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Abstract A spatial signal is defined by its evaluations on the whole domain. In this paper,
we consider stable reconstruction of real-valued signals with finite rate of innovation (FRI),
up to a sign, from their magnitude measurements on the whole domain or their phaseless
samples on a discrete subset. FRI signals appear in many engineering applications such as
magnetic resonance spectrum, ultra wide-band communication and electrocardiogram. For
an FRI signal, we introduce an undirected graph to describe its topological structure, es-
tablish the equivalence between its graph connectivity and its phase retrievability by point
evaluation measurements on the whole domain, apply the graph connected component de-
composition to find its unique landscape decomposition and the set of FRI signals that have
the same magnitude measurements. We construct discrete sets with finite density so that
magnitude measurements of an FRI signal on the whole domain are determined by its phase-
less samples taken on those discrete subsets, and we show that the corresponding phaseless
sampling procedure has bi-Lipschitz property with respect to a new induced metric on the
signal space and the standard £7-metric on the sampling data set. In this paper, we also pro-
pose an algorithm with linear complexity to reconstruct an FRI signal from its (un)corrupted
phaseless samples on the above sampling set without restriction on the noise level and apriori
information whether the original FRI signal is phase retrievable. The algorithm is theoreti-
cally guaranteed to be stable, and numerically demonstrated to approximate the original FRI
signal in magnitude measurements.
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1 Introduction

A spatial signal f on a domain D is defined by its evaluations f(x), x € D. One of funda-
mental problems in real/complex phase retrieval is how to determine all signals g that have
the same magnitude information as f has on the domain D (i.e., |[g(x)| =|f(x)|,x € D),
or on a discrete sampling set I' C D (i.e., [g(y)| = |f(¥)|, ¥ € I'). The above problem is a
highly nonlinear ill-posed problem which can be solved only if we have some extra informa-
tion about the signal f, and it has been discussed for bandlimited signals [56] and wavelet
signals residing in a shift-invariant space [19, 20, 55]. In this paper, we consider the phase-
less sampling and reconstruction (i.e., phase retrieval by point evaluation measurements on
the whole domain or on a discrete set) of real-valued signals residing in the linear space

V(D) ::{Zcm: c,\eRforallxeA}, (1.1)

AeA

where A C D is a discrete set with finite density, and the generator ® = (¢; ), is a vector
of nonzero basis signals ¢;, A € A, essentially supported in a neighborhood of the inno-
vative position A € A [23, 53, 59], i.e., any signal f in the space V(®) has a parametric
representation

f) =) ap(x), xeD, (12)
AeA

where ¢ = (c;),ea 1s an unknown real-valued parameter vector. Signals with the above para-
metric representation appear in many engineering applications such as magnetic resonance
spectrum, ultra wide-band communication and electrocardiogram [23, 24, 52, 59]. The lin-
ear space V(®) was introduced in [51, 52] to model signals with finite rate of innovation
(FRI), which was introduced by Vetterli, Marziliano and Blu in [59]. Sampling and recon-
struction of various FRI signals have been well studied [23-25, 40, 51, 52, 59], while there
is limited literature on phase retrievability of FRI signals [5].

Given a signal f € V(®), let
My :={geV(®): [g™)|=[f(x)|, x €D} (1.3)

contain all signals g € V(®) with the same magnitude measurements as f on D. As —f
and f have the same magnitude measurements on the whole domain, we have that

M D{Ef}
A natural question is whether the above inclusion is an equality.
Question 1.1 Can we characterize all signals f € V(®) so that My ={xf}?

An equivalent statement to the above question is whether a signal f is determined, up
to a sign, from the magnitude information | f (x)|, x € D. The above question is an infinite-
dimensional phase retrieval problem with point evaluation measurements, which has been
discussed for bandlimited signals [56], wavelet signals in a shift-invariant space [19, 20,
55]. The reader may refer to [1, 2, 13, 32, 42, 45, 50] for historical remarks and additional
references on phase retrieval in an infinite-dimensional linear space. In Sect. 3, we introduce
an undirected graph G for an FRI signal f € V(®), and we provide an answer to Question
1.1 by showing that M ; = {£ f} if and only if G is connected, see Theorem 3.2.
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For a signal f € V(®), the corresponding graph G is not always connected. This leads
to our next question.

Question 1.2 Can we find the set M for any signal f € V(®)?

For asignal f € V(®), we can decompose its graph G ¢ uniquely as a union of connected
components G;,i € I,

Gr=Uie1Gi. (1.4)
Then we can construct signals f; € V(®),i € I, with G5, =G;,i € I, such that
fi fir =0 for all distinct i,i’ € I, (1.5)
My ={xfi}, iel, (1.6)
and
£=>_# (1.7)
iel

see Theorem 4.4. Due to the mutually disjoint support property (1.5) for signals f;,i € I, and
the connectivity of the graphs G, i € I, we can interpret the above adaptive decomposition
visually that the landscape of original signal f is composed by islands of signals f;,i € I,
see the top left plot in Fig. 1 and the left plot in Fig. 2. Therefore the conclusion in Theorem
4.4 shows that landscapes of signals g € M are combinations of islands of the original
signal f and their reflections. We remark that landscape decomposition for signals in a
linear space has been used in Gabor phase retrieval [2, 32]. By (1.5) and (1.7), we have

MfD{ZS,-fiz 5ie{—1,1},iel}.
iel

In Sect. 4, we provide an answer to Question 1.2 by showing in Theorem 4.1 that the above
inclusion is in fact an equality for any signal f € V (&), and hence there are 2*/ elements in
the set M.

Now we consider phaseless sampling and reconstruction on a discrete set I’ C D. For a
signal f € V(®), let M contain all signals g € V(®) such that

lEWI=1fW)I. v €T, (1.8)

and AT contain all signals & € V (®) such that

h(y)=0, y el. (1.9)
By (1.3), (1.8) and (1.9), we have
My =M;p, Np={0}, (1.10)
and
Mg+ Nr CMypforallT C D. (L.11)

This leads to the third question.
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Question 1.3 Can we find all discrete sets I such that M- = My for all signals f €
V(d)?

An equivalent statement to the equality M s = M is that magnitude measurements
| f(x)|, x € D, on the whole domain D are determined by their samples | f(y)[, y € I, taken
on a discrete set I'. By (1.11), a necessary condition such that the equality M = M
holds for some signal f € V(®) is that Nt = {0}, which means that all signals in the linear
space V (®) are determined from their samples taken on I". The reader may refer to [24, 51,
54, 59] and references therein for sampling and reconstruction of FRI signals. In Sect. 5,
we show the existence of a discrete set I" with finite density such that Mz = M, for all
signals f € V(®). In Theorem 5.3, we construct such a discrete set I explicitly under the
assumption that the linear space V(@) has local complement property on a family of open
sets. The local complement property, see Definition 3.1, is introduced in [20] and it is closely
related to the complement property for ideal sampling functionals in [19] and the comple-
ment property for frames in Hilbert/Banach spaces [1, 7, 11, 13]. The local complement
property on a bounded open set can be characterized by phase retrievable frames associated
with the generator @ and the sampling set I" on a finite-dimensional space, see Proposition
5.2. The reader may refer to [7, 10, 14, 15, 18, 28, 34, 36, 49, 61] and references therein for
historical remarks and recent advances on finite-dimensional phase retrievable frames.

In many real world applications, phaseless samples are usually corrupted by some
bounded deterministic/random noises 1n(y), y € I', and the available noisy phaseless sam-
ples are

LW =1fW+nly), verl.

Set n = (n(y))yer and z,, = (2,(¥))yer. This leads to the fourth question to be discussed in
this paper.

Question 1.4 Can we find an algorithm A such that the reconstructed signal g, = A(z,) is
an “approximation” to the original signal f?

For a finite-dimensional phase retrieval problem, there are various algorithms available,
such as the alternating minimization, semidefinite programming, and Wirtinger flow method
[15, 16, 26, 27, 29, 44, 49, 63], however applicability of the algorithms, to our knowledge,
requires that the original signal f is phase retrievable, i.e., M = {£f}. In [19, 20], an
MAPS algorithm is proposed to reconstruct a signal f in a shift-invariant space, up to a
sign, from its phaseless samples taken on a shift-invariant set, where the original signal f is
phase retrievable.

Given a Borel measure p on the domain D, let L? := L?(D, u), 1 < p < oo, be the linear
space of all p-integrable signals with standard norm || - ||z := || - [|Lr(p, ) and £7 := £P(T")
be the space of all p-summable sequences n on I' with its standard p-norm denoted by
Inllze == lInllerary. Let 1 < p < 0o and define

V, (@) = [Zcm C(C)ren € ep] CV@NLY, 1<p<oo. (1.12)
rEA

In Sect. 6, we propose a robust algorithm with linear complexity so that the reconstructed
signal g, is a good approximation to the original signal in the linear space V,(®), see The-
orem 6.5 and Remarks 6.1-6.4 and 6.6. This provides an affirmative answer to Question 1.4
for the original signals in V,(®).
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Stability of a sampling scheme is an important concept for the robustness and uniqueness
for sampling and reconstruction of signals in a linear space, see [3, 43, 51, 58]. Due to the
nonlinearity, stability of the phaseless sampling scheme

S V(@) 3 fr— (If(¥)Dyer (1.13)

on a sampling set I" should be described by its bi-Lipschitz property in some metrics on the
signal space and the sampling data set. This leads to the fifth question to be discussed in this

paper.

Question 1.5 Let I be a sampling set such that M yr = My for all f € V(®). Can we
define appropriate metrics on the signal space and on the sampling data set such that the
phaseless sampling operator Sr in (1.13) has the bi-Lipschitz property?

For 1 < p < 0o, we define the natural metric for phase retrievability on the signal space
V(@) by

m,(f,g)=min(|| f +gllzr, | f — gllzr) forall f, g € V,(P), (1.14)

and the £7-metric on the phaseless sampling data set by
D, (Sr f, Srg) = ISr f — Srgllir forall f, g € V,(P), (1.15)

cf.[2, 6, 11, 28]. The nonlinear sampling operator Sr in (1.13) does not have the bi-Lipschitz
property with respect to the natural metric m,, on the signal space V,(®) and the £”-metric
D, in the phaseless sampling data set, i.e., there does not exist positive constants C; and C,
such that

Cimp(f,8) <D,(Srf,Srg) < Com,(f, g) forall f,g e V,(P).

The reason is that some signals in V,(®) may not be determined, up to a sign, from their
phaseless samples on I', and hence we can find f, g € V,,(®) such that

mp,(f,g) #0and D,(Sr f, Srg) =0.

In this paper, we induce a new metric on the signal space V,(®), 1 < p < oo,

M,(f,8) = _ inf max(||f—f||L,,,||g_g,||u,)
f.8€V) (@) satisfying M

=M

= inf  max(If— fllce. g — &llzr). (1.16)

f=g in Vp(®)/~

where V,(®)/ ~ is the quotient space of V,(®) with the equivalence f ~ g between f ,8 €
V,(®) meaning that they are indistinguishable from their magnitudes, i.e., My = M;.
Clearly we have that

1= 1gllzr/2 < My(f, 8) =m,(f, g) forall f,g € V,(P), 1<p=oo. (1.17)

In Theorem 6.7, we show that the phaseless sampling operator St has the bi-Lipschitz prop-
erty with respect to the above new metric M, on the infinite-dimensional signal space V,,(®)
and the £7-metric on the phaseless sampling data set.
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1.1 Contributions and Comparisons

This paper is the continuation of [19, 20]. In [19, 20], we discuss the phaseless sampling
and reconstruction of wavelet signals in a shift-invariant space

V($) = { 3 ctp-—k): c(k) e R forall k € Z‘f} (1.18)

kezd

generated by a compactly supported function ¢, while spatial signals considered in this
paper belong to the linear space V (®) in (1.1). Our representative examples of the linear
space V (), different from the shift-invariant space V (¢), are the linear space of all graph
signals to describe structured data in applications such as social networks, smart power grids,
wireless sensor networks, and drone/UAV fleets [21], and the linear space of superpositions

fE)=) cpx—1), xeR, (1.19)

AEA

of non-uniform translations ¢, = @¢(- — 1), A € A # Z¢ of a basis signal ¢, which has been
used in some sampling and approximation problems [4, 33, 51, 52]. Similarity between the
shift-invariant space V (¢) considered in [19, 20] and the linear space V (®) used in this pa-
per is that we both assume that any signal in those two linear spaces has a unique parametric
representation, see (2.6), while the main difference is that the linear space V(®) does not
have a shift-invariant structure. Our first challenge is how to define the local complemen-
tary property of the linear space V(&) appropriately, and our first main contribution is to
characterize all phase retrievable signals f in the linear space V(®), i.e., M, ={%f}, see
Theorem 3.2, which has been discussed in [19, 20] for signals in the shift-invariant spaces
Vi(e).

Spatial signals f € V(®) are not always determined, up to a sign, from the magnitude
information | f(x)|, x € D on the domain D, i.e., M # {£ f}. In such a scenario, we aim
at finding all FRI signals in the set M ; which have the same magnitude information on their
domain D as the original FRI signal f has. In [19, Lemma 6.9], it has been shown that any
signal in some shift-invariant space V (¢) on the real line has a unique landscape decom-
position and the set M s is fully described. For signals in the shift-invariant space V (¢) on
R?,d > 2, we can apply connected component decomposition to the associated graphs in
[20], and to find their landscape decompositions, however the uniqueness of landscape de-
compositions is not established and the set M  is not discussed. The second challenge is the
uniqueness of such a landscape decomposition, and the second main contribution is that we
provide a full description to the set M ; and we discover a unigue landscape decomposition
for any signal f in the linear space V (®) using connected component decomposition of the
associated graph G, see Theorems 4.1 and 4.4.

In [19], an MAPS algorithm is proposed to reconstruct a signal f in the shift-invariant
space on the real line, up to a sign, from its phaseless samples | f (x, + k)|, x, € X C [0, 1],
when the original signal f is phase retrievable. The algorithm has linear complexity and it
consists of three steps: 1) minimization to find local approximations; 2) phase adjustment for
local approximations; and 3) sewing local approximation together to reconstruct the origi-
nal signal, up to a sign. In [19, Theorem 4.1], it is shown that the MAPS algorithm is robust
against small noises. A high-dimensional version of the MAPS algorithm is introduced in
[20] to reconstruct a signal f in the shift-invariant space on the d-dimensional Euclidean
space, up to a sign, from its phaseless samples | f (x, + k)|, x,, € X C [0, 1]¢, when the orig-
inal signal f is phase retrievable. In this paper, we introduce a new strategy in the phase
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adjustment step and propose a new MAPS algorithm to reconstruct signals in the linear
space V,(®), 1 < p < oo from their (un)corrupted phaseless samples. The third main con-
tribution is that the reconstructed signal obtained from the proposed MAPS algorithm is an
“approximation” to the original signal in the linear space V,(®) without restriction on noise
level and apriori information on the original signal f, see Theorem 6.5 and Remark 6.6.
Moreover the proposed algorithm is robust and non-iterative, and it has linear complexity,
see Remarks 6.2-6.4.

In [19, 20], we consider the local stability of a phaseless sampling operator St in natural
metric mo, in the shift-invariant space V,(¢), where

V@) i={ Y cthpt =0l et} 1=p=oo. (120

kezd

It is shown in [19, Theorem 4.1] that for any phase retrievable signal f € V,,(¢) on the real
line, there exist positive constants A and €, (depending on f) such that

Amoo(gv f) = Doc(Sng SFf)

hold for all signals g € Vi (¢) satisfying Do (Srg, St f) < €. The fourth main contribu-
tion is that we construct sampling sets I with finite density so that the nonlinear sampling
operator St in (1.13) has bi-Lipschitz property with respect to the metric M, in (1.16) on a
linear subspace V,(®), 1 < p < 00, i.e., there exists positive constants A; and A, such that

AlMp(g’ f) = Dp(Sng Srf) = A2Mp(g7 f) for all 8 f € Vp(cb),

see Theorem 6.7. To the best of our knowledge, the above stability inequality is the first
global estimation for certain phase retrievable signals in an infinite-dimensional linear space.

1.2 Organization

In Sect. 2, we present some preliminaries on the linear space V(®). In Sect. 3, we introduce
a graph structure for any signal in V(®) and use its connectivity to provide an answer to
Question 1.1. In Sect. 4, we introduce a landscape decomposition for a signal f € V()
and use it to find all signals in M. In Sect. 5, we construct a discrete set I' with finite
density such that M s = M forall f € V(®). In Sect. 6, we introduce a stable algorithm
A with linear complexity to reconstruct signals in V (®) from their noisy phaseless samples
taken on a discrete set I' and show that the phaseless sampling operator St in (1.13) has
bi-Lipschitz property with respect to the metric M, in (1.16). In Sect. 7, we demonstrate
the stable reconstruction of our proposed algorithm A by reconstructing one-dimensional
non-uniform spline signals and two-dimensional piecewise affine signals on triangulations
from their noisy phaseless samples. In Appendix A, we show that the density of a discrete
set I' with M sr = My, f € V(®P), must be no less than the innovative rate of signals in
V(®).

2 Preliminaries

Spatial signals considered in the paper are defined on a domain D. Our representing models
of the domain D are the d-dimensional Euclidean space R4, the d-dimensional torus T¢ and
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the vertex set V of a undirected graph G = (V, E) containing no graph loops or multiple
edges that is widely used to describe a spatially distributed network [21]. Let

B(x,r)={yeD: p(x,y) =r}

be the closed ball with center x € D and radius » > 0. In this paper, we always assume the
following for the domain D [21, 41, 62].

Assumption 2.1 The domain D is equipped with a distance p and a Borel measure p so
that

B(r) :==sup u(B(x,r)) < o0 2.1
xeD
and
fiminf inf #B&S =) _ 22)

s—oo xeD  u(B(x,s))
hold for all » > 0.

Spatial signals considered in this paper belong to the linear space V(&) in (1.1). De-
note the cardinality of a set E by #E. In this paper, we always assume the following three
conditions to basis signals ¢, , A € A, of the linear space V (®) in (1.1).

Assumption 2.2 (i) The discrete set A has finite density

D, (A) :=limsup sup ﬁ(A N5, r))

_ ; 2.3
r—o00 xeD /,L(B(X, r)) = ( )

(ii) the basis signals ¢, A € A, in the generator ® are nonzero continuous functions being
uniformly bounded,

[[@lloc = sup |z L < 00, 2.4
reA
and they are supported in balls with center A and a fixed radius ry > 0 independent of 1, i.e.,
¢, (x) =0forall x ¢ B(A,rp) and A € A; 2.9
and (iii) any signal in V(&) has a unique parametric representation (1.2).

The prototypical forms of the linear space V (®) in (1.1) are Paley-Wiener space of ban-
dlimited signals [56, 58], the shift-invariant space V (¢) generated by the shifts of a com-
pactly supported function ¢ [3, 19, 20], twisted shift-invariant spaces generated by (non-
Juniform Gabor frame system (or Wilson basis) in the time-frequency analysis [8, 9, 17, 31,
37, 47], and nonuniform spline signals [12, 35, 48]. The linear space V (®) was introduced
in [51, 52] to model FRI signals. Following the terminology in [59], signals in the linear
space V (®) have rate of innovations D, (A) and innovative positions A € A.

An equivalent statement to the unique parametric representation (1.2) of FRI signals in
V(®) in Assumption 2.2 is that the generator ® has global linear independence, i.e., the
map

C .= (CA)AEA — CTq) = ZQ‘?A (26)

AEA
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is one-to-one from the space £(A) of all sequences on A to the linear space V (®) [39, 46].
For an open set A, define

Ki={reA: ¢, £0o0n Al Q@.7)

A local version of the global linear independence (2.6) is local linear independence on a
bounded open set A C D, i.e.,

dim V(®)|4 =#K4, (2.8)

where dim V is the dimension for a linear space V and V|4 represents its restriction on
a set A. Observe that the restriction of the linear space V(&) on a bounded open set A is
generated by ¢; , A € K4 (and hence it is finite-dimensional). Then an equivalent formulation
of the local linear independence on a bounded open set A is that

Y capi(x)=0forall x € A (2.9)

reA

implies that ¢; =0 for all A € K4 [39, 53].
Set

So(A, M) :={xeD: ¢ (x)pu(x) #0}, A, 1" € A, (2.10)
and use the abbreviation
So(A) :=So (X, 1)

when A" = A € A. One may verify that the generator ® has global linear independence (2.6)
if it has local linear independence on a family of open sets Ty, 6 € ®, such that

So(h, M) N (Ugeo Ty) # 0 (2.11)

for all pairs (A, A1) € A x A with S(x, 1) # #. We remark that a family of open sets
Ty, 0 € O, satisfying (2.11) is not necessarily a covering of the domain D, however, the
converse is true, cf. Corollary 4.3.

3 Phase Retrievability and Graph Connectivity

In this section, we characterize all signals f € V(®) that can be determined, up to a sign,
from their magnitude measurements on the whole domain D, i.e., My = {£ f}, see Theo-
rem 3.2.

Given a signal f =", _, cax¢, € V(P), we define an undirected graph

G = (Vy, Ef), 3.1
where
Vii={AeA: c;, #0) (3.2)
and

Ef:i={(2) eV, x V;: A #1 and ¢ #0).
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For a signal f € V(®), the graph G, in (3.1) is well-defined by (2.6), and it was introduced
in [20] when the generator ® = (¢ (- — &))<z« is obtained from shifts of a compactly sup-
ported function ¢. Its vertex set V, contains all innovative positions A € A with nonzero
amplitude c,, and its edge set E; contains all innovative position pairs (A, A") in V; x V;
with basis signals ¢, and ¢,  having overlapped supports, i.e.,

(A A)eEysifandonlyif 1,1 € Vs and (A, 1) € Eo, (3.3)
where S¢ (X, 1), (A, 1)) € A X A, are given in (2.10) and
Eo :={(A,A)eAXA: So(r, \)#0}. (3.4)

To study the phase retrievability of signals in V(®), we recall the local complement
property for a linear space of real-valued signals [20].

Definition 3.1 Let A be an open subset of the domain D. We say that a linear space V of
real-valued signals on the domain D has local complement property on A if forany A’ C A,
there does not exist f, g € V such that f,g £ 0 on A, but f(x) =0 for all x € A" and
g(y)=0forally e A\A'.

The local complement property is the complement property in [19] for ideal sampling
functionals on a set, cf. the complement property for frames in Hilbert/Banach spaces ([1, 7,
11, 13]). Local complement property is closely related to local phase retrievability. In fact,
following the argument in [19], the linear space V has the local complement property on A
if and only if all signals in V' are local phase retrieval on A, i.e., for any f, g € V satisfying
lg(x)| =|f(x)],x € A, there exists § € {—1, 1} such that g(x) =4f(x) forall x € A.

In this section, we establish the equivalence between phase retrievability of a nonzero
signal f € V(@) and connectivity of its graph G ;. A similar result is established in [20] for
signals residing in a shift-invariant space.

Theorem 3.2 Let ® be a family of basis functions satisfying Assumption 2.2, V(®) be the
linear space (1.1) generated by ®, and let T = {Ty,0 € O} be a family of bounded open
sets satisfying (2.11). Assume that for any Ty € T, ® has local linear independence on
Ty and V (®) has local complement property on Ty. Then for a nonzero signal f € V (D),
My ={xf} if and only if the graph G in (3.1) is connected.

As shown in the next proposition, the local complement property assumption in Theorem
3.2 is satisfied when @ has local linear independence on all bounded open sets. However,
we do not use the above strong assumption in our main theorems, as there are very few
families of basis signals available (including those generated by integer shifts of B-splines,
scaling/wavelet functions, and box splines), which have local linear independence on all
bounded open sets [22, 30, 38, 53].

Proposition 3.3 Let ® = (¢y)cn satisfy Assumption 2.2. If ® has local linear indepen-
dence on all bounded open sets, then there exist T = {Ty, 0 € O} satisfying (2.11) such that
V(®) has local complement property on every Ty € T .

Proof Define Ty (0) = NjcpSe(X) foraset & C A. We say that & C A is maximal if T (0) #
@ and T (0") = for all 6’ 2 6. By (2.3) and (2.5), any maximal set contains finitely many
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elements. Denote the family of all maximal sets by ® and define Ty = T4 (0), 6 € ®. Clearly
T :={Ty, 0 € O} satisfies (2.11), because any 8 C A with T4 (6) # @ is a subset of some
maximal set in ®.

Now it remains to prove that V (®) has local complement property on 7y, 6 € ©. Take an
arbitrary 6 € ® and two signals f, g € V(®) satisfying | f(x)| = |g(x)| for all x € Ty. Then

(f+9@(f —g&x)=0forall x € Tp. (3.5)

Write f+g =Y., e and f—g =3, diy, andset By = {x € Ty : (f +g)(x) # 0}
and B,={xeTy: (f — g)(x) #0}. Then

(qu)x(x))(dem(x)) —Oforallx e T, (3.6)
rebh reb
and
¢i(x)#Oforallx € Ty and A € 6 3.7

by assumption (2.11), (3.5) and the construction of maximal sets. By (3.6), we have that
f—g=0on B if Bi#0, f+g=0on B if Bb#@,and f —g=f+g=0o0n Ty if
B = B, = (. This together with (3.7) and the local linear independence on B, B, and Ty
implies that either d, =0 forall L €6, 0rc; =0forallA€6,0rc, =d, =0forall A €6.
Therefore either f = g on Ty, or f = —g on Ty, or f = g =0 on Typ. This completes the
proof. O

Applying Theorem 3.2 and Proposition 3.3, we have the following corollary, which is
established in [20] when the generator @ is obtained from uniform shifts of a compactly
supported function.

Corollary 3.4 Let ® be a family of basis functions satisfying Assumption 2.2, and V (P) be
the linear space (1.1) generated by ®. If ® has local linear independence on any bounded

open set, then a nonzero signal f € V(®) satisfies My = {£ f} if and only if the graph G
in (3.1) is connected.

3.1 Proof of Theorem 3.2
The necessity in Theorem 3.2 holds under a weak assumption on the generator ®.

Proposition 3.5 Let @ := (¢;)sen be a family of basis functions satisfying Assumption 2.2,
V(®) be the linear space (1.1) generated by ®, and let f be a nonzero signal in V(®). If
My ={Ef}, then the graph G in (3.1) is connected.

To prove Proposition 3.5, we recall a characterization in [19] on phase retrievability.

Lemma 3.6 For a nonzero signal f in a real-valued linear space V, My ={x f} if and
only if it is nonseparable, i.e., there does not exist nonzero signals fy and f| € V such that

f=fo+fi and fofi=0. (3.8
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Proof of Proposition 3.5 Let f € V(®) be a nonzero signal satisfying M = {£f}, and
write f = erA c,.¢5, where ¢, € R, A € A. Suppose, on the contrary, that the graph G is
disconnected. Then there exists a nontrivial connected component W such that both W and
V¢ \W are nontrivial, and no edges exist between vertices in W and in V;\W. Write

f=Y atm=) ap+ Y abi=fi+h (3.9

keVy reW reVAW

From the global linear independence (2.6) and nontriviality of the sets W and V\W, we
obtain

fo#£0 and f; #£0. (3.10)
Applying (3.9) and (3.10), and using the characterization in Lemma 3.6, we obtain that
Jo(xo) f1(x0) #0

for some x( € D. This implies the existence of A € W and A" € V\ W such that c; ¢, (x¢) # 0
and ¢/ ¢y (x9) # 0. Hence (A, A') is an edge between A € W and A’ € V\W, which contra-
dicts to the construction of the set W. O

Now we prove the sufficiency in Theorem 3.2. Let f = er A Cr.Pn € V(D) have its
graph G, being connected, and take g =), ., dy¢,. € M. Then for any 6 € ©,

g =1f(x)], x €Tp. 3.11)

For any 0 € O, there exists 8y € {—1, 1} by (3.11) and the local complement property on T
such that

gx)=08pf(x), x €Tpy.
This together with the local linear independence on 7, implies that

d), = 8y, (3.12)

for all L € A with Se(A) N Ty # @. Using (2.11) and applying (3.12), there exist §; €
{—1, 1}, A € A such that

dk zékq (313)
forall A € A, and
8, =68y (3.14)

for any edge (A, 1') in the graph G ;. Combining (3.13) and (3.14), and applying connectivity
of the graph G, we can find § € {—1, 1} such that

d, =c, =0forall L ¢ Vs and d), =dc; forall A € V. (3.15)

Thus g(x) = §f (x) for all x € D. This completes the proof of the sufficiency.
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4 Phase Retrievability and Landscape Decomposition

For a signal f € V(®), the graph G in (3.1) is not necessarily connected and hence there
may exist many signals g € V(®), other than & f, belonging to M. In this section, we
characterize the set M ; of all signals g € V (®) that have the same magnitude measurements
on the domain D as f has, and then we provide the answer to Question 1.2.

Take f =3, ., cr¢pp € V(P), let G = (V;, E;), i € I, be connected components of the
graph G, and define

ﬁzzck¢l5 iel @.1)
reV;

Then (1.4) holds by the definition of G;,i € I, and the signal f has the decomposition
(1.5), (1.6) and (1.7) by Theorem 3.2. By (1.5) and (1.7), signals g = Zie] i f; with §; €
{—1,1},i € I, have the same magnitude measurements on the domain D as f has. In the
following theorem, we show that the converse is also true.

Theorem 4.1 Let the generator ® := (Pp)ren, the family T = {Ty, 0 € O} of bounded open
sets, and the linear space V (®) be as in Theorem 3.2. Take f € V(®) andlet f; € V(P),i €
I, be as in (4.1). Then g € V(®) belongs to M if and only if

g=)Y &f forsomes; e{—1,1}iel. (4.2)

iel

Proof The sufficiency is obvious. Now the necessity. Let f, g € V(®) have the same
magnitude measurements on the domain D, i.e., My = M,. Write f =", _, ;¢ and
8 = ;ca dr¢. Then following the argument used in the sufficiency of Theorem 3.2, we
can find §; » € {—1, 1} for any pair (%, L") with S¢ (X, 1) # @ such that

(dy, dsr) =650 (cay cor). (4.3)
Applying (4.3) with 2 = A and recalling that S¢ (1) # @, we obtain
d, =8¢, LeA, 4.4)
for some §; € {—1, 1}. This concludes that
8. =800 =8y 4.5)

for any edge (A, 1) of the graph G;. Therefore signs §, are the same in any connected
component of the graph G,. This together with (1.4), (4.1) and (4.4) completes the proof.
d

The conclusion in Theorem 4.1 can be understood as that the landscape of any signal
g € My is a combination of islands of the original signal f or their reflections. As an
application to Theorem 4.1, we have the following result about the cardinality of the set
M.

Corollary 4.2 Let the generator @, the family T of bounded open sets, and the linear space
V(®) be as in Theorem 3.2. Then for f € V(®),

#M =2",

where 1 is given in (1.4).
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The union of 7y, 8 € O, is not necessarily the whole domain D. Following the argument
used in the proof of Theorems 3.2 and 4.1, we have the following corollary.

Corollary 4.3 Let the generator @, the family T = {Tp, 0 € O} of bounded open sets and
the linear space V (®) be as in Theorem 4.1. Then

My = M;p, forall feV(d), (4.6)
where DT = Uge(_) Tg.

Proof Let f,g € V(®) satisfy | f(x)| = |g(x)|,x € Ty forall 6 € ©. Write f =) ",_, fi as
in (1.5), (1.6) and (1.7). From the argument used in the proof of Theorems 3.2 and 4.1, we
have that g =) ", _, 8; f; for some 8; € {—1, 1}. Therefore |g(x)| = | f(x)| forallx e D. O

Take f =), ) c.¢s € V(P), and define f;,i € I, by (4.1). As discussed in the para-
graph just before the statement of Theorem 4.1, the above functions f;,i € I form a land-
scape decomposition of the signal f satisfying (1.5), (1.6) and (1.7). In the next theorem we
show the uniqueness of the landscape decomposition satisfying (1.5), (1.6) and (1.7).

Theorem 4.4 Let the generator ® and the space V (®) be as in Theorem 4.1. Then for any
f € V(D) there exists a unique decomposition satisfying (1.5), (1.6) and (1.7).

Proof Write f =3, ,ci¢, and define f;,i € I, by (4.1). Suppose that {g;, j € J}
is another decomposition of the signal f satisfying (1.5), (1.6) and (1.7). Then g; =
Y sen diada, j € J, are nonzero signals in V(®) such that satisfy

=Y g 4.7)
=
M, ={xg;}, jeJ, (4.8)
and
g;g; =0 for all distinct j, j' € J. 4.9)

Then it suffices to find /;, j € J, such that

I; only contains exactly one element for any j € J, (4.10)
gi=y_ f (4.11)
i€l
and
UjesI; =1 and I; N 1 = ¢ for all distinct j, j' € J, (4.12)

as in this case there is an bijective map P from J and I such that g; = fp(;, j € J.

First we prove (4.11) and (4.12). For any distinct j, j/ € J and (A,1) € A x A with
So (X, X)) # @, following the argument used in the sufficiency of Theorem 3.2 with f and g
replaced by g; & g;» we obtain from (4.9) that

either (dj,)w dj,)»’) = (0, 0) or (dj’,)u dj’,)»’) = (0, 0)
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This together with (4.7) implies that for any (A, A') € A x A with S¢ (A, 1) # @ there exists
J € J such that

dis=cy. diy=cy (4.13)
and
djry=dy, =0forall j'# j. 4.14)

Observe that S¢ (1) # @, L € A. Applying (4.13) and (4.14) with A’ = 1 € A, we can find
W;, j € J such that

gi= ) ad (4.15)
AEW;
and
UjesW; =V, and W; N W; =@ for all distinct j, j' € J. (4.16)

Let V; C Vy,i €I be as in (4.1). Applying (4.13) and (4.14) with (A, 1) being an edge in
G, we obtain that for any i € I there exists j € J such that V; C W;. This together with
(4.16) implies the existence of a subset /; of I for every j € J such that

Wj = U,'g]jvi for all] elJ. (417)

Then the conclusion (4.11) follows from (4.1) and (4.17), and the partition property (4.12)
holds by (4.16), (4.17) and the observation that U;¢; V; = V.
Now we prove (4.10). By (1.5) and (4.11) we have that

My > Y aifide(-1.11),

i€l

which implies that #M, . > 2*1j . This together with (4.8) proves (4.10). O

5 Phaseless Sampling and Reconstruction

In this section, we consider phaseless sampling and reconstruction of signals in V (&), and
we construct a discrete set I' such that

Myr=M;jforall feV(D), (5.1

and its density D (I") is dominated by a multiple of the innovative rate D, (A) of signals in
V(D).
First, we recall the concept of a (minimal) phase retrievable frame [7, 20, 28, 34, 61].

Definition 5.1 We say that 7 ={f,, e R", 1 <m < M} is a phase retrievable frame for R"
if any vector v € R" is determined, up to a sign, by its measurements |(v, f,)|, f» € F, and
that F is a minimal phase retrievable frame for R" if any true subset of F is not a phase
retrievable frame.

The concept of minimal phase retrievable frame is crucial for us to prove the existence of

the phaseless sampling set on which the linear space V (®) has local complement property,
cf. [20, Theorem A.4].
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Proposition 5.2 Let the generator @ := (¢;)aen, the family T = {Ty,0 € O} of bounded
open sets, and the linear space V (®) be as in Theorem 3.2. Assume that ® has local linear
independence on open sets Ty, 0 € ©. Then for any 6 € O, the linear space V (®) generated
by ® has local complement property on Ty if and only if there exists a finite set Ty C Ty such
that {®g(y), y € Ty} is a minimal phase retrievable frame for R*%¢  where

Dy = (Pr)rek, and Ko = {1 € A : Sp(X) N Ty # 0}. (5.2)
Set
Ra(r) :=sup#(A N B(x,r)), r=0. (5.3)
xeD

We remark that Ky, 0 € © in (5.2) are finite subsets of A and their cardinalities are bounded
by Ra(2rg), see (5.12). In the next theorem, we explicitly construct the phaseless sampling
set such that (5.1) holds, and its density is dominated by a multiple of the innovative rate of
the signal in V (®).

Theorem 5.3 Let the domain D satisfy Assumption 2.1, ® := (¢;)ren be a family of basis
functions satisfying Assumption 2.2, V(®) be the linear space (1.1) generated by ®, and
T ={Ty, 0 € O} be a family of bounded open sets so that (2.11) holds and for every 6 € ©,
@ has local linear independence on Ty and V (®) has local complement property on Ty.
Take discrete sets 'y C Ty, 0 € O, so that for any 6 € ©, {®y(y), y € Iy} forms a minimal
phase retrievable frame for R*8? | and define

I':=Upeoly, 5.4
where ®y and Ky C A is given in (5.2). Then (5.1) holds for the above discrete set T'.
Moreover if

Ny :=sup#{0: Ty N Se (L) # P} < oo, 5.5
AEA

then the set I" has finite upper density

R (2ro) (Ra(2ro) + 1)
2

D (') = N7 DL (N), (5.6)

where ry is given in (2.5).

We remark that the existence of discrete sets 'y, 0 € ® in Theorem 5.3 follows from
the local complement property on 7y, 6 € O, for the linear space V(®), by applying the
argument in [20, Theorem A.4].

As an application of Theorem 5.3, we have the following phaseless sampling corollary,
which is established in [19, 20] for signals residing in a shift-invariant space generated by a
compactly supported function.

Corollary 5.4 Let D, A, T,®,V(®) and T be as in Theorem 5.3. Then any signal f €
V(®) with My = {£f} is determined, up to a sign, from its phaseless samples on the

discrete set T with finite density.

In practical applications, the set {®y(y), y € 'y}, 8 € ® is not necessarily required to
form a minimal phase retrievable frame for R*X¢_ In particular, the set I'y can be chosen
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such that the density is still dominated by the rate of innovations of signals in V(&) and
the set of outer products &y (y)<b9T (y),y € I'y forms a frame/basis for the linear space of
symmetric matrices spanned by outer products @y (x) (P4 (x))7, x € T,.

We finish this section with the proof of Theorem 5.3.

Proof of Theorem 5.3 First we prove (5.1). By (1.11), it suffices to prove
Myr C My (5.7)

Take g =), ) dip € My, and write f =", _, c;¢;. Then forany 0 € ©,

| Yt =1f0I=1e0) =| Y dign(v)| forall y €T,

reKp reKp

This together with the phase retrievable frame property of ®4(y), y € I'y, implies that
dy, =6ypc), A€ Ky (5.8)
for some 8y € {—1, 1}. Hence for any 6 € ©®,

g =1f(x)], x €Tp. (5.9)

This together with Corollary 4.3 implies that g € M ;. This proves (5.7).
To prove (5.6), we claim that for any 6 € ®,

So(A, A) £ @ forall A, A € K. (5.10)

Suppose on the contrary that the above claim does not hold, then there exist Ao, Ay € Kp

with S (Ao, Ay) = @. Thus ¢, + ¢A6 € V(®) have the same magnitude measurements on

Ty, which contradicts to the local complement property of the space V(®) on 7, 0 € ©.
Applying Claim (5.10) and Assumption 2.2, we obtain

B(h, 7o) N B(X, o) # 0 for all A, A’ € K. (5.11)

This implies that
#Ky < RA(2rp), 0 € O. (5.12)

Observe that for any f € V (®), there exists a unique vector ¢y = (¢;)xek, such that
|f @) P = cf Do (x)(Pp(x)) cp. x € Ty.

This together with the minimality of the phase retrievable frame {®4(y), y € [y} for R#Ke
implies that matrices ®4(y)(®y(y))T, y € I'y are linearly independent in the linear space
of symmetric matrices, which has dimension #K, (#K,y + 1)/2. Hence

K, (HKy+ 1) Ra(2ro)(Ra(2r0) + 1
_ #K 29+ ) RCORCEDTD g npeo, (a3)

#Iy < < >
where the last inequality follows from (5.12).
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By the minimality of the phase retrievable frame {®4(y), y € 'y}, we have ®y(y) # 0
for all y € I'y, which implies that

Ty C (Usek, So (W) N Tp. (5.14)
Then for any x € D and r > 0, we obtain from (5.5), (5.13), (5.14) and Assumption 2.2 that

#( N B(x,r)) < (r;leae))(#rg>
x#{0 € ©: (Usex, So (W) NTy N B(x,r) # 0}
_ RaC@ro)(Ra(2ro) + 1))
= 2
x#{) e A: Se(h) N B(x,r) # 0}
_ Raro)(Ra(2ro) +1))
- 2

(IPEEX(#{Q €O:Se(M)NT) £ VJ})

Nr#(A N B(x,r+rp)). (5.15)

This together with (2.2) in Assumption 2.1 and definition of the density (2.3) of a discrete
set proves (5.6). O

6 Stable Reconstruction from Phaseless Samples

In this section, we introduce the MAPS algorithm to reconstruct FRI signals in V,,(®), 1 <
p < oo, approximately from their noisy phaseless samples taken on a discrete set I', we
show that the MAPS algorithm is theoretically guaranteed to provide a stable reconstruction
to the original FRI signal in the magnitude measurements, and we prove that the phaseless
sampling operator St has the bi-Lipschitz property with respect the metric M, in (1.16).

Let T ={T, : 6 € ©} satisfy (2.11) and T’ = Ugepl'y with I’y C Ty,0 € ® be as in
Theorem 5.3. Let f € V,(®),1 < p < 00, and

W) =1fWI+ny), yerl, (6.1)

be its samples on a discrete set I' corrupted by a p-summable noise n = (7(y))er. A con-
ventional approach to reconstruct the signal f approximately from its noisy phaseless sam-
ples (6.1) is to solve the minimization problem

6.2)

= arggsnvljgb) A8 = 20 (¥)yer

o

which is infinite-dimensional and infeasible. In this section, we propose the following three-
step algorithm, MAPS for abbreviation, to construct a signal

g = duds 6.3)

reEA

in V,(®) from the noisy phaseless samples z,(y), y € I', which is a good approximation to
the original signal f in magnitude measurements, see Theorem 6.5 and Remark 6.6.
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MAPS algorithm for phaseless reconstruction

0. Select a phase adjustment threshold value My > O and set Ky ={X € A : So(A) NTy # @}
for 6 € ©.
1. For6 € O, let

Cno = (CU,H:)\.))\.EA (64)

take zero components except that (¢, 9:1) ek, is a solution of the local minimization prob-
lem

(dx)xekg

§:H§:¢mwﬂ—awﬂ 6.5)

reKy

2. Adjust phases of vectors ¢, 4,6 € O, so that the resulting vectors 8, ¢c, 9 With §, 9 €
{—1, 1} have their inner product satisfying

(89,0€0,6,8n,0'Cno7) = 8y,08n,07 E Cn.0:1Cn.0":1
reKgNKyr

2
= —Mox (s [n(»)l) (6.6)

y€elpUly

for all 0,0’ € ®, where we set SUp,cr,ur, N(Y)| =~+00if I'y UT'y = 0.
3. Sew vectors 8, 9¢y0, 6 € O, together to obtain

20c 0n,.0Cn.0: Xk, (M)
Z@E@ XKy )

where xg is the indicator function on a set E.

dys, = , LEA, (6.7)

Remark 6.1 The earliest version of the above MAPS algorithm is proposed in [19] to recon-
struct phase retrievable signals in a shift-invariant space on the real line from their phaseless
samples, where ® =Z, 'y =Ty + 6, 6 € © for some 'y C [0, 1], and the phase adjustment
signs §, ¢ € {—1, 1} in the second step are selected to satisfy

(8.6Cn.0 8y arCyo) =0 forall 0,0 € Z with ' — 0 = 1. (6.8)

The MAPS algorithm is modified in [20] to reconstruct phase retrievable signals in a
shift-invariant space on high-dimensional Euclidean space R? from their phaseless sam-
ples, where ® = 74 x {1,..., M}, Tkm =T + k, (k,m) € ® for some bounded sets
Iy, 1 <m < M, and the phase adjustment signs 8, s € {—1, 1} in the second step are se-
lected to satisfy

(8.0Cn.01 By 0rCyor) = M0<sup|r)()/)|) forall 0,6 €@, (6.9)
yel

where I' = Ugcp 'y and M) is a phase adjustment threshold constant. Comparing with the
phase adjustment requirement (6.9) in the shift-invariant setting, we need a stricter phase
adjustment requirement (6.6) in the MAPS algorithm proposed in this paper. The benefit is
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that as shown in Theorem 6.5, the reconstructed signal g, obtained from the current MAPS
algorithm is an “approximation” to the original signal f without restriction on the noise
level and the apriori information on the original signal f, while the reconstructed signal in
previous versions of the MAPS algorithm in [19, 20] are shown to be an “approximation”
to the original signal f when the original signal f is phase retrievable and noise level n is
small.

Remark 6.2 For every 6 € ©, the local minimizers cy.,,A € Ko, in the first step of
the above MAPS algorithm are determined, up to a sign, from noisy phaseless samples
z,(y), v € I'y, by the selection of the sampling set I'y, and they can be found by solving a
family of least squares problems,

min Z H Z dMPA(J/)’ Zn()’)’

(d)»)AEK@ yely  reKg

- noy ‘ Db () =5, zn(y)( (6.10)

86 ll ely (d
yel= }J/ 0()\)/\6[({.} veTy  reKy

The local minimization in the first step is a phase retrieval problem in a finite-dimensional
setting with its dimension #Ky < R, (2ry) by (5.12). The reader may refer to [15, 16, 26, 27,
29, 44, 49, 63] for various algorithms to solve a finite-dimensional phase retrieval problem.

Remark 6.3 The phase adjustment in the second step is crucial for the MAPS algorithm
and the threshold constant M in (6.6) should be chosen appropriately to guarantee the
existence of phase adjustments 6,4 € {—1,1},0 € ©. In Theorem 6.5, we show that such
a threshold constant M, can be selected to depend only on the stability constant (6.16) to
solve the local minimization problem in the first step, see (6.17). For a finite set ®, define a
symmetric symbol matrix B = (b(6, 0’))s.9'ce With zero diagonal entries and non-diagonal
entries b(0,0’),0 # 0’ given by

. 2
L if (e, cper) > MO(Supyer@ure, In(¥)])” and Ty UTy # @,

b(8,6) = =1 if (¢,0, o) < —Mo(UP,er,ur,, 11(¥)])’ and Ty UTy 4, (6:11)
0 otherwise.

Then phase adjustments 8,9 € {—1,1},0 € O in the second step can be reformulated as
finding a diagonal matrix D with diagonal entries 8, € {1, —1},0 € ® so that DBD has
nonnegative entries, cf. [20]. The selection of the above diagonal matrix is not unique. By
(6.5), we have

(cno,cno) =0 if KgN Ky =0. (6.12)

So we may use the following algorithm to find such a diagonal matrix D.
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Phase Adjustment Algorithm

Initial $1=0,5%=0,5=0.

Step 1 Stop if S5 = (J; otherwise take 6 € S5, update S} = S;U{8}, S, =0 S5 = S3\{0},
select 8,9 € {—1, 1}, and then update b(0,0’) = 268, ,b(6,6’) and b(0’,0) =
28,0b(6’',0) for all ' with Ky N Ky # 0.

Step 2 If b(6,0") =0 for all 6’ with Ky N Ky 7% @, return to Step 1; otherwise update
S, = {0’ € O satisfying b(0,6") #0and K¢ N Ky 0}, S; =S, US, and S5 =

S3\55.
Step 3 For 0" € Sy, let 8, = 1 if b(0’,0") =2 for some 0" satisfying Ko N Ko # )
and §, o = —1 otherwise.

Step 4 Set K = Uyres, {07 € O satisfying b(0’, 6”) = £1 and Ky N Ky # #}. Return to
Step 1 if K = ; otherwise, update b(6’, 0") = 28, »b(6’,0") and b(0”,0') =
28, 0b(0",0") if 6" € S, and 6" € K satisfying Kov N Ky # @, update S, =
K, S =85 US,, S5 =53\9,, and then return to Step 3.

Output  §, 9,0 € ©.

Remark 6.4 We remark that complexity of the proposed MAPS algorithm depends almost
linearly on the size N = #A, of the set of innovative positions A for the original signal
== ZAEA[) cy¢;. € V(®), where component vector (c; )ca is supported on
Ao C A. Define ®y={0 € ®: Ky N Ay # @}. Then

#0) =#(Usea, (0 €O : L€ Ky}) < Ny#Ag=NrN (6.13)

by (5.5). By (6.7), in the first step of the proposed MAPS algorithm, it suffices to solve
local minimization problems (6.5) with 6 € ®,. Observe that for each 6 € ®, the number
of additions and multiplications required to find the local minimizer c, 4 in the first step
is O(1) by (5.12) and (5.13). This together with (6.13) implies that the total number of
additions and multiplications required in the first step is O(N). Let B = (b(0,0"))g,9co, be
the symmetric symbol matrix in Remark 6.3. For each 6, 0’ € ©, the number of additions
and multiplications required to evaluate the inner product (c, g, ¢, ¢) and the supremum
SUP, cryur, [n(y)| are O(1) by (5.12) (5.13), and so is O(1) for evaluating every entry
b(6,0’) of the matrix B. By (6.7) and (6.12), we have that

b6,0)=0if KyN Ky =9,
and for any 6 € ®, we obtain from (5.5) and (5.12) that

#0' €©: KyNKy # P} <#(Usex, {0/ €0: L€ Ky})
< NT#KQ < NTRA(zl’()). (614)

Hence the number of nonzero entries in each row of the symmetric matrix B is at most
N7Rx(2ry), and the total number of additions and multiplications required to define the
symmetric matrix B is O (#0,) = O(N), where the last equality follows from (6.13). By
Remark 6.3, the phase adjustment in the second step of the MAPS algorithm reduces to
finding a diagonal matrix D with diagonal entries &, € {1, —1},0 € © so that DBD has
nonnegative entries. We observe that the total number of additions and multiplications to
find such a diagonal matrix D by applying the Phase Adjustment Algorithm in Remark 6.3
to the above symmetric matrix B with ® replaced by ®g is O (N). From the above argument
about the computational cost to evaluate the symmetric matrix B and to find the diagonal
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matrix D, we see that the total number of additions and multiplications required in the
second step is O(N). For any A € A, the number of additions and multiplications required
to evaluate d,, is O(1) by (5.5), and hence the total number of additions and multiplications
required in the third step of the proposed MAPS algorithm is O (). Combining the above
arguments, we conclude that the total number of additions and multiplications required in
the proposed MAPS algorithm to reconstruct an “approximation” g, to the original signal f
is about O (N).

For a phase retrievable frame 7 ={f,, e R", 1 <m < M}, we use

1/2
Flp= min max inf( v, 2) ,
|Fle =, min <|m_1 mZE;H f)l

) N\ 172
lvn;le(”;uv,fmn) ) (6.15)
to describe the stability of reconstructing a vector v from its phaseless frame measurements
[{(v, fu)l, 1 <m <M, cf.[1, 11] for the o-strong complement property. In the next theorem,
we provide a selection of the parameter M, in the phase adjustment step of the MAPS al-
gorithm and show that the signal g, reconstructed from the corresponding MAPS algorithm
approximates the original signal f in the new induced metric M, in (1.16).

Theorem 6.5 Let the domain D, the generator ® := (¢y);ca and the family T = {T,,0 €
O} of bounded open sets be as in Theorem 5.3, and let V,(®), 1 < p < 00 be as in (1.12).
Assume that the sampling set I' = Upeg 'y is chosen so that T'y C Ty, 0 € ©, and @y, =
{Dy(y), y €Ty}, 0 € O, are phase retrievable frames, and

sup#I's (|| Po,ry lp)~% < oo. (6.16)
0ec®
Select My in (6.6) by
Mo =24 sup#Ty (I @, Ilp) ", 6.17)
0e®

and denote the reconstructed signal via the MAPS algorithm (6.3)-(6.7) by g,, where noisy
phaseless samples z,(y), y € I' in (6.1) are generated from a signal f € V,(®) and a p-
summable noise n = (N(y))yer € €7,1 < p <o00. Then

—1
M,(gy, f) < 6*/€Co(r911€2}§\/#re(||¢e.r@ llp) )”q)”oo”n”ll’» (6.18)
where the metric M,(g,, f) is defined in (1.16), Co = (R (r0))' ™"/ (N7)/P (B (4ro))*'?,
and ro, Rp(ro), N7, B(4rg) and | ®|| are constants given in (2.5), (5.3), (5.5), (2.1) and
(2.4) respectively.

We postpone the proof of Theorem 6.5 to the end of this section.

By (1.17) and Theorem 6.5, the reconstructed signal g, from the proposed MAPS algo-
rithm provides an approximation to the original signal in magnitude measurements,

lHgnl = 1£1] ., = 127/6Co (max y#Ta (I @05, 1)~ I @lclinller.  (6.19)
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In the next remark, we show that the estimation (6.19) in magnitude measurements is subop-

timal in the sense that the quantity Co( maxsce v# g (| Po,r, ||p)7l) P ]lso in (6.19) cannot
be replaced by a sufficiently small constant.

Remark 6.6 Take Ao € A so that ¢, llr > 8ol|P|le for some 8§y > 0. Then for any signal
feV,(®),1<p<ooande >0, wehave

1/
1170 e = 1f Ol el D0 1)

y€lNSe (ho)
- (NTRA(er)(ZRA(er) + 1)>1/p”q>”0oe 6:20)
by (5.5) and (5.13), and
max (| 1f + gl = 11,00 [1F = b0l = 1£1],)

Ly

> %Hmax(||f—|—€¢)\0| - |f||’ ‘|f—6¢x0| _lf”)H
1

do
> Ellécf)xo lr = EII@IIOOG- (6.21)
By (6.19), (6.20) and (6.21), we conclude that the reconstructed signal g, from the pro-
posed MAPS algorithm is a suboptimal approximation to the original signal f in magnitude
measurements.

Take a signal g € V,(®),1 < p < co. For the noise n = (7(y)),er in (6.1) given by
ny) =1g)| — |f()|,y €T, one may verify that the signal g could be reconstructed
from the MAPS algorithm. Therefore it follows from Theorem 6.5 that

My (1. 8) = 6¥/6C0( max VAT (IPa.r, 1) ) 1@l Dy (St /. Srg) forall £, g € V, ().
(6.22)
In the following theorem, we show that metric D, on the sampling data set is dominated by
the metric M, in the signal space V,(®), provided that the family ® of basis signals forms a
Riesz basis for the signal space V,(®), i.e., there exist positive constants A ,(P) and B, (P)
such that in the sense that

Ap@leeallr = | Y ean| | = Bo@liensenllr forall @sen €€, (623)
AEA

Therefore the phaseless sampling operator Sr has the bi-Lipschitz property on the signal
space V,(®).

Theorem 6.7 Let the domain D, the generator ®, the family T of bounded open sets, the
phaseless sampling set I', and the linear space V,(®),1 < p < oo be as in Theorem 6.5.
Assume that ® forms a Riesz basis for the signal space V,(®) with lower and upper Riesz
bounds denoted by A,(®) and B,(®) respectively. Then the nonlinear sampling operator
St in (1.13) has the following bi-Lipschitz property, i.e., there exist positive constants A
and A, such that
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AIM,(f,8) = Dp(Srf. Srg) = AaM,(f, g) forall f, g € V,(®), (6.24)

where metrics M, and D), are given in (1.16) and (1.15) respectively.

Proof The first inequality in (6.24) follows from (6.22). Then it suffices to prove the second
inequality in (6.24). For any f,g € V,(®) and f, g € V,,(®) with M ; = Mg, one may
verify that

HFOOI =g <1f ) = FI+18(y) — gl forall y €T

Hence

ISy f —Srgller <2 inf max ([ (£ = HODyer -
f. geVp(®) with M/ =M;

(=& W)yer|,n)-

By (1.16) it suffices to prove that

1@ loo RA (r0) (NTRA(er)(RA(er) + D\ r

hller < h|pp forall h € V,(®). (6.25
e WC R ) hls forallh e V,(®). (625)

For p = co, we immediately have
|2llec < ||l for all A € Voo (D). (6.26)

For 1 <p <oo,wewriteh =), _, cx¢,. Then

e = (XS eno| )" <10l (X S ensant|')

yell AeA yell ieA
p—1\1/p
<1l (32 (X 1eal s0000)) % (X xs00 ) )
yell  LeA rEA
1-1/p
< 1l (Y lexl” wa(y)) x sup(wa ()
rEA yell reEA

< 1l (Ra(ro))' 7 (sup 30 - Xson @) Nexsenlis

€A geo yely

=1/p /p ] 1/p
< 1@l (Ra o)~ (sup#ry ) (sup#16: 7015000 200 enenllr

0e® AEA
[ ®llow Ra (o) N7 Ra o) (Ra (2r0) + D 17
= ( N )l (6.27)

where the third inequality follows from Assumption 2.2, the fourth one is true by (5.3) and
the last one holds by (5.5), (5.13) and (6.23). Combing (6.26) and (6.27) proves (6.25), and
hence completes the proof. O

We finish this section with the proof of Theorem 6.5.

Proof of Theorem 6.5 By (1.16), it suffices to find f;, h, € V(P) N L? with the same mag-
nitude measurements on the whole domain,

Mhn = an, (6.28)
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such that
1y = Fller = 43/6Co( max VAT (190, 7)) 1@ llnller (6.29)
and
gy = hyllzr = 63/6Co( max V4T (1Par, 1) )I®lltller.  (6.30)
Take 6 € ® and define
o= Croatr, 6.31)
reA

where ¢, ¢.,, A € A, are given in (6.4). By (6.4) and the definitions of the sets Ky and I'y, 6 €
®, we have

8o EfY) =D (Cpos £c)du(y). v €T (6.32)

reKy

Then there exists a subset I'y C I'y such that

( Z ‘ Z (Cpos — cx)qu(y)’z)% + ( Z ‘ Z (cn.o +Cx)¢x()/)’2)%

yely AeKp yelg\ly A€Kp
1 1
= ( > leno(r) — f(J/)|2>2 + ( > g+ f(y)lz)2
very yelp\IY
1 1
= (X lgne = 1FOIF) + (X Ngnal = 1FOIF)’
yely yelo\ly
L
=V2( Y ligre) 1 = 1fWIF)
v€ly
1 1
=V2( X ligo ) = 20F) +v2( X r @l =z,0f)
yely yely
<22 X Il -u0)f’)" <2V2/4T( sup ), (6.33)
yely yely

where the third inequality follows from (6.5) and the last inequality holds by (6.1). By (6.15)
and the phase retrievable frame assumption for &g r,, we have

2\ 1
(yery | Srery @rn — et )
[P, lp < max 1 ,

2
(ZAEK@ lenoin — C/\|2)

(Zyel“o\l"é Zkek() (cpo + Ck)¢x(y)‘2>% )
(ZAEKG leno: + C)L|2>%
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2\ 1 2
2 rek, (Cno:a — Cx)lm()/)‘ )~ + (Zygrg\ré 2 ek, €00 + CA)¢A(V)‘ )

1 1
. 2 2
min ((erm len.oun + CA|2> A Liek, lenon — CAIQ) )

1
2
- (T

(6.34)

Combining (6.33) and (6.34) yields

~ 172 -
(X tena = 8noesl?) = 2V2VHT (101, l1p) ™ ((sup (1)) (6.35)

reKy v€le

for some S,,,g ef{—1,1}.
Let §,,,6 € ©, be as in (6.35). Then for any 6, 6" € ©®, we have

(8,000, 8n0rChor) = E : 81,68,6/C,0:3.C.07;,
reKoNKy

, ~
ool = D lalldyechen —ca

reKpNKy reKgNKy

= > Brecnes —allel

reKgNKy

A%

- E |8ﬂ,90n,0;A —C | |5n,9/cn,9’;A —Cx
AeKgNKy

1 3 - -
3 Z les|? — 3 Z (|3n,06n.9;x — P+ 18,0n0m0 — Cx|2)-

reKgNKy reKgNKy

A%

(6.36)

This together with (6.17) and (6.35) implies

- - 3 - -
2 2
(8p,6Cn.0, 8y,07Cp.or) = -3 Z (|5n,0cn,9;x —al” +18,0cner — rl )
reKoNKy:

2
> Mo sup In()l) (6.37)

y€elyUly,

for all 0, 0" € ®. This proves that phases of ¢, ¢, 6 € ©, in (6.4) can be adjusted so that (6.6)
holds.

Let 6,9 € {—1,1},0 € ®, be signs in (6.6) used for the phase adjustment of vectors
cp0,0 € ©,1n (6.4). We remark that the above signs are not necessarily the ones in (6.35),
however as shown in (6.48) below they are related. Define

h= ) ad, (6.38)

rEA £y

where A f, contains all A € A such that

2] > 2¢/Mo( sup sup In(»)l). (6.39)

reKg yely
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Then for x € D, we obtain from (2.5) and (5.3) that

£ = Fy()1 <20/My Y ((sup sup [n(y)1) I (o)

ten \reKgyely

= 2/MoRA (0[Pl sup sup sup n@)]).  (640)

A€B(x,rg) AeKyg yelg

By (5.11) and the phase retrievability of frame on @y r,, 6 € ©, we have that
y € B(x, 4ry) (6.41)

for all y € Ty, 0 € ® with ¢y/(y) # 0 for some A’ € Ky. Therefore it follows from (6.40)
and (6.41) that

Sup £ (1) = (0] <2V MoRa o)1 @lo( sup  n()])

xeD reB(x,rg),AeKp,yely
S2VMoRA(ro) | ®Plloc sup  [n(y)l (6.42)
yely,0e®

for p = 00, and

1/p
([ 11w = seoraum)

1/p
<2 Mo( | (3 (sup sup ) isco)” du(x)>
xeD

reA reKg yely

1/
52\/ﬁ0(/x (X (s Supln(y)l")lm(X)l)X(ZI(ﬁx(X)I)p_ldu(X)) ,,

reA EKgvele reA

1/p
< 2/ Mo @ lloc (Ra (r0)) '~ ”p( f (sup sup In(y)l”)du(x)>

eD AeB(vc o) reKg yelyg

< 2/ Mol @l (Ra o) 7 Br) " (2 37 3 i)

reA LeKg yely
< 2/ Mo [ @l (Ra () ™2 (NP (B(4ro)* P |1nller (6.43)

for 1 < p < oo. This proves (6.29).
By (6.17), (6.35), (6.36), (6.38) and (6.39), we obtain that

Vi, =Ny
and

~ ~ 2
Grocnar Srorcra) > Mo sup 1n()]) (6.44)
yelyUly,

forall 0,6’ € © with Ky N Ky NV, # (. This together with (6.6) implies that

800800 =08,08,0
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hold for all pairs (0, 6") satisfying Ky N Ko NV # (. Hence for A € Vy, there exists
8, € {—1, 1} such that

81,0806 =61 (6.45)

for all 6 € © satisfying A € Ky. Decompose the graph Gy, into the union of connected
components (V, ;, E, ;),i € I, and the signal f, as in (1.5), (1.6) and (1.7),

h=Y_Y as. (6.46)

i€ly AeVy i

Observe that for any edge (A, 1") of V, , there exists 6y € ® such that 1, 1" € Ky, by (2.11).
Hence

85 = 81,000n.60 = O’ (6.47)
Combining (6.45) and (6.47), there exists §;,1 € I, such that

806800 =8 (6.48)

for all 6 € ® satisfying K, NV, ; # @. Set
hy=) 8 ) e
i€ly A€V

Then f, and h, have the same magnitude measurements on the whole domain by (1.5),
which proves (6.28).
For all A ¢ V, , we obtain from (6.35) that

> kyo0U8n0C.000 — 8p.08n0C:] +lca]) - 3\/ﬁ0<
ZK@BA 1

Forany A € V,;,i € I, we get

dy] < sup sup [1(y)]).  (6.49)

reKg yely

ZK(.)B)L |8y.6Cn.00. = Bical _ ZK@BA n.o:0 — Sp.ocal

ZK(.)S)» 1 B ZKgs)» 1
< VMo sup sup (1) (6.50)

reKg yely

|dn:)» - 3iCx| =<

Combining (6.49) and (6.50), and applying similar argument used in the proof of (6.42) and
(6.43), we can prove (6.30). O

7 Numerical Simulations

In this section, we present some numerical results to demonstrate the performance of the
MAPS algorithm proposed in the last section, where signals are one-dimensional non-
uniform cubic splines and two-dimensional piecewise affine functions on a triangulation.
Denote the positive part of a real number x by x; = max(x, 0). In the first simulation,
we consider phaseless sampling and reconstruction of cubic spline signals f on the interval
[a, b] with non-uniform knots a =ty < t; < --- < ty = b, see the top left plot in Fig. 1,
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where a =0, b =100 and N = 100. Those signals have the following parametric represen-
tation
N—4
f) =) cuBy(x). x €la,b], (7.1)

n=0

where

4 — 3
B, ()C) = (tn+4 - tn) Z ()C tn+1)+

, 0<n<N-4
1=0 l_[0§j§4,j;£1 (tn+l - tn+j)

are cubic B-splines with knots #,,;,0 <[ <4 [57, 60]. In our simulations, we assume that
g e[-1,1,0=sn<N -4,

are randomly selected, and
b—
t,,:a—i—(n—l—e,,)Ta, l1<n<N-1

for some €,,1 <n < N — 1, being randomly selected in [—0.2,0.2]. Then cubic spline
signals in the first simulation have (b — @)/ N as their rate of innovations.

Consider the scenario that phaseless samples of the signal f in (7.1) on a discrete set I
are corrupted by a bounded random noise,

W) =1fWI+ny), yerl, (7.2)

where n(y), y € I', are randomly selected in the interval [—n, ] for some 1 > 0,

N—-1

the1 — 1
= Utll\/:7()IFn = U [tn +k1]z]7-i-ln S (tru tn+l)a 1 = k = K}a (73)
n=0

and K > 7 is a positive integer. We remark that the proposed MAPS algorithm is not appli-
cable for 1 < K <6.

Denote by g, the reconstructed signal from the above noisy phaseless samples via the
proposed MAPS algorithm. Performance of the proposed MAPS algorithm depends on the
noise level 1 and also the oversampling rate K, the ratio between the density K (b — a)/N
of the sampling set I' in (7.3) and the rate (b — a)/N of innovations of signals in V (®).
Denote by

Eyx = |lgyl =171 1

the maximal reconstruction error in magnitude measurements between the original signal f
and the reconstructed signal g, for different noise levels  and oversampling rates K. Plotted
on the bottom right of Fig. 1 are averages of the maximal reconstruction error E, x in 200
trials against the noise level  and oversampling rate K. We observe that the maximal recon-
struction error E, x depends almost linearly on the noise level 1, and the stability constant
in (6.19) and Theorem 6.5 measured by sup,., s £,k /n decreases as the oversampling
rate K < 7 increases. This demonstrates the approximation property in Theorem 6.5. Pre-
sented on the top left is a non-uniform cubic spline signal f, that has four “islands” in the
decomposition (1.5), (1.6) and (1.7), and on the right is the reconstructed signal g, via the
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Fig. 1 Plotted on the top left is a non-uniform cubic spline signal f,, while on the top right is the signal g;
reconstructed via the proposed MAPS algorithm, which provide good approximation to the original signal
fo on the intervals [0, 24.1323), [44.0290, 69.8080) and [82.0449, 100], and reflection — f,, of the original
signal on intervals [24.1323, 44.0290) and [69.8080, 82.0449). On the bottom left is the difference |gy| —| fol
between magnitude measurements of the reconstructed signal g; on the top right and the original signal f,
plotted on the top left. On the bottom right is the average of maximal reconstruction error £ g in 200 trials
with respect to different noise levels n and oversampling rates K

proposed MAPS algorithm, where n = 0.01, K =9 and the maximal error |||g,| — | folllL>
in magnitude measurements is 0.2104.

Let D be a triangulation composed by the triangles Ty, 6 € ©, and denote the set of all
inner nodes of the triangulation by A. In the second simulation, we consider piecewise affine
signals

Oy =) egx,y) (74)

reA

on the triangulation D, where the basis signals ¢, , A € A are piecewise affine on triangles
Ty, 0 € © with ¢, (1) = 1 and ¢, (1") = O for all other nodes A" # A, see the left plot in Fig. 2.
From the definition of basis signals ¢, A € A, a signal f of the form (7.4) has the following
interpolation property,

o)=Y fM(x, y).
reA

In the simulation, phaseless samples of a piecewise affine signal f on a discrete set I' =
Ugeo @'y are corrupted by the bounded random noise,
) =1fWl+nly), yer, (71.5)

where n(y),y € I', are randomly selected in the interval [—n, n] for some n > 0 and for
every 6 € O, the set I'y contains 7 points randomly selected inside 7y. Shown in the middle

@ Springer



Stable Phaseless Sampling and Reconstruction. . . Page 310f34 3

0035
008
0025
o002
oo1s
o001
0005

6 8 10 12 14 16 1 2 o 2 4 6 8 M 1 14 16 18 2

Fig. 2 Plotted on the left is a piecewise affine signal f on a triangulation which has four “islands” in the de-
composition (1.5), (1.6) and (1.7). Shown in the middle is a reconstructed signal g, via the MAPS algorithm,
while on the right is the difference ||g;| — | f|| between magnitude measurements of the reconstructed signal
gn and the original signal f plotted on the left

Table 1 Maximal reconstruction error via the MAPS algorithm

n 0.04 0.03 0.02 0.01 0.008 0.004 0.002 0.001

Ey 0.1878 0.1366 0.0791 0.0305 0.0226 0.0101 0.0050 0.0025

of Fig. 2 is a signal g, reconstructed from the noisy phaseless samples (7.5) via the proposed
MAPS algorithm, where n = 0.01, the original piecewise affine signal f is plotted on the left
of Fig. 2, and the maximal reconstruction error |||g,| — | f |||z~ in magnitude measurements
between the original signal f and the reconstructed signal g, is 0.0360.

In the simulation, we consider the performance of the proposed MAPS algorithm to
construct piecewise affine approximation when the original signal f of the form (7.4) has
evaluations f (1), A € A on their inner nodes being randomly selected in [—1, 1]. Denote by
&y the reconstructed signal from the noisy phaseless samples (7.5) via the proposed MAPS
algorithm and let E, := |||g,| — | fllz be the maximal reconstruction error in magnitude
measurements between the original signal f and the reconstructed signal g, for different
noise levels . Shown in Table 1 is the average of maximal reconstruction error E, in 200
trials. This confirms the conclusion in Theorem 6.5 that the maximal reconstruction error
depends almost linearly on the noise level 1 > 0.
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Appendix A: Density of Phaseless Sampling Sets

In the appendix, we introduce a necessary condition on a discrete set I' such that My =
M forall f € V(P). We show that the density of such a discrete set I" is no less than the

innovative rate of signals in V (®), see Theorem A.1 and Corollary A.2.

Theorem A.1 Let the domain D, the generator @ := (¢;);cn, the family T = {Ty, 6 € O}
of open sets and the linear space V (®) be as in Theorem 5.3, and letT" C D. If M yr = My
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forall f € V(®) with My ={xf}, then
Dy(T') = D.(A). (A.1)
Proof Take xo € D and r > ry. By (2.2) and (2.3), it suffices to prove that
#(' N B(xo,r)) = #(A N B(xp, r — rp)). (A2)

Assume, on the contrary, that (A.2) does not hold. Then we can find a nonzero vector
(d))reAnB(xg.r—ry) SUch that

> digi(y)=0. y €T N B(xo. 7). (A3)

AeANB(xg,r—rg)

Recall that ¢, A € A, are supported in B(A, rp) by Assumption 2.2. Hence

Y. dih(y)=0, y eT\B(xo, ). (A.4)

AeANB(xq,r—rp)

Therefore the set

w=lr=3 @ fe=0yerfcve

reANB(xq,r—rop)

contains nonzero signals. Take a nonzero signal f € W. By Theorem 4.4, f =}",_, fi for
some nonzero signals f; € V(®),i € I, such that My ={%f;},i € I, and f; f{ =0 for all
distinct i, i’ € I. This together with f € W implies that f;(y) =0forally e Candi €.
Hence 0 € My, r,i € I, which contradicts with M r =M ={£fi},i € I. O

From the above argument, we have the following result without the assumption on the
family 7 of open sets in Theorem A.1.

Corollary A.2 Let the domain D and the generator ® = (¢;)scn satisfy Assumptions 2.1
and 2.2 respectively, and define the linear space V(®) by (1.1). If T is a discrete set with
Mypr =My forall feV(P),then D.(T') > D (N).

We finish this appendix with a remark that the lower bound in (A.1) can be reached when
the generator ® = (¢, )< satisfies that

S (A, X)) =@ for all distinct A, A/ € A. (A.5)

As in this case, a signal f € V(®) is nonseparable if and only if f = c;¢; for some A € A.
Thus the set I' = {a(A), A € A} is a phaseless sampling set whose upper density is the same
as the rate of innovation, where a(1), A € A, are chosen so that ¢, (a(1)) ZO0.
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