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Recovery of Time-Varying Graph Signals via
Distributed Algorithms on Regularized Problems

Junzheng Jiang ®, Member, IEEE, David B. Tay ., Qiyu Sun‘, and Shan Ouyang

Abstract—The recovery of missing samples from available noisy
measurements is a fundamental problem in signal processing. This
process is also sometimes known as graph signal inpainting, recon-
struction, forecasting or inference. Many of the existing algorithms
do not scale well with the size of the graph and/or they cannot
be implemented efficiently in a distributed manner. In this paper,
we develop efficient distributed algorithms for the recovery of
time-varying graph signals. The a priori assumptions are that the
signal is smooth with respect to the graph topology and correlative
across time. These assumptions can be incorporated in an opti-
mization formulation of the algorithm via Tikhonov regularization
terms. Our formulation is tailored to yield algorithms that can
be efficiently implemented in a distributed manner. Two different
distributed algorithms, arising from two different formulations,
are proposed to solve the optimization problems. The first involves
the £5-norm, and a distributed least squared recovery algorithm
(DLSRA) is proposed that leverages the graph topology and spar-
sity of the corresponding Hessian matrix. Updates of the Hessian
inverse are not required here. The second involves the £;-norm
and the philosophy of the alternating direction method of multi-
pliers (ADMM) is utilized to develop the algorithm. An inexact
Newton method is incorporated into the conventional ADMM
to give a distributed ADMM recovery algorithm (DAMRA).
The two distributed algorithms require only data exchanges be-
tween vertices in localized neighbourhood subgraphs. Experiments
on a variety of synthetic and real-world datasets demonstrate
that the proposed algorithms are superior to the existing meth-
ods in terms of the computational complexity and convergence
rate.

Index Terms—Graph signal recovery, distributed algorithm,
least squares method, alternative direction method of multipliers
(ADMM).

I. INTRODUCTION

RAPH signal processing is an emerging discipline which
finds applications in a diverse range of fields, e.g. sensor
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networks, image processing, power grids and big data [1]-[7].
Graph signal processing (GSP) deals with signals residing on
irregular discrete domains, that are modelled by graphs, and gen-
eralizes techniques from classical signal processing for regular
domains. In recent years, several traditional tools in the regular
domain have been extended to the graph domain, including
the graph Fourier transform [3], graph filter [8], [9], graph
wavelet filter bank [10]-[13], graph signal recovery [14], etc.
Nevertheless, there are still a variety of problems that remain
unsolved.

A graph signal is defined by two entities: (i) the graph
topology which can be specified mathematically via a graph
matrix, such as the adjacency or Laplacian; and (ii) the signal
values that are indexed by the graph vertices, which can be
represented as vectors. For example, the temperature measure-
ment at the nodes of a sensor network can be modeled as a
graph signal. Two fundamental, but complementary problems
in GSP is to (i) estimate the topology, and/or (ii) estimate
the signal, from partial or incomplete information from one
or both entities. Recent works on topology estimation can be
found in [15]-[19]. In this paper we are concerned with the
second problem of signal recovery, which is also known as
graph signal inpainting, reconstruction, forecasting or infer-
ence. Such a problem arises in many real-world scenarios, for
instance in wireless sensor networks. In sensor networks, the
signals are inevitably corrupted by some random disturbances
and sensor malfunction occurs due to the complexity associated
with the sheer number of sensors deployed and environmental
factors. Therefore graph signal recovery is an important practical
problem.

There has been much work devoted to signal recovery in the
regular domain, such as that for images [20], [21] and videos
[22], [23]. These classical techniques cannot however deal
with problems on irregular domains directly. By exploiting the
graph topology via the graph matrix (adjacency or Laplacian),
extensions to the graph domain are found in [14], [24]-[27]
for time-static signals and in [16], [28]—-[31] for time-varying
signals. A common theme in these works is the notion of signal
smoothness w.r.t. graph topology and signal correlations along
the temporal axis which are then exploited in formulating the
recovery algorithm. More detailed comparisons of these works
are found in subsection I-B.

It is desirable for any graph signal processing algorithm to
scale well with the number of nodes in the graph, so that
computational efficiency will still be achieved with large graphs.

2373-776X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JIANG et al.: RECOVERY OF TIME-VARYING GRAPH SIGNALS VIA DISTRIBUTED ALGORITHMS ON REGULARIZED PROBLEMS 541

Generally speaking, graph signal processing can be imple-
mented in a centralized manner or a distributed manner. The
former requires the entire data to be available in a facility for
data processing, whereas the latter requires only data within a
localized subgraph, before processing in distributed facilities.
In the language of optimization, the centralized manner yields
the (globally) optimal or exact solution to the corresponding
optimization problem. This approach is therefore preferable, in
principle, if the cost of the communication between the central
processing node and other nodes are low. However, for graphs
of large size, the centralized manner is often impractical as the
communication resource required is prohibitive. Furthermore,
there is a lack of robustness with this approach, e.g. a failure
in the central node due to a malicious attack. Due to these
considerations, the distributed manner is therefore preferable in
practice, where for the corrupted nodes, the recovered values are
obtained via local interactions with their neighbors. There is no
need to share information globally and this has the added benefit
of increased privacy protection. There are also some scenarios
where only distributed processing is possible. For example, due
to energy constraints, sensors in some wireless networks have
limited communication range and can only communicate with
their local neighbors. In some literature the term ‘distributed’
is taken to mean immediate neighbors that are one hop (one
edge) away from a node in consideration. We shall adopt a more
generalized interpretation of ‘distributed’” where the neighbors
can be several hops away, but the maximum number of hops
is small relative to the diameter of the graph. There is however
a lack of distributed algorithms for time-varying graph signal
recovery. The recovery algorithms in [16], [29], [31] require
centralized processing and can lead to good recovery perfor-
mance for graphs of small and moderate orders. The distributed
recovery algorithm in [28] relies on the gradient-descent, and
suffers from slow convergence. These considerations motivate
us to develop efficient distributed algorithms for the recovery of
time-varying graph signals.

A. Notation

We use the common convention of representing matrices
and vectors with bold letters and scalars with normal letters.
For a matrix C, denote its transpose and pseudo-inverse by
CT and CT respectively. Let 0(1) be the vector of appropriate
size with all entries taking the value 0(1). For a set F', denote
its cardinality by p(F'). For the recovery problem on graph
G=(V.E), denote M CV (U C V) as the set consisting of
uncorrupted (corrupted) vertices.

B. Problem Statement and Related Work

Graph signal recovery aims to restore the missing or corrupted
samples on a subset of vertices using the uncorrupted samples
on other vertices, also known as the graph signal inpainting,
reconstruction, forecasting or inference. In general, the model
of the corrupted graph signal is given by

_[bm| _ | xwm EM
[ [ 5]

where b is the measurement, x is the original signal, x5, € CMI
is the uncorrupted part of x and xy; € C¥l is the corrupted or
missing part. Signal values residing on k € M are contaminated
by low level noise, i.e., by = x + & with |ex| < 6,k € M is
the uncorrupted signal with low-level noise added. Without loss
of generality, the uncorrupted nodes are indexed first and the
corrupted nodes are indexed next. When the signal at the each
vertex is time-varying, we have vector valued time series and
(I.1)canbe writtenas b, = x; + e, fort =0,...,T — 1, where
T denotes the number of time instants. The ensemble to vectors
can be concatenated to give X = [xg|x1]-.. |[X7_1].

There are several approaches that have been proposed for
recovering the graph signals in both the time-static and time-
varying cases. Some a priori assumption about the underlying
signal is first made. This is then exploited in formulating the
recovery algorithm. Using the notion of low-pass bandlimited
(w.r.t. graph spectrum) signals, recovery algorithms were pro-
posed in [26], [27]. The techniques in [26], [27] however require
the bandwidth of the signal and the eigen-basis (of the graph
Laplacian) to be known, and this may not be feasible in practice,
especially with large graphs. Another common assumption is
that the graph signal is smooth with respect to the underlying
graph topology, i.e. signal values of two neighboring vertices
do not vary significantly, and this is observed in many practical
scenarios. Low-pass bandlimited signals are smooth but smooth
signals need not be strictly bandlimited. The notions of smooth
and low-pass are related but it is easier to incorporate the former
in any recovery algorithm. A commonly used framework for
recovery (and other mathematically similar problems) is the use
of the Tikhonov regularization in an optimization formulation,
e.g. ridge regression and LASSO. For static graph signals, the
recovery can be formulated as [14], [24], [25]

min [Bux—buyl} +FRs(x)  (12)

where Rg(x) is the regularization that measure the non-
smoothness, [3; is a trade-off factor between the fidelity (first
term) and non-smoothness, by, = B yb, and

1 0
By — [OIM' 0]

A common class of regularizer is given by [4], [14], [32].

Rg(x) = Sp(x) = || (T — W) x||? (13)

where W,, = W /A nax(W), and W is the adjacency matrix (to
be defined explicitly later) with Amax (W) denoting the largest
magnitude eigenvalue. Common p values are p = 2 (£3-norm),
and p = 1 (¢;-norm) in which 5 (x) is also known as the total
variation. When p = 2, the minimization in (1.2) becomes a least
squares problem and it admits a closed form solution,

x* = (BLBum + Bo(I— Wn)T(I— W,,)) " BL b
= (Ba+Bo(l— Wy)T (1= Wn)) " by,

Recovering x directly via the formula (L.4) requires central-
ized processing. The recovered signal x* is obtained by solving
a linear system of equations. However, with this approach, the

(1.4)
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computational burden is high when the graph is of large order.
To overcome this problem, a distributed approach was presented
in [25], where the linear equations are solved by applying the
iterative formula

x@ =0, x(™ =T-agCp)x™ +agbpy  (15)

that can be implemented in a distributed manner in each iteration,
where Cyy = By + Bo(I—W,,)T(I-W,,). Here aq is a
global parameter which should satisfy 0 < ap < 2/Amax(C )
to ensure the convergence of (1.5), where Amax(Cay) denotes
the largest magnitude eigenvalue of Cu4. At each iteration in
(L5), the value of each node is updated via interaction with its
neighbors. This distributed algorithm can lead to good recovery
results, but it suffers from a low convergence rate due to the
gradient-like nature of the algorithm. The algoritm also requires
the determination of A,ax, Which can be computationally costly
when the graph is of large size. To avoid eigenvalue calcula-
tion, we propose a different regularization, which is also more
general, that is based on highpass graph filters.

For time-varying signals, a straightforward approach is to
apply the methods discussed above on each time instant ¢ in-
dependently. However, better results can be achieved by ex-
ploiting the correlation of the signal across time, see [16],
[28]-[31]. The approaches in [28]-[30] are essentially based
on the Tikhonov regularization in (I.2) but the first (fidelity)
term will now consider the signal for all time instants, i.e. the
ensemble X = {xp,..., X7 1}

In [28], the assumption is that the time difference signal
At = X — X¢_1 is smooth and the regularizer Rg(x) used is a
Laplacian quadratic form of A;. In [29], a sequence of graphs is
used to model the time evolution and the sequence is combined,
via Cartesian product, to give an extended graph. The extended
graph models both correlations across vertices and time. The
regularizer Rg(x), a.k.a. space-time kernel [29], is then on the
extended graph signal X and eigendecomposition is required
to determine the kernel. The regularizer jointly penalizes the
non-smoothness in time/vertex but for online implementation,
there is limited flexibility in specifying the temporal frequency
response. In [30], the regularizer Rg(x) consists of two terms to
separately model the non-smoothness over vertex and time. Ap-
plications considered in [30] were in the denoising of dynamic
meshes and the inpainting of time-lapse video. The denoising
problem leads to a joint vertex-temporal filter where the FFC
(Fast-Fourier-Chebyshev) filter was proposed. The FFC can be
implemented distributively w.r.t. the graph topology but cannot
have online (real-time) processing. The FFC however cannot
be applied to the inpainting problem as the associated operator
cannot be expressed as a function of the shift matrix. The efficient
distributed implementation for inpainting was not addressed in
[30]. More recently, concepts from the Vector Autoregressive
(VAR) model [33], [34] were used to model time-varying graph
signals [15], [16], [31]. The graph topology is embedded in the
modelling by imposing some structure in the matrix coefficient
of the VAR. The resulting graph VAR (GVAR) models have
matrix coefficients with sparsity structures that are related to
the adjacency/Laplacian. In [16], the correlation at the current
time instant is also considered but only one previous time step
is used in the VAR model. The recovery algorithms in [31] and

[16] do not explicitly factor in any smoothness assumption over
the vertices at the current time instant. It should be mentioned
that the works in [15], [16], [31] is concerned with graph
signal modeling which has more general applications, e.g. graph
topology identification.

C. Main Contributions

Most of the methods reviewed above do not scale well with the
size of the graph and/or they cannot be implemented efficiently
in a distributed manner. Most methods also do not consider the
£1-norm which can promote sparsity. The exception is in [30]
but the work does not consider efficient distributed implemen-
tation via online (real-time) processing. The motivation of this
work is therefore to develop novel recovery algorithms that will
address the shortcomings. The contributions of this work can be
summarised as follows:

1) A tailored formulation of the recovery problem is for-
mulated, using the Tikhonov regularization framework,
that allows for efficient distributed implementation of the
algorithms. Separate penalty terms, that accounts for graph
topology smoothness and temporal correlations respec-
tively, are used. This gives flexibility in specifying the
trade-offs with the fidelity terms. Two types of norms,
namely the £;- and ¢3-norms, are considered for the
penalty terms, and the former promotes some form of
sparsity.

2) A new distributed algorithm is developed for solving the
recovery problem with the Z3-norm. The algorithm is
an inexact Newton-like algorithm that does not require
update of the inverse Hessian matrix, which is compu-
tationally expensive. The key idea behind the approach is
the decomposition of a large graph (representing the entire
network) into a sequence of small size subgraphs that
are overlapping. The optimization is performed locally
on each subgraph and the fusion of the local solutions
asymptotically approximate the global solution. With this
decomposition, the proposed algorithm solves for the re-
covered signal by only using information from a localized
subgraph of vertices. It is shown that the algorithm has
a high convergence rate and matrix eigendecomposition
is not required. The algorithm also has the light/heavy
property (to be detailed later) where the computational
load of some nodes are light. The convergence of the
distributed algorithm is also shown under conditions that
are satisfied in practice.

3) The solution of the mixed ¢;/¢3-norm problem requires
a decomposition of the objective function. The alternat-
ing direction methods of multiplier (ADMM) is ideally
suited for its solution. However a direct application of
the ADMM will not give a distributed algorithm (from
a graph signal processing perspective). An approximate
form of ADMM which has distributed implementation is
developed.

D. Organization

In Section II, we briefly review some preliminaries on graphs
and introduce the concept of overlapping graph decomposition
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(see (II.1)). We also briefly review relevant graph signal pro-
cessing concepts and present a new definition of smoothness
of graph signals in the vertex domain (see Definition 11.2). In
Section III, we first introduce the notion of temporal correlation
in graph signals (see Definition III.1). We then formulate the
recovery problem for time-varying graph signals (see (IIL.5)). In
Section IV, we consider the ¢3-norm formulation and develop
an iterative algorithm to solve the recovery problem which can
be implemented in a distributed manner (see Algorithm IV.1).
We also show that the algorithm converges at an exponential rate
(see Theorem IV.2). In Section V, we consider the formulation
with mixed ¢;- and ¢3-norms. A distributed algorithm that is
based on the ADMM is developed here (see Algorithm V.1).
In Section VI several numerical examples are presented that
will show the performance of the two proposed distributed
algorithms. Comparisons with other methods are also found
here. Concluding remarks are found in Section VII. All proofs
are found in the Appendix.

II. PRELIMINARIES
A. Fundamentals of Graphs

Let G := (V, E) be a graph, where V = {1,2,..., N} is the
set of vertices and F is the set of edges [35], [36]. Denote
the weighted adjacency matrix by W, whose (i, j)th entry
[W];; is the weight of the edge between vertices i and j
that represents the correlation between vertices i, 7 € V. The
combinatorial Laplacian matrix is defined by L :=D — W.
The random-walk normalized Laplacian is defined as L™ :=
DL =1 - D~'W. Throughout this paper, we only consider
undirected graphs G without self-loops and multiple edges. This
means that the unnormalized adjacency and Laplacian matrices
are symmetric and the main diagonal of the adjacency are all
zeros. The random-walk normalized Laplacian is however not
symmetric. The adjacency and Laplacian matrices are examples
of the graph shift matrix S, which represents a fundamental
operator of graph signals just like the unit delay z ! in traditional
signal processing.

For graph G = (V, E), the geodesic distance p(i, j) is defined
as the number of edges in the shortest path between vertices ¢
and j, i.e. the smallest number of hops from : to j and vice-versa
[35]. The geodesic distance on a graph can be used as a measure
of the communication cost between two given agents. When
two agents are not neighbors (i.e., not connected via a direct
link), they can still communicate with each other via a chain
of intermediate agents along a path of shortest distance. When
the geodesic distance increases, the number of agents involved,
and hence the cost, also increases. The diameter of a graph D is
defined as the greatest geodesic-distance between any two pair
of vertices, i.e. D = max; jev p(2, ).

The r-neighborhood vertices of an uncorrupted node k € M
is defined as B(k,r):={j eV : p(k,j) <r}. Associated
with these vertices are edges whose endpoints are in the set
B(k,r), to be denoted by E(k, ). The vertex and edge subsets
together form the r-neighborhood subgraph which is defined
as Grr == (B(k,r), E(k,r)). The distributed algorithms to be
presented later are based on constructing a suitable subgraph

for every uncorrupted vertex in the set M. The radius r > 1 is
chosen large enough such that for every vertex i € V, there are at
least two vertices k,[ € M such that: € B(k,r) N B(l,r), i.e.
every vertex in the graph G belongs to at least two subgraphs.
We then decompose the graph G into a family of subgraphs
gk,r, ke M,ie.

G= U Ggr, (IL1)
keM

which are overlapping, i.e. Gx » N Gy » # 0 for some k,l € M.

We remark that the overlapping decomposition is a key idea in

the distributed algorithms - see Algorithm I'V.1.

We now introduce the notion of the geodesic-width of a linear
graph operator A, which is related to the concept of geodesic
distance.

Definition II.1: The geodesic-width o = o(A) of a graph
operator A = [a(i, j)]; jev is the smallest nonnegative integer
o such that a(z, j) = Oforall 7, 7 € V with p(, j) > o.

For an operator A with geodesic-width o, each element
of the processed signal y = Ax can be evaluated as y(i) =
> p(igj)<e A(i,7)z(j). The summation over the index set
p(2, 7) < oindicates that, for a given node ¢, only the input signal
values z(j) in the o-hop neighbourhood subgraph B(i, o) will
contribute to the output y(z).

The graphs considered in this work have the polynomial
growth property, which is defined as: there exist positive con-
stants Dy (G) and d such that

u(B(i,r)) < D1(G)(r +1)* 11.2)

forall z € V and r > 0. The minimum value of the constants d
and D;(G) in (IL.2) are termed as the Beurling dimension and
density of the graph G respectively [35]. In other words, the
number of vertices in the r-neighborhood is bounded by some
polynomial in the radius 7.

The overlapped decomposition (II.1) plays a crucial role in
the proposed recovery algorithm. For the implementation of the
proposed distributed algorithms, the radius r should be substan-
tially smaller than the diameter D of the graph to economize
the computational and communication costs, while on the other
hand, the radius r cannot be chosen too small as the distributed
algorithm has faster convergence for larger radius r, see (IV.14)
and Theorem IV.2.

B. Graph Signal

Signals residing on a graph G can be represented by the vector
X = [z1 T3 --- xN]|T, where the element ; is indexed by the
vertex ¢ € V. In many real world applications, the data x belongs
to some finite sequence space, i.e. x € /F (1 <p < o0) [13],
[35]. In other words, the graph signals in many applications are
bounded and/or with finite energy.

For signal recovery, a prior assumption is that the signals
are smooth with respect to the graph topology. The conven-
tional smoothness definition in (I.3) requires the calculation of
Amax(W) which can be computationally expensive when the
graph size N is large. In this paper, we introduce a new measure
of non-smoothness.
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Definition I1.2: A signal x on graph G = (V, E) is smooth if

Sg = [Hix||, 1<p<oo 13)

is small, where H; is a high-pass graph filter having zero
response to the constant signal, i.e., H;1 = 0.

Now the measure of non-smoothness (I1.3) is a generalization
of the total variation in (1.3), where H; =I—"W,,. Definition I1.2
is a generic definition of smoothness that encompasses previous
definitions. From the graph spectral perspective, a smooth signal
has components mainly in the low frequencies. Therefore the
high frequency components are close to zero and it is reasonable
to specify the level of non-smoothness via the highpass filtered
graph signal H;x.

We next address the requirements for the graph filter H; in
Definition I1.2. The zero response property H; 1 = 0 implies a
highpass characteristic for the filter. The graph filter H; should
be bounded [13] and have small geodesic-width o to allow
for distributed algorithms. Graph filters are usually constructed
from matrix polynomials of the graph shift matrix S,

H; =Pi(S)=pl+) _pS, (IL4)

=1

where p;, I = 0,. .., ndenote the polynomial coefficients. Poly-
nomial filters can be implemented without eigendecomposition.
If S =L the condition H;1 = 0 requires P;(0) = 0, since
L™1 = 0 (L™ has eigenvalue 0 and eigenvector 1). This im-
plies pp = 0. A simple example of a polynomial filter is the

spline filter:
1 n
H] = ( § Lrw ) N

where n > 1 is the prescribed order. Since L'™1 = 0, it can
be readily verified that H;1 = 0, i.e. the spline filter also has
zero response to the constant signal. In this paper, H; is the
spline filter for the non-smoothness measure (I1.3). However
other types of filters could potentially be used for H; as long as
they have the zero response property.

(IL5)

III. TIME-VARYING GRAPH SIGNALS RECOVERY

In this section we present the problem formulation of sig-
nal recovery via the Tikhonov regularization framework. This
framework is a powerful and versatile technique in many signal
and data analysis problems. The key idea is to introduce penalty
term(s) to reflect some assumptions of the signal of interest,
e.g. smooth signal. This has been successfully applied for static
graph signals via the penalty Fg(x) in (1.2) for smoothness
over graph topology. We first consider exploiting the temporal
smoothness of the time-varying signals on graph by leveraging
the VAR model. Then, the recovery problem of the time-varying
signals is formulated as different optimization problems with
either the #3 norm or the mixed ¢;/fs-norms.

A. Exploiting Temporal Correlation

In many real-world applications, sensors continuously acquire
data which can be modelled as time-varying graph signals [28].

The ensemble of the time sequence of graph signals is denote
as X = {xg,...,Xr_1}, where T denotes the number of time
instants and x; denotes a static graph signal at time instance
t. We refer to x; as the ¢'* snapshot of X. A plausible as-
sumption, in practice, is that the acquired data vary smoothly
over time. For instance, the consecutive global sea pressure
data recorded by a pressure sensor network are smooth over
time, i.e. readings typically do not change significantly over
time. Furthermore, the graph signal values within a localized
neighborhood of vertices are usually correlated with each other.
Specifically, the signal value (k) of vertex k at time ¢ is not only
correlated with x;_;(k), but also correlated with its neighbors
z¢_1(2), ¢ € B(k,r). These correlations will be exploited in the
development of the recovery of time-varying signals on graphs.
To formalize this notion, we first invoke the vector autoregressive
(VAR) model [33] to give the predicted signal:

t
%= CeiXey, (IIL1)
=1

where C;;,t > 1 are the matrix coefficients accounting for the
correlations. The requirements of Cy ; are that: (i) as an operator,
itshould behave like alow-pass graph filter to capture the smooth
time variation; (ii) the geodesic-width should be small to cap-
ture localised correlation. These requirements can be achieved
if C;; is modelled as a polynomial of the Laplacian matrix
C=&L™) =K _, cim(L™)™ with ¢, o # 0. This is then
similar to the graph polynomial VAR model in [31]. Now other
parametrizations for C; ;, such as the edge-variant filter [38],
are possible but with polynomial functions, the determinations
of the matrix coefficients is relatively straightforward as will
be described below. In [16], the model considered is given by
Xt = AoX¢ + A1x;_1 which has only one time-lag, whereas
(IIL.1) is more general as the number of time-lags is arbitrary.
The first term with A gX; models the correlation between vertices
of the current time signal. Note that the current time signal x;
is not included in (III.1) as the current time correlation across
vertices is considered separately via the non-smoothness term in
(I1.3). Now the works in [16] and [31] are primarily focussed on
graph signal modelling via VAR, whereas our work uses VAR as
means to incorporate the notion of temporal correlation. Based
on the model (III.1), we can define the temporal correlation as
follows.

Definition IIL1: A time-varying signal X = {xg,...,Xr_1}
is temporally correlated if there exist matrices C; such that

T-1 -
q
Sr=Y" ‘ Ry Gl 5 L, (II1.2)
i—1 =1

is small for 1 < g < oc.

Now St can be used as a penalty term to reflect the temporal
correlation assumption just like Sg in (I1.3) is used as a penalty
measure to reflect the smoothness across the vertices. If C; ; =
C, for t=1,...,T — 1, the temporal evolution dynamic is
time-invariant and this will be assumed here.

In many practical applications, we only have one time real-
ization of the data and have no prior knowledge of the temporal
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evolution dynamics. In such scenarios, a learning approach can
be used to estimate the matrix coefficients from the dataset. For
instance, we may learn the evolution dynamic by solving the
optimization problem with a p-norm objective function,

ge-y t
minimize E th— E Cix:;
Cpl=1,....t

t=1 =1

where x;_;,l = 1,.. ., are the training data. Using the polyno-
mial model for the C;, the optimization problem (II1.3) reduces
to determining the optimal coefficients ¢;m, I =1,..., T —1,
m =20,...,K. The problem is convex if p > 1 and can be
efficiently solved using interior point algorithms, for which
freeware such as CVX [39] are readily available. A simple
example of (III.1) is given by

)A(t = {I — TLEW )K;_‘l,

P
, (IIL3)
P

(IIL4)

where 7 € [0, 1]. The above system can be considered as dis-
cretization of the dynamical system dx/d¢ = Lg"x with time
step size 7.

B. Recovery Problem Formulation

For a time-varying graph signal X = {xg, ..., Xr_1 }, recov-
ery can be achieved through two different approaches. The first
is to simultaneously recover the signals for all time instants,
which is also known as batch processing. However with this
approach, the computational cost is high and there will be a
long processing delay for large 7". The second approach is to
sequentially recover X, t =0,...,7 — 1, one time instant ¢ at
a time, which is also known as online processing. We adopt the
second approach in this paper, but the proposed algorithms can
also be used in the first approach. Additional matrix algebraic
techniques, such as matrix vectorization and Kronecker product,
are however needed with the first approach.

Based on the notion of smoothness discussed above, the re-
covery problem is formulated as an unconstrained optimization
problem. The objective function consists of a data fidelity term
and non-smoothness penalty terms. Using Definition I1.2 and
Definition III.1, the problem is given by

1 m
min 7 [[Bax — b I3+ all Hux|[? + Bllx — xal|2, @1L5)

where the parameters «, 3 are weighting factors, H; is a high-
pass graph filter in Definition II.2, and the predicted signal is
given by

i
X4 = E Cgig_g.
=1

Since recovery is performed sequentially, the prediction is based
on X, ; (I=1,...,t), which are the recovered signal from
previous time instants, and are not the true underlying signals
Xt (I=1,...,t). For xg (when ¢ = 0), we set 3 = 0 since
there is no previously recovered data.

Different p and g values in (II1.5) require different algorithms
for its solution. We consider two cases in this work. The first
case is when p = g = 2. We then have a least squares problem
and a closed-form solution can be readily obtained. The second

case is when p = 1 and ¢ = 2 and the objective function is non-
differentiable. Distributed algorithms to solve both problems
will be formulated in the next two sections. The computational
cost of these algorithms scales linearly with the graph size V.

IV. GRAPH SIGNAL RECOVERY WITH THE f{2-NORM

With p = g = 2, the minimization (III.5) becomes a least-
squares problem,

1 =
min 2B — b5 + ol Bux|[; + Bllx — xa3. avny

A closed form solution can be readily derived and is given by

% =D3lbpa (IV.2)
where
Dy = By + 2aHTH; + 281 (IV.3)
and
bt = by +2Bxa. (IV.4)

A direct computation of (IV.2) requires the inversion of the
matrix D 4. The computational burden for this inversion is high
when the graph size N is large. There can also be numerical
issue associated with inverting a large size matrix. This direct
approach theoretically requires all measurement data b M.d 10
be available before the solution can be obtained, i.e. a central-
ized approach. To avoid these issues a distributed algorithm is
preferable [27], [40], [41]. Most distributed algorithms for graph
signals are based on a polynomial approximation to a function
of the graph shift matrix [41]. However D;j is not a function of
the graph shift matrix. Therefore, the polynomial approximation
approach is not applicable for this recovery problem.

Instead of polynomial approximation, we propose a different
distributed algorithm to solve Problem (IV.1). The strategy be-
hind the algorithm is to ‘divide-and-conquer’. The key idea is
to introduce a family of localized subproblems over subgraphs
Gr, 2 in the decomposition (IL.1),

min 3 [BAME x — B3 + o HME" |

+ BV x - xall;

for k € M. Note that the radius is 2r here but is 7 in (IL1).
The indicator operators M}, (k € M) are |V| x |V| diagonal
matrices whose (i, 7)th entries are unity if < € B(k, ) and zero
otherwise. The indicator operator M2" has the effect of zeroing
out values in x that are outside the subgraphs Gy, ,, i.e. M}, can
be viewed as a localization operator.

Now the gradient, w.r.t. X, of the objective function in (IV.5)
is given by:

(IV.5)

V= (BuMZ)" (BuMZ") x — (BsMZ")" by
+2a (HiMZ)T (H,MZ") x + 28 (MZ) T (M2Z7) x
—28 (Mﬁ""x)Txd,
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where D, and b M,d are defined in (I'V.3) and (IV.4). Setting
V = 0 gives

MZDyMZx = MZ by a.

As (MZ'DM?") is rank deficient due to M2", we seek the
least error norm solution via the pseudo-inverse:

(IV.6)

Vir = (MZDAMZ ) MZbpga, k € M, (IV.7)

which represents the localized solution of the minimization
problem (IV.1) in B(k,2r). A crucial observation is that vy ,
provides a local approximation to the global solution X of the
minimization problem (IV.1) in B(k,r) [13], [35], i.e.

vk,r(i) e i(i')a 1€ B(kv T)':

when r is large enough. Note that in the subproblems, the radius
is 2r but with the local approximation, the radius is , i.e. to
obtain an approximate local solution, we need to solve a larger
problem. Technically, other values that are greater than r could
also be used. The choice of 2r is found by experimentation and
represent a compromise between accuracy and complexity (as
measured by the problem size).

Now the radius parameter r in the graph decomposition
(I1.1) is chosen so that, for each 7 € V, there are at least two
uncorrupted vertices j, k € M such thatz € B(j,r) N B(k, ).
Therefore, by solving the series of localized subproblems (IV.5)
and taking the overlap effect into account, we will have at least
two solution values for each vertex i € V. Now only the vertices
in M that are at most r geodesic distance away from i, i.e.
vertices in B(i,7) N M, will contribute to the solution at i.
Combining these solutions via a local patch gives the following
aggregated value
(IV.8)

Uy (E) = Vk,r (E)

1
|B(i, ) N M| Z

keB(i,r)nM

Using (IV.7) and (IV.8), the patched solution for all vertices is
given by:

=5
vy = (Z M"",) > Mivi, =Jbpa

(IV.9)
k'eM keM
where
|
I= (Z M’”,) 3 Mg (MFDAME) MY
k'eM keM
(IV.10)

Note that the role M, in (IV.9) is to localize the solution vy, . to
B(k,). Now the patched solution vy can be considered a first
approximation to the exact solution X in (IV.2) and J considered
as an approximation to D_;,}. The next Lemma gives an error
bound on this approximation.

Lemma IV.1: For graph G, the patched solution satisfies

[[vr — X|l2 < 6-]1X]l2, (Iv.11)
where the error matrix norm is defined as
Op = ||I— IDp]]2. (IV.12)

Lemma IV.1 can be readily derived by using by = Dux.
Consider the following quantity:

_ D@ Eo+ 1) (

Ot = 1 —%T) (3r 4+ 20 + 1),

(IV.13)
where § = In(x/(x — 1)), & > 1 is the condition number of the
matrix D := By + 20HTH; + 281, 0 > 1 is the geodesic-
width of the graph filter H;, and d and D; (G) are the Beurling
dimension and density of the graph G respectively. It is shown

in the appendix that

By Ll (IV.14)

i.e. 6, isanupper bound for the error norm. Now whenr — oo,
dr,o — 0. Therefore we have

lim 4, = 0.

r—00

(IV.15)

Theoretically, this means that the inverse matrix Djj can be ap-
proximated by J arbitrarily close if a sufficiently large radius r is
chosen. The actual §, value in practice however is much smaller
than the upper bound §,., - see discussion after Theorem IV.2.

The exact solution in '(IV.2) via matrix inversion is not prac-
tical for large graphs and is not distributed. We next develop an
simple yet efficient distributed method for solving (IV.1). The
method is based on an approximation to the classical Newton’s
method that exploits second order derivative information to ac-
celerate convergence. With ¢(x) denoting the objective function
in (IV.1), the conventional (exact) Newton’s iteration is given by

=T
x(m) — x(m-1) _ (V%‘;(x(m_”)) qu(x(m_l))
= x(m-1 _ ;! (DMx(m—l) - BM,C,) . (IV.16)

The iterations in (IV.16) require the knowledge of D;j but we
are trying to avoid the calculation of D;j directly. We therefore
propose to replace the inverse Hessian D;j with J in (IV.16).
The rationale is that J is an approximation to D;Al. This gives
an inexact-Newton’s method with iterations given by
20— Thge (I T D™ 2 (IV.17)
Now (IV.17) can also be equivalently expressed as follows.

y(m) — Jp(m-1)

b(™ = p(m-1) _ D, v(m (IV.18)
x(m) — x(m-1) | y,(m)

form > 1, where
x(©@ — 0, b©@ — BM,,d- (IV.19)

The equivalence between (IV.17) and (IV.18) with the initial
condition (IV.19) can be readily shown using the fact that x(™) —
x(m-1) = v(m)_ The iterative equations in (IV.18) forms the
basis of our distributed recovery algorithm. The next Theorem
establishes the condition for convergence of the algorithm to the
exact solution.

Theorem IV.2: If the radius parameter r is chosen such that

o < 1 (IV.20)
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TABLE 1
ERROR MATRIX NORM &, FOR VARIOUS GRAPHS CONSIDERED IN THE
EXPERIMENT IN SECTION VI

Graph N &y
Circulant 256 0.001
Random Geometric | 4096 | 8 x 10~
Sea pressure 500 Fx 1074
US temperature 218 | 3x 1074
Sea temperature 100 0.031

then x(™) for m > 0, using (IV.18) and (TV.19), converges to
the true optimal solution X in (I'V.2) at an exponential rate, i.e.

Ix™ —%|l2 < 67 [IX]|2, m > 0. (Iv.21)

Using (IV.14), we can see that the condition (IV.20) is satis-
fied, and hence the convergence of {;::(m), m > 0} to the ground
truth £ is guaranteed, for all r satisfying

o (rl - %d ]_111"1) . (IvV.22)
where
r=2+ %m (18%0**k(D1(G))?) > %d-

Note that the requirement (IV.22) is a sufficient but not a neces-
sary condition for convergence. The theoretical lower bound
estimate in (IV.22) is quite loose and numerical simulations
performed in Section VI indicate that r = 2 or 3 is sufficient
to ensure that (IV.20) is satisfied. Table I shows that actual 4,
values for the examples considered in Section VI. Theorem IV.2
tells us that convergence to the exact solution will be achieved
as long as J is a reasonable approximation to D;dl to ensure
dr < 1,1i.e. it does not have to be arbitrarily close. In most cases,
as seen in Table I, 4,. is quite small, which will then result in fast
convergence rates as shown in Section VL.

Now the iterative algorithm can be implemented in a dis-
tributed manner, as described in Algorithm IV.1. By virtue of
the polynomial growth property of typical graphs, the number
of uncorrupted neighbors is small and independent of the graph
size N. Therefore the patching operation can also implemented
in a distributed manner. Multiplication with D, can be also
implemented in a distributed manner as its geodesic-width 20 is
typically small. At each step of the iteration in Algorithm I'V.1,
every vertex k € M is required to: (i) store data of size O((r +
a)?4); (ii) perform O((r + o)??) arithmetic operations for local
recovery; (iii) perform O((r + 0)??) arithmetic operations for
the update; and (iv) transmit data to its (2r + 20)-neighbors.
In total, the complexity of the algorithm is O(u(M)K;(r +
o) + NK;(1/2 + 0)??) where K; denotes the number of
iterations. The complexity grows linearly with the graph size N
and this indicates that the algorithm has a good scaling property.

Light/Heavy Computation Property: There are three computa-
tional steps in Algorithm I'V.1; namely (i) Local Recovery (LR),
(ii) Patch (P) and (iii) Update (U). Now only the uncorrupted
nodes need to perform all three steps, i.e. heavy computation
load. The corrupted nodes only need to perform the P and U
steps, i.e. light computation load. This property is also found in

Algorithm IV.1: Distributed Least Squared Recovery Algo-
rithm (DLSRA).

Operation: For each k € M, calculate

Ji = (MZ Dy M2,

Initialization: -Eig]) = M%FBM:J = (5M,d(i') )iEB(k?‘Zr)
and m = 0.

Iteration:

1) Local Recovery (LR) step

Vir = ka)gcm),k e M.

2) Patch (P) step
1
o) = = Y mps(i)ie V.
BT 0] keB(i,r)nM
3) Update (U) step
™D (3)=2™ (3) 4 v,(3)
W=t (@) — Y Du(iier(i).i€V.
jEB(i,20)
4) If |v.(i)| < e, € V, terminate the algorithm;

Otherwise, form Eim-i—l) = (B™ 1 (4))se B(k,2r) and set
m=m-+ 1.

the algorithm proposed in [27] where the concept of a commu-
nication graph and a processing graph is proposed. The former
is for diffusion of information (requiring light computations)
and the latter is for data regression via the basis of the Graph
Fourier Transform (requiring heavy computations). However the
algorithm [27] is gradient descent based that utilizes the first
order information only, whereas our proposed algorithm exploits
the second order information that leads to fast convergence.
Furthermore the work in [27], though considers sampling pattern
that could be time varying, does not consider time-varying graph
signals. Note that the distributed GTVR method [25] does not
have this property.

We conclude this section by comparing the proposed method
with other Newton-like methods.

Remark IV.3: The power of the Newton’s method lies primary
in the use of second derivative information via the Hessian.
Different Newton-like methods primarily differ in how the in-
verse Hessian is approximated and/or updated. There are many
Newton-like methods in the literature but we will focus primar-
ily on distributed methods. In the decentralized quasi-Newton
method proposed in [42], the localized Hessian was constructed
by decentralizing the conventional Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update. It falls under the class of quasi-Newton
methods where the secant condition is satisfied. In the approx-
imate Newton method [43], the distributed approximation of
the inverse Hessian was achieved by invoking the truncated
Taylor series for matrix inverse and the secant condition is not
satisfied. There are distinct differences between our proposed
DLSRA and the existing ones. Firstly, the proposed construction
of the approximate inverse Hessian leverages on the overlapping
decomposition of the graph. This approach better exploits the



548 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

graph topology for signal recovery when compared with (i)
the quasi-Newton method where the Hessian approximation
is constrained by the BFGS formula; and (ii) the approximate
Newton method that relies on the Taylor series. Secondly, the
approximated inverse Hessian of the proposed method, i.e.,
matrix J in (IV.10), needs only to be calculated once and is
fixed during the iterations. With the existing methods the ap-
proximated Hessian or Hessian inverse needs to updated at every
iteration. Thirdly, the proposed algorithm has the Light/Heavy
Computation Property described above, and this is not shared
by the existing methods.

V. RECOVERY WITH MIXED £1- AND {3-NORMS

We now consider using the £;-norm for the non-smoothness
measure Sg. This is motivated from images processing where
it was demonstrated in [37] that the ¢;-norm can sometimes
lead to better results than the £3-norm. Images generally consist
of smooth regions with some discontinuities, i.e. edges. Some
graph signals may also have underlying discontinuities and we
would like to preserve these discontinuity as much as possible
during the recovery process. As the £;-norm is often used as
a proxy for the £3-norm, we can use the £;-norm as a penalty
to promote sparsity in the highpass components of the graph
signal x. This is equivalent to promoting smoothness in as many
vertices as possible and there will be non-smooth vertices where
the highpass component will be relatively large. These large
highpass components are for the underlying discontinuities in
the signal and this will be demonstrated in subsection VI-F.

With p = 1 and ¢ = 2, the minimization (III.5) becomes

1 5
min = |Baex —bull3 + afHix|, + Bllx —xall5. v.1)

Such a formulation has been considered previously in the context
of denoising signals in the regular domain. This formulation,
which is known as the total variation approach for denoising
[44], [45]. A formulation that uses a mixed norm was also con-
sidered in [30] for the inpainting of time-lapse video. However,
unlike (V.1) which considers each time instant x; separately
and in succession, the formulation in [30] considers the entire
ensemble X (of time signals) simultaneously. The latter pre-
cludes the use of online (real-time) processing and requires batch
processing where measurements for all time instants must be
available before processing.

The objective function in (V.1) is similar to that found in
LASSO, for which the alternative direction method of multi-
pliers (ADMM) [46] (which can handle £;-norm terms) can be
used for finding the solution. The conventional ADMM however
cannot be implemented in a distributed manner. We develop
here an approximate version of the ADMM algorithm that has
a distributed implementation. By denoting z = H;x, we can
reformulate problem (V.1) as

1 -
5B = bugl3 + alzlls + Bl|x — xal[;

st. Hix—z=0. (V.2)

The augmented Lagrangian function of the above problem is
1 5 2
Ly(x,z,w) = §||BMX —bullz + allzll + B||x — xd|;

4wl (Hix —2) + %HH]x —z|2,  (V3)

where w is the (scaled) dual variable and « > 0 is the penalty
parameter [46]. With the augmented Lagrangian, the (scaled)
alternative direction method of multipliers (ADMM) seeks to
iteratively find the solutions of (V.2) via the following iterations

x(™+1) — argmin L, (x, Z(m),w(m))
z(m+1) — arg;u'n L (x(m 0, 7 wm)

wm+1) — yo(m) | JTy(m+1) _ gm+1),

(V4)

The first two steps/equations are basically optimizing the aug-
mented Lagrangian L., with two out of the three sets of variables
fixed. The primal variable x(™+1) can be obtained by solving
a least squares problem, with fixed z = z™) and w = w(™),
representing the current solution for these variables. To solve
for the auxiliary variable z(™+1), with fixed x = x(™+1) and
w = w(™), the proximal operator for the £; norm, which is soft
thresholding operator, can be used. The iterative algorithm for
the solution of (V.2) is therefore given by the following three
equations:

x(m+1) _ A-1.(m) (V.5)
A5 (H]X(m+1) + w(m)) (V.6)
wlmth — wm) | H x(mD g0t (v

where
A=By, +2p5I+ fyHTHl:
™ = b+ 26xa +7H] (2™ — w™),

and S,/ (t) is the elementwise soft thresholding operator

ti—afy, ti>aly
[Sa/'y(t)]i == a/’y(ti) =+ U |ti| . 0:/'}(
ti + O:XFY': t‘!' < —O{/"}/,

for t = [t;...tn]T [46]. If we now examine (V.5)-(V.7), we
can see that (V.6) and (V.7) can be implemented in a dis-
tributed manner because (i) H; has small geodesic-width (and
multiplication can be achieved distributively); and (ii) S, /v 18
an elementwise operator. The main obstacle to a completely
distributed implementation is therefore (V.5). In conventional
ADMM, the primal variable x(™+1) is typically solved via
the use of matrix factorization such as Cholesky, the use of
certain matrix inverse Lemma, or some iterative methods such as
gradient-based method and limited-memory BFGS method [46].
The matrix factorization and matrix inverse approach generally
require centralized computations and are thus not suitable for
distributed implementation. If the matrix A is diagonally dom-
inant, x(™+1) can be solved in a distributed manner using the
Jacobi method, which has guaranteed convergence. However,
A is not necessarily diagonally dominant in our problem, so the
Jacobi method is unsuitable.
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Algorithm V.1: Distributed ADMM Recovery Algorithm
(DAMRA).

Iteration:

1) Given z(™), w(™)_ apply the Algorithm IV.1 to
determine x(™+1) in a distributed manner, where D 4 is
substituted with B y; 4+ 281 + vHTH; and vector b(™)
with b + 28x4 + yHT (z(™ — w(™) respectively.
Denote the solution using this distributed algorithm by
x(m+1)

2) Calculate s(i) = Y p(i.0) Hi(i, 5)E™1(j) and
y(i) = s(@) + w™ (i), then update
2™ (4) = Sgyy (y(3)),i € V.

3) Update
w™H (3) = w™(3) + s(3) — 2™V (E),i e V.

4) Evaluate |£(™+1)(7) — (™) (i)| < &,i € V, if yes,
terminate the iteration; Otherwise, set m = m + 1.

TABLE I
RECOVERY PERFORMANCE COMPARISON OF THE EXACT ADMM WITH THE
PROPOSED APPROXIMATION VIA DAMRA. THE RANDOM GEOMETRIC GRAPH
WiTH N VERTICES IS USED OVER T' = 100 TIME SNAPSHOTS WITH A 20%
CORRUPTION PERCENTAGE. THE MAXIMUM ERROR IS DEFINED AS

maxycper—1 [XFA — XA g /xRt o

[ N [ 256 [ 512 [ 4096 |
Root Mean Square Error
Exact ADMM 0.303 0.295 0.277
DAMRA 0.303 0.295 0.277
| Maximum error [ 9.4 x 10T [ 51x10 W [ 1.5x1077 |
Average (over 100 time snapshots) number of iterations
Exact ADMM 20 21 32
DAMRA 20 21 32

However the computation of x(™+1) in (V.5) is similar to the
computation of X in (IV.2). Therefore the iterative distributed
algorithm (IV.18), which was formulated for the latter, can also
be used for the former, but with appropriate modifications. The
matrix D 4 is replaced with A and the vector b(™ is replaced
with c¢(™ both as defined above. We denote the process for
obtaining x(m+1) using Algorithm (IV.18) as

x(m+1) — DLSRA(A, c™). (V.8)

Strictly speaking, DLSRA (A, ¢c(™)) solves (V.5) approximately.
Therefore the ADMM algorithm we are proposing, where (V.5)
replaced with (V.8) is an approximate ADMM. The algorithm,
termed as DAMRA, is summarised in Algorithm V.1 and can
be viewed as a distributed version of the ADMM algorithm for
graph signals.

Convergence and approximation error: The convergence of
the conventional ADMM has been theoretically shown in [46].
Our proposed DAMRA is, strictly speaking, an approximate
version of ADMM and therefore convergence results from con-
ventional ADMM cannot be directly applied. However if the
approximation using DLSRA is good, it can be argued heuris-
tically that convergence is also achieved with DAMRA but a
rigorous proof is not currently available. This heuristic argument
has been backed by many numerical simulations performed.
Table II compares the result using the exact ADMM with the

approximation via DAMRA for the random geometric graph
(details in subsection VI-B). The result using the exact and inex-
act methods are practically indistinguishable. The convergence
rate between the two are also virtually the same. These results
support the assertion of the approximation using DAMRA does
not result in any material difference in the performance.

Remark V.1: There have been variants of the ADMM algo-
rithms, including some which have distributed implementation.
The distributed linearized ADMM (DLADMM) algorithm in
[47] is one that has beenrecently proposed. By using the gradient
information of the cost functions, it alleviates the computational
burden found in conventional ADMM for certain convex opti-
mization problems. There are distinct differences between the
proposed DAMRA and the DLADMM algorithm. Firstly, the
cost functions are assumed to be separable in [47] but no such
assumption is required in the proposed DAMRA.. Secondly, dur-
ing the update of the variables in [47], the original cost function
is approximated by using the gradient and a regularization term,
i.e. linearization of the function. This approximation results
in a deviation from the optimal solution during the update,
and a greater number of iterations will therefore be required.
More importantly, since the technique in [47] is gradient based,
the cost function must be differentiable, i.e. precludes £1-norm
terms. Our proposed DAMRA can handle #;-norm terms and no
approximation to the cost function is required.

Remark V.2: Tt is observed that the problem (V.1) can be
categorized as a LASSO problem which can be solved by
proximal methods [48]. The proximal gradient method is one
of the most typical proximal methods that solves the problem
by the following iterations Xz 1 = Sy (xx — tV f(xx)), where
S., is the soft-thresholding operator and the function f is the sum
of all £5-norm terms. Since the proximal gradient method only
uses the gradient of the function f, i.e., first-order information, it
suffers from the slow convergence characteristics of first-order
methods. However, the ADMM can exploit the Hessian matrix of
the function (via (V.8)), i.e., the second-order information, thus
it has much faster convergence speed. This is also verified by the
numerical results in Table 7.1, Fig 7.1 in [48]. One motivation
of this work is to develop a distributed approach to realize the
conventional ADMM method. This is achieved by incorporating
the Algorithm IV.1 to distributively solve the linear system in
(V.5).

VI. NUMERICAL EXAMPLES

In this section, we perform several simulations to show the
performance of the two proposed distributed algorithms. Both
synthetic and real datasets that resides on several different types
of graphs are used. The graphs considered are the circulant
graph, the random geometric graph, the graphs associated with
the real-world datasets of global sea-level pressure [28], [49]
and the US hourly temperature records [50]. Comparisons are
also made with the centralized graph total variation regulation
(CGTVR) method [14], [24], the distributed GTVR (DGTVR)
method [25], the quasi-Newton method (QNM) [43], and the
network Newton method (NNM) with truncated order of the
Neumann series being 1 [42]. The step size of the QNM and
NNM methods are chosen to gives the best performance. With
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the CGTVR and DGTVR methods, we use the cost function in
(IV.1) instead of the cost function in the original formulation in
[14], [24], [25]. This is to allow for a fair comparison with our
proposed methods. These existing methods however do not con-
sider time-varying signals in their original formulations. For a
fair comparison, we modify the original problem formulation in
the existing methods to include a time-domain non-smoothness
term ||x — x4/|3 in the objective function.

For time-varying signals, X = {xg,...,Xr_1} denotes the
ensemble of graph signals at different time instants. The cor-
rupted signal model in the simulations is given by b; = x; + &;
(0 <t < T —1). Inthe experiments, for a given corruption per-
centage, a fraction of the total number of vertices are randomly
selected. The signal values on these vertices are set to zero to
simulate corruption. For the other (uncorrupted) vertices, uni-
formly distributed noise £ over the range [—0.01, 0.01] is added
to the signal. In all the examples, the order of the highpass filter
H; is n = 2. For corruption percentages 10%, 20%, 30%, the
radius of the subgraphs Gy, - in (IL.1) are r = 2, 3, 3 respectively.
The radius r is chosen to ensure the overlapped decomposition
(IL.1) is valid for a given corruption percentage. Note however
that r is substantially smaller than the diameter D of the graphs
considered here (values shown in the tables or their captions).

The parameters «, 3, and -y are chosen using a cross-validation
approach. For a given graph, we generate smooth (w.r.t. vertex
and time) synthetic signals, i.e. ground truth. The synthetic
signal are then corrupted and the performance of the algorithm
using different parameters are tested. The parameters that gave
the best results are then chosen. Note that the same parameter
values are used in the objective function when comparing with
other algorithms, e.g. quasi-Newton.

In all cases, the stopping criterion is e, = [[x(M*1) —
x(M) ||, < 0.0001, i.e. the maximum signal difference between
two successive iterations is smaller than the tolerance 0.0001.
The performance of the recovery is measured using RMSE =
X0 — %||l2/vN and MRE = ||X, — X||oo/||Xo]|ccs Where X,
and X are the ground truth and the recovered signals respectively.
Averages of these measures over 7' time snapshots, for each
corruption percentage, are used to compare the performances.
The measure of the convergence speed of the algorithm is the
average number of iterations (AIS), where again, the averaging is
over the number of time snapshots. To compare computational
cost, we also report on the average CPU time (in seconds) to
recover one time snapshot, denoted as ACT. All simulations are
performed on a desktop computer with i7-9300 CPU and 32 G
memory. The main focus of this work is to develop efficient
distributed approximations of the centralized algorithm. The
aim is not to achieve better performance, in terms of lower
RMSE/MRE, but to achieve fast convergence. The results (to be
presented later) will show that the RMSE/MRE of the distributed
algorithm is usually very similar to the centralized algorithm.
This means that the distributed approximations are very good.

A. Circulant Graph Signal

A circulant graph of size N is defined by the generating
set S = {s1,.-.,8K},sx < N/2. For a given vertex i, edges

TABLE III
RECOVERY PERFORMANCE MEASURES ON THE CIRCULANT GRAPH
WITH N = 256 VERTICES AND DIAMETER [ = 44.
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| Corruption % | 10% | 20% | 30%
RMSE/MRE
Corrupted signal | 10.088/0.972 | 14.388/0.983 | 17.646/0.988
Recovered signal 0.182/0.023 0.271/0.027 0.346,/0.031
(all techniques)
AIS (Average number of iterations)

DGTVR 574 579 580
QNM 81 82 82
NNM 16 16 16

DLSRA 3 3 3

DAMRA 20 24 24

ACT (Average Computational Time)
GTVR 0.0026 0.0026 0.0026
QNM 0.1912 0.2153 0.1751
NNM 5.6 x 104 4.6 x 104 4.7 x 10~4
DLSRA 8.6 x 1073 5.8 x 1078 52x 1078
DAMRA 0.0144 0.0182 0.0170

exist between the vertex 7 and the vertices (i =+ si)n, Where
() denotes the modulo operator [51]. In the experiments, we
consider a circulant graph with N = 256 and generating set
S = {1, 3}. We generate an N x 100 time-varying signal using
the dynamic model x;,1 = (I — TL&W)Xt + w¢, where w; is
random noise and 7 = 0.3. The initial signal xq is given by
zo(k) = 50sin(4nk/N), k=0,...,N — 1. The noise vector
w; are drawn from a uniform distribution over [—1, 1]. For every
time instant £, a percentage of the signal values at randomly
selected vertices are set to zero. For example, if the corruption
percentage is 10%, we randomly select 10% of the vertices and
set the corresponding signal values z,(z) (i € U) to zero. Ta-
ble III compares the performance of different recovery methods.
It is observed that the proposed DLSRA algorithm possesses the
fastest convergence rate.

B. Random Geometric Graph and Signal

A random geometric graph, with N vertices randomly de-
ployed in the region [0, 1]%, has an edge between two vertices
if the physical distance is not larger than \/EN -1/2 [52]-[54].
We generate an N x 100 time-varying signal using the dy-
namic model X; 3 = (I — TL{;“’)xt + w;, where w; is random
noise and 7 = 0.3. The initial signal Xy is given by (k) =
100 cos(mng,¢/2) sin(mngy/2), k= 0,..., N — 1 with vertex
coordinates (ng s, nky) € [0,1]2. The noise vectors w, are
uniformly distributed over [—1,1]. Tables IV compares the
performance of the different methods.

We also perform signal recovery for larger random geometric
graphs to have an appreciation of how the algorithms scale. The
results are shown in Table V. The computational load of the
QNM is prohibitive for large N due to burden in calculating
the inverse of quasi-Hessian many times. The proposed DLSRA
algorithm performs the best by an order of magnitude in most
cases.
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TABLE IV
RECOVERY PERFORMANCE MEASURES ON THE RANDOM GEOMETRIC
GRAPH WITH N VERTICES AND DIAMETER D
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TABLEV
RECOVERY PERFORMANCE COMPARISONS ON LARGER RANDOM GEOMETRIC
GRAPH WITH N VERTICES AND DIAMETER ). CORRUPTION AT 20%

[ Corruption % | 10% [ 20% [ 30% N 4096 10000 20000 30000
D 88 126 175 215
RMSE/MRE, N = 256, D = 22 RMSE
Corrupted signal | 15.324/0.957 | 21.530/0.981 | 26.379/0.991 Corrupted signal | 22.291 22.349 22,444 22.431
Recovered signal | 0.207/0.015 0.302/0.017 0.387/0.021 Recovered signal | 0.277 0.276 0.276 0.275
(all techniques) (all techniques)
AIS, N = 256, D = 22 A5
L 606 609 610 DGTVR 622 618 620 619
QNM 78 83 83
QNM 100 90 91 92
NNM 17 17 17
DLSRA 3 3 3 NNM 24 17 17 17
: DLSRA 3 3 3 3
DAMRA 16 20 21
ACT, N =256, D = 22 ACT
DGTVR 0.0050 0.0051 0.0051 CGTVR 0.0146 0.0536 0.1370 0.26307
QNM 0.1940 0.1788 0.1711 DGTVR 0.0801 0.2810 0.6656 1.0512
NNM 9.1 %104 8.1x 104 83 %104 QNM 220.44 | 1.8 x10% | 1.5 x 10* | 4.9 x 10*
DLSRA 1.6 x 1074 1.2 x 1074 1.2 x 10~4 NNM 0.0438 0.0926 0.2295 0.5363
DAMRA 0.0842 0.0738 0.0658 DLSRA 0.0036 0.0106 0.0244 0.0335

RMSE/MRE, N = 512, D = 30

Corrupted signal

15.617,/0.971

22.206,/0.986

27.212/0.993

Recovered signal | 0.203/0.015 | 0.295/0.018 | 0.373/0.020
(all techniques)
AIS, N =512, D = 30
DGTVR 609 611 613
QNM 79 85 85
NNM 17 17 17
DLSRA 3 3 3
DAMRA 18 21 21
ACT, N =512, D =30
CGTVR 0.0013 0.0013 0.0013
DGTVR 0.0105 0.0104 0.0105
QNM 0.7676 0.8253 0.8241
NNM 0.0018 0.0017 0.0017
DLSRA 3.1 %104 2.7 x 10~4 2.7 % 10—4
DAMRA 0.2458 0.2223 0.1963
RMSE/MRE, N = 4096, D = 88
Corrupted signal | 15.756/0.989 | 22.291/0.994 | 27.305/0.996

Recovered signal
(all techniques)

0.191/0.016

0.277/0.018

0.351/0.020

AIS, N = 4096, D = 88

DGTVR 593 622 623
QNM 95 100 104
NNM 23 24 24

DLSRA 3 3 3

DAMRA 30 32 32

ACT, N = 4096, D = 88

DGTVR 0.0805 0.0801 0.0840
QNM 219.9960 229.4403 241.1448
NNM 0.0462 0.0438 0.0470

DLSRA 0.0045 0.0036 0.0034

DAMRA 12.1015 10.7330 9.3783

C. The Global Sea-level Pressure Data

The global sea-level pressure dataset, from a real-world ap-
plication, was originally published by the Joint Institute for the
Study of the Atmosphere and Ocean [49]. The dataset consists
of T' = 4599 pentad-mean pressure snapshots ranging from the
year 1948 to the year 2010. Each snapshot records pressure data
from 500 stations deployed worldwide. The range of the pressure
is from 94.71 kPa to 110.06 kPa. We use the 5-nearest neighbors
algorithm to construct a graph of N = 500 nodes that captures
the local interactions between the 500 stations, as shown in Fig. 1
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Fig. 1. Top: Sea-level pressure graph with 500 vertices. The Beurling dimen-
sion is 2 and the density is 3.2800. Bottom: Sea surface temperature graph with
N = 100. The Beurling dimension is 2 and the density is 2.8750.

(top). The resulting time-varying graph signal is therefore of di-
mension 500 x 4599 (= 2299500). In the experiments, the time
dynamics of the graph signal, characterized by the parameter 7 in
(II1.4), is estimated by using the first 1000 snapshots of x; as the
training dataset. Using an optimization approach, the estimated
value is 7 = 0.3819. For each time instant# (f = 0, ...,4598),a
certain percentage of the values of the graph signal x;, randomly
chosen, is corrupted. Table VI compares the performance of the
different methods. It is observed that the DAMRA algorithm
gives the best performance and the DLSRA algorithm has the
fastest convergence.
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TABLE VI
RECOVERY PERFORMANCE MEASURES ON THE GLOBAL SEA PRESSURE
DATA WITH 500 VERTICES AND DIAMETER [) = 22

TABLE VIII
RECONSTRUCTION PERFORMANCE ON THE SEA SURFACE TEMPERATURE
DATASET WITH 100 VERTICES AND DIAMETER DD = 14

| Corruption % | 10% | 20% | 30% | | Samplingrate | 90% | 8% | 0% |
RMSE/MRE RMSE
Corrupted signal | 32.017/0.988 | 45.276/0.992 | 55.453/0.995 -
Recovered Signal | 0.135/0.013 | 0.200/0.015 | 0.258/0.017 Sonppioagnal |08 D ks
(except DAMRA) Recovered signal 0.061 0.097 0.135
DAMRA 0.122/0.012 | 0.174/0.015 | 0.226/0.017 (all methods)
ATS AIS
DGTVR 162 532 5762 Method in [28] 28 6 oL
QNM 93 100 104 Day 3 A 3
NNM 79 91 985
DLSRA 4 4 4 ACT
DAMRA 212 =k 241 278 Methodin [28] | 9x 107 [ 15x10°7 [ 20 x 101
-5 -5 ¢ -5
DGTVR 0.0080 0.0001 0.0008 PLEER Aradie= |genil | #awdl
QNM 0.8522 0.8934 0.9433
NNM 0.0050 0.0055 0.0059
DLSRA 3.0x 104 3.6 x 10~4 3.8 x 1074
DAMRA 0.1646 0.3106 0.2934
E. Comparison With the Recovery Methods in [28]
TABLE VII In [28], the modeling of the time-varying nature of the signals

RECOVERY PERFORMANCE ON THE US HOURLY TEMPERATURE GRAPH
WITH 218 VERTICES AND DIAMETER [ = 22

[ Corruption % | 10% [ 20% | 30% |
RMSE/MRE
Corrupted signal 23.787/0.917 | 34.005/0.938 | 41.671/0.954
Recovered signal 0.648,/0.054 1.127/0.077 1.698/0.128
(except DAMRA)
DAMRA 0.636,/0.052 1.105/0.074 1.678/0.122
AIS
DGTVR 4617 4713 4785
QNM 141 147 148
NNM 23 23 24
DLSRA 4 3 3
DAMRA 61 70 i
ACT
CGTVR 0.0053 0.0050 0.0049
DGTVR 0.0352 0.0357 0.0360
QNM 0.9082 0.9475 0.9444
NNM 0.0014 0.0009 0.0009
DLSRA 2.8 x 1074 1.3 x 1074 1.0 x 104
DAMRA 0.0396 0.0712 0.0644

D. US Temperature Sensor Graph and Records

The US temperature sensor network acquires temperature data
on an hourly basis from 218 stations that are near to major cities
across the United States [50]. Here, the graph is constructed by
using the 6-nearest neighbors algorithm.

In the experiments, the temperature dataset is the 24 hours
temperature record on August 1st, 2010 [50]. The time-varying
signal is then of dimension 218 x 24. The first-order diffusion
model (I11.4) is used to model the time dynamics of the signal.
Using the first 10 time snapshots of the signal x;, the estimated
parameter of the model, using an optimization approach, is
7 = 0.022. For each time instant ¢ (f =0,...,23), a certain
percentage of the values of the graph signal x;, randomly chosen,
is corrupted. Table VII compares the performance of the different
methods. It is observed that the DAMRA algorithm gives the
best performance and the DLSRA algorithm has the fastest
convergence.

is achieved by assuming that the temporal difference signal
A¢ = X¢ — X;_1 is smooth. The penalty measure used in [28]
is based on the quadratic form of A; with the Laplacian matrix
as the coefficients in the quadratic form. We however use some
form of linear prediction to estimate the signal at the current time
instant Xy = ZLI C;X¢_;. The predicted signal is assumed to
be close to the actual observed signal X¢. Only the {>-norm is
considered in [28], but in our work both the ¢£3- and £;-norms,
which can promote sparsity, are considered. The most important
difference however is with respect to the distributed implemen-
tation. The approach in [28] employs the classical gradient de-
scent method that only exploit the first order information, while
our proposed algorithms exploit the second order derivative
information that leads to fast convergence. The algorithm in
[28] also does not have the light/heavy property discussed in
Section IV.

We next compare the performance of the distributed algorithm
in [28] with our DLSRA in the reconstruction of the sea surface
temperature, using the dataset published by the Earth System
Research Laboratory [55]. We adopt the dataset in [28], acquired
from 100 stations across the Pacific ocean from 170° west to
90° west and from 60° south to 10° north with a dynamic range
from —1.32°C to 30.72°C. Each station records, over a period of
1733 months, the monthly mean sea surface temperature from
January 1870 to May 2014. The underlying graph G has 100
vertices, each of which represents an observation station, and is
constructed by connecting the 5-nearest neighboring stations, in
terms of physical distance [55], as shown in Fig. 1 (bottom).

Three sampling rates, 90%, 80% and 70% (the corresponding
corruption percentages are 10%, 20% and 30%), are used in
the simulations. Table VIII compares the performance of the
different methods. It is seen that all methods give the same
performance, indicating convergence to the optimal solution
(which is obtained by the centralized method). However the
DLSRA has significantly faster convergence than the method
in [28]. The computational time is also substantially lower in
the former.
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Fig. 2. Minnesota traffic graph with 2642 vertices and 3303 edges. Top left:
underlying original piecewise smooth signal. Top right: difference between the
corrupted signal and original signal. Bottom left: error (original - recovered)
using the £5-norm. Bottom right: error using the £;-norm.

F. Recovery of Piecewise Smooth Signals

The underlying signals we have considered so far are smooth
over the entire graph vertex domain. However there could be
situations where the underlying signal is discontinuous over
limited number of locations but is smooth otherwise, i.e. piece-
wise smooth. These discontinuities manifest themselves in the
highpass components of the signal. This is similar to edges with
images. We would like to compare between the performance
of the recovery algorithms using the l;-norm (DLSRA) with
the l;-norm (DAMRA). Consider the time-invariant signal on
Minnesota traffic graph signal shown in Fig. 2 which is piecewise
smooth. A 10% corruption is applied to this signal and the
difference between the corrupted signal and original signal is
also shown in the figure. Using the [ penalty norm, the recovered
signal has RMSE = 0.0625. Using the [/; penalty norm the
recovered signal has RMSE = 0.0044 which is substantially
lower. Fig. 2 also show the error signals using the two norms.
The error near the discontinuities is smaller with the [;-norm.
This result is consistent with what is well known in images, the
l1-norm is better than the l;-norm for preserving edge features
in images.

VII. CONCLUSION

The work here has addressed the recovery of time-varying
graph signals. New notions of smoothness over time and graph
topology have been proposed. These notions, via the use of
non-smoothness penalty terms, were then exploited in the op-
timization problem formulations. In the first formulation, only
the £>-norm appeared in the objective function. In the second
formulation, both the £;- and £5-norms appeared in the objective
function. Two distributed algorithms, abbreviated as DLSRA
and DARMA, were proposed to solve the two problems. Exten-
sive numerical simulations demonstrate that these algorithms

give excellent quality solutions. However, the main advantage
with the DLSRA algorithm is that it has fast convergence.

APPENDIX

A. Proof of (IV.14)

Write ME (MgrDMM%T)TM?DM(MiT-HJ G M%r) -
(gx(2,7))ijev, k € M. Applying the formula (A.3) from [13],
we obtain

ou(i.9) < Da(@)@0 + nesp (—mr+6) (A
fori € B(k,r) and j € B(k, 2r + 20)\B(k, 2r), and

9k(1,7) =0 (A2)

when either: & B(k,r) or j € B(k,2r + 20)\B(k, 2r). Write
I—-JDu = (g(4, 7))ijev- By (IV.10) and the observation that
D 44 has geodesic-width at most 20, we have

=
I-JDy = (Z M’".) > ME(MRD M)

k'eM keM
x MErD (M2 — M}"),
which implies that
> kemnB(,r) 9k(2:7)
EkeMﬁB(n‘,r) 1
This together with (A.1) and (A.2) implies that

i,7€V.

3 3

9(1,7) = (A3)

66.9) < Da(@)@o + inewp (—gr+0) (A
when p(i,7) < 3r + 20, and
9(1,3) =0

when p(i, j) > 3r 4 20. Therefore the estimate (IV.14) follows
from (IL2), (A.4) and (A.5).

(A5)

B. Proof of Theorem IV.2

Set (™) = x — x(™)_ From formula (IV.17), we have

e™ = (I—JD,,)e™ Y, (A.6)
From (IV.9) and (IV.11), we have
I(I = IDM)X|lp < 6]IX][p (A7)

Since there is no restriction on the signal vector X, we can
conclude that (A.7) holds true for any arbitrary signal vector.
Therefore, we have

™|, < 8lle™ V|, (A8)

where § < 1 implies that the convergence rate is exponential.
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