

›u

›z
1Pr[2= � ~up

1w(T2S)1 ~u � =2u] , (35)

where we have generalized u to be a quasi-steady function of z

that is evaluated by taking the horizontal average of our sim-

ulation. This choice permits us to identify sources of kinetic

energy caused by local shear, which is largely concentrated

near the interfaces. The sources and sinks of the turbulent ki-

netic energy are given as follows: 2w~u›u/›z is the effect on

kinetic energy by the local shear,2Pr= � ~up is the reduction of

kinetic energy by work done by the fluid, Prw(T 2 S) is the

production of kinetic energy by buoyancy, and Pr~u � =2u is the

dissipation due to viscous effects.

To evaluate the energetics of the system, we take the hori-

zontal averages of these terms and present them in Fig. 8. We

also include a comparison in this figure to two-dimensional

simulations, which are described in more detail in the

appendix. However, it is evident from both the energetics and

the general behavior of the two-dimensional simulations that

these two setups are qualitatively different and that two-

dimensional work is insufficient to simulate this phenome-

non. In the three-dimensional case, it can be seen that shear

promotes the production of turbulent kinetic energy every-

where, but in the two-dimensional case, the shear serves to

counteract the production caused by buoyancy. In energy

balance in the three-dimensional case, this kinetic energy is lost

to dissipation, as is expected. In the two-dimensional case,

however, the buoyancy produces kinetic energy, which is re-

duced in roughly equal measure by the shear. This effect shows

that the shear is, in effect, using the kinetic energy produced by

buoyancy in order to transport the velocity upgradient in the

simulation. This result was found for general two-dimensional

convection in the presence of shear by Lipps (1971) and is

described in more detail in the appendix.

4. Conclusions

Vertical shear affects the heat flux through the Arctic ther-

mohaline staircases. The thermal and haline fluxes are shown

to increase by approximately a factor of 2 between cases with

and without shear for a Richardson number of 10.We attribute

this effect to structural changes in the interfaces of this system,

which show a strong concentration of shear, consistent with the

observations by Polyakov et al. (2019). We have found that our

simulations produce comparable shear values and patterns as

in the ocean. These interfaces are stable to the traditional

double-diffusive instability with density ratios of 3–10 and to

many shear instabilities with Richardson numbers of 2–3.

However, we do see the development of a Holmboe instability

at the interface, which shows features that are extended in the

cross-stream direction but are smaller scale in the streamwise

direction.

Estimates of heat transport based on laboratory-derived flux

laws suggest that double diffusive convection adds approxi-

mately 0.22Wm22 heat transport to the sea ice in the Canadian

Basin (Timmermans et al. 2008), but this is based on estimates

from Kelley (1990), which do not include the effects of shear.

Nonsheared direct numerical simulations by Flanagan et al. (2013)

FIG. 8. Turbulent kinetic energy production at time t’ 100 for cases withR21
0 5 5 and Ri5

10 in (left) three dimensions and (right) two dimensions. The contributions due to buoyancy

(blue), local shear (cyan), and viscous dissipation (dotted green) are averaged horizontally

shown as a function of the vertical coordinate.
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suggest that these values may underestimate the heat flux by a

factor of 2. The addition of shear’s contribution to that heat

flux, depending on the shear regime, may be significant enough

to increase that value by an additional factor of 2. According to

Kwok and Untersteiner (2011), the addition of approximately

1Wm22 can explain why the sea ice is melting at its current

rate. The shear-induced intensification of double-diffusive

transport revealed by our study can account for a substantial

fraction of the required heat flux with the lowest t simulation

with shear showing a heat flux of 0.4Wm22. Extrapolating to

oceanographic values of t, assuming a simple power law in

terms of t, predicts fluxes in excess of 1Wm22. Admittedly, this

is a crude estimate based only on our R21
0 5 5 simulations and

does not take into account the potential effects of intermittent

shear, but it is suggestive that the effect of shearmaybe sufficient

to compensate for all of the missing flux in this region. Since it is

the goal of every environmental prediction system to present the

most accurate forecast, the diapycnal mixing driven by a com-

bination of shear and diffusive convection should be taken into

account in operational and climate Arctic models. The results

from this papermay assist in amore accurate prediction of when

the Arctic may be sea ice free.

This research promotes several topics for future work. One

additional consideration is the effect of t, which Kimura and

Smyth (2007) showed could have a quantitative impact on the

final fluxes, with their t 5 0.04 simulations having half the

thermal flux of their t 5 0.01 simulation. Thus, it is possible

that decreasing t for our three-dimensional simulations to t 5
0.01 could potentially increase these fluxes and may have an

effect on the ratio of the flux with shear to that without.

Another possible avenue of future work is the possibility of

strong shear disrupting thermohaline staircases, which has

empirical support from observations (Padman 1994; Guthrie

et al. 2017). Such analysis would require investigating the

three-dimensional simulations at a variety of Richardson

numbers to determine the conditions of staircase collapse. The

analysis of the effects of time-dependent shear, associated with

internal waves, also represents an intriguing avenue of

investigation.
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APPENDIX

Two-Dimensional Simulations

We performed twelve two-dimensional simulations for all

possible combinations of the density ratios of R0 5 [3, 5, 7] and

Richardson numbers of Ri 5 [‘, 40, 10, 2.5], where a

Richardson number of ‘ represents a nonsheared case. This

allows us to characterize a larger range of physical parameters

and permits us to use a higher resolution in order to achieve

t of 0.005, roughly consistent with the Arctic. Most of these

simulations have 1024 Fourier modes on each side and

resolve a domain that is 300 length units in the horizontal x

direction and in the vertical z direction. The simulations with

R0 5 3 proved to have more fine-scale features and so were

resolved with 2048 Fourier modes on a side. In these cases, the

factor limiting vertical resolution is the compositional diffusion

scale rather than the grid deformation.

In Fig. A1, we investigate the trends of the long-window

thermal and haline flux averages at equilibrium as a function of

the density ratio and the Richardson number. The trend of

fluxes as a function of density ratio has been well understood

(see, e.g., Flanagan et al. 2013) with larger density ratios gen-

erally having lower fluxes. This phenomenon is due to larger

density ratios (for a given thermal gradient) indicating a more

strongly stratified system, which is thus less susceptible to

convection. Unlike in the three-dimensional case, the addition

of shear in the two-dimensional case can lower the fluxes by

about 25%.As we will show, this effect is due to the interaction

of convection and shear in different dimensionality, a subject

initially broached by Lipps (1971). And we can demonstrate

this behavior most clearly by investigating the velocity struc-

ture in both systems.

Figure A2 shows the general structure of the velocity profile

as a function of depth in all simulations withR21
0 5 5. The main

qualitative difference between two- and three-dimensional

simulations is that the velocity within a layer is well mixed in

the three-dimensional case, which reduces the shear inside the

convective layer, but the opposite happens in two dimensions.

The two-dimensional case tends instead to steepen shear

within the convective layer, which tends to weaken and can

reverse the shear at the interface. This is inconsistent with

observations of shear in staircase interfaces, such as those of

Polyakov et al. (2019). This turns out to be a general property

of two-dimensional convection, which is shown most clearly in

Lipps (1971), who displays how the addition of shear has a

tendency to stabilize convection by upgradient transport of

momentum within a convective region. It is thus suggestive that

the regime of turbulence as measured in studies like those of

Padman (1994) and Polyakov et al. (2019) is only achieved in

three-dimensional studies, and while the response of two-

dimensional staircases to the effects of shear are academically

interesting, it holds little practical value in oceanography.
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