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Abstract

Deep learning approaches currently achieve the state-of-
the-art results on camera-based vital signs measurement.
One of the main challenges with using neural models for
these applications is the lack of sufficiently large and di-
verse datasets. Limited data increases the chances of over-
fitting models to the available data which in turn can harm
generalization. In this paper, we show that the general-
izability of imaging photoplethysmography models can be
improved by augmenting the training set with “magnified”
videos. These augmentations are specifically designed to
reveal useful features for recovering the photoplethysmo-
gram. We show that using augmentations of this form is
more effective at improving model robustness than other
commonly used data augmentation approaches. We show
better within-dataset and especially cross-dataset perfor-
mance with our proposed data augmentation approach on
three publicly available datasets.

1. Introduction

Imaging photoplethysmography (iPPG) [1] is a set of
approaches to measure vital signs from videos without di-
rectly touching the skin. Contactless measurements of vital
signs are advantageous in several scenarios, including pa-
tients with injured or sensitive skin (e.g., premature babies
or burn victims), long-term measurements where wearing a
contact sensor may hinder the participants, or sleep moni-
toring where wearing a contact sensor might make it diffi-
cult to fall asleep naturally.

Deep learning methods achieve state-of-the-art results on
many computer vision tasks, including iPPG [2, 3, 4, 5, 6].
However, many of the best performing deep learning ar-
chitectures require large training datasets to achieve good
performance. Unfortunately, many computer vision appli-
cations have limited availability of such large datasets re-
quired to train these large models. This lack of appropriate
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training datasets limits the performance of deep learning
models and often leads to overfitting to the small training
set.

Video datasets used for traditional computer vision tasks,
such as action recognition have hundreds of thousands
of videos. For example, the 20BN-something-something
Dataset V2 [7] contains 220,847 videos and the Kinetics-
700 dataset has 650,000 video clips [8]. This is two orders
of magnitude more than the number of videos in the largest
available physiology datasets. For example, the VIPL-HR
dataset has 3,130 videos [5] and the AFRL dataset only has
300 [9]. Therefore, it is very hard to train machine learn-
ing models, and especially complex deep learning models,
on these physiology datasets. Consequently, most existing
iPPG work has used heuristics-based non-machine learn-
ing methods [10]. Public video datasets for physiologi-
cal measurements are usually very small because of several
challenges associated with dataset collection. They require
large storage because the images usually have to be uncom-
pressed. They require complicated synchronization of the
ground truth contact sensor with the video capture and ac-
cess to such a medical-grade ground truth sensor. Moreover,
there are often privacy issues with recording and publicly
releasing face videos and physiological information. But
perhaps the biggest challenge is that each time we want to
explore a new application area in iPPG, we have to collect a
new large dataset to train a model to work in that setting.
For example, if we are interested in sleep monitoring or
driver monitoring, we have to collect a dedicated dataset for
this task that would be large enough to train a deep learning
model. The data collection process is very slow and expen-
sive, making it hard to make progress on problems in new
applications.

To address the challenge of limited data, several data
augmentation approaches have been proposed in the com-
puter vision and deep learning communities. These aug-
mentation methods can involve simple image manipulations
such as rotating the image by varying degrees, translating
it by a different number of pixels horizontally and verti-
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Figure 1. By magnifying the pulse variations in the video, we can create a larger training set. These physiologically relevant augmentations
improve the quality of the estimated iPPG signal and increase the generalizability of deep learning models to different datasets.

cally, flipping the image horizontally or vertically, cropping,
zooming in, or changing the color of the image. However,
the existing data augmentation methods were intended for
improving performance on tasks where the signal of inter-
est is the dominant information in the video. For example,
in action recognition, often the dominant motion and inten-
sity variations in the video are directly related to the action
of interest. These augmentation methods do not generalize
well to the iPPG task where the signal of interest is not the
dominant signal in the video and is buried in much larger
irrelevant variations, such as large motion or ambient light
variation. When existing data augmentation approaches are
applied to iPPG videos, the model tends to focus on the
large, obvious variations highlighted by the augmentation,
which are not related to the physiological signal of interest.
This leads to the same or even worse performance of the
model than without this data augmentation.

In this work, we propose a data augmentation approach
appropriate for iPPG videos by using video magnifica-
tion methods, as illustrated in Fig. 1. We demonstrate
that video magnification methods can be successfully used
as data augmentation by selectively magnifying the phys-
iological signal without visibly affecting the other mo-
tions or variations in the video. Video magnification has
been used in the past to improve the performance of iPPG
methods by magnifying the physiological variations in the
video [11, 12, 12, 13, 14]. However, different from these
approaches, we only magnify the videos of the training set
and leave the test set videos intact. This ensures that the
model is able to learn useful features for iPPG measurement
and implicitly learn that videos may have different ampli-
tudes of the iPPG signal. This approach leads to especially
large improvements on videos with a low signal-to-noise ra-
tio (SNR), e.g., videos of participants with darker skin types
or videos with larger motion.

We use an existing end-to-end convolutional attention
neural network architecture which takes a video as input and
outputs a predicted iPPG signal [2]. We present results on
three publicly available datasets using the most recent state-
of-the-art video magnification method called DeepMag [14]
which was specifically developed for magnifying physio-
logical signals. We achieve large improvements in heart rate
(HR) estimation with our proposed data augmentation, es-

pecially when training and testing on very different datasets.

Our results demonstrate that this approach not only im-
proves the overall performance of the deep learning model
but it also improves the model’s ability to generalize to new
and more challenging data. We achieve better performance
on videos of participants with dark skin types whose videos
have lower iPPG SNR due to higher melanin concentration
in the skin which absorbs more light inside the tissue [15].
We also observe improvements when training and testing on
videos with different motion and different compression lev-
els, showing that the proposed data augmentation approach
can help the model generalize to new and diverse sources of
variations in the test set.

2. Related Work
2.1. Imaging Photoplethysmography

IPPG approaches have achieved high accuracy in mea-
suring heart rate (HR) [16, 2], breathing rate (BR) [17,
], and heart rate variability (HRV) [17, 18] from video
recordings. They also show promising results in mea-
suring blood oxygenation (Sp0O2) [19] and blood pres-
sure (BP) [20]. As the iPPG technology has matured,
many approaches have achieved robustness to challeng-
ing motion [21, 22, 23, 24, 25, 26, 27], low light settings
and varying illumination [28, 29, 30], and video compres-
sion [31, 32, 4, 3, 6]. Currently, end-to-end deep learning
approaches outperform existing unsupervised methods and
achieve state-of-the-art performance in vital sign estimation
from video [2, 33, 34, 32, 35, 5, 3, 36, 4, 6]. However, deep
learning methods work best when they are trained on data
that is similar to the test set data. Hence, these methods
often struggle with generalizing to new data that may have
different motion [2, 37], different video compression [6], or
even participants with different skin types or genders [15].
In this work, we show that the difficulty of cross-dataset
generalizability can be overcome by using data augmenta-
tion that is appropriate for the physiological measurement.

2.2. Data Augmentation

Data augmentation is commonly used in computer vision
tasks [38, 39], such as object classification or object detec-
tion [40]. Data augmentation is a solution to avoid over-



fitting when training a model on a limited training dataset.
Overfitting occurs when the model perfectly fits the train-
ing data but is unable to generalize well to the unseen test
samples. Making the training set larger and more diverse
with data augmentation can alleviate the overfitting issue
without having to alter the network architecture. Data aug-
mentation improves the performance when it can create ad-
ditional training instances that better resemble the test set.
For example, translating and cropping a face in an image
may help a face detection or recognition network if the face
in a test image is not centered [38]. Commonly used data
augmentation involves simple geometric transformations of
the image, alterations of the color space, kernel filters, and
mixing multiple images. Geometric transformations may
involve rotating an image clockwise or counterclockwise
within a specified angle range or flipping an image horizon-
tally or vertically [39]. Color space augmentations may in-
volve isolating a single R, G, or B color channel, or manip-
ulating the RGB values to increase or decrease the bright-
ness of an image [39]. Images may also be converted from
RGB to a different color space, such as YUV, CMY, HSV, or
grayscale [41]. Images can be cropped within a patch of in-
terest or translated up, down, left, or right to create instances
with different positions of the object in the frame. Noise can
also be injected to the image (e.g., Gaussian noise) to help
the network learn more robust features [42]. Similarly, im-
ages can be blurred or sharpened by convolving them with
an appropriate kernel [43]. Finally, multiple images can
be combined together by cropping and rearranging patches
together [44] or by adding and averaging pixel intensities
from several images [45]. Image classification or object
detection models must be robust to different viewpoints,
lighting, occlusions, background, or scale. Therefore, these
kinds of data augmentations make sense for tasks, such as
image classification. However, such augmentations do not
necessarily help iPPG algorithms where the model should
be robust to motion and illumination variations which affect
the amplitude of the signal itself, not only the appearance of
the videos.

2.3. Video Magnification

Video magnification methods have been used to amplify
and reveal subtle color variations or motions in the video.
Early works relied on Lagrangian methods which required
accurate tracking of the motion over time using optical
flow [46]. But, they were computationally expensive and of-
ten worked poorly on objects with varying intensity. Later,
Eulerian methods were developed which linearly magnified
the pixel intensity variations over time in a fixed video lo-
cation [11]. These methods were more efficient than La-
grangian methods and were able to magnify very subtle
color changes which would not have been possible by using
optical flow. The Eulerian approaches first decompose the

video spatially using filtering and steerable pyramids [47].
Then, they temporally filter the signal in the video to only
magnify the selected frequency band. These methods were
later improved by magnifying the phase information ob-
tained with complex steerable filters, instead of the ampli-
tude of the intensity, which worked better for magnifying
subtle motions [48]. A more recent approach improved the
phase-based Eulerian method by magnifying accelerations,
that is deviations of intensity change, instead of the inten-
sity change itself [12]. A learning-based method, similar to
the Eulerian approach, offered even more improved magni-
fication [13].

However, all of these approaches require precisely know-
ing the narrow frequency range of the signal to be mag-
nified, which is not always possible. For example, the
human heart rate can vary between 30 and 300 beats per
minute (BPM). Providing this frequency range is too broad
for these color or motion magnification approaches to work
well. Moreover, if the signal of interest and other varia-
tions, such as motion, are present in the video within a sim-
ilar frequency range, these magnification methods are not
able to separate the two signals and will result in visible
artifacts. To address these challenges, Chen et al. used a
deep learning method, called DeepMag, trained to specifi-
cally amplify only the pulse signal [14]. It does not require
knowing the pulse frequency in advance and it is able to sep-
arate the pulse-induced intensities from motion variations if
the model was trained on videos with similar motion.

3. Proposed Approach

In this section, we present our proposed approach of data
augmentation for physiological signals. We describe the
different kinds of data augmentation we have evaluated, the
details about training the networks, and the datasets we used
for training and evaluation.

3.1. Data Augmentation

We compared the results of the model trained on the
original dataset without any augmentations (“No Augmen-
tation” in Table 1) to several data augmentation approaches
to increase the size of the training set. Examples of aug-
mentations we used are shown in Fig. 2.

Standard Augmentation. First, we used standard data
augmentation approaches commonly used in other areas of
computer vision (“Standard Augmentation” in Table 1) to
create 10 times more training data. These augmentations
included random rotations clockwise and counterclockwise
by up to 20 degrees, flipping the video frames horizontally
and vertically, and translating the video frames horizon-
tally and vertically by 10% of the frame’s width and height.
When the images were rotated or translated, we repeated
the pixel values at the boundary to preserve the dimensions
of the images.



Figure 2. Examples of data augmentation with standard computer
vision augmentations (on the left) and the proposed augmentations
using iPPG magnification (on the right). The magnification levels
illustrated in each row on the right are 4 X, 6 X, 8 X, and 14 X
magnification, from top to bottom.
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Figure 3. Examples of the green channel waveforms obtained from
videos at 10 different magnification levels. Magnification of O cor-
responds to the original video without any magnifications. Using
video magnification as data augmentation directly changes the am-
plitude of the iPPG signals. This allows the network to explicitly
learn useful features for iPPG signals. On the other hand, stan-
dard computer vision augmentations do not have any impact on
the amplitude of the iPPG signal as they do not change the tempo-
ral pulsatile intensities in the video.

Pulse Magnification Augmentation. Next, we com-
pared an approach of data augmentation using a magnifi-
cation of the physiological signals to create 10 times more
training data as well. The advantage of these augmenta-
tions over standard augmentation approaches is that they
selectively alter the iPPG signal and allow the network to
pay special attention to the physiologically relevant fea-
tures. Fig. 3 shows examples of the green channel wave-
forms obtained from videos at 10 different magnification
levels compared to the original video (magnification = 0).

Most existing video magnification approaches magnify
motion instead of color variations because they were in-
tended for demonstrating mechanical phenomena, such as

the motion of the camera shutter, eye saccades, the motion
of a crane, etc. [12, 13]. Few methods were used to magnify
the color variations that could be used to reveal the blood
flow in the skin [11, 14]. In this work, we use a DeepMag
approach [14] for magnifying the iPPG signals.

DeepMag is an end-to-end network which takes an orig-
inal video as input and outputs a magnified video. It does
not need the user to provide the frequency of the pulse sig-
nal to be magnified because the CAN model is able to au-
tomatically find the correct frequency range corresponding
to the pulse. DeepMag is based on the same convolutional
attention neural network (CAN) architecture that we use to
extract the iPPG signals [2]. Therefore, it is able to cor-
rectly find facial regions with strong iPPG signals and the
correct iPPG frequency to make the magnified video not
only appear realistic but also to be useful for later training
a model with the augmented dataset with magnified videos.
The magnification is achieved via gradient ascent to visual-
ize the pulse signals on the face. The weights of the CAN
model pre-trained on the iPPG extraction task are frozen
during the gradient ascent to perform video magnification.
We selected a range of 10 magnification levels of 0.05 X,
01X, 1X,2X,4X,6X,8X,10X, 12X, and 14 X.
We found that these magnification levels were large enough
to visibly magnify the iPPG signal in the video but not too
large to avoid artifacts at higher magnifications. We scaled
the magnification levels by multiplying them by the tem-
poral standard deviation of the pixel intensities of the input
video to be magnified. The results with these magnification
experiments are referred to as “Heuristic iPPG Augmenta-
tion” in Table 1.

We also compared the video magnification with Deep-
Mag to the non-deep-learning Eulerian Video Magnifica-
tion (EVM) method [ 1]. However, we found that the per-
formance with EVM was not as good as with DeepMag.
EVM magnifies the entire image frame within a provided
frequency range of interest resulting in false pulsatile varia-
tions in the background that likely confuse the network dur-
ing training and the network is unable to learn which regions
to focus on in the video.

Joint Training of Pulse Extraction and Magnification.
We also tested whether we can jointly train the network to
learn how to magnify the videos in the training set while
learning to extract the iPPG signal from the videos (“Inter-
leaved iPPG Augmentation” in Table 1). In this approach,
we first train the network on videos without any magnifica-
tions for 25 epochs to make sure the model has converged
sufficiently to extract a good iPPG signal so that it can mag-
nify the videos well. We found that when we began mag-
nifying the videos at earlier epochs, the magnification was
erroneous since the model used to magnify the signals has
not converged yet and it lead to poor performance. After 25
epochs, we alternated between using the magnified and the



original videos every other epoch. For each epoch where
we magnified the videos, we randomly sampled from the
same 10 magnification levels used in the “Heuristic iPPG
Augmentation” to train the network. We did not change the
amplitude of the ground truth pulse signal for any of the
data augmentation experiments.

Compared Non-Deep Learning Methods. We com-
pared the performance of the deep learning models trained
with and without different data augmentation strategies to
several non-deep learning methods, including POS [27],
CHROM [26], and ICA [16]. Methods which do not
use deep learning do not suffer from overfitting. There-
fore, even though these methods are older than the com-
pared deep learning approaches, they often perform bet-
ter on the cross-dataset experiments, where the deep learn-
ing model was trained on a very different dataset from
the test set. In order to extract the iPPG signal us-
ing POS, CHROM, and ICA, we detected the face in
the first video frame using MATLAB’s face detection
(vision.CascadeObjectDetector ()). Face detec-
tion wasn’t necessary for the deep learning method because
it operates end-to-end and is able to implicitly learn which
regions in the video are likely to contain the iPPG signal.
We spatially averaged all facial pixels in the red, green, and
blue channels. We then used the three channel traces to ap-
ply POS, CHROM, and ICA methods to extract the iPPG
signal using the iPhys toolbox [49].

Computing HR: We computed the HR by taking the
Fourier transform of the output iPPG signal from each
method, finding the frequency with the maximum energy
in the power spectrum and multiplying the frequency by 60
to convert it from Hertz (Hz) to beats per minute (BPM).
We estimated HR for each non-overlapping 30 second time
window and averaged the errors over all time windows and
all videos in each dataset. For each compared method, we
normalized the extracted iPPG signals by subtracting the
temporal mean, dividing by the standard deviation, and we
bandpass filtered the signals with pass-band frequencies of
[0.7 2.5] Hz.

3.2. Training Details

We used an existing convolutional attention neural net-
work (CAN) to extract the iPPG signal from a video in an
end-to-end fashion [2]. The CAN architecture contains the
appearance and motion branches joined through an atten-
tion mechanism. The appearance branch takes as input a
single RGB image and uses it to learn which regions are
likely to contain strong iPPG signals, so that the network
can selectively focus on those regions and ignore the re-
maining regions. The motion branch takes as input a nor-
malized difference of two frames and its role is to learn to
separate the intensity variations induced by the physiolog-
ical signal from other variations, e.g., caused by motion.

The attention mechanism allows the network to place higher
weights on pixels which contain a strong iPPG signal and
lower weights on pixels which do not. We trained all mod-
els, with and without data augmentation, for 32 epochs and
we used a mean squared error (MSE) loss between the pre-
dicted and the ground truth iPPG waveforms. Please see [2]
for the architecture details.

We trained the CAN [2] on the stationary videos (Task
2) of the AFRL dataset [9]. We used a subject-independent
cross-validation, where we trained the model on 40 videos
of 20 subjects and tested it on 10 videos of 5 different sub-
jects. The videos were downsampled to 30 frames per sec-
ond (fps) from the original 120 fps for the efficiency of the
training. We chose to train the network only on the easier
stationary videos, free of major corruption sources to cre-
ate a large domain gap between the very easy training set
and the very hard test set. In these stationary experiments,
the subjects sat still without the headrests to allow for small
natural head motion. We tested the trained model on several
very challenging datasets, in order to illustrate the benefits
of data augmentation for generalizing to different and more
difficult datasets.

First, we tested the model on the 10 left-out videos of
the stationary AFRL videos (Task 2) [9] to evaluate the
within dataset performance. Then we tested the cross-
dataset generalizability of differently trained models to 10
AFRL videos (the same test subjects as in the stationary ex-
periments) with very large head motion where the subjects
reoriented their heads randomly once every second (Task 6).
We also tested the model on all videos of the MMSE-HR
dataset [33] which contained different motion and differ-
ent subjects from the AFRL dataset, and all NIR and RGB
videos of the MR-NIRP dataset [28] which contained both
stationary and motion experiments. Both MMSE-HR and
MR-NIRP contain several dark skin type subjects which
makes these datasets additionally challenging.

We report the results with mean absolute error (MAE)
between the ground truth and the estimated heart rate within
30 second time windows without overlap, and SNR for each
time window. SNR was computed as the area under the
power spectrum curve around the first and second harmonic
of the ground truth heart rate frequency divided by the rest
of the spectrum within 0.7 to 4 Hz. We converted the mag-
nitude of the SNR values to decibels on the log scale.

3.3. Datasets

AFRL [9] contains 300 videos of 25 participants
recorded at 120 fps as 8-bit, 658 x 492 pixel images with
a Scout scA640-120gc GigEstandard color camera. Each
subject was recorded during 12 experiments with vary-
ing head motion, each lasting five minutes. Each motion
experiment was recorded with a solid black background
and patterned background. The ground truth signals were



recorded using fingertip reflectance photoplethysmograms
and electrocardiograms. We used the photoplethysmograms
as ground truth to train the network and the electrocardio-
grams to compute the HR estimation errors. We center-
cropped the ARFL video frames to 492 x 492 pixels to re-
move the background areas.

MMSE-HR [50] contains 102 videos of 40 participants
recorded at 25 fps as 1040 x 1392 resolution images. The
ground truth physiological signals were recorded as blood
pressure (BP) wave at 1000 fps and an average HR which
was updated after every heart beat. 19 videos had noisy
ground truth average HR. We recomputed the HR for those
videos by detecting peaks in the blood pressure waveform
and computing the interbeat interval (IBI) between them.
We estimated HR as ﬁ where p(IBI) is the mean
IBI. We trained the network using the blood pressure wave-
forms as ground truth signals and the average HR to com-
pute the HR estimation errors. The MMSE-HR recordings
were captured during spontaneous emotion elicitation ex-
periments with sudden and uncontrolled motion and facial
expressions. This makes the MMSE-HR dataset more chal-
lenging than AFRL because there are large and sudden vari-
ations in the motion and in the pulse of the subjects. More-
over, this dataset contains subjects with darker skin types
which leads to lower SNR of the iPPG signals and espe-
cially affects the performance of deep learning models [ 5].

MR-NIRP [28] contains 15 videos of eight participants
simultaneously recorded in RGB and NIR at 30 fps as 10-
bit images with 640 x 640 resolution. FLIR Grasshopper3
GS3-PGE-23S6C-C camera was used to record the RGB
videos and Point Grey Grasshopper GS3-U3-41C6NIR-C
camera with a 940 nm bandpass filter with 10 nm passband
was used to record the NIR videos. For each recording, the
exposure was fixed, gamma correction was turned off, and
gain was set to zero. The dataset contains stationary exper-
iments where the subjects were asked to sit still and motion
experiments where the participants were asked to talk and
move their head. We detected the face in each frame and
cropped a region around it of 110% width and height of the
detected bounding box because the background was not uni-
form and could affect the performance of the deep learning
model. This dataset is challenging because the iPPG signals
have lower SNR in NIR [28, 30] and because this dataset
contains several subjects with darker skin types which also
leads to lower SNR of the iPPG signals [15].

4. Results

We have tested the generalizability of the model trained
on the stationary videos of the AFRL dataset [9] with and
without the different kinds of data augmentation to different
datasets with more challenging conditions. We tested the
model on videos with different and larger motion than the
motion present in the training set, videos with subjects with

darker skin types, and differently compressed videos. These
results are summarized in Table 1.

We found that increasing the training set with data
augmentations improved the performance, especially when
testing on videos that are significantly different from the
training set. Standard data augmentations improved the per-
formance on within-dataset experiments but they did not
offer improvements on cross-dataset experiments. This is
likely because rotating or flipping the images introduced in
the training set, did not make the training videos appear
more similar to the test set videos. On the other hand,
augmentations using magnifications of the iPPG signals,
create additional training data with a varying amplitude of
the physiological signal. This better resembles the test set
videos which also may have a higher or a lower amplitude of
the iPPG signal. By using signal magnification as data aug-
mentation, we can train the network to be robust to videos
with different SNR and different amplitudes of the iPPG
signal.

Different Motion. When we trained the network on sta-
tionary videos only, the network did not generalize well to
videos with large head motion (AFRL Motion) or different
kind of motion (MR-NIRP (RGB)). Augmenting the train-
ing set with pulse magnifications significantly improved
the results (Table 1). Unsupervised methods which do not
use deep learning do not suffer from overfitting and they
can perform reasonably well on different datasets. There-
fore, our augmentation approach did not always outper-
form the compared non-deep-learning benchmark methods
(POS, CHROM, or ICA). However, it did consistently per-
form better than the compared deep learning method with-
out data augmentations (“No Augmentation”) and the deep
learning method with standard computer vision augmenta-
tions (“Standard Augmentation). This shows that our ap-
proach is able to reduce overfitting and it can help the net-
work generalize to new challenging data. Both augmen-
tation approaches using heuristic and interleaved magnifi-
cation lead to better performance on videos with different
motion. However, we obtained the largest improvements
when we trained the network interleaved with magnify-
ing the videos during training of the network (“Interleaved
iPPG Augmentation”). Our interleaved magnification ap-
proach reduced the MAE by as much as 46 % (6.66 BPM)
on AFRL videos with large motion and by as much as 42
% (0.52 BPM) on MR-NIRP (RGB) videos over the com-
pared “No Augmentation” baseline. However, it is possible
that augmenting one training dataset can potentially lead to
further overfitting to that dataset, resulting in worse perfor-
mance on different test datasets. This could be the reason
why we achieve slightly worse performance on the MMSE-
HR dataset [50] which has different facial motion.

Different Imaging Modality — NIR. NIR videos are
more challenging than RGB for two reasons. First, the SNR



Table 1. Cross-dataset generalizability

AFRL Still  AFRL Motion MMSE MR-NIRP (NIR) MR-NIRP (RGB)

MAE SNR | MAE SNR | MAE SNR | MAE  SNR | MAE SNR
No Augmentation 149 420 [ 1439 911 [ 3.08 1.16 [ 2.89 -2.53 1.23 7.91
Standard Augmentation 143 375 | 1534 -1093 | 484 -136 | 11.67  -530 | 5.01 5.46
Heuristic iPPG Augmentation 1.42 441 10.72 -8.53 3.59 0.93 2.85 -2.35 0.71 7.56
Interleaved iPPG Augmentation 141 218 | 7.73 832 | 3.59 -0.96 | 652 -436 | 0.79 9.36
POS [27] 128 593 | 723 305 | 390 233 - - 0.63 4.98
CHROM [26] 127 397 | 1070 -332 | 374 190 175 3.59
ICA[16] 127 627 | 1282 -487 | 544  3.03 1.57 5.32

of the iPPG signals is an order of magnitude lower in NIR
compared to RGB [28, 30, 51]. Second, NIR videos look
very different from RGB videos. Therefore, deep learning
models only trained on RGB videos will struggle to gener-
alize to the different looking and monochrome NIR videos.
We obtained modest improvements in MAE and SNR with
the heuristic iPPG augmentation on NIR videos (MR-NIRP
(NIR) in Table 1). The results could be likely improved
if we could include some NIR videos during training with
magnification augmentations. However, there are few NIR
video datasets which are sufficiently large for training a
deep learning model. We could not evaluate the baseline
methods, POS, CHROM, and ICA, on the NIR videos, be-
cause these methods require three camera channels.

Darker Skin Types. People with darker skin types have
a higher melanin content in the skin. This leads to more
light being absorbed inside the skin and less light return-
ing to the camera, causing lower SNR of the iPPG sig-
nals and less robustness to motion and other sources of
variations [15]. Deep learning methods are especially sus-
ceptible to worse performance on videos of subjects with
darker skin types if the model was trained on videos of
predominantly light skin type subjects. Publicly avail-
able iPPG video datasets contain very few subjects with
darker skin types. Therefore, we combined the videos
of subjects with darker skin types V and VI on the Fitz-
patrick scale [52] from the MMSE-HR [50] and MR-NIRP
(RGB) [28] datasets to create a larger test set. We compared
the results on these dark skin type videos to the remaining
ones with lighter skin types I - IV. We observed improve-
ments in performance on videos of the more challenging
darker skin types with both heuristic and interleaved iPPG
augmentations. The improvements are the largest with the
interleaved approach, reducing the MAE by almost 6 %
(0.14 BPM) and increasing the SNR by as much as 1.18
dB (Table 2). The results on the light skin type videos are
already very good with all methods and the improvements
with any augmentations are not as apparent.

Video Compression. Video compression removes sub-
tle information, negatively affecting the iPPG signals [31,

, 3]. Obtaining iPPG signals from compressed videos is
particularly challenging for deep learning models because
the networks tend to overfit to the compression of the train-

ing set videos [0, 4]. We test the performance of different
methods on stationary AFRL videos [9] compressed with
constant compression rate factors (CRF) = 18, 24, 30, and
36. The original videos used for training the deep learning
model and to evaluate the methods reported in Table | were
already slightly compressed with CRF = 12. All methods
are negatively affected by compression, and the results, es-
pecially SNR, become consistently worse with increasing
compression (Table 3). We notice improvements in perfor-
mance at higher compression levels (CRF =24, 30) with our
proposed iPPG augmentation methods. The heuristic iPPG
augmentation provides the largest improvements on these
experiments. However, the interleaved iPPG augmentation
approach does not lead to better performance on the exper-
iments with different compression. At high compression of
CRF = 36 all methods already perform poorly because the
compression artifacts are very large [6].

Comparison to Baseline Methods. Sometimes the un-
supervised baseline methods, including POS, CHROM, and
ICA performed better than the deep learning method, es-
pecially on the challenging cross-dataset results. The rea-
son could be that these methods do not use machine learn-
ing and they are not prone to overfitting to the training set.
Moreover, ICA uses detrending which often removes a lot
of the noise and leads to higher SNR, despite having a larger
MAE than the compared methods.

5. Discussion

We only magnify the training set videos as a part of data
augmentation and we do not manipulate the test set videos
in any way. This justifies using a deep learning magnifi-
cation method which was trained on the same training set
that will be used to train a model to extract the iPPG sig-
nals. However, magnifying the test set videos could poten-
tially further improve the performance on videos with very
low SNR. Perhaps the model could be trained to learn how
much to magnify each video to obtain a reliable signal and
it would magnify lower SNR videos more.

Even well-performing video magnification may acciden-
tally magnify other intensity variations in the video in a sim-
ilar frequency range as the physiological signal. By only
training on clean, stationary videos and testing on very chal-



Table 2. Generalizability to videos with different skin types of MMSE-HR and MR-NIRP (RGB)

Light skin types (I - IV)

Dark skin types (V - VI)

MAE SNR | MAE SNR
No Augmentation 1.86 4.67 2.50 5.26
Standard Augmentation 3.99 2.35 6.95 242
Heuristic iPPG Augmentation 1.85 4.40 2.38 4.90
Interleaved iPPG Augmentation ~ 1.91 3.87 2.36 6.44
POS [27] 231 3.82 4.88 0.95
CHROM [26] 2.75 3.03 4.38 0.46
ICA [16] 3.25 4.40 7.51 1.57
Table 3. Generalizability to Compressed Stationary AFRL Videos
CRF 18 CRF 24 CRF 30 CRF 36
MAE SNR | MAE SNR | MAE SNR | MAE  SNR
No Augmentation 2,67 288 1.87  -052 | 498 -7.01 | 11.57 -10.51
Standard Augmentation 3.11 2.71 2.13 -2.02 6.44  -841 | 12.85 -11.66
Heuristic iPPG Augmentation 380 263 1.42 1.56 | 3.90 -546 | 1347 -12.07
Interleaved iPPG Augmentation ~ 7.14  -3.72 | 3.72  -6.15 830 -9.71 | 10.25 -11.22
POS [27] 1.47 3.25 2.99 245 1549 -5.01 | 19.51 -7.19
CHROM [26] 1.40 1.62 1.94 1.53 | 9.09 437 | 1691 -6.07
ICA [16] 1.66 338 | 225 1.58 8.12 -4.00 | 1746  -6.40

lenging videos with motion and other variations, we avoid
the problem of accidentally magnifying both the signal and
the noise during training. This allows the network to focus
primarily on the skin pixels and facial regions which contain
strong iPPG signals.

While our interleaved iPPG augmentation approach
achieves promising results, more work is needed to final-
ize the best way to jointly train the network to magnify the
training set videos and to obtain the iPPG estimates. We
have tested several combinations and we found that we ob-
tained the best results when we began the magnifications
after training for 25 epochs and by magnifying the signals
only in every other training epoch. We have also only sam-
pled the amount of magnification from a fixed range of mag-
nification factors that we found to work well. As part of
future work, we would like to train the model end-to-end to
learn what the best magnification amount is for a given set
of training videos instead of sampling from a fixed range.

6. Conclusions

We have demonstrated that augmenting the training set
with magnifications of the iPPG signal improved the per-
formance, especially on very challenging cross-dataset ex-
periments where the test set videos are very different from
the training set videos. This augmentation approach helps
especially on videos with lower SNR, such as videos with
large motion or large video compression.

We presented two approaches of iPPG data augmenta-
tion, the heuristic and interleaved approaches. The inter-
leaved approach shows promise to perform better on many
challenging tasks. However, more work is needed to un-
derstand when this approach is helpful and how we can
improve its performance by changing the way we magnify

videos during training of the network, the amount of magni-
fication, and the training epoch at which we begin the mag-
nification.

There are few publicly available iPPG datasets with suf-
ficiently diverse participants (e.g., with different skin types
and genders). Therefore, it is difficult to close the perfor-
mance gap on such videos with deep learning models and to
avoid overfitting. Our augmentation approach is a promis-
ing step in this direction to reduce overfitting and to im-
prove cross-dataset generalizability without the need to col-
lect new data. We hope that these results will inspire new
training approaches for iPPG applications to alleviate the
challenges with collecting large datasets.
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