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Preconditioned Gradient Descent Algorithm for
Inverse Filtering on Spatially Distributed Networks

Cheng Cheng, Nazar Emirov, and Qiyu Sun , Member, IEEE

Abstract—Graph filters and their inverses have been widely
used in denoising, smoothing, sampling, interpolating and learn-
ing. Implementation of an inverse filtering procedure on spatially
distributed networks (SDNs) is a remarkable challenge, as each
agent on an SDN is equippedwith a data processing subsystemwith
limited capacity and a communication subsystem with confined
range due to engineering limitations. In this letter, we introduce
a preconditioned gradient descent algorithm to implement the
inverse filtering procedure associated with a graph filter having
small geodesic-width. The proposed algorithm converges exponen-
tially, and it can be implemented at vertex level and applied to
time-varying inverse filtering on SDNs.

Index Terms—Graph signal processing, inverse filtering,
spatially distributed network, gradient descent method,
preconditioning, quasi-Newton method.

I. INTRODUCTION

S PATIALLY distributed networks (SDNs) have been widely
used in (wireless) sensor networks, drone fleets, smart grids

and many real world applications [1]–[4]. An SDN has a large
amount of agents and each agent equipped with a data pro-
cessing subsystem having limited data storage and computation
power and a communication subsystem for data exchanging
to its “neighboring” agents within communication range. The
topology of an SDN can be described by a connected, undi-
rected and unweighted finite graph G := (V,E) with a vertex
in V representing an agent and an edge in E between vertices
indicating that the corresponding agents arewithin some range in
the spatial space. In this letter, we consider SDNs equipped with
a communication subsystem at each agent to directly communi-
cate between two agents if the geodesic distance between their
corresponding vertices i, j ∈ V is at most L, i.e., ρ(i, j) ≤ L,
whereρ(i, j) is the number of edges in a shortest path connecting
i, j ∈ V , andwe call theminimal integerL ≥ 1 as the communi-
cation range of the SDN. Therefore the implementation of data
processing on our SDNs is a distributed task and it should be de-
signed at agent/vertex levelwith confined communication range.
In this letter, we consider the implementation of graph filtering
and inverse filtering on SDNs, which are required to be fulfilled
at agent level with communication range no more than L.
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A signal on a graph G = (V,E) is a vector x = (x(i))i∈V
indexed by the vertex set, and a graph filter H maps a graph
signal x linearly to another graph signal y = Hx, which is
usually represented by a matrixH = (H(i, j))i,j∈V indexed by
vertices in V . Graph filtering x �→ Hx and its inverse filtering
y �→ H−1y play important roles in graph signal processing
and they have been used in smoothing, sampling, interpolating
and many real-world applications [2], [5]–[9]. A graph filter
H = (H(i, j))i,j∈V is said to have geodesic-width ω(H) if
H(i, j) = 0 for all i, j ∈ V with ρ(i, j) > ω(H) [4], [10], [11].
For a filter H = (H(i, j))i,j∈V with geodesic-width ω(H), the
corresponding filtering process

(x(i))i∈V =: x �−→ Hx = y := (y(i))i∈V (1)

can be implemented at vertex level, and the output at a vertex i ∈
V is a “weighted” sum of the input in its ω(H)-neighborhood,

y(i) =
∑

ρ(j,i)≤ω(H)

H(i, j)x(j). (2)

For SDNs with communication range L ≥ ω(H), the above
implementation at vertex level provides an essential tool for the
filtering procedure (1), in which each agent i ∈ V has equipped
with subsystems to storeH(i, j) and x(j) with ρ(j, i) ≤ ω(H),
to compute addition and multiplication in (2), and to exchange
data to its neighboring agents j ∈ V satisfying ρ(j, i) ≤ ω(H).
For an invertible filter H, the implementation of the inverse

filtering procedure

y �−→ H−1y =: x (3)

cannot be directly applied for our SDNs, since the inverse filter
H−1 may have geodesic-width larger than the communication
range L. For the consideration of implementing inverse filtering
on our SDN,we construct a diagonal preconditioningmatrixPH

in (5) at vertex level, and propose the preconditioned gradient
descent algorithm (PGDA) (11) to implement inverse filtering
on the SDN, see Algorithms II.1 and II.2.
A conventional approach to implement the inverse filtering

procedure (3) is via the iterative quasi-Newton method

e(m) = Hx(m−1) − y and x(m) = x(m−1) −Ge(m), m ≥ 1,
(4)

with arbitrary initial x(0), where the filterG is an approximation
to the inverseH−1. A challenge in the quasi-Newton method is
how to select the approximation filter G appropriately. For the
widely used polynomial graph filtersH = h(S) =

∑K
k=0 hkS

k

of a graph shift S where h(t) =
∑K

k=0 hkt
k [11]–[19], several

methods have been proposed to construct polynomial approx-
imation filters G [13], [14], [16], [17], [19]. However, for the
convergence of the corresponding quasi-Newton method, some

1070-9908 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



CHENG et al.: PRECONDITIONED GRADIENT DESCENT ALGORITHM FOR INVERSE FILTERING ON SPATIALLY DISTRIBUTED NETWORKS 1835

prior knowledge is required for the polynomial h and the graph
shift S, such as the whole spectrum of the shift S in the optimal
polynomial approximation method [19], the interval containing
the spectrum of the shift S in the Chebyshev approximation
method [16], [17], [19], and the spectral radius of the shift S and
the zero set of the polynomial h in the autoregressive moving
average filtering algorithm [13], [14]. For a non-polynomial
graph filter H, the approximation filter in the gradient descent
method is of the form G = βHT with selection of the optimal
step lengthβ dependingonmaximal andminimal singular values
of the filter H [12], [20], and the approximation filter in the
iterative matrix inverse approximation algorithm (IMIA) could
be selected under a strong assumption onH [10, Theorem 3.2].
The proposed PGDA (11) is the quasi-Newton method (4) with
P−2

H HT being selected as the approximation filter G, see (7).
Comparing with the quasi-Newton methods in [10], [12]–[14],
[16], [17], [19], [20], one significance of the proposed PGDA is
that the sequence x(m),m ≥ 0, in (11) converges exponentially
to the output x of the inverse filtering procedure (3) whenever
the filter H is invertible, see Theorems II.3 and III.1.
Data processing of time-varying signals, such as data col-

lected by an SDN of sensors over a period of time, has been re-
ceived a lot of attentions recently [6], [7], [9], [19], [22]–[24]. For
a time-varying filterHt = (Ht(i, j))i,j∈V , t ≥ 0, with geodesic
width ω(Ht) ≤ L bounded by the communication range L of
the SDN, the quasi-Newtonmethod (4) to implement the inverse
filtering procedureyt �−→ H−1

t yt, t ≥ 0, on the SDN should be
designed to be self-adaptive, since each agent i ∈ V of the SDN
does not have the whole updated filter Ht and it only receives
the entries Ht(i, j) and Ht(j, i), ρ(j, i) ≤ L, on the i-th row
and column of Ht within the range L at every time instant t
[4]. Clearly, the quasi-Newton method (4) is self-adaptive if the
approximationfiltersGt = (Gt(i, j))i,j∈V , t ≥ 0 are locally se-
lected without the involvement of any global information of the
time-varying filterHt. The IMIA algorithm is self-adaptive [10,
Eq. (3.4)] but the gradient descent method [12], [20] is not
self-adaptive in general except that the step length β can be
chosen to be time-independent. The second significance of
the proposed PGDA is its self-adaptivity and compatibility to
implement the time-varying inverse filtering procedure on our
SDNs, as hence the approximation filter P−2

H HT in the PGDA
is constructed at the vertex level with confined communication
range, see Algorithm II.1.

II. PRECONDITIONED GRADIENT DESCENT ALGORITHM FOR

INVERSE FILTERING

Let G := (V,E) be a connected, undirected and unweighted
graph and H = (H(i, j))i,j∈V be a filter on the graph G with
geodesic-width ω(H). Denote the set of all s-hop neighbors of a
vertex i ∈ V by B(i, s) = {j ∈ V, ρ(j, i) ≤ s}, s ≥ 0. In this
section, we induce a diagonalmatrixPH with diagonal elements
PH(i, i), i ∈ V , given by

PH(i, i) := max
k∈B(i,ω(H))

⎧⎨⎩max

⎛⎝ ∑
j∈B(k,ω(H))

|H(j, k)|,

∑
j∈B(k,ω(H))

|H(k, j)|
⎞⎠⎫⎬⎭ . (5)

Algorithm II.1: Realization of the Preconditioner PH at a
vertex i ∈ V .

Inputs: Geodesic width ω(H) of the filter H and
nonzero entries H(i, j) and H(j, i) for j ∈ B(i, ω(H))
in the i-th row and column of the filter H.
1) Calculate
d(i) =
max{∑j∈B(i,ω(H)) |H(i, j)|,∑j∈B(i,ω(H)) |H(j, i)|}.
2) Send d(i) to all neighbors k ∈ B(i, ω(H))\{i} and
receive d(k) from neighbors k ∈ B(i, ω(H))\{i}.
3) Calculate PH(i, i) = maxk∈B(i,ω(H)) d(k).
Output: PH(i, i).

The above diagonal matrix PH can be evaluated at vertex
level and constructed on SDNs with communication range
L ≥ ω(H), see Algorithm II.1.
For symmetric matricesA andB, we useB � A andB ≺ A

to denote the positive semidefiniteness and positive definiteness
of their difference A−B respectively. A crucial observation
about the diagonal matrix PH is as follows.

Theorem II.1: Let H be a graph filter with geodesic-width
ω(H) and PH be as in (5). Then

HTH � P2
H. (6)

Proof: Write H = (H(i, j))i,j∈V . For x = (x(i))i∈V ,

0 ≤ xTHTHx =
∑
j∈V

∣∣∣∑
i∈V

H(j, i)x(i)
∣∣∣2

≤
∑
j∈V

(∑
i∈V

|H(j, i)||x(i)|2
)

×
(∑

i′∈V
|H(j, i′)|

)

=
∑
i∈V

|x(i)|2
∑

j∈B(i,ω(H))

|H(j, i)| ×
(∑

i′∈V
|H(j, i′)|

)

≤
∑
i∈V

|x(i)|2PH(i, i)
∑

j∈B(i,ω(H))

|H(j, i)|

≤
∑
i∈V

(PH(i, i))2|x(i)|2 = xTP2
Hx.

This proves (6) and completes the proof. �
Denote the spectral radius and operator norm of a matrix

A by r(A) and ‖A‖2 = sup‖x‖2=1 ‖Ax‖2 respectively, where
‖x‖2 = (

∑
j∈V |x(j)|2)1/2 for x = (xj)j∈V . By Theorem II.1,

P−2
H HT is an approximation filter to the inverse filter H−1 in

the sense that

r(I−P−2
H HTH) = ‖I−P−1

H HTHP−1
H ‖2 < 1. (7)

Remark II.2: Define the Schur norm of a matrix H =
(H(i, j))i,j∈V by

‖H‖S = max

⎧⎨⎩max
i∈V

∑
j∈V

|H(i, j)|, max
j∈V

∑
i∈V

|H(i, j)|
⎫⎬⎭ ,
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Algorithm II.2: Implementation of the PGDA (11) at a
vertex i ∈ V .

Inputs: Iteration number M , geodesic-width ω(H),
preconditioning constant PH(i, i), observation y(i) at
vertex i, and filter coefficients H(i, j) and
H(j, i), j ∈ B(i, ω(H)).
1) Calculate H̃(j, i) = H(j, i)/(PH(i, i))2.
Initialization: Initial x(0)(j), j ∈ B(i, ω(H)), and
m = 1.
2) Calculate
v(m)(i) = y(i)−∑

j∈B(i,ω(H)) H(i, j)x(m−1)(j).

3) Send v(m)(i) to neighbors j ∈ B(i, ω(H)) and receive
v(m)(j) from neighbors j ∈ B(i, ω(H)).
4) Update
x(m)(i) = x(m−1)(i) +

∑
j∈B(i,ω(H)) H̃(j, i)v(m)(j).

5) Send x(m)(i) to neighbors j ∈ B(i, ω(H)) and
receive x(m)(j) from neighbors j ∈ B(i, ω(H)).
6) Set m = m+ 1 and return to Step 2) ifm ≤ M .
Outputs: x(j) := x(M)(j), j ∈ B(i, ω(H)).

and denote the zero and identity matrices of appropriate size by
O and I respectively. One may verify that

O ≺ HTH � ‖H‖2SI. (8)

By (5), we have PH � ‖H‖SI. Then we may consider the
conclusion (6) for the preconditionerPH as a distributed version
of the well-known matrix dominance (8) for the graph filter H.
Preconditioning technique has been widely used in numerical

analysis to solve a linear system, where the difficulty is how
to select the preconditioner appropriately. In this letter, we use
PH as a right preconditioner to the linear system Hx = y
associated with the inverse filtering procedure (3), and we solve
the following right preconditioned linear system

HP−1
H z = y and x = P−1

H z, (9)

via the gradient descent algorithm{
z(m) = z(m−1) −P−1

H HT
(
HP−1

H z(m−1) − y
)

x(m) = P−1
H z(m), m ≥ 1,

with initial z(0). The above iterative algorithm can be reformu-
lated as a quasi-Newtonmethod (4)withG replaced byP−2

H HT ,{
e(m) = Hx(m−1) − y
x(m) = x(m−1) −P−2

H HTe(m), m ≥ 1
(10)

with initial x(0). We call the above approach to implement the
inverse filtering procedure (3) by the preconditioned gradient
descent algorithm, or PGDA for abbreviation.
Define wm := PH(x(m) −H−1y), m ≥ 0. Then

wm =
(
I−P−1

H HTHP−1
H

)
wm−1, m ≥ 1 (11)

by (10). Therefore the iterative algorithm (10) converges expo-
nentially by (7) and (11).
Theorem II.3: Let H be an invertible graph filter and

x(m),m ≥ 0, be as in (11). Then

‖PH(x(m) −H−1y)‖2 ≤ ∥∥I−P−1
H HTHP−1

H

∥∥m
2

× ‖PH(x(0) −H−1y)‖2, m ≥ 0.

Algorithm III.1: Implementation of the SPGDA (15) at a
vertex i ∈ V .

Inputs: Iteration number M , geodesic-width ω(H),
observation y(i) at vertex i, and filter coefficients
H(i, j) and H(j, i), j ∈ B(i, ω(H)).
1) Calculate P sym

H (i, i) =
∑

j∈B(i,ω(H)) |H(i, j)|,
H̃(i, j) = H(i, j)/P sym

H (i, i) and
ỹ(i) = y(i)/P sym

H (i, i), j ∈ B(i, ω(H)).
Initialization: Initial x(0)(j), j ∈ B(i, ω(H)) and
m = 1.
2) Compute
x(m)(i) =

x(m−1)(i) + ỹ(i)−∑
j∈B(i,ω(H)) H̃(i, j)x(m−1)(j).

3) Send x(m)(i) to neighbors j ∈ B(i, ω(H)) and
receive x(m)(j) from neighbors j ∈ B(i, ω(H)).
4) Set m = m+ 1 and return to Step 2) ifm ≤ M .
Outputs: x(j) := x(M)(j), j ∈ B(i, ω(H)).

In addition to the exponential convergence in Theorem II.3,
each iteration in the PGDA can be implemented at vertex level,
see Algorithm II.2. Therefore for an invertible filter H with
ω(H) ≤ L, the PGDA (11) can implement the inverse filtering
procedure (3) on SDNs with each agent only storing, computing
and exchanging the information in a L-hop neighborhood.

III. SYMMETRIC PRECONDITIONED GRADIENT DESCENT

ALGORITHM FOR INVERSE FILTERING

In this section, we consider implementing the inverse fil-
tering procedure (3) associated with a positive definite filter
H = (H(i, j))i,j∈V on a connected, undirected and unweighted
graph G. Define the diagonal matrixPsym

H with diagonal entries

P sym
H (i, i) =

∑
j∈B(i,ω(H))

|H(i, j)|, i ∈ V, (12)

and set

Ĥ = (Psym
H )−1/2H(Psym

H )−1/2. (13)

We remark that the normalized matrix in (14) associated with
a diffusion matrix has been used to understand diffusion pro-
cess [25], and the one corresponding to the Laplacian LG
on the graph G is half of its normalized Laplacian Lsym

G :=

(DG)−1/2LG(DG)−1/2, where DG is degree matrix of G [11].
Similar to the PGDA (11), we propose the following symmet-
ric preconditioned gradient descent algorithm, or SPGDA for
abbreviation,

x(m) = x(m−1) − (Psym
H )−1(Hx(m−1) − y), m ≥ 1, (14)

with initial x(0), to solve the following preconditioned linear
system Ĥz = (Psym

H )−1/2y and x = (Psym
H )−1/2z. Compar-

ing with the PGDA (11), the SPGDA for a positive definite
graph filter has less computation and communication cost in
each iteration and it also can be implemented at vertex level, see
Algorithm III.1.
For x = (x(i))i∈V , we obtain from (12) and the symmetry of

the matrix H that

xTHx ≤
∑
i,j∈V

|H(i, j)| (x(i))
2 + (x(j))2

2
= xTPsym

H x.
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Fig. 1. Plotted on the left is a corrupted blockwise polynomial signal x
and in the middle is the output y = Hx of the filtering procedure, where
‖x‖2 = 24.8194, ‖y‖2 = 21.5317 and the condition number of the filter H
is 107.40. Shown on the right is average of the relative inverse filtering error
E2(m) = ‖x(m) − x‖2/‖x‖2, 1 ≤ m ≤ 200 over 1000 trials, where N =

K = 512, η = 0.2, γ = 0.05 and x(m), m ≥ 1, are the outputs of SPGDA,
PGDA, OpGD and IMIA.

Combining (5) and (12) proves that H � Psym
H � PH, cf.

(6). This together with (13) implies that r(I− (Psym
H )−1H) =

r(I− Ĥ) = ‖I− Ĥ‖2 < 1. Similar to the proof of Theorem
II.3, we have
Theorem III.1: LetH be a positive definite graph filter. Then

x(m),m ≥ 0, in (14) converges exponentially,

‖(Psym
H )1/2(x(m) −H−1y)‖2

≤ ‖I− Ĥ‖m2
∥∥(Psym

H )1/2(x(0) −H−1y)
∥∥
2
.

IV. NUMERICAL SIMULATIONS

Let GN = (VN , EN ), N ≥ 2, be random geometric graphs
with N vertices deployed on [0, 1]2 and an undirected edge
between two vertices if their physical distance is not larger
than

√
2/N [11], [26]. In the first simulation, we consider

the inverse filtering procedure associated with the graph filter
H = Ho + (Lsym

GN
)2, where K ≥ 1, Lsym

GN
is the normalized

Laplacian on the graph GN , the filter Ho = (Ho(i, j))i,j∈VN

is defined by Ho(i, j) = 0 if ρ(i, j) ≥ 3 and

Ho(i, j) = exp

(
− 2K‖(ix, iy)− (jx, jy)‖22

−‖(ix, iy) + (jx, jy)‖22
2

)
+

γij + γji
2

if ρ(i, j) ≤ 2, (15)

(ix, iy) is the coordinator of a vertex i ∈ VN and γij are i.i.d
random noises uniformly distributed on [−γ, γ]. Let xo be
the blockwise polynomial consisting of four strips and im-
poses (0.5− 2ix) on the first and third diagonal strips and
(0.5 + i2x + i2y) on the second and fourth strips respectively [11],
[19]. In the simulation, the signals x = xo + ηηη are obtained by a
blockwise polynomial xo corrupted by noises ηηη with their com-
ponents being i.i.d. random variables with uniform distribution
on [−η, η], and the observations y of the filtering procedure are
given by y = Hx, see the left and middle images of Fig. 1.
In the simulation, we use the SPGDA (15) and the PGDA (10)

with zero initial to implement the inverse filtering procedure
y �→ H−1y, and also we compare their performances with the
gradient decent algorithm; x(m) = (I− βopH

TH)x(m−1) +
βopH

Ty, m ≥ 1, with zero initial and optimal step length βop

selected in [12], [19], [20],
OpGD in abbreviation, and the iterative matrix inverse

approximation algorithm, x(m) = (I− D̃H)x(m−1) + D̃y,
m ≥ 1, IMIA in abbreviation, where x(0) = 0 and the diago-
nal matrix D̃ has entries H(i, i)/(

∑
ρ(j,i)≤2 |H(i, j)|2), i ∈ V ,

Fig. 2. Plotted on the left is the original temperature data x12.
Shown on the right is average of the signal-to-noise ratio SNR(m) =

−20 log10 ‖x(m) − x12‖2/‖x12‖2, 1 ≤ m ≤ 35, over 1000 trials, where
x(m), m ≥ 1, are the outputs of PGDA, SPGDA, OpGD, IMIA and ICPA,
and average of the limit SNR is 16.7869.

see [10, Eq. (3.4)] with σ̃ = 0. Shown in Fig. 1 is the av-
erage of the relative inverse filtering error E2(m), 1 ≤ m ≤
200 over 1000 trials, and it reaches the relative error 5% at
about 57th iteration for IMIA, 118th iteration for SPGDA,
and more than 3000 iterations for PGDA and OpGD. This
confirms that x(m),m ≥ 1, in the SPGDA, PGDA, OpGD and
IMIA converge exponentially to the output x of the inverse
filtering, and the convergence rate are spectral radii of matrices
I− (Psym

H )−1H, I−P−2
H HTH, I− βopH

TH and I− D̃H,
see Theorems II.3 and III.1. Here the average of spectral radii
in SPGDA, PGDA, OpGD and IMIA shown in Fig. 1 are
0.9786, 0.9996, 0.9993, 0.9566 respectively.We remark that the
reason for PGDA and OpGD to have slow convergence in
the above simulation could be that their spectral radii are too
close to 1. Our simulation shows that for the graph filter on
some random geometric graphs of order N = 1024, which has
one as its diagonal entries and nondiagonal entries of Ho in
(18) with γ = 0 and K = 512 as its nondiagonal entries, the
corresponding PGDA, OpGD, SPGDA converge and the IMIA
diverges. Let GT = (VT , ET ) be the undirected graph with 218
locations in the United States as vertices and edges constructed
by the 5 nearest neighboring locations, and let x12 be the
recorded temperature vector of those 218 locations on August
1st, 2010 at 12:00 PM, see Fig. 2 [19], [27]. In the second simu-
lation, we consider to implement the inverse filtering procedure
x̃ = (I+ αLsym

GT
)−1b arisen from the minimization problem

x̃ := argminz ‖z− b‖22 + αzTLsym
GT

z in denoising the hourly
temperature data x12, where Lsym

GT
is the normalized Lapla-

cian on GT , α is a penalty constraint and b = x12 + ηηη is the
temperature vector corrupted by i.i.d. random noise ηηη with its
components being randomly selected in [−η, η] in a uniform
distribution [19], [27]. Shown in Fig. 2 is the performance of
the SPGDA, PGDA, OpGD, IMIA and ICPA to implement
the above inverse filtering procedure with noise level η = 35
and the penalty constraint α = 0.9075 [19], where ICPA is
the iterative Chebyshev polynomial approximation algorithm of
order one [16], [17], [19]. This indicates that the 3 rd term in
ICPA, the 5th term in IMIA, the 8th term of SPGDA, the 10th
term of OpGD and the 30th term of PGDA can be used as the
denoised temperature vector x̃.
To implement the inverse filter procedure (3) on SDNs, we

observe from the above two simulations that OpGD outperforms
PGDA while the selection of optimal step length in OpGD
is computationally expensive. If the filter is positive definite,
SPGDA, IMIA and ICPA may have better performance than
OpGD and PGDA have. On the other hand, SPGDA always
converges, but the requirement in [10, Theorem3.2] to guarantee
the convergence of IMIA may not be satisfied and ICPA is
applicable for polynomial filters.
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