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Abstract A spatial signal is defined by its evaluations on the whole domain. In this paper,
we consider stable reconstruction of real-valued signals with finite rate of innovation (FRI),
up to a sign, from their magnitude measurements on the whole domain or their phaseless
samples on a discrete subset. FRI signals appear in many engineering applications such as
magnetic resonance spectrum, ultra wide-band communication and electrocardiogram. For
an FRI signal, we introduce an undirected graph to describe its topological structure, es-
tablish the equivalence between its graph connectivity and its phase retrievability by point
evaluation measurements on the whole domain, apply the graph connected component de-
composition to find its unique landscape decomposition and the set of FRI signals that have
the same magnitude measurements. We construct discrete sets with finite density so that
magnitude measurements of an FRI signal on the whole domain are determined by its phase-
less samples taken on those discrete subsets, and we show that the corresponding phaseless
sampling procedure has bi-Lipschitz property with respect to a new induced metric on the
signal space and the standard �p-metric on the sampling data set. In this paper, we also pro-
pose an algorithm with linear complexity to reconstruct an FRI signal from its (un)corrupted
phaseless samples on the above sampling set without restriction on the noise level and apriori
information whether the original FRI signal is phase retrievable. The algorithm is theoreti-
cally guaranteed to be stable, and numerically demonstrated to approximate the original FRI
signal in magnitude measurements.

Keywords Phase retrieval · Finite rate of innovation · Phaseless sampling and
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1 Introduction

A spatial signal f on a domain D is defined by its evaluations f (x), x ∈ D. One of funda-
mental problems in real/complex phase retrieval is how to determine all signals g that have
the same magnitude information as f has on the domain D (i.e., |g(x)| = |f (x)|, x ∈ D),
or on a discrete sampling set � ⊂ D (i.e., |g(γ )| = |f (γ )|, γ ∈ �). The above problem is a
highly nonlinear ill-posed problem which can be solved only if we have some extra informa-
tion about the signal f , and it has been discussed for bandlimited signals [56] and wavelet
signals residing in a shift-invariant space [19, 20, 55]. In this paper, we consider the phase-
less sampling and reconstruction (i.e., phase retrieval by point evaluation measurements on
the whole domain or on a discrete set) of real-valued signals residing in the linear space

V (�) :=
{∑

λ∈�

cλφλ : cλ ∈R for all λ ∈ �
}
, (1.1)

where � ⊂ D is a discrete set with finite density, and the generator � = (φλ)λ∈� is a vector
of nonzero basis signals φλ,λ ∈ �, essentially supported in a neighborhood of the inno-
vative position λ ∈ � [23, 53, 59], i.e., any signal f in the space V (�) has a parametric
representation

f (x) =
∑
λ∈�

cλφλ(x), x ∈ D, (1.2)

where c = (cλ)λ∈� is an unknown real-valued parameter vector. Signals with the above para-
metric representation appear in many engineering applications such as magnetic resonance
spectrum, ultra wide-band communication and electrocardiogram [23, 24, 52, 59]. The lin-
ear space V (�) was introduced in [51, 52] to model signals with finite rate of innovation
(FRI), which was introduced by Vetterli, Marziliano and Blu in [59]. Sampling and recon-
struction of various FRI signals have been well studied [23–25, 40, 51, 52, 59], while there
is limited literature on phase retrievability of FRI signals [5].

Given a signal f ∈ V (�), let

Mf := {g ∈ V (�) : |g(x)| = |f (x)|, x ∈ D} (1.3)

contain all signals g ∈ V (�) with the same magnitude measurements as f on D. As −f

and f have the same magnitude measurements on the whole domain, we have that

Mf ⊃ {±f }.
A natural question is whether the above inclusion is an equality.

Question 1.1 Can we characterize all signals f ∈ V (�) so that Mf = {±f }?

An equivalent statement to the above question is whether a signal f is determined, up
to a sign, from the magnitude information |f (x)|, x ∈ D. The above question is an infinite-
dimensional phase retrieval problem with point evaluation measurements, which has been
discussed for bandlimited signals [56], wavelet signals in a shift-invariant space [19, 20,
55]. The reader may refer to [1, 2, 13, 32, 42, 45, 50] for historical remarks and additional
references on phase retrieval in an infinite-dimensional linear space. In Sect. 3, we introduce
an undirected graph Gf for an FRI signal f ∈ V (�), and we provide an answer to Question
1.1 by showing that Mf = {±f } if and only if Gf is connected, see Theorem 3.2.
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For a signal f ∈ V (�), the corresponding graph Gf is not always connected. This leads
to our next question.

Question 1.2 Can we find the set Mf for any signal f ∈ V (�)?

For a signal f ∈ V (�), we can decompose its graph Gf uniquely as a union of connected
components Gi , i ∈ I ,

Gf = ∪i∈IGi . (1.4)

Then we can construct signals fi ∈ V (�), i ∈ I , with Gfi
= Gi , i ∈ I , such that

fifi′ = 0 for all distinct i, i ′ ∈ I, (1.5)

Mfi
= {±fi}, i ∈ I, (1.6)

and

f =
∑
i∈I

fi, (1.7)

see Theorem 4.4. Due to the mutually disjoint support property (1.5) for signals fi, i ∈ I , and
the connectivity of the graphs Gfi

, i ∈ I , we can interpret the above adaptive decomposition
visually that the landscape of original signal f is composed by islands of signals fi, i ∈ I ,
see the top left plot in Fig. 1 and the left plot in Fig. 2. Therefore the conclusion in Theorem
4.4 shows that landscapes of signals g ∈ Mf are combinations of islands of the original
signal f and their reflections. We remark that landscape decomposition for signals in a
linear space has been used in Gabor phase retrieval [2, 32]. By (1.5) and (1.7), we have

Mf ⊃
{∑

i∈I

δifi : δi ∈ {−1,1}, i ∈ I
}
.

In Sect. 4, we provide an answer to Question 1.2 by showing in Theorem 4.1 that the above
inclusion is in fact an equality for any signal f ∈ V (�), and hence there are 2#I elements in
the set Mf .

Now we consider phaseless sampling and reconstruction on a discrete set � ⊂ D. For a
signal f ∈ V (�), let Mf,� contain all signals g ∈ V (�) such that

|g(γ )| = |f (γ )|, γ ∈ �, (1.8)

and N� contain all signals h ∈ V (�) such that

h(γ ) = 0, γ ∈ �. (1.9)

By (1.3), (1.8) and (1.9), we have

Mf = Mf,D, ND = {0}, (1.10)

and

Mf +N� ⊂ Mf,� for all � ⊂ D. (1.11)

This leads to the third question.
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Question 1.3 Can we find all discrete sets � such that Mf,� = Mf for all signals f ∈
V (�)?

An equivalent statement to the equality Mf,� = Mf is that magnitude measurements
|f (x)|, x ∈ D, on the whole domain D are determined by their samples |f (γ )|, γ ∈ �, taken
on a discrete set �. By (1.11), a necessary condition such that the equality Mf,� = Mf

holds for some signal f ∈ V (�) is that N� = {0}, which means that all signals in the linear
space V (�) are determined from their samples taken on �. The reader may refer to [24, 51,
54, 59] and references therein for sampling and reconstruction of FRI signals. In Sect. 5,
we show the existence of a discrete set � with finite density such that Mf,� = Mf for all
signals f ∈ V (�). In Theorem 5.3, we construct such a discrete set � explicitly under the
assumption that the linear space V (�) has local complement property on a family of open
sets. The local complement property, see Definition 3.1, is introduced in [20] and it is closely
related to the complement property for ideal sampling functionals in [19] and the comple-
ment property for frames in Hilbert/Banach spaces [1, 7, 11, 13]. The local complement
property on a bounded open set can be characterized by phase retrievable frames associated
with the generator � and the sampling set � on a finite-dimensional space, see Proposition
5.2. The reader may refer to [7, 10, 14, 15, 18, 28, 34, 36, 49, 61] and references therein for
historical remarks and recent advances on finite-dimensional phase retrievable frames.

In many real world applications, phaseless samples are usually corrupted by some
bounded deterministic/random noises η(γ ), γ ∈ �, and the available noisy phaseless sam-
ples are

zη(γ ) = |f (γ )| + η(γ ), γ ∈ �.

Set η = (η(γ ))γ∈� and zη = (zη(γ ))γ∈� . This leads to the fourth question to be discussed in
this paper.

Question 1.4 Can we find an algorithm � such that the reconstructed signal gη = �(zη) is
an “approximation” to the original signal f ?

For a finite-dimensional phase retrieval problem, there are various algorithms available,
such as the alternating minimization, semidefinite programming, and Wirtinger flow method
[15, 16, 26, 27, 29, 44, 49, 63], however applicability of the algorithms, to our knowledge,
requires that the original signal f is phase retrievable, i.e., Mf = {±f }. In [19, 20], an
MAPS algorithm is proposed to reconstruct a signal f in a shift-invariant space, up to a
sign, from its phaseless samples taken on a shift-invariant set, where the original signal f is
phase retrievable.

Given a Borel measure μ on the domain D, let Lp := Lp(D,μ),1 ≤ p ≤ ∞, be the linear
space of all p-integrable signals with standard norm ‖ · ‖Lp := ‖ · ‖Lp(D,μ) and �p := �p(�)

be the space of all p-summable sequences η on � with its standard p-norm denoted by
‖η‖lp := ‖η‖�p(�). Let 1 ≤ p ≤ ∞ and define

Vp(�) =
{∑

λ∈�

cλφλ : (cλ)λ∈� ∈ �p
}

⊂ V (�) ∩ Lp, 1 ≤ p ≤ ∞. (1.12)

In Sect. 6, we propose a robust algorithm with linear complexity so that the reconstructed
signal gη is a good approximation to the original signal in the linear space Vp(�), see The-
orem 6.5 and Remarks 6.1–6.4 and 6.6. This provides an affirmative answer to Question 1.4
for the original signals in Vp(�).
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Stability of a sampling scheme is an important concept for the robustness and uniqueness
for sampling and reconstruction of signals in a linear space, see [3, 43, 51, 58]. Due to the
nonlinearity, stability of the phaseless sampling scheme

S� : V (�) � f �−→ (|f (γ )|)γ∈� (1.13)

on a sampling set � should be described by its bi-Lipschitz property in some metrics on the
signal space and the sampling data set. This leads to the fifth question to be discussed in this
paper.

Question 1.5 Let � be a sampling set such that Mf,� = Mf for all f ∈ V (�). Can we
define appropriate metrics on the signal space and on the sampling data set such that the
phaseless sampling operator S� in (1.13) has the bi-Lipschitz property?

For 1 ≤ p ≤ ∞, we define the natural metric for phase retrievability on the signal space
Vp(�) by

mp(f,g) = min(‖f + g‖Lp ,‖f − g‖Lp ) for all f,g ∈ Vp(�), (1.14)

and the �p-metric on the phaseless sampling data set by

Dp(S�f,S�g) = ‖S�f − S�g‖lp for all f,g ∈ Vp(�), (1.15)

cf. [2, 6, 11, 28]. The nonlinear sampling operator S� in (1.13) does not have the bi-Lipschitz
property with respect to the natural metric mp on the signal space Vp(�) and the �p-metric
Dp in the phaseless sampling data set, i.e., there does not exist positive constants C1 and C2

such that

C1mp(f,g) ≤ Dp(S�f,S�g) ≤ C2mp(f,g) for all f,g ∈ Vp(�).

The reason is that some signals in Vp(�) may not be determined, up to a sign, from their
phaseless samples on �, and hence we can find f,g ∈ Vp(�) such that

mp(f,g) �= 0 and Dp(S�f,S�g) = 0.

In this paper, we induce a new metric on the signal space Vp(�),1 ≤ p ≤ ∞,

Mp(f,g) := inf
f̃ ,g̃∈Vp(�) satisfying M

f̃
=Mg̃

max
(‖f − f̃ ‖Lp ,‖g − g̃‖Lp

)

= inf
f̃ =g̃ in Vp(�)/∼

max
(‖f − f̃ ‖Lp ,‖g − g̃‖Lp

)
, (1.16)

where Vp(�)/ ∼ is the quotient space of Vp(�) with the equivalence f̃ ∼ g̃ between f̃ , g̃ ∈
Vp(�) meaning that they are indistinguishable from their magnitudes, i.e., Mf̃ = Mg̃ .
Clearly we have that

‖|f | − |g|‖Lp/2 ≤ Mp(f,g) ≤ mp(f,g) for all f,g ∈ Vp(�), 1 ≤ p ≤ ∞. (1.17)

In Theorem 6.7, we show that the phaseless sampling operator S� has the bi-Lipschitz prop-
erty with respect to the above new metric Mp on the infinite-dimensional signal space Vp(�)

and the �p-metric on the phaseless sampling data set.
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1.1 Contributions and Comparisons

This paper is the continuation of [19, 20]. In [19, 20], we discuss the phaseless sampling
and reconstruction of wavelet signals in a shift-invariant space

V (φ) :=
{ ∑

k∈Zd

c(k)φ(· − k) : c(k) ∈R for all k ∈ Z
d
}

(1.18)

generated by a compactly supported function φ, while spatial signals considered in this
paper belong to the linear space V (�) in (1.1). Our representative examples of the linear
space V (�), different from the shift-invariant space V (φ), are the linear space of all graph
signals to describe structured data in applications such as social networks, smart power grids,
wireless sensor networks, and drone/UAV fleets [21], and the linear space of superpositions

f (x) =
∑
λ∈�

cλφ(x − λ), x ∈R
d , (1.19)

of non-uniform translations φλ = φ(· − λ),λ ∈ � �= Z
d of a basis signal φ, which has been

used in some sampling and approximation problems [4, 33, 51, 52]. Similarity between the
shift-invariant space V (φ) considered in [19, 20] and the linear space V (�) used in this pa-
per is that we both assume that any signal in those two linear spaces has a unique parametric
representation, see (2.6), while the main difference is that the linear space V (�) does not
have a shift-invariant structure. Our first challenge is how to define the local complemen-
tary property of the linear space V (�) appropriately, and our first main contribution is to
characterize all phase retrievable signals f in the linear space V (�), i.e., Mf = {±f }, see
Theorem 3.2, which has been discussed in [19, 20] for signals in the shift-invariant spaces
V (φ).

Spatial signals f ∈ V (�) are not always determined, up to a sign, from the magnitude
information |f (x)|, x ∈ D on the domain D, i.e., Mf �= {±f }. In such a scenario, we aim
at finding all FRI signals in the set Mf which have the same magnitude information on their
domain D as the original FRI signal f has. In [19, Lemma 6.9], it has been shown that any
signal in some shift-invariant space V (φ) on the real line has a unique landscape decom-
position and the set Mf is fully described. For signals in the shift-invariant space V (φ) on
R

d , d ≥ 2, we can apply connected component decomposition to the associated graphs in
[20], and to find their landscape decompositions, however the uniqueness of landscape de-
compositions is not established and the set Mf is not discussed. The second challenge is the
uniqueness of such a landscape decomposition, and the second main contribution is that we
provide a full description to the set Mf and we discover a unique landscape decomposition
for any signal f in the linear space V (�) using connected component decomposition of the
associated graph Gf , see Theorems 4.1 and 4.4.

In [19], an MAPS algorithm is proposed to reconstruct a signal f in the shift-invariant
space on the real line, up to a sign, from its phaseless samples |f (xn + k)|, xn ∈ X ⊂ [0,1],
when the original signal f is phase retrievable. The algorithm has linear complexity and it
consists of three steps: 1) minimization to find local approximations; 2) phase adjustment for
local approximations; and 3) sewing local approximation together to reconstruct the origi-
nal signal, up to a sign. In [19, Theorem 4.1], it is shown that the MAPS algorithm is robust
against small noises. A high-dimensional version of the MAPS algorithm is introduced in
[20] to reconstruct a signal f in the shift-invariant space on the d-dimensional Euclidean
space, up to a sign, from its phaseless samples |f (xn + k)|, xn ∈ X ⊂ [0,1]d , when the orig-
inal signal f is phase retrievable. In this paper, we introduce a new strategy in the phase
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adjustment step and propose a new MAPS algorithm to reconstruct signals in the linear
space Vp(�),1 ≤ p ≤ ∞ from their (un)corrupted phaseless samples. The third main con-
tribution is that the reconstructed signal obtained from the proposed MAPS algorithm is an
“approximation” to the original signal in the linear space Vp(�) without restriction on noise
level and apriori information on the original signal f , see Theorem 6.5 and Remark 6.6.
Moreover the proposed algorithm is robust and non-iterative, and it has linear complexity,
see Remarks 6.2–6.4.

In [19, 20], we consider the local stability of a phaseless sampling operator S� in natural
metric m∞ in the shift-invariant space V∞(φ), where

Vp(φ) :=
{ ∑

k∈Zd

c(k)φ(· − k) : (c(k))k∈Zd ∈ �p
}
, 1 ≤ p ≤ ∞. (1.20)

It is shown in [19, Theorem 4.1] that for any phase retrievable signal f ∈ V∞(φ) on the real
line, there exist positive constants A and εf (depending on f ) such that

Am∞(g, f ) ≤ D∞(S�g,S�f )

hold for all signals g ∈ V∞(φ) satisfying D∞(S�g,S�f ) ≤ εf . The fourth main contribu-
tion is that we construct sampling sets � with finite density so that the nonlinear sampling
operator S� in (1.13) has bi-Lipschitz property with respect to the metric Mp in (1.16) on a
linear subspace Vp(�),1 ≤ p ≤ ∞, i.e., there exists positive constants A1 and A2 such that

A1Mp(g,f ) ≤ Dp(S�g,S�f ) ≤ A2Mp(g,f ) for all g,f ∈ Vp(�),

see Theorem 6.7. To the best of our knowledge, the above stability inequality is the first
global estimation for certain phase retrievable signals in an infinite-dimensional linear space.

1.2 Organization

In Sect. 2, we present some preliminaries on the linear space V (�). In Sect. 3, we introduce
a graph structure for any signal in V (�) and use its connectivity to provide an answer to
Question 1.1. In Sect. 4, we introduce a landscape decomposition for a signal f ∈ V (�)

and use it to find all signals in Mf . In Sect. 5, we construct a discrete set � with finite
density such that Mf,� = Mf for all f ∈ V (�). In Sect. 6, we introduce a stable algorithm
� with linear complexity to reconstruct signals in V (�) from their noisy phaseless samples
taken on a discrete set � and show that the phaseless sampling operator S� in (1.13) has
bi-Lipschitz property with respect to the metric Mp in (1.16). In Sect. 7, we demonstrate
the stable reconstruction of our proposed algorithm � by reconstructing one-dimensional
non-uniform spline signals and two-dimensional piecewise affine signals on triangulations
from their noisy phaseless samples. In Appendix A, we show that the density of a discrete
set � with Mf,� = Mf , f ∈ V (�), must be no less than the innovative rate of signals in
V (�).

2 Preliminaries

Spatial signals considered in the paper are defined on a domain D. Our representing models
of the domain D are the d-dimensional Euclidean space Rd , the d-dimensional torus Td and
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the vertex set V of a undirected graph G = (V ,E) containing no graph loops or multiple
edges that is widely used to describe a spatially distributed network [21]. Let

B(x, r) = {y ∈ D : ρ(x, y) ≤ r}
be the closed ball with center x ∈ D and radius r ≥ 0. In this paper, we always assume the
following for the domain D [21, 41, 62].

Assumption 2.1 The domain D is equipped with a distance ρ and a Borel measure μ so
that

B(r) := sup
x∈D

μ
(
B(x, r)

)
< ∞ (2.1)

and

lim inf
s→∞ inf

x∈D

μ(B(x, s − r))

μ(B(x, s))
= 1 (2.2)

hold for all r ≥ 0.

Spatial signals considered in this paper belong to the linear space V (�) in (1.1). De-
note the cardinality of a set E by #E. In this paper, we always assume the following three
conditions to basis signals φλ,λ ∈ �, of the linear space V (�) in (1.1).

Assumption 2.2 (i) The discrete set � has finite density

D+(�) := lim sup
r→∞

sup
x∈D

�
(
� ∩ B(x, r)

)

μ
(
B(x, r)

) < ∞; (2.3)

(ii) the basis signals φλ,λ ∈ �, in the generator � are nonzero continuous functions being
uniformly bounded,

‖�‖∞ := sup
λ∈�

‖φλ‖L∞ < ∞, (2.4)

and they are supported in balls with center λ and a fixed radius r0 > 0 independent of λ, i.e.,

φλ(x) = 0 for all x /∈ B(λ, r0) and λ ∈ �; (2.5)

and (iii) any signal in V (�) has a unique parametric representation (1.2).

The prototypical forms of the linear space V (�) in (1.1) are Paley-Wiener space of ban-
dlimited signals [56, 58], the shift-invariant space V (φ) generated by the shifts of a com-
pactly supported function φ [3, 19, 20], twisted shift-invariant spaces generated by (non-
)uniform Gabor frame system (or Wilson basis) in the time-frequency analysis [8, 9, 17, 31,
37, 47], and nonuniform spline signals [12, 35, 48]. The linear space V (�) was introduced
in [51, 52] to model FRI signals. Following the terminology in [59], signals in the linear
space V (�) have rate of innovations D+(�) and innovative positions λ ∈ �.

An equivalent statement to the unique parametric representation (1.2) of FRI signals in
V (�) in Assumption 2.2 is that the generator � has global linear independence, i.e., the
map

c := (cλ)λ∈� �−→ cT � :=
∑
λ∈�

cλφλ (2.6)
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is one-to-one from the space �(�) of all sequences on � to the linear space V (�) [39, 46].
For an open set A, define

KA = {λ ∈ � : φλ �≡ 0 on A}. (2.7)

A local version of the global linear independence (2.6) is local linear independence on a
bounded open set A ⊂ D, i.e.,

dimV (�)|A = #KA, (2.8)

where dimV is the dimension for a linear space V and V |A represents its restriction on
a set A. Observe that the restriction of the linear space V (�) on a bounded open set A is
generated by φλ,λ ∈ KA (and hence it is finite-dimensional). Then an equivalent formulation
of the local linear independence on a bounded open set A is that

∑
λ∈�

cλφλ(x) = 0 for all x ∈ A (2.9)

implies that cλ = 0 for all λ ∈ KA [39, 53].
Set

S�(λ,λ′) := {x ∈ D : φλ(x)φλ′(x) �= 0}, λ,λ′ ∈ �, (2.10)

and use the abbreviation

S�(λ) := S�(λ,λ)

when λ′ = λ ∈ �. One may verify that the generator � has global linear independence (2.6)
if it has local linear independence on a family of open sets Tθ , θ ∈ �, such that

S�(λ,λ′) ∩ ( ∪θ∈� Tθ

) �= ∅ (2.11)

for all pairs (λ,λ′) ∈ � × � with S�(λ,λ′) �= ∅. We remark that a family of open sets
Tθ , θ ∈ �, satisfying (2.11) is not necessarily a covering of the domain D, however, the
converse is true, cf. Corollary 4.3.

3 Phase Retrievability and Graph Connectivity

In this section, we characterize all signals f ∈ V (�) that can be determined, up to a sign,
from their magnitude measurements on the whole domain D, i.e., Mf = {±f }, see Theo-
rem 3.2.

Given a signal f = ∑
λ∈� cλφλ ∈ V (�), we define an undirected graph

Gf := (Vf ,Ef ), (3.1)

where

Vf := {λ ∈ � : cλ �= 0} (3.2)

and

Ef := {
(λ,λ′) ∈ Vf × Vf : λ �= λ′ and φλφλ′ �≡ 0

}
.
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For a signal f ∈ V (�), the graph Gf in (3.1) is well-defined by (2.6), and it was introduced
in [20] when the generator � = (φ(· − k))k∈Zd is obtained from shifts of a compactly sup-
ported function φ. Its vertex set Vf contains all innovative positions λ ∈ � with nonzero
amplitude cλ, and its edge set Ef contains all innovative position pairs (λ,λ′) in Vf × Vf

with basis signals φλ and φλ′ having overlapped supports, i.e.,

(λ,λ′) ∈ Ef if and only if λ,λ′ ∈ Vf and (λ,λ′) ∈ E�, (3.3)

where S�(λ,λ′), (λ,λ′) ∈ � × �, are given in (2.10) and

E� := {(λ,λ′) ∈ � × � : S�(λ,λ′) �= ∅}. (3.4)

To study the phase retrievability of signals in V (�), we recall the local complement
property for a linear space of real-valued signals [20].

Definition 3.1 Let A be an open subset of the domain D. We say that a linear space V of
real-valued signals on the domain D has local complement property on A if for any A′ ⊂ A,
there does not exist f,g ∈ V such that f,g �≡ 0 on A, but f (x) = 0 for all x ∈ A′ and
g(y) = 0 for all y ∈ A\A′.

The local complement property is the complement property in [19] for ideal sampling
functionals on a set, cf. the complement property for frames in Hilbert/Banach spaces ([1, 7,
11, 13]). Local complement property is closely related to local phase retrievability. In fact,
following the argument in [19], the linear space V has the local complement property on A

if and only if all signals in V are local phase retrieval on A, i.e., for any f,g ∈ V satisfying
|g(x)| = |f (x)|, x ∈ A, there exists δ ∈ {−1,1} such that g(x) = δf (x) for all x ∈ A.

In this section, we establish the equivalence between phase retrievability of a nonzero
signal f ∈ V (�) and connectivity of its graph Gf . A similar result is established in [20] for
signals residing in a shift-invariant space.

Theorem 3.2 Let � be a family of basis functions satisfying Assumption 2.2, V (�) be the
linear space (1.1) generated by �, and let T = {Tθ , θ ∈ �} be a family of bounded open
sets satisfying (2.11). Assume that for any Tθ ∈ T , � has local linear independence on
Tθ and V (�) has local complement property on Tθ . Then for a nonzero signal f ∈ V (�),
Mf = {±f } if and only if the graph Gf in (3.1) is connected.

As shown in the next proposition, the local complement property assumption in Theorem
3.2 is satisfied when � has local linear independence on all bounded open sets. However,
we do not use the above strong assumption in our main theorems, as there are very few
families of basis signals available (including those generated by integer shifts of B-splines,
scaling/wavelet functions, and box splines), which have local linear independence on all
bounded open sets [22, 30, 38, 53].

Proposition 3.3 Let � = (φλ)λ∈� satisfy Assumption 2.2. If � has local linear indepen-
dence on all bounded open sets, then there exist T = {Tθ , θ ∈ �} satisfying (2.11) such that
V (�) has local complement property on every Tθ ∈ T .

Proof Define T�(θ) = ∩λ∈θS�(λ) for a set θ ⊂ �. We say that θ ⊂ � is maximal if T�(θ) �=
∅ and T�(θ ′) = ∅ for all θ ′

� θ . By (2.3) and (2.5), any maximal set contains finitely many
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elements. Denote the family of all maximal sets by � and define Tθ = T�(θ), θ ∈ �. Clearly
T := {Tθ , θ ∈ �} satisfies (2.11), because any θ ⊂ � with T�(θ) �= ∅ is a subset of some
maximal set in �.

Now it remains to prove that V (�) has local complement property on Tθ , θ ∈ �. Take an
arbitrary θ ∈ � and two signals f,g ∈ V (�) satisfying |f (x)| = |g(x)| for all x ∈ Tθ . Then

(f + g)(x)(f − g)(x) = 0 for all x ∈ Tθ . (3.5)

Write f +g = ∑
λ∈� cλφλ and f −g = ∑

λ∈� dλφλ, and set B1 = {x ∈ Tθ : (f +g)(x) �= 0}
and B2 = {x ∈ Tθ : (f − g)(x) �= 0}. Then

(∑
λ∈θ

cλφλ(x)
)(∑

λ∈θ

dλφλ(x)
)

= 0 for all x ∈ Tθ (3.6)

and

φλ(x) �= 0 for all x ∈ Tθ and λ ∈ θ (3.7)

by assumption (2.11), (3.5) and the construction of maximal sets. By (3.6), we have that
f − g = 0 on B1 if B1 �= ∅, f + g = 0 on B2 if B2 �= ∅, and f − g = f + g = 0 on Tθ if
B1 = B2 = ∅. This together with (3.7) and the local linear independence on B1, B2 and Tθ

implies that either dλ = 0 for all λ ∈ θ , or cλ = 0 for all λ ∈ θ , or cλ = dλ = 0 for all λ ∈ θ .
Therefore either f = g on Tθ , or f = −g on Tθ , or f = g = 0 on Tθ . This completes the
proof. �

Applying Theorem 3.2 and Proposition 3.3, we have the following corollary, which is
established in [20] when the generator � is obtained from uniform shifts of a compactly
supported function.

Corollary 3.4 Let � be a family of basis functions satisfying Assumption 2.2, and V (�) be
the linear space (1.1) generated by �. If � has local linear independence on any bounded
open set, then a nonzero signal f ∈ V (�) satisfies Mf = {±f } if and only if the graph Gf

in (3.1) is connected.

3.1 Proof of Theorem 3.2

The necessity in Theorem 3.2 holds under a weak assumption on the generator �.

Proposition 3.5 Let � := (φλ)λ∈� be a family of basis functions satisfying Assumption 2.2,
V (�) be the linear space (1.1) generated by �, and let f be a nonzero signal in V (�). If
Mf = {±f }, then the graph Gf in (3.1) is connected.

To prove Proposition 3.5, we recall a characterization in [19] on phase retrievability.

Lemma 3.6 For a nonzero signal f in a real-valued linear space V , Mf = {±f } if and
only if it is nonseparable, i.e., there does not exist nonzero signals f0 and f1 ∈ V such that

f = f0 + f1 and f0f1 = 0. (3.8)
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Proof of Proposition 3.5 Let f ∈ V (�) be a nonzero signal satisfying Mf = {±f }, and
write f = ∑

λ∈� cλφλ, where cλ ∈ R, λ ∈ �. Suppose, on the contrary, that the graph Gf is
disconnected. Then there exists a nontrivial connected component W such that both W and
Vf \W are nontrivial, and no edges exist between vertices in W and in Vf \W . Write

f =
∑
k∈Vf

cλφλ =
∑
λ∈W

cλφλ +
∑

λ∈Vf \W
cλφλ =: f0 + f1. (3.9)

From the global linear independence (2.6) and nontriviality of the sets W and Vf \W , we
obtain

f0 �≡ 0 and f1 �≡ 0. (3.10)

Applying (3.9) and (3.10), and using the characterization in Lemma 3.6, we obtain that

f0(x0)f1(x0) �= 0

for some x0 ∈ D. This implies the existence of λ ∈ W and λ′ ∈ Vf \W such that cλφλ(x0) �= 0
and cλ′φλ′(x0) �= 0. Hence (λ,λ′) is an edge between λ ∈ W and λ′ ∈ Vf \W , which contra-
dicts to the construction of the set W . �

Now we prove the sufficiency in Theorem 3.2. Let f = ∑
λ∈� cλφλ ∈ V (�) have its

graph Gf being connected, and take g = ∑
λ∈� dλφλ ∈ Mf . Then for any θ ∈ �,

|g(x)| = |f (x)|, x ∈ Tθ . (3.11)

For any θ ∈ �, there exists δθ ∈ {−1,1} by (3.11) and the local complement property on Tθ

such that

g(x) = δθf (x), x ∈ Tθ .

This together with the local linear independence on Tθ implies that

dλ = δθcλ (3.12)

for all λ ∈ � with S�(λ) ∩ Tθ �= ∅. Using (2.11) and applying (3.12), there exist δλ ∈
{−1,1}, λ ∈ � such that

dλ = δλcλ (3.13)

for all λ ∈ �, and

δλ = δλ′ (3.14)

for any edge (λ,λ′) in the graph Gf . Combining (3.13) and (3.14), and applying connectivity
of the graph Gf , we can find δ ∈ {−1,1} such that

dλ = cλ = 0 for all λ /∈ Vf and dλ = δcλ for all λ ∈ Vf . (3.15)

Thus g(x) = δf (x) for all x ∈ D. This completes the proof of the sufficiency.
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4 Phase Retrievability and Landscape Decomposition

For a signal f ∈ V (�), the graph Gf in (3.1) is not necessarily connected and hence there
may exist many signals g ∈ V (�), other than ±f , belonging to Mf . In this section, we
characterize the set Mf of all signals g ∈ V (�) that have the same magnitude measurements
on the domain D as f has, and then we provide the answer to Question 1.2.

Take f = ∑
λ∈� cλφλ ∈ V (�), let Gi = (Vi,Ei), i ∈ I , be connected components of the

graph Gf , and define

fi =
∑
λ∈Vi

cλφλ, i ∈ I. (4.1)

Then (1.4) holds by the definition of Gi , i ∈ I , and the signal f has the decomposition
(1.5), (1.6) and (1.7) by Theorem 3.2. By (1.5) and (1.7), signals g = ∑

i∈I δifi with δi ∈
{−1,1}, i ∈ I , have the same magnitude measurements on the domain D as f has. In the
following theorem, we show that the converse is also true.

Theorem 4.1 Let the generator � := (φλ)λ∈�, the family T = {Tθ , θ ∈ �} of bounded open
sets, and the linear space V (�) be as in Theorem 3.2. Take f ∈ V (�) and let fi ∈ V (�), i ∈
I , be as in (4.1). Then g ∈ V (�) belongs to Mf if and only if

g =
∑
i∈I

δifi for some δi ∈ {−1,1}, i ∈ I. (4.2)

Proof The sufficiency is obvious. Now the necessity. Let f,g ∈ V (�) have the same
magnitude measurements on the domain D, i.e., Mf = Mg . Write f = ∑

λ∈� cλφλ and
g = ∑

λ∈� dλφλ. Then following the argument used in the sufficiency of Theorem 3.2, we
can find δλ,λ′ ∈ {−1,1} for any pair (λ,λ′) with S�(λ,λ′) �= ∅ such that

(dλ, dλ′) = δλ,λ′(cλ, cλ′). (4.3)

Applying (4.3) with λ′ = λ and recalling that S�(λ) �= ∅, we obtain

dλ = δλcλ, λ ∈ �, (4.4)

for some δλ ∈ {−1,1}. This concludes that

δλ = δλ,λ′ = δλ′ (4.5)

for any edge (λ,λ′) of the graph Gf . Therefore signs δλ are the same in any connected
component of the graph Gf . This together with (1.4), (4.1) and (4.4) completes the proof.

�

The conclusion in Theorem 4.1 can be understood as that the landscape of any signal
g ∈ Mf is a combination of islands of the original signal f or their reflections. As an
application to Theorem 4.1, we have the following result about the cardinality of the set
Mf .

Corollary 4.2 Let the generator �, the family T of bounded open sets, and the linear space
V (�) be as in Theorem 3.2. Then for f ∈ V (�),

#Mf = 2#I ,

where I is given in (1.4).
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The union of Tθ , θ ∈ �, is not necessarily the whole domain D. Following the argument
used in the proof of Theorems 3.2 and 4.1, we have the following corollary.

Corollary 4.3 Let the generator �, the family T = {Tθ , θ ∈ �} of bounded open sets and
the linear space V (�) be as in Theorem 4.1. Then

Mf = Mf,DT for all f ∈ V (�), (4.6)

where DT = ∪θ∈�Tθ .

Proof Let f,g ∈ V (�) satisfy |f (x)| = |g(x)|, x ∈ Tθ for all θ ∈ �. Write f = ∑
i∈I fi as

in (1.5), (1.6) and (1.7). From the argument used in the proof of Theorems 3.2 and 4.1, we
have that g = ∑

i∈I δifi for some δi ∈ {−1,1}. Therefore |g(x)| = |f (x)| for all x ∈ D. �

Take f = ∑
λ∈� cλφλ ∈ V (�), and define fi, i ∈ I , by (4.1). As discussed in the para-

graph just before the statement of Theorem 4.1, the above functions fi, i ∈ I form a land-
scape decomposition of the signal f satisfying (1.5), (1.6) and (1.7). In the next theorem we
show the uniqueness of the landscape decomposition satisfying (1.5), (1.6) and (1.7).

Theorem 4.4 Let the generator � and the space V (�) be as in Theorem 4.1. Then for any
f ∈ V (�) there exists a unique decomposition satisfying (1.5), (1.6) and (1.7).

Proof Write f = ∑
λ∈� cλφλ and define fi, i ∈ I , by (4.1). Suppose that {gj , j ∈ J }

is another decomposition of the signal f satisfying (1.5), (1.6) and (1.7). Then gj =∑
λ∈� dj,λφλ, j ∈ J , are nonzero signals in V (�) such that satisfy

f =
∑
j∈J

gj , (4.7)

Mgj
= {±gj }, j ∈ J, (4.8)

and

gjgj ′ = 0 for all distinct j, j ′ ∈ J. (4.9)

Then it suffices to find Ij , j ∈ J , such that

Ij only contains exactly one element for any j ∈ J, (4.10)

gj =
∑
i∈Ij

fi, (4.11)

and

∪j∈J Ij = I and Ij ∩ Ij ′ = ∅ for all distinct j, j ′ ∈ J, (4.12)

as in this case there is an bijective map P from J and I such that gj = fP(j), j ∈ J .
First we prove (4.11) and (4.12). For any distinct j, j ′ ∈ J and (λ,λ′) ∈ � × � with

S�(λ,λ′) �= ∅, following the argument used in the sufficiency of Theorem 3.2 with f and g

replaced by gj ± gj ′ we obtain from (4.9) that

either (dj,λ, dj,λ′) = (0,0) or (dj ′,λ, dj ′,λ′) = (0,0).
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This together with (4.7) implies that for any (λ,λ′) ∈ � × � with S�(λ,λ′) �= ∅ there exists
j ∈ J such that

dj,λ = cλ, dj,λ′ = cλ′ (4.13)

and

dj ′,λ = dj ′,λ′ = 0 for all j ′ �= j. (4.14)

Observe that S�(λ) �= ∅, λ ∈ �. Applying (4.13) and (4.14) with λ′ = λ ∈ �, we can find
Wj, j ∈ J such that

gj =
∑
λ∈Wj

cλφλ, (4.15)

and

∪j∈J Wj = Vf and Wj ∩ Wj ′ = ∅ for all distinct j, j ′ ∈ J. (4.16)

Let Vi ⊂ Vf , i ∈ I be as in (4.1). Applying (4.13) and (4.14) with (λ,λ′) being an edge in
Gf , we obtain that for any i ∈ I there exists j ∈ J such that Vi ⊂ Wj . This together with
(4.16) implies the existence of a subset Ij of I for every j ∈ J such that

Wj = ∪i∈Ij Vi for all j ∈ J. (4.17)

Then the conclusion (4.11) follows from (4.1) and (4.17), and the partition property (4.12)
holds by (4.16), (4.17) and the observation that ∪i∈I Vi = Vf .

Now we prove (4.10). By (1.5) and (4.11) we have that

Mgj
⊃

{∑
i∈Ij

δifi, δi ∈ {−1,1}
}
,

which implies that #Mgj
≥ 2#Ij . This together with (4.8) proves (4.10). �

5 Phaseless Sampling and Reconstruction

In this section, we consider phaseless sampling and reconstruction of signals in V (�), and
we construct a discrete set � such that

Mf,� = Mf for all f ∈ V (�), (5.1)

and its density D+(�) is dominated by a multiple of the innovative rate D+(�) of signals in
V (�).

First, we recall the concept of a (minimal) phase retrievable frame [7, 20, 28, 34, 61].

Definition 5.1 We say that F = {fm ∈ R
n,1 ≤ m ≤ M} is a phase retrievable frame for Rn

if any vector v ∈R
n is determined, up to a sign, by its measurements |〈v,fm〉|, fm ∈ F , and

that F is a minimal phase retrievable frame for Rn if any true subset of F is not a phase
retrievable frame.

The concept of minimal phase retrievable frame is crucial for us to prove the existence of
the phaseless sampling set on which the linear space V (�) has local complement property,
cf. [20, Theorem A.4].
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Proposition 5.2 Let the generator � := (φλ)λ∈�, the family T = {Tθ , θ ∈ �} of bounded
open sets, and the linear space V (�) be as in Theorem 3.2. Assume that � has local linear
independence on open sets Tθ , θ ∈ �. Then for any θ ∈ �, the linear space V (�) generated
by � has local complement property on Tθ if and only if there exists a finite set �θ ⊂ Tθ such
that {�θ(γ ), γ ∈ �θ } is a minimal phase retrievable frame for R#Kθ , where

�θ = (φλ)λ∈Kθ
and Kθ = {λ ∈ � : S�(λ) ∩ Tθ �= ∅}. (5.2)

Set

R�(r) := sup
x∈D

#
(
� ∩ B(x, r)

)
, r ≥ 0. (5.3)

We remark that Kθ, θ ∈ � in (5.2) are finite subsets of � and their cardinalities are bounded
by R�(2r0), see (5.12). In the next theorem, we explicitly construct the phaseless sampling
set such that (5.1) holds, and its density is dominated by a multiple of the innovative rate of
the signal in V (�).

Theorem 5.3 Let the domain D satisfy Assumption 2.1, � := (φλ)λ∈� be a family of basis
functions satisfying Assumption 2.2, V (�) be the linear space (1.1) generated by �, and
T = {Tθ , θ ∈ �} be a family of bounded open sets so that (2.11) holds and for every θ ∈ �,
� has local linear independence on Tθ and V (�) has local complement property on Tθ .
Take discrete sets �θ ⊂ Tθ , θ ∈ �, so that for any θ ∈ �, {�θ(γ ), γ ∈ �θ } forms a minimal
phase retrievable frame for R#Kθ , and define

� := ∪θ∈��θ , (5.4)

where �θ and Kθ ⊂ � is given in (5.2). Then (5.1) holds for the above discrete set �.
Moreover if

NT := sup
λ∈�

#{θ : Tθ ∩ S�(λ) �= ∅} < ∞, (5.5)

then the set � has finite upper density

D+(�) ≤ R�(2r0)(R�(2r0) + 1)

2
NT D+(�), (5.6)

where r0 is given in (2.5).

We remark that the existence of discrete sets �θ , θ ∈ � in Theorem 5.3 follows from
the local complement property on Tθ , θ ∈ �, for the linear space V (�), by applying the
argument in [20, Theorem A.4].

As an application of Theorem 5.3, we have the following phaseless sampling corollary,
which is established in [19, 20] for signals residing in a shift-invariant space generated by a
compactly supported function.

Corollary 5.4 Let D,�,T ,�,V (�) and � be as in Theorem 5.3. Then any signal f ∈
V (�) with Mf = {±f } is determined, up to a sign, from its phaseless samples on the
discrete set � with finite density.

In practical applications, the set {�θ(γ ), γ ∈ �θ }, θ ∈ � is not necessarily required to
form a minimal phase retrievable frame for R#Kθ . In particular, the set �θ can be chosen
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such that the density is still dominated by the rate of innovations of signals in V (�) and
the set of outer products �θ(γ )�T

θ (γ ), γ ∈ �θ forms a frame/basis for the linear space of
symmetric matrices spanned by outer products �θ(x)(�θ(x))T , x ∈ Tθ .

We finish this section with the proof of Theorem 5.3.

Proof of Theorem 5.3 First we prove (5.1). By (1.11), it suffices to prove

Mf,� ⊂ Mf . (5.7)

Take g = ∑
λ∈� dλφλ ∈ Mf,� , and write f = ∑

λ∈� cλφλ. Then for any θ ∈ �,

∣∣∣
∑
λ∈Kθ

cλφλ(γ )

∣∣∣ = |f (γ )| = |g(γ )| =
∣∣∣
∑
λ∈Kθ

dλφλ(γ )

∣∣∣ for all γ ∈ �θ .

This together with the phase retrievable frame property of �θ(γ ), γ ∈ �θ , implies that

dλ = δθcλ, λ ∈ Kθ (5.8)

for some δθ ∈ {−1,1}. Hence for any θ ∈ �,

|g(x)| = |f (x)|, x ∈ Tθ . (5.9)

This together with Corollary 4.3 implies that g ∈ Mf . This proves (5.7).
To prove (5.6), we claim that for any θ ∈ �,

S�(λ,λ′) �= ∅ for all λ,λ′ ∈ Kθ. (5.10)

Suppose on the contrary that the above claim does not hold, then there exist λ0, λ
′
0 ∈ Kθ

with S�(λ0, λ
′
0) = ∅. Thus φλ0 ± φλ′

0
∈ V (�) have the same magnitude measurements on

Tθ , which contradicts to the local complement property of the space V (�) on Tθ , θ ∈ �.
Applying Claim (5.10) and Assumption 2.2, we obtain

B(λ, r0) ∩ B(λ′, r0) �= ∅ for all λ,λ′ ∈ Kθ. (5.11)

This implies that

#Kθ ≤ R�(2r0), θ ∈ �. (5.12)

Observe that for any f ∈ V (�), there exists a unique vector cθ = (cλ)λ∈Kθ
such that

|f (x)|2 = cT
θ �θ (x)(�θ(x))T cθ , x ∈ Tθ .

This together with the minimality of the phase retrievable frame {�θ(γ ), γ ∈ �θ } for R#Kθ

implies that matrices �θ(γ )(�θ(γ ))T , γ ∈ �θ are linearly independent in the linear space
of symmetric matrices, which has dimension #Kθ(#Kθ + 1)/2. Hence

#�θ ≤ #Kθ(#Kθ + 1)

2
≤ R�(2r0)(R�(2r0) + 1)

2
for all θ ∈ �, (5.13)

where the last inequality follows from (5.12).
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By the minimality of the phase retrievable frame {�θ(γ ), γ ∈ �θ }, we have �θ(γ ) �= 0
for all γ ∈ �θ , which implies that

�θ ⊂ ( ∪λ∈Kθ
S�(λ)

) ∩ Tθ . (5.14)

Then for any x ∈ D and r ≥ 0, we obtain from (5.5), (5.13), (5.14) and Assumption 2.2 that

#(� ∩ B(x, r)) ≤
(

max
θ∈�

#�θ

)

×#
{
θ ∈ � : ( ∪λ∈Kθ

S�(λ)
) ∩ Tθ ∩ B(x, r) �= ∅}

≤ R�(2r0)(R�(2r0) + 1))

2

(
max
λ∈�

#{θ ∈ � : S�(λ) ∩ Tθ �= ∅}
)

×#
{
λ ∈ � : S�(λ) ∩ B(x, r) �= ∅}

≤ R�(2r0)(R�(2r0) + 1))

2
NT #

(
� ∩ B(x, r + r0)

)
. (5.15)

This together with (2.2) in Assumption 2.1 and definition of the density (2.3) of a discrete
set proves (5.6). �

6 Stable Reconstruction from Phaseless Samples

In this section, we introduce the MAPS algorithm to reconstruct FRI signals in Vp(�),1 ≤
p ≤ ∞, approximately from their noisy phaseless samples taken on a discrete set �, we
show that the MAPS algorithm is theoretically guaranteed to provide a stable reconstruction
to the original FRI signal in the magnitude measurements, and we prove that the phaseless
sampling operator S� has the bi-Lipschitz property with respect the metric Mp in (1.16).

Let T = {Tθ : θ ∈ �} satisfy (2.11) and � = ∪θ∈��θ with �θ ⊂ Tθ , θ ∈ � be as in
Theorem 5.3. Let f ∈ Vp(�),1 ≤ p ≤ ∞, and

zη(γ ) = |f (γ )| + η(γ ), γ ∈ �, (6.1)

be its samples on a discrete set � corrupted by a p-summable noise η = (η(γ ))γ∈� . A con-
ventional approach to reconstruct the signal f approximately from its noisy phaseless sam-
ples (6.1) is to solve the minimization problem

fη = arg min
g∈Vp(�)

∥∥(|g(γ )| − zη(γ ))γ∈�

∥∥
�p , (6.2)

which is infinite-dimensional and infeasible. In this section, we propose the following three-
step algorithm, MAPS for abbreviation, to construct a signal

gη =
∑
λ∈�

dη;λφλ (6.3)

in Vp(�) from the noisy phaseless samples zη(γ ), γ ∈ �, which is a good approximation to
the original signal f in magnitude measurements, see Theorem 6.5 and Remark 6.6.
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MAPS algorithm for phaseless reconstruction

0. Select a phase adjustment threshold value M0 ≥ 0 and set Kθ = {λ ∈ � : S�(λ)∩Tθ �= ∅}
for θ ∈ �.

1. For θ ∈ �, let

cη,θ = (cη,θ;λ)λ∈� (6.4)

take zero components except that (cη,θ;λ)λ∈Kθ
is a solution of the local minimization prob-

lem

min
(dλ)λ∈Kθ

∑
γ∈�θ

∣∣∣
∣∣∣
∑
λ∈Kθ

dλφλ(γ )

∣∣∣ − zη(γ )

∣∣∣
2
. (6.5)

2. Adjust phases of vectors cη,θ , θ ∈ �, so that the resulting vectors δη,θ cη,θ with δη,θ ∈
{−1,1} have their inner product satisfying

〈δη,θ cη,θ , δη,θ ′cη,θ ′ 〉 = δη,θ δη,θ ′
∑

λ∈Kθ ∩Kθ ′
cη,θ;λcη,θ ′;λ

≥ −M0 ×
(

sup
γ∈�θ ∪�θ ′

|η(γ )|
)2

(6.6)

for all θ, θ ′ ∈ �, where we set supγ∈�θ ∪�θ ′ |η(γ )| = +∞ if �θ ∪ �θ ′ = ∅.
3. Sew vectors δη,θ cη,θ , θ ∈ �, together to obtain

dη;λ =
∑

θ∈� δη,θ cη,θ;λχKθ
(λ)∑

θ∈� χKθ
(λ)

, λ ∈ �, (6.7)

where χE is the indicator function on a set E.

Remark 6.1 The earliest version of the above MAPS algorithm is proposed in [19] to recon-
struct phase retrievable signals in a shift-invariant space on the real line from their phaseless
samples, where � = Z, �θ = �0 + θ, θ ∈ � for some �0 ⊂ [0,1], and the phase adjustment
signs δη,θ ∈ {−1,1} in the second step are selected to satisfy

〈δη,θ cη,θ , δη,θ ′cη,θ ′ 〉 ≥ 0 for all θ, θ ′ ∈ Z with θ ′ − θ = 1. (6.8)

The MAPS algorithm is modified in [20] to reconstruct phase retrievable signals in a
shift-invariant space on high-dimensional Euclidean space R

d from their phaseless sam-
ples, where � = Z

d × {1, . . . ,M}, �k,m = �m + k, (k,m) ∈ � for some bounded sets
�m,1 ≤ m ≤ M , and the phase adjustment signs δη,θ ∈ {−1,1} in the second step are se-
lected to satisfy

〈δη,θ cη,θ , δη,θ ′cη,θ ′ 〉 ≥ −M0

(
sup
γ∈�

|η(γ )|
)2

for all θ, θ ′ ∈ �, (6.9)

where � = ∪θ∈��θ and M0 is a phase adjustment threshold constant. Comparing with the
phase adjustment requirement (6.9) in the shift-invariant setting, we need a stricter phase
adjustment requirement (6.6) in the MAPS algorithm proposed in this paper. The benefit is
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that as shown in Theorem 6.5, the reconstructed signal gη obtained from the current MAPS
algorithm is an “approximation” to the original signal f without restriction on the noise
level and the apriori information on the original signal f , while the reconstructed signal in
previous versions of the MAPS algorithm in [19, 20] are shown to be an “approximation”
to the original signal f when the original signal f is phase retrievable and noise level η is
small.

Remark 6.2 For every θ ∈ �, the local minimizers cη,θ;λ, λ ∈ K�, in the first step of
the above MAPS algorithm are determined, up to a sign, from noisy phaseless samples
zη(γ ), γ ∈ �θ , by the selection of the sampling set �θ , and they can be found by solving a
family of least squares problems,

min
(dλ)λ∈Kθ

∑
γ∈�θ

∣∣∣
∣∣∣
∑
λ∈Kθ

dλφλ(γ )

∣∣∣ − zη(γ )

∣∣∣
2

= min
δγ ∈{−1,1},γ∈�θ

min
(dλ)λ∈Kθ

∑
γ∈�θ

∣∣∣
∑
λ∈Kθ

dλφλ(γ ) − δγ zη(γ )

∣∣∣
2
. (6.10)

The local minimization in the first step is a phase retrieval problem in a finite-dimensional
setting with its dimension #Kθ ≤ R�(2r0) by (5.12). The reader may refer to [15, 16, 26, 27,
29, 44, 49, 63] for various algorithms to solve a finite-dimensional phase retrieval problem.

Remark 6.3 The phase adjustment in the second step is crucial for the MAPS algorithm
and the threshold constant M0 in (6.6) should be chosen appropriately to guarantee the
existence of phase adjustments δη,θ ∈ {−1,1}, θ ∈ �. In Theorem 6.5, we show that such
a threshold constant M0 can be selected to depend only on the stability constant (6.16) to
solve the local minimization problem in the first step, see (6.17). For a finite set �, define a
symmetric symbol matrix B = (b(θ, θ ′))θ,θ ′∈� with zero diagonal entries and non-diagonal
entries b(θ, θ ′), θ �= θ ′ given by

b(θ, θ ′) =

⎧⎪⎨
⎪⎩

1 if 〈cη,θ , cη,θ ′ 〉 > M0
(

supγ∈�θ ∪�θ ′ |η(γ )|)2
and �θ ∪ �θ ′ �= ∅,

−1 if 〈cη,θ , cη,θ ′ 〉 < −M0

(
supγ∈�θ ∪�θ ′ |η(γ )|)2

and �θ ∪ �θ ′ �= ∅,

0 otherwise.

(6.11)

Then phase adjustments δη,θ ∈ {−1,1}, θ ∈ � in the second step can be reformulated as
finding a diagonal matrix D with diagonal entries δη,θ ∈ {1,−1}, θ ∈ � so that DBD has
nonnegative entries, cf. [20]. The selection of the above diagonal matrix is not unique. By
(6.5), we have

〈cη,θ , cη,θ ′ 〉 = 0 if Kθ ∩ Kθ ′ = ∅. (6.12)

So we may use the following algorithm to find such a diagonal matrix D.
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Phase Adjustment Algorithm
Initial S1 = ∅, S2 = ∅, S3 = �.
Step 1 Stop if S3 = ∅; otherwise take θ ∈ S3, update S1 = S1 ∪{θ}, S2 = ∅ S3 = S3\{θ},

select δη,θ ∈ {−1,1}, and then update b(θ, θ ′) = 2δη,θ b(θ, θ ′) and b(θ ′, θ) =
2δη,θ b(θ ′, θ) for all θ ′ with Kθ ∩ Kθ ′ �= ∅.

Step 2 If b(θ, θ ′) = 0 for all θ ′ with Kθ ∩ Kθ ′ �= ∅, return to Step 1; otherwise update
S2 = {θ ′ ∈ � satisfying b(θ, θ ′) �= 0 and Kθ ′ ∩ Kθ �= ∅}, S1 = S1 ∪ S2 and S3 =
S3\S2.

Step 3 For θ ′ ∈ S2, let δη,θ ′ = 1 if b(θ ′, θ ′′) = 2 for some θ ′′ satisfying Kθ ′′ ∩ Kθ ′ �= ∅
and δη,θ ′ = −1 otherwise.

Step 4 Set K = ∪θ ′∈S2{θ ′′ ∈ � satisfying b(θ ′, θ ′′) = ±1 and Kθ ′′ ∩Kθ ′ �= ∅}. Return to
Step 1 if K = ∅; otherwise, update b(θ ′, θ ′′) = 2δη,θ ′b(θ ′, θ ′′) and b(θ ′′, θ ′) =
2δη,θ ′b(θ ′′, θ ′) if θ ′ ∈ S2 and θ ′′ ∈ K satisfying Kθ ′′ ∩ Kθ ′ �= ∅, update S2 =
K,S1 = S1 ∪ S2, S3 = S3\S2, and then return to Step 3.

Output δη,θ , θ ∈ �.

Remark 6.4 We remark that complexity of the proposed MAPS algorithm depends almost
linearly on the size N = #�0 of the set of innovative positions �0 for the original signal
f = ∑

λ∈� cλφλ = ∑
λ∈�0

cλφλ ∈ V (�), where component vector (cλ)λ∈� is supported on
�0 ⊂ �. Define �0 = {θ ∈ � : Kθ ∩ �0 �= ∅}. Then

#�0 = #
( ∪λ∈�0 {θ ∈ � : λ ∈ Kθ }

) ≤ NT #�0 = NT N (6.13)

by (5.5). By (6.7), in the first step of the proposed MAPS algorithm, it suffices to solve
local minimization problems (6.5) with θ ∈ �0. Observe that for each θ ∈ �0 the number
of additions and multiplications required to find the local minimizer cη,θ in the first step
is O(1) by (5.12) and (5.13). This together with (6.13) implies that the total number of
additions and multiplications required in the first step is O(N). Let B = (b(θ, θ ′))θ,θ ′∈�0 be
the symmetric symbol matrix in Remark 6.3. For each θ, θ ′ ∈ �0, the number of additions
and multiplications required to evaluate the inner product 〈cη,θ , cη,θ ′ 〉 and the supremum
supγ∈�θ ∪�θ ′ |η(γ )| are O(1) by (5.12) (5.13), and so is O(1) for evaluating every entry
b(θ, θ ′) of the matrix B . By (6.7) and (6.12), we have that

b(θ, θ ′) = 0 if Kθ ∩ Kθ ′ = ∅,

and for any θ ∈ �, we obtain from (5.5) and (5.12) that

#{θ ′ ∈ � : Kθ ∩ Kθ ′ �= ∅} ≤ #
( ∪λ∈Kθ

{θ ′ ∈ � : λ ∈ Kθ ′ })

≤ NT #Kθ ≤ NT R�(2r0). (6.14)

Hence the number of nonzero entries in each row of the symmetric matrix B is at most
NT R�(2r0), and the total number of additions and multiplications required to define the
symmetric matrix B is O(#�0) = O(N), where the last equality follows from (6.13). By
Remark 6.3, the phase adjustment in the second step of the MAPS algorithm reduces to
finding a diagonal matrix D with diagonal entries δη,θ ∈ {1,−1}, θ ∈ � so that DBD has
nonnegative entries. We observe that the total number of additions and multiplications to
find such a diagonal matrix D by applying the Phase Adjustment Algorithm in Remark 6.3
to the above symmetric matrix B with � replaced by �0 is O(N). From the above argument
about the computational cost to evaluate the symmetric matrix B and to find the diagonal
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matrix D, we see that the total number of additions and multiplications required in the
second step is O(N). For any λ ∈ �0, the number of additions and multiplications required
to evaluate dη;λ is O(1) by (5.5), and hence the total number of additions and multiplications
required in the third step of the proposed MAPS algorithm is O(N). Combining the above
arguments, we conclude that the total number of additions and multiplications required in
the proposed MAPS algorithm to reconstruct an “approximation” gη to the original signal f

is about O(N).

For a phase retrievable frame F = {fm ∈R
n,1 ≤ m ≤ M}, we use

∥∥F‖P = min
T ⊂{1,...,M}

max

(
inf

‖v‖2=1

(∑
m∈T

|〈v,fm〉|2
)1/2

,

inf
‖v‖2=1

(∑
m/∈T

|〈v,fm〉|2
)1/2

)
(6.15)

to describe the stability of reconstructing a vector v from its phaseless frame measurements
|〈v,fm〉|,1 ≤ m ≤ M , cf. [1, 11] for the σ -strong complement property. In the next theorem,
we provide a selection of the parameter M0 in the phase adjustment step of the MAPS al-
gorithm and show that the signal gη reconstructed from the corresponding MAPS algorithm
approximates the original signal f in the new induced metric Mp in (1.16).

Theorem 6.5 Let the domain D, the generator � := (φλ)λ∈� and the family T = {Tθ , θ ∈
�} of bounded open sets be as in Theorem 5.3, and let Vp(�),1 ≤ p ≤ ∞ be as in (1.12).
Assume that the sampling set � = ∪θ∈��θ is chosen so that �θ ⊂ Tθ , θ ∈ �, and �θ,�θ

=
{�θ(γ ), γ ∈ �θ }, θ ∈ �, are phase retrievable frames, and

sup
θ∈�

#�θ(‖�θ,�θ
‖P )−2 < ∞. (6.16)

Select M0 in (6.6) by

M0 = 24 sup
θ∈�

#�θ

(‖�θ,�θ
‖P

)−2
, (6.17)

and denote the reconstructed signal via the MAPS algorithm (6.3)–(6.7) by gη , where noisy
phaseless samples zη(γ ), γ ∈ � in (6.1) are generated from a signal f ∈ Vp(�) and a p-
summable noise η = (η(γ ))γ∈� ∈ �p,1 ≤ p ≤ ∞. Then

Mp(gη, f ) ≤ 6
√

6C0

(
max
θ∈�

√
#�θ

(‖�θ,�θ
‖P

)−1
)
‖�‖∞‖η‖�p , (6.18)

where the metric Mp(gη, f ) is defined in (1.16), C0 = (R�(r0))
1−1/p(NT )1/p(B(4r0))

2/p ,
and r0,R�(r0),NT ,B(4r0) and ‖�‖∞ are constants given in (2.5), (5.3), (5.5), (2.1) and
(2.4) respectively.

We postpone the proof of Theorem 6.5 to the end of this section.

By (1.17) and Theorem 6.5, the reconstructed signal gη from the proposed MAPS algo-
rithm provides an approximation to the original signal in magnitude measurements,

∥∥|gη| − |f |∥∥
Lp ≤ 12

√
6C0

(
max
θ∈�

√
#�θ

(‖�θ,�θ
‖P

)−1
)
‖�‖∞‖η‖�p . (6.19)
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In the next remark, we show that the estimation (6.19) in magnitude measurements is subop-
timal in the sense that the quantity C0

(
maxθ∈�

√
#�θ

(‖�θ,�θ
‖P

)−1)‖�‖∞ in (6.19) cannot
be replaced by a sufficiently small constant.

Remark 6.6 Take λ0 ∈ � so that ‖φλ0‖Lp ≥ δ0‖�‖∞ for some δ0 > 0. Then for any signal
f ∈ Vp(�),1 ≤ p < ∞ and ε ≥ 0, we have

∥∥(|f (γ ) ± εφλ0(γ )| − |f (γ )|)
γ∈�

∥∥
�p ≤ ε‖�‖∞

( ∑
γ∈�∩S�(λ0)

1
)1/p

≤
(NT R�(2r0)(R�(2r0) + 1)

2

)1/p‖�‖∞ε (6.20)

by (5.5) and (5.13), and

max
(∥∥|f + εφλ0 | − |f |∥∥

Lp ,
∥∥|f − εφλ0 | − |f |∥∥

Lp

)

≥ 1

2

∥∥∥max
(∣∣|f + εφλ0 | − |f |∣∣, ∣∣|f − εφλ0 | − |f |∣∣

)∥∥∥
Lp

≥ 1

2
‖εφλ0‖Lp ≥ δ0

2
‖�‖∞ε. (6.21)

By (6.19), (6.20) and (6.21), we conclude that the reconstructed signal gη from the pro-
posed MAPS algorithm is a suboptimal approximation to the original signal f in magnitude
measurements.

Take a signal g ∈ Vp(�),1 ≤ p ≤ ∞. For the noise η = (η(γ ))γ∈� in (6.1) given by
η(γ ) = |g(γ )| − |f (γ )|, γ ∈ �, one may verify that the signal g could be reconstructed
from the MAPS algorithm. Therefore it follows from Theorem 6.5 that

Mp(f,g) ≤ 6
√

6C0

(
max
θ∈�

√
#�θ

(‖�θ,�θ
‖P

)−1
)
‖�‖∞Dp(S�f,S�g) for all f,g ∈ Vp(�).

(6.22)
In the following theorem, we show that metric Dp on the sampling data set is dominated by
the metric Mp in the signal space Vp(�), provided that the family � of basis signals forms a
Riesz basis for the signal space Vp(�), i.e., there exist positive constants Ap(�) and Bp(�)

such that in the sense that

Ap(�)‖(cλ)λ∈�‖�p ≤
∥∥∥

∑
λ∈�

cλφλ

∥∥∥
Lp

≤ Bp(�)‖(cλ)λ∈�‖�p for all (cλ)λ∈� ∈ �p. (6.23)

Therefore the phaseless sampling operator S� has the bi-Lipschitz property on the signal
space Vp(�).

Theorem 6.7 Let the domain D, the generator �, the family T of bounded open sets, the
phaseless sampling set �, and the linear space Vp(�),1 ≤ p ≤ ∞ be as in Theorem 6.5.
Assume that � forms a Riesz basis for the signal space Vp(�) with lower and upper Riesz
bounds denoted by Ap(�) and Bp(�) respectively. Then the nonlinear sampling operator
S� in (1.13) has the following bi-Lipschitz property, i.e., there exist positive constants A1

and A2 such that
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A1Mp(f,g) ≤ Dp(S�f,S�g) ≤ A2Mp(f,g) for all f,g ∈ Vp(�), (6.24)

where metrics Mp and Dp are given in (1.16) and (1.15) respectively.

Proof The first inequality in (6.24) follows from (6.22). Then it suffices to prove the second
inequality in (6.24). For any f,g ∈ Vp(�) and f̃ , g̃ ∈ Vp(�) with Mf̃ = Mg̃ , one may
verify that

||f (γ )| − |g(γ )|| ≤ |f (γ ) − f̃ (γ )| + |g(γ ) − g̃(γ )| for all γ ∈ �.

Hence

‖S�f −S�g‖�p ≤ 2 inf
f̃ ,g̃∈Vp(�) with M

f̃
=Mg̃

max
(∥∥((f − f̃ )(γ ))γ∈�

∥∥
�p ,

∥∥((g− g̃)(γ ))γ∈�

∥∥
�p

)
.

By (1.16) it suffices to prove that

‖h‖�p ≤ ‖�‖∞R�(r0)

Ap(�)

(NT R�(2r0)(R�(2r0) + 1)

2R�(r0)

)1/p‖h‖Lp for all h ∈ Vp(�). (6.25)

For p = ∞, we immediately have

‖h‖�∞ ≤ ‖h‖L∞ for all h ∈ V∞(�). (6.26)

For 1 ≤ p < ∞, we write h = ∑
λ∈� cλφλ. Then

‖h‖�p =
(∑

γ∈�

∣∣∣
∑
λ∈�

cλφλ(γ )

∣∣∣
p)1/p ≤ ‖�‖∞

(∑
γ∈�

∣∣∣
∑
λ∈�

cλχS�(λ)(γ )

∣∣∣
p)1/p

≤ ‖�‖∞
(∑

γ∈�

(∑
λ∈�

|cλ|pχS�(λ)(γ )
)

×
(∑

λ∈�

χS�(λ)(γ )
)p−1)1/p

≤ ‖�‖∞
(∑

λ∈�

|cλ|p
∑
γ∈�

χS�(λ)(γ )
)1/p × sup

γ∈�

(∑
λ∈�

χB(γ,r0)(λ)
)1−1/p

≤ ‖�‖∞(R�(r0))
1−1/p

(
sup
λ∈�

∑
θ∈�

∑
γ∈�θ

χS�(λ)(γ )
)1/p‖(cλ)λ∈�‖�p

≤ ‖�‖∞(R�(r0))
1−1/p

(
sup
θ∈�

#�θ

)1/p(
sup
λ∈�

#{θ : Tθ ∩ S�(λ) �= ∅}
)1/p‖(cλ)λ∈�‖�p

≤ ‖�‖∞R�(r0)

Ap(�)

(NT R�(2r0)(R�(2r0) + 1)

2R�(r0)

)1/p‖h‖Lp , (6.27)

where the third inequality follows from Assumption 2.2, the fourth one is true by (5.3) and
the last one holds by (5.5), (5.13) and (6.23). Combing (6.26) and (6.27) proves (6.25), and
hence completes the proof. �

We finish this section with the proof of Theorem 6.5.

Proof of Theorem 6.5 By (1.16), it suffices to find fη,hη ∈ V (�) ∩ Lp with the same mag-
nitude measurements on the whole domain,

Mhη = Mfη , (6.28)
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such that

‖fη − f ‖Lp ≤ 4
√

6C0

(
max
θ∈�

√
#�θ

(‖�θ,�θ
‖P

)−1
)
‖�‖∞‖η‖�p (6.29)

and

‖gη − hη‖Lp ≤ 6
√

6C0

(
max
θ∈�

√
#�θ

(‖�θ,�θ
‖P

)−1
)
‖�‖∞‖η‖�p . (6.30)

Take θ ∈ � and define

gη,θ =
∑
λ∈�

cη,θ;λφλ, (6.31)

where cη,θ;λ, λ ∈ �, are given in (6.4). By (6.4) and the definitions of the sets Kθ and �θ , θ ∈
�, we have

gη,θ (γ ) ± f (γ ) =
∑
λ∈Kθ

(cη,θ;λ ± cλ)φλ(γ ), γ ∈ �θ . (6.32)

Then there exists a subset �′
θ ⊂ �θ such that

( ∑
γ∈�′

θ

∣∣∣
∑
λ∈Kθ

(cη,θ;λ − cλ)φλ(γ )

∣∣∣
2) 1

2 +
( ∑

γ∈�θ \�′
θ

∣∣∣
∑
λ∈Kθ

(cη,θ;λ + cλ)φλ(γ )

∣∣∣
2) 1

2

=
( ∑

γ∈�′
θ

∣∣gη,θ (γ ) − f (γ )
∣∣2

) 1
2 +

( ∑
γ∈�θ \�′

θ

∣∣gη,θ (γ ) + f (γ )
∣∣2

) 1
2

=
( ∑

γ∈�′
θ

∣∣|gη,θ (γ )| − |f (γ )|∣∣2
) 1

2 +
( ∑

γ∈�θ \�′
θ

∣∣|gη,θ (γ )| − |f (γ )|∣∣2
) 1

2

≤ √
2
( ∑

γ∈�θ

∣∣|gη,θ (γ )| − |f (γ )|∣∣2
) 1

2

≤ √
2
( ∑

γ∈�θ

∣∣|gη,θ (γ )| − zη(γ )
∣∣2

) 1
2 + √

2
( ∑

γ∈�θ

∣∣|f (γ )| − zη(γ )
∣∣2

) 1
2

≤ 2
√

2
( ∑

γ∈�θ

∣∣|f (γ )| − zη(γ )
∣∣2

) 1
2 ≤ 2

√
2
√

#�θ

(
sup
γ∈�θ

|η(γ )|
)
, (6.33)

where the third inequality follows from (6.5) and the last inequality holds by (6.1). By (6.15)
and the phase retrievable frame assumption for �θ,�θ

, we have

‖�θ,�θ
‖P ≤ max

((∑
γ∈�′

θ

∣∣∣∑λ∈Kθ
(cη,θ;λ − cλ)φλ(γ )

∣∣∣
2) 1

2

(∑
λ∈Kθ

|cη,θ;λ − cλ|2
) 1

2

,

(∑
γ∈�θ \�′

θ

∣∣∣∑λ∈Kθ
(cη,θ;λ + cλ)φλ(γ )

∣∣∣
2) 1

2

(∑
λ∈Kθ

|cη,θ;λ + cλ|2
) 1

2

)
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≤
(∑

γ∈�′
θ

∣∣∣∑λ∈Kθ
(cη,θ;λ − cλ)φλ(γ )

∣∣∣
2) 1

2 +
(∑

γ∈�θ \�′
θ

∣∣∣∑λ∈Kθ
(cη,θ;λ + cλ)φλ(γ )

∣∣∣
2) 1

2

min

((∑
λ∈Kθ

|cη,θ;λ + cλ|2
) 1

2
,
(∑

λ∈Kθ
|cη,θ;λ − cλ|2

) 1
2

) .

(6.34)

Combining (6.33) and (6.34) yields

( ∑
λ∈Kθ

|cη,θ;λ − δ̃η,θ cλ|2
)1/2 ≤ 2

√
2
√

#�θ

(‖�θ,�θ
‖P

)−1
(

sup
γ∈�θ

|η(γ )|
)

(6.35)

for some δ̃η,θ ∈ {−1,1}.
Let δ̃η,θ , θ ∈ �, be as in (6.35). Then for any θ, θ ′ ∈ �, we have

〈δ̃η,θ cη,θ , δ̃η,θ ′cη,θ ′ 〉 =
∑

λ∈Kθ ∩Kθ ′
δ̃η,θ δ̃η,θ ′cη,θ;λcη,θ ′;λ

≥
∑

λ∈Kθ ∩Kθ ′
|cλ|2 −

∑
λ∈Kθ ∩Kθ ′

|cλ||δ̃η,θ cη,θ;λ − cλ|

−
∑

λ∈Kθ ∩Kθ ′
|δ̃η,θ ′cη,θ ′;λ − cλ||cλ|

−
∑

λ∈Kθ ∩Kθ ′
|δ̃η,θ cη,θ;λ − cλ||δ̃η,θ ′cη,θ ′;λ − cλ|

≥ 1

2

∑
λ∈Kθ ∩Kθ ′

|cλ|2 − 3

2

∑
λ∈Kθ ∩Kθ ′

(
|δ̃η,θ cη,θ;λ − cλ|2 + |δ̃η,θ ′cη,θ ′;λ − cλ|2

)
.

(6.36)

This together with (6.17) and (6.35) implies

〈δ̃η,θ cη,θ , δ̃η,θ ′cη,θ ′ 〉 ≥ −3

2

∑
λ∈Kθ ∩Kθ ′

(
|δ̃η,θ cη,θ;λ − cλ|2 + |δ̃η,θ ′cη,θ ′;λ − cλ|2

)

≥ −M0

(
sup

γ∈�θ ∪�θ ′
|η(γ )|

)2
(6.37)

for all θ, θ ′ ∈ �. This proves that phases of cη,θ , θ ∈ �, in (6.4) can be adjusted so that (6.6)
holds.

Let δη,θ ∈ {−1,1}, θ ∈ �, be signs in (6.6) used for the phase adjustment of vectors
cη,θ , θ ∈ �, in (6.4). We remark that the above signs are not necessarily the ones in (6.35),
however as shown in (6.48) below they are related. Define

fη =
∑

λ∈�f,η

cλφλ, (6.38)

where �f,η contains all λ ∈ � such that

|cλ| > 2
√

M0

(
sup
λ∈Kθ

sup
γ∈�θ

|η(γ )|
)
. (6.39)
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Then for x ∈ D, we obtain from (2.5) and (5.3) that

|f (x) − fη(x)| ≤ 2
√

M0

∑
λ∈�

(
sup
λ∈Kθ

sup
γ∈�θ

|η(γ )|
)
|φλ(x)|

≤ 2
√

M0R�(r0)‖�‖∞
(

sup
λ∈B(x,r0)

sup
λ∈Kθ

sup
γ∈�θ

|η(γ )|
)
. (6.40)

By (5.11) and the phase retrievability of frame on �θ,�θ
, θ ∈ �, we have that

γ ∈ B(x,4r0) (6.41)

for all γ ∈ �θ , θ ∈ � with φλ′(γ ) �= 0 for some λ′ ∈ Kθ . Therefore it follows from (6.40)
and (6.41) that

sup
x∈D

|f (x) − fη(x)| ≤ 2
√

M0R�(r0)‖�‖∞
(

sup
λ∈B(x,r0),λ∈Kθ ,γ∈�θ

|η(γ )|
)

≤ 2
√

M0R�(r0)‖�‖∞ sup
γ∈�θ ,θ∈�

|η(γ )| (6.42)

for p = ∞, and

(∫

x∈D

|f (x) − fη(x)|pdμ(x)
)1/p

≤ 2
√

M0

(∫

x∈D

(∑
λ∈�

(
sup
λ∈Kθ

sup
γ∈�θ

|η(γ )|
)
|φλ(x)|

)p

dμ(x)

)1/p

≤ 2
√

M0

(∫

x∈D

(∑
λ∈�

(
sup
λ∈Kθ

sup
γ∈�θ

|η(γ )|p
)
|φλ(x)|

)
×

(∑
λ∈�

|φλ(x)|
)p−1

dμ(x)

)1/p

≤ 2
√

M0‖�‖∞(R�(r0))
1−1/p

(∫

x∈D

∑
λ∈B(x,r0)

(
sup
λ∈Kθ

sup
γ∈�θ

|η(γ )|p
)
dμ(x)

)1/p

≤ 2
√

M0‖�‖∞(R�(r0))
1−1/p(B(4r0))

1/p
(∑

λ∈�

∑
λ∈Kθ

∑
γ∈�θ

|η(γ )|p
)1/p

≤ 2
√

M0‖�‖∞(R�(r0))
1−1/p(NT )1/p(B(4r0))

2/p‖η‖�p (6.43)

for 1 ≤ p < ∞. This proves (6.29).
By (6.17), (6.35), (6.36), (6.38) and (6.39), we obtain that

Vfη = �f,η

and

〈δ̃η,θ cη,θ , δ̃η,θ ′cη,θ ′ 〉 > M0

(
sup

γ∈�θ ∪�θ ′
|η(γ )|

)2
(6.44)

for all θ, θ ′ ∈ � with Kθ ∩ Kθ ′ ∩ Vfη �= ∅. This together with (6.6) implies that

δη,θ δ̃η,θ = δη,θ ′ δ̃η,θ ′
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hold for all pairs (θ, θ ′) satisfying Kθ ∩ Kθ ′ ∩ Vfη �= ∅. Hence for λ ∈ Vfη there exists
δλ ∈ {−1,1} such that

δη,θ δ̃η,θ = δλ (6.45)

for all θ ∈ � satisfying λ ∈ Kθ . Decompose the graph Gfη into the union of connected
components (Vη,i ,Eη,i), i ∈ Iη , and the signal fη as in (1.5), (1.6) and (1.7),

fη =
∑
i∈Iη

∑
λ∈Vη,i

cλφλ. (6.46)

Observe that for any edge (λ,λ′) of Vfη , there exists θ0 ∈ � such that λ,λ′ ∈ Kθ0 by (2.11).
Hence

δλ = δη,θ0 δ̃η,θ0 = δλ′ . (6.47)

Combining (6.45) and (6.47), there exists δi, i ∈ Iη , such that

δη,θ δ̃η,θ = δi (6.48)

for all θ ∈ � satisfying Kθ ∩ Vη,i �= ∅. Set

hη =
∑
i∈Iη

δi

∑
λ∈Vη,i

cλφλ.

Then fη and hη have the same magnitude measurements on the whole domain by (1.5),
which proves (6.28).

For all λ /∈ Vfη , we obtain from (6.35) that

|dη;λ| ≤
∑

Kθ �λ(|δη,θ cη,θ;λ − δη,θ δ̃η,θ cλ| + |cλ|)∑
Kθ �λ 1

≤ 3
√

M0

(
sup
λ∈Kθ

sup
γ∈�θ

|η(γ )|
)
. (6.49)

For any λ ∈ Vη,i , i ∈ Iη , we get

|dη;λ − δicλ| ≤
∑

Kθ �λ |δη,θ cη,θ;λ − δicλ|∑
Kθ �λ 1

=
∑

Kθ �λ |cη,θ;λ − δ̃η,θ cλ|∑
Kθ �λ 1

≤ √
M0

(
sup
λ∈Kθ

sup
γ∈�θ

|η(γ )|
)
. (6.50)

Combining (6.49) and (6.50), and applying similar argument used in the proof of (6.42) and
(6.43), we can prove (6.30). �

7 Numerical Simulations

In this section, we present some numerical results to demonstrate the performance of the
MAPS algorithm proposed in the last section, where signals are one-dimensional non-
uniform cubic splines and two-dimensional piecewise affine functions on a triangulation.

Denote the positive part of a real number x by x+ = max(x,0). In the first simulation,
we consider phaseless sampling and reconstruction of cubic spline signals f on the interval
[a, b] with non-uniform knots a = t0 < t1 < · · · < tN = b, see the top left plot in Fig. 1,
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where a = 0, b = 100 and N = 100. Those signals have the following parametric represen-
tation

f (x) =
N−4∑
n=0

cnBn(x), x ∈ [a, b], (7.1)

where

Bn(x) = (tn+4 − tn)

4∑
l=0

(x − tn+l )
3+∏

0≤j≤4,j �=l(tn+l − tn+j )
, 0 ≤ n ≤ N − 4

are cubic B-splines with knots tn+l ,0 ≤ l ≤ 4 [57, 60]. In our simulations, we assume that

cn ∈ [−1,1], 0 ≤ n ≤ N − 4,

are randomly selected, and

tn = a + (n + εn)
b − a

N
, 1 ≤ n ≤ N − 1

for some εn,1 ≤ n ≤ N − 1, being randomly selected in [−0.2,0.2]. Then cubic spline
signals in the first simulation have (b − a)/N as their rate of innovations.

Consider the scenario that phaseless samples of the signal f in (7.1) on a discrete set �

are corrupted by a bounded random noise,

zη(γ ) = |f (γ )| + η(γ ), γ ∈ �, (7.2)

where η(γ ), γ ∈ �, are randomly selected in the interval [−η,η] for some η ≥ 0,

� := ∪N−1
n=0 �n :=

N−1⋃
n=0

{
tn + k

tn+1 − tn

K + 1
∈ (tn, tn+1), 1 ≤ k ≤ K

}
, (7.3)

and K ≥ 7 is a positive integer. We remark that the proposed MAPS algorithm is not appli-
cable for 1 ≤ K ≤ 6.

Denote by gη the reconstructed signal from the above noisy phaseless samples via the
proposed MAPS algorithm. Performance of the proposed MAPS algorithm depends on the
noise level η and also the oversampling rate K , the ratio between the density K(b − a)/N

of the sampling set � in (7.3) and the rate (b − a)/N of innovations of signals in V (�).
Denote by

Eη,K := ∥∥|gη| − |f |∥∥
L∞

the maximal reconstruction error in magnitude measurements between the original signal f

and the reconstructed signal gη for different noise levels η and oversampling rates K . Plotted
on the bottom right of Fig. 1 are averages of the maximal reconstruction error Eη,K in 200
trials against the noise level η and oversampling rate K . We observe that the maximal recon-
struction error Eη,K depends almost linearly on the noise level η, and the stability constant
in (6.19) and Theorem 6.5 measured by sup0≤η≤0.05 Eη,K/η decreases as the oversampling
rate K ≤ 7 increases. This demonstrates the approximation property in Theorem 6.5. Pre-
sented on the top left is a non-uniform cubic spline signal fo that has four “islands” in the
decomposition (1.5), (1.6) and (1.7), and on the right is the reconstructed signal gη via the
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Fig. 1 Plotted on the top left is a non-uniform cubic spline signal fo , while on the top right is the signal gη

reconstructed via the proposed MAPS algorithm, which provide good approximation to the original signal
fo on the intervals [0,24.1323), [44.0290,69.8080) and [82.0449,100], and reflection −fo of the original
signal on intervals [24.1323,44.0290) and [69.8080,82.0449). On the bottom left is the difference |gη|−|fo|
between magnitude measurements of the reconstructed signal gη on the top right and the original signal fo

plotted on the top left. On the bottom right is the average of maximal reconstruction error Eη,K in 200 trials
with respect to different noise levels η and oversampling rates K

proposed MAPS algorithm, where η = 0.01,K = 9 and the maximal error ‖|gη| − |fo|‖L∞
in magnitude measurements is 0.2104.

Let D be a triangulation composed by the triangles Tθ , θ ∈ �, and denote the set of all
inner nodes of the triangulation by �. In the second simulation, we consider piecewise affine
signals

f (x, y) =
∑
λ∈�

cλφλ(x, y) (7.4)

on the triangulation D, where the basis signals φλ,λ ∈ � are piecewise affine on triangles
Tθ , θ ∈ � with φλ(λ) = 1 and φλ(λ

′) = 0 for all other nodes λ′ �= λ, see the left plot in Fig. 2.
From the definition of basis signals φλ,λ ∈ �, a signal f of the form (7.4) has the following
interpolation property,

f (x, y) =
∑
λ∈�

f (λ)φλ(x, y).

In the simulation, phaseless samples of a piecewise affine signal f on a discrete set � =
∪θ∈��θ are corrupted by the bounded random noise,

zη(γ ) = |f (γ )| + η(γ ), γ ∈ �, (7.5)

where η(γ ), γ ∈ �, are randomly selected in the interval [−η,η] for some η ≥ 0 and for
every θ ∈ �, the set �θ contains 7 points randomly selected inside Tθ . Shown in the middle
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Fig. 2 Plotted on the left is a piecewise affine signal f on a triangulation which has four “islands” in the de-
composition (1.5), (1.6) and (1.7). Shown in the middle is a reconstructed signal gη via the MAPS algorithm,
while on the right is the difference ||gη| − |f || between magnitude measurements of the reconstructed signal
gη and the original signal f plotted on the left

Table 1 Maximal reconstruction error via the MAPS algorithm

η 0.04 0.03 0.02 0.01 0.008 0.004 0.002 0.001

Eη 0.1878 0.1366 0.0791 0.0305 0.0226 0.0101 0.0050 0.0025

of Fig. 2 is a signal gη reconstructed from the noisy phaseless samples (7.5) via the proposed
MAPS algorithm, where η = 0.01, the original piecewise affine signal f is plotted on the left
of Fig. 2, and the maximal reconstruction error ‖|gη| − |f |‖L∞ in magnitude measurements
between the original signal f and the reconstructed signal gη is 0.0360.

In the simulation, we consider the performance of the proposed MAPS algorithm to
construct piecewise affine approximation when the original signal f of the form (7.4) has
evaluations f (λ),λ ∈ � on their inner nodes being randomly selected in [−1,1]. Denote by
gη the reconstructed signal from the noisy phaseless samples (7.5) via the proposed MAPS
algorithm and let Eη := ‖|gη| − |f |‖L∞ be the maximal reconstruction error in magnitude
measurements between the original signal f and the reconstructed signal gη for different
noise levels η. Shown in Table 1 is the average of maximal reconstruction error Eη in 200
trials. This confirms the conclusion in Theorem 6.5 that the maximal reconstruction error
depends almost linearly on the noise level η ≥ 0.
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Appendix A: Density of Phaseless Sampling Sets

In the appendix, we introduce a necessary condition on a discrete set � such that Mf,� =
Mf for all f ∈ V (�). We show that the density of such a discrete set � is no less than the
innovative rate of signals in V (�), see Theorem A.1 and Corollary A.2.

Theorem A.1 Let the domain D, the generator � := (φλ)λ∈�, the family T = {Tθ , θ ∈ �}
of open sets and the linear space V (�) be as in Theorem 5.3, and let � ⊂ D. If Mf,� = Mf
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for all f ∈ V (�) with Mf = {±f }, then

D+(�) ≥ D+(�). (A.1)

Proof Take x0 ∈ D and r ≥ r0. By (2.2) and (2.3), it suffices to prove that

#(� ∩ B(x0, r)) ≥ #(� ∩ B(x0, r − r0)). (A.2)

Assume, on the contrary, that (A.2) does not hold. Then we can find a nonzero vector
(dλ)λ∈�∩B(x0,r−r0) such that

∑
λ∈�∩B(x0,r−r0)

dλφλ(γ ) = 0, γ ∈ � ∩ B(x0, r). (A.3)

Recall that φλ,λ ∈ �, are supported in B(λ, r0) by Assumption 2.2. Hence

∑
λ∈�∩B(x0,r−r0)

dλφλ(γ ) = 0, γ ∈ �\B(x0, r). (A.4)

Therefore the set

W =
{
f :=

∑
λ∈�∩B(x0,r−r0)

cλφλ : f (γ ) = 0, γ ∈ �
}

⊂ V (�)

contains nonzero signals. Take a nonzero signal f ∈ W . By Theorem 4.4, f = ∑
i∈I fi for

some nonzero signals fi ∈ V (�), i ∈ I , such that Mfi
= {±fi}, i ∈ I , and fif

′
i = 0 for all

distinct i, i ′ ∈ I . This together with f ∈ W implies that fi(γ ) = 0 for all γ ∈ � and i ∈ I .
Hence 0 ∈ Mfi ,�, i ∈ I , which contradicts with Mfi ,� = Mfi

= {±fi}, i ∈ I . �

From the above argument, we have the following result without the assumption on the
family T of open sets in Theorem A.1.

Corollary A.2 Let the domain D and the generator � = (φλ)λ∈� satisfy Assumptions 2.1
and 2.2 respectively, and define the linear space V (�) by (1.1). If � is a discrete set with
Mf,� = Mf for all f ∈ V (�), then D+(�) ≥ D+(�).

We finish this appendix with a remark that the lower bound in (A.1) can be reached when
the generator � = (φλ)λ∈� satisfies that

S�(λ,λ′) = ∅ for all distinct λ,λ′ ∈ �. (A.5)

As in this case, a signal f ∈ V (�) is nonseparable if and only if f = cλφλ for some λ ∈ �.
Thus the set � = {a(λ),λ ∈ �} is a phaseless sampling set whose upper density is the same
as the rate of innovation, where a(λ),λ ∈ �, are chosen so that φλ(a(λ)) �= 0.

References

1. Alaifari, R., Grohs, P.: Phase retrieval in the general setting of continuous frames for Banach spaces.
SIAM J. Math. Anal. 49, 1895–1911 (2017)

2. Alaifari, R., Daubechies, I., Grohs, P., Yin, R.: Stable phase retrieval in infinite dimensions. Found.
Comput. Math. 19, 869–900 (2019)



Stable Phaseless Sampling and Reconstruction. . . Page 33 of 34 3

3. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM
Rev. 43, 585–620 (2001)

4. Atreas, N.D.: On a class of non-uniform average sampling expansions and partial reconstruction in sub-
spaces of L2(R). Adv. Comput. Math. 36, 21–38 (2012)

5. Baechler, G., Krekovic, M., Ranieri, J., Chebira, A., Lu, Y.M., Vetterli, M.: Super resolution phase
retrieval for sparse signals. IEEE Trans. Signal Process. 67, 4839–4854 (2019)

6. Balan, R., Zou, D.: On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem. Linear
Algebra Appl. 496, 152–181 (2016)

7. Balan, R., Casazza, P.G., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon.
Anal. 20, 345–356 (2006)

8. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness and localization of frames I:
theory. J. Fourier Anal. Appl. 12, 105–143 (2006)

9. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness and localization of frames II:
Gabor system. J. Fourier Anal. Appl. 12, 309–344 (2006)

10. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame
coefficients. J. Fourier Anal. Appl. 15, 488–501 (2009)

11. Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase
retrieval. Appl. Comput. Harmon. Anal. 37, 106–125 (2014)

12. Blu, T., Thevenaz, P., Unser, M.: Linear interpolation revitalized. IEEE Trans. Image Process. 13, 710–
719 (2004)

13. Cahill, J., Casazza, P.G., Daubechies, I.: Phase retrieval in infinite-dimensional Hilbert spaces. Trans.
Am. Math. Soc., Ser. B 3, 63–76 (2016)

14. Candes, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J.
Imaging Sci. 6, 199–225 (2013)

15. Candes, E., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude
measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013)

16. Candes, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger flow: theory and algorithms. IEEE
Trans. Inf. Theory 61, 1985–2007 (2015)

17. Casazza, P.G.: The art of frame theory. Taiwan. J. Math. 4, 129–201 (2000)
18. Casazza, P.G., Ghoreishi, D., Jose, S., Tremain, J.C.: Norm retrieval and phase retrieval by projections.

Axioms 6, 6 (2017)
19. Chen, Y., Cheng, C., Sun, Q., Wang, H.: Phase retrieval of real-valued signals in a shift-invariant space.

Appl. Comput. Harmon. Anal. 49, 56–73 (2020)
20. Cheng, C., Jiang, J., Sun, Q.: Phaseless sampling and reconstruction of real-valued signals in shift-

invariant spaces. J. Fourier Anal. Appl. 25, 1361–1394 (2019)
21. Cheng, C., Jiang, Y., Sun, Q.: Spatially distributed sampling and reconstruction. Appl. Comput. Harmon.

Anal. 47, 109–148 (2019)
22. Dahmen, W., Micchelli, C.: On the local linear independence of translates of a box spline. Stud. Math.

82, 243–263 (1985)
23. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)
24. Dragotti, P.L., Vetterli, M., Blu, T.: Sampling moments and reconstructing signals of finite rate of inno-

vation: Shannon meets Strang-Fix. IEEE Trans. Signal Process. 55, 1741–1757 (2007)
25. Eldar, Y.C.: Sampling Theory: Beyond Bandlimited Systems. Cambridge University Press, Cambridge

(2015)
26. Fienup, J.R.: Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29

(1978)
27. Gao, B., Xu, Z.: Phaseless recovery using the Gauss-Newton method. IEEE Trans. Signal Process. 65,

5885–5896 (2017)
28. Gao, B., Sun, Q., Wang, Y., Xu, Z.: Phase retrieval from the magnitudes of affine linear measurements.

Adv. Appl. Math. 93, 121–141 (2018)
29. Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and

diffraction plane pictures. Optik 35, 237–246 (1972)
30. Goodman, T.N.T., Jia, R.-Q., Zhou, D.-X.: Local linear independence of refinable vectors. Proc. R. Soc.

Edinb. A 130, 813–826 (2000)
31. Gröchenig, K.: Foundation of Time-Frequency Analysis. Birkhäuser, Boston (2001)
32. Grohs, P., Rathmair, M.: Stable Gabor phase retrieval and spectral clustering. Commun. Pure Appl. Math.

72, 981–1043 (2019)
33. Hamm, K., Ledford, J.: On the structure and interpolation properties of quasi shift-invariant spaces. J.

Funct. Anal. 274, 1959–1992 (2018)
34. Han, D., Juste, T., Li, Y., Sun, W.: Frame phase-retrievability and exact phase-retrievable frames. J.

Fourier Anal. Appl. 25, 3154–3173 (2019)



3 Page 34 of 34 C. Cheng, Q. Sun

35. Hou, H.S., Andrews, H.C.: Cubic splines for image interpolation and digital filtering. IEEE Trans.
Acoust. Speech Signal Process. 26, 508–517 (1978)

36. Jaganathan, K., Eldar, Y.C., Hassibi, B.: Phase retrieval: an overview of recent developments. In: Stern,
A. (ed.) Optical Compressive Imaging, pp. 261–296. CRC Press, Boca Raton (2016)

37. Janssen, A.J.E.M.: Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl. 1,
403–436 (1995)

38. Jia, R.-Q.: Local linear independence of the translates of a box spline. Constr. Approx. 1, 175–182
(1985)

39. Jia, R.-Q., Micchelli, C.A.: On linear independence of integer translates of a finite number of functions.
Proc. Edinb. Math. Soc. 36, 69–75 (1992)

40. Leung, V.C.H., Huang, J.-J., Dragotti, P.L.: Reconstruction of FRI signals using deep neural network
approaches. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5430–5434. IEEE Press, New York (2020)

41. Macias, R.A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257–270
(1979)

42. Mallat, S., Waldspurger, I.: Phase retrieval for the Cauchy wavelet transform. J. Fourier Anal. Appl. 21,
1251–1309 (2015)

43. Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of
Lp(Rd ). J. Funct. Anal. 258, 2422–2452 (2010)

44. Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. IEEE Trans. Signal
Process. 63, 4814–4826 (2015)

45. Pohl, V., Yang, F., Boche, H.: Phaseless signal recovery in infinite dimensional spaces using structured
modulations. J. Fourier Anal. Appl. 20, 1212–1233 (2014)

46. Ron, A.: A necessary and sufficient condition for the linear independence of the integer translates of a
compactly supported distribution. Constr. Approx. 5, 297–308 (1989)

47. Ron, A., Shen, Z.: Weyl-Heisenberg frames and Riesz bases in L2(Rd ). Duke Math. J. 89, 237–282
(1997)

48. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)
49. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with appli-

cation to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32, 87–109 (2015)
50. Shenoy, B.A., Mulleti, S., Seelamantula, C.S.: Exact phase retrieval in principal shift-invariant spaces.

IEEE Trans. Signal Process. 64, 406–416 (2016)
51. Sun, Q.: Non-uniform average sampling and reconstruction of signals with finite rate of innovation.

SIAM J. Math. Anal. 38, 1389–1422 (2006)
52. Sun, Q.: Frames in spaces with finite rate of innovation. Adv. Comput. Math. 28, 301–329 (2008)
53. Sun, Q.: Local reconstruction for sampling in shift-invariant space. Adv. Comput. Math. 32, 335–352

(2010)
54. Sun, Q.: Localized nonlinear functional equations and two sampling problems in signal processing. Adv.

Comput. Math. 40, 415–458 (2014)
55. Sun, W.: Phaseless sampling and linear reconstruction of functions in spline spaces. arXiv:1709.04779.

Arxiv preprint
56. Thakur, G.: Reconstruction of bandlimited functions from unsigned samples. J. Fourier Anal. Appl. 17,

720–732 (2011)
57. Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. 16, 22–38

(1999)
58. Unser, M.: Sampling 50 years after Shannon. Proc. IEEE 88, 569–587 (2000)
59. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal

Process. 50, 1417–1428 (2002)
60. Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied

Mathematics, vol. 59. SIAM, Philadelphia (1990)
61. Wang, Y., Xu, Z.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. 37, 531–544 (2014)
62. Yang, Da., Yang, Do., Hu, G.: The Hardy Space H 1 with Non-doubling Measures and Their Applica-

tions. Lecture Notes in Mathematics. Springer, Berlin (2013)
63. Yin, P., Xin, J.: PhaseLiftOff: an accurate and stable phase retrieval method based on difference of trace

and Frobenius norms. Commun. Math. Sci. 13, 1033–1049 (2014)

http://arxiv.org/abs/arXiv:1709.04779

	Stable Phaseless Sampling and Reconstruction of Real-Valued Signals with Finite Rate of Innovation
	Abstract
	Introduction
	Contributions and Comparisons
	Organization

	Preliminaries
	Phase Retrievability and Graph Connectivity
	Proof of Theorem 3.2

	Phase Retrievability and Landscape Decomposition
	Phaseless Sampling and Reconstruction
	Stable Reconstruction from Phaseless Samples
	Numerical Simulations
	Acknowledgement
	Appendix A: Density of Phaseless Sampling Sets
	References


