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In this paper, we consider (random) sampling of signals concentrated on a bounded 
Corkscrew domain Ω of a metric measure space, and reconstructing concentrated 
signals approximately from their (un)corrupted sampling data taken on a sampling 
set contained in Ω. We establish a weighted stability of bi-Lipschitz type for a 
(random) sampling scheme on the set of concentrated signals in a reproducing kernel 
space. The weighted stability of bi-Lipschitz type provides a weak robustness to the 
sampling scheme, however due to the nonconvexity of the set of concentrated signals, 
it does not imply the unique signal reconstruction. From (un)corrupted samples 
taken on a finite sampling set contained in Ω, we propose an algorithm to find 
approximations to signals concentrated on a bounded Corkscrew domain Ω. Random 
sampling is a sampling scheme where sampling positions are randomly taken 
according to a probability distribution. Next we show that, with high probability, 
signals concentrated on a bounded Corkscrew domain Ω can be reconstructed 
approximately from their uncorrupted (or randomly corrupted) samples taken at 
i.i.d. random positions drawn on Ω, provided that the sampling size is at least of 
the order μ(Ω) ln(μ(Ω)), where μ(Ω) is the measure of the concentrated domain Ω. 
Finally, we demonstrate the performance of proposed approximations to the original 
concentrated signals when the sampling procedure is taken either with large density 
or randomly with large size.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Sampling signals of interest in a stable way and reconstructing the original signals exactly or approxi-
mately from their (un)corrupted sampling data are fundamental problems in sampling theory. A common 
assumption is that signals of interest have some additional properties, such as residing in a linear space, or 
having sparse representation in a dictionary, or having finite rate of innovation [5,16,19,26,40,46,50,53,56]. 
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In this paper, we consider (random) sampling and reconstruction of signals in a reproducing kernel space 
concentrated on a bounded Corkscrew domain.

Let (X, ρ, μ) be a metric measure space and Lp := Lp(X, ρ, μ), 1 ≤ p ≤ ∞, be the linear space of all 
p-integrable functions on the metric measure space (X, ρ, μ) with the standard p-norm denoted by ‖ · ‖p. In 
this paper, we use the range space

Vp := {Tf, f ∈ Lp} = {f ∈ Lp, T f = f}, 1 ≤ p ≤ ∞, (1.1)

of an idempotent integral operator

Tf(x) =
∫
X

K(x, y)f(y)dμ(y), f ∈ Lp, (1.2)

as the reproducing kernel space for signals to reside in, where the integral kernel K having certain off-diagonal 
decay and Hölder continuity, see Assumption 2.5. The above range space Vp, 1 ≤ p ≤ ∞, was introduced 
by Nashed and Sun in the Euclidean setting [40], and it has rich geometric structure and lots of flexibility 
to approximate real data set in signal processing and learning theory. Our illustrative examples are spaces 
of p-integrable (non-)uniform splines [4,48,54], shift-invariant spaces with their generators having certain 
regularity and decay at infinity [5,8,53], and spaces of signals with finite rate of innovation [20,23,50,56]. 
Sampling and reconstruction of signals in the range spaces of integral operators in the Euclidean space 
has been well studied, see [20,34,40] and references therein. For signals in Vp, 1 ≤ p ≤ ∞, as shown in 
Proposition 2.7, they can be recovered exactly via an exponentially convergent algorithm from their samples 
taken on a sampling set with large density.

For some engineering applications, signals of interest are concentrated on a bounded domain Ω and only 
finitely many sampling data taken inside the domain Ω are available [1,11,12,20,31,33]. This motivates us 
to consider sampling and reconstruction of signals in the space Vp, 1 ≤ p ≤ ∞, concentrated on a bounded 
domain Ω,

Vp,Ω,ε :=
{

f ∈ Vp, ‖f‖p,Ωc ≤ ε‖f‖p

}
, (1.3)

where ε ∈ (0, 1), Ωc ⊆ X is the complement of the domain Ω, and ‖f‖p,Ωc is the standard p-norm on the 
complement Ωc. The set Vp,Ω,ε of ε-concentrated signals has been introduced for time-frequency analysis 
[28,55], phase retrieval [2,3,30], and (random) sampling of bandlimited and wavelet signals [11,12,20,27,59]. 
As signals in Vp,Ω,ε are essentially supported on the domain Ω, it is more natural to consider a sampling 
procedure taken on a finite sampling set ΓΩ contained inside the domain Ω only. In Section 3, we show 
that the sampling procedure f �→ (f(γ))γ∈ΓΩ for ε-concentrated signals in Vp,Ω,ε has weighted stability of 
bi-Lipschitz type when the Hausdorff distance

dH(ΓΩ, Ω) := sup
x∈Ω

ρ(x, ΓΩ)

between the sampling set ΓΩ ⊂ Ω and the bounded Corkscrew domain Ω is small, see Theorem 3.1 and 
Corollary 3.2. For signals in a linear space, stability of a sampling scheme guarantees robustness and unique-
ness of reconstructing signals from their (noisy) samples, see [5,20,40,51]. However, the weighted stability in 
Theorem 3.1 does not imply the unique reconstruction even it provides a weak robustness for the sampling 
scheme on Vp,Ω,ε, see [11] and Remark 3.1. Therefore we should consider reconstructing ε-concentrated sig-
nals in Vp,Ω,ε approximately, instead of exactly, from their samples inside the domain. A challenge to derive 
such good approximations to ε-concentrated signals in Vp,Ω,ε is that the set Vp,Ω,ε is a nonconvex subset of 
the reproducing kernel space Vp (and hence it is not a linear space), which prevents the direct application 
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of reconstruction algorithms used for signals in a linear space [4,5,9,20,25,40,50,54,58]. In Theorems 3.3 and 
3.4, we propose an algorithm to construct suboptimal approximations to ε-concentrated signals in Vp,Ω,ε

from their (un)corrupted samples taken on a finite sampling set ΓΩ ⊂ Ω.

Random sampling is a sampling scheme where sampling positions are randomly taken according to a 
probability distribution [15,39,57]. It has received a lot of attention in the communities of signal processing, 
compressive sensing, learning theory and sampling theory, see [13,16,17,21,36,38,41,43,45,46,60] and refer-
ences therein. Random sampling of concentrated signals was first discussed by Bass and Gröchenig, and 
they proved the following result for bandlimited signals concentrated on the cube CR := [−R/2, R/2]d, see 
[12, Theorem 3.1].

Theorem 1.1. Let R ≥ 2, ε ∈ (0, 1) and μ ∈ (0, 1 − ε). If sampling positions γ ∈ ΓR are i.i.d. random 
variables that are uniformly distributed over the cube CR, then there exist absolute positive constants A and 
B such that the sampling inequalities

N

Rd
(1 − ε − μ)‖f‖2

2 ≤
∑

γ∈ΓR

|f(γ)|2 ≤ N

Rd
(1 + μ)‖f‖2

2, f ∈ Bε,R (1.4)

hold with probability at least 1 − A exp(−Bμ2N/Rd), where N = #ΓR is the size of the sampling set ΓR, B
is the space of signals bandlimited to [−1/2, 1/2]d, and Bε,R = {f ∈ B, ‖f‖2,Rd\CR

≤ √
ε‖f‖2} is the set of 

bandlimited signals concentrated on CR.

The sampling inequality of the form (1.4) has been extended to signals in a shift-invariant space, with 
finite rate of innovation and in a reproducing kernel space on the Euclidean space Rd, see [11,27,34,37,42,59]. 
In this paper, we introduce a completely different approach to obtain a weighted sampling inequality, see 
Theorem 4.1 and Remarks 4.1 and 4.2. The sampling inequality of the form (1.4) provides an estimate to 
the signal energy with high probability, however it does not yield a stable reconstruction of ε-concentrated 
signals in a reproducing kernel space. To the best of our knowledge, there is no algorithm available to 
perform the reconstruction of ε-concentrated signals in a reproducing kernel space approximately from their 
random samples in the considered domain. In Theorems 4.3 and 4.6, we show that the algorithm proposed in 
Theorem 3.3 provides good approximations to the ε-concentrated signal from its uncorrupted (or randomly 
corrupted) random samples, with high probability, when the sampling size is large enough.

The main contributions of this paper are as follows: (i) We consider sampling and reconstruction of 
signals concentrated on a bounded Corkscrew domain Ω of a metric measure space, instead of signals 
concentrated on a cube [−R/2, R/2]d of the d-dimensional Euclidean space in the literature [11,12,27,34,
37,59]. (ii) For a (random) sampling scheme for signals concentrated on a bounded Corkscrew domain, we 
establish a weighted stability of bi-Lipschitz type instead of the sampling inequality of the form (1.4), which 
provides weak robustness of the sampling scheme. (iii) The set of ε-concentrated signals is nonconvex and the 
(random) sampling operator is not one-to-one in general. We propose an algorithm to construct suboptimal 
approximations to the original ε-concentrated signals from their (random) samples on the considered domain. 
(iv) We show that, with high probability, signals concentrated on a bounded Corkscrew domain Ω can be 
reconstructed approximately from their samples taken at i.i.d. random positions drawn on Ω, provided that 
the sampling size is at least of the order μ(Ω) ln(μ(Ω)), where μ(Ω) is the measure of the concentrated 
domain Ω. (v) We show that with high probability, an original ε-concentrated signal can be reconstructed 
approximately from its random samples corrupted by i.i.d. random noises, when the random sampling size 
is large enough.

The paper is organized as follows. In Section 2, we present some preliminaries on Corkscrew domains 
Ω of a metric measure space on which sampling is taken, and reproducing kernel spaces Vp, 1 ≤ p ≤ ∞, 
in which ε-concentrated signals on a Corkscrew domain Ω reside. In Section 3, we consider the sampling 
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procedure f �→ (f(γ))γ∈ΓΩ taken on a finite sampling set ΓΩ contained in a Corkscrew domain Ω for ε-
concentrated signals f in the reproducing kernel space Vp. We establish the stability of bi-Lipschitz type for 
the above sampling procedure in Theorem 3.1, and we construct suboptimal approximations to the original 
ε-concentrated signals from their (un)corrupted samples, see Theorems 3.3 and 3.4. In Section 4, we consider 
random sampling of ε-concentrated signals in the reproducing kernel space Vp with large sampling size, and 
we show that, with high probability, any ε-concentrated signal can be reconstructed approximately from its 
(un)corrupted samples taken randomly on the Corkscrew domain Ω, see Theorems 4.3 and 4.6. In Section 5, 
we demonstrate the performance of the proposed approximations to the original ε-concentrated signals when 
the sampling procedure is taken either with sufficient density or randomly with large size. In Section 6, we 
include the proofs of all theorems and propositions.

2. Preliminaries on Corkscrew domains and reproducing kernel spaces

In this section, we present some preliminaries on Corkscrew domains Ω of a metric measure space (X, ρ, μ)
and the range space Vp of an idempotent integral operator T for ε-concentrated signals on Ω to reside 
in. Our illustrative model of Corkscrew domains is Lipschitz domains in Rd, such as rectangular regions 
[−R/2, R/2]d with side length R ≥ 1 or balls B(0, R) with center at the origin and radius R ≥ 1. For a 
bounded Corkscrew domain Ω with diam(∂Ω) ≥ 1, we observe that for any δ ∈ (0, 1) there exist a finite set 
Ωδ and a disjoint partition Iγ , γ ∈ Ωδ, of the domain Ω with the property that

B(γ, cδ) ⊂ Iγ ⊂ B(γ, δ) for all γ ∈ Ωδ, (2.1)

where c ∈ (0, 1) is an absolute constant, see Proposition 2.4. For the range space Vp with the integral kernel 
K having certain off-diagonal decay and Hölder continuity, we show that it is a reproducing kernel space and 
signals in Vp can be reconstructed from their samples by an exponentially convergent iterative algorithm, 
see Propositions 2.6 and 2.7.

2.1. Corkscrew domains in a metric measure space

A metric ρ on a set X is a function ρ : X × X �−→ [0, ∞) such that (i) ρ(x, y) = 0 if and only if x = y; 
(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X; and (iii) ρ(x, y) ≤ ρ(x, z) +ρ(z, y) for all x, y, z ∈ X. A metric measure 
space (X, ρ, μ) is a metric space (X, ρ) with a non-negative Borel measure μ compatible with the topology 
generated by open balls {y ∈ X, ρ(x, y) < r} with center x ∈ X and radius r > 0. For a metric measure 
space (X, ρ, μ), we denote the diameter of a set Y ⊂ X by diam(Y ), and define the closed ball with center 
x ∈ X and radius r ≥ 0 by

B(x, r) :=
{

y ∈ X, ρ(x, y) ≤ r
}

.

In this paper, we always assume the following:

Assumption 2.1. The metric measure space (X, ρ, μ) has dimension d > 0 in the sense that

D1rd ≤ μ
(
B(x, r)

)
≤ D2rd for all x ∈ X and 0 ≤ r ≤ diam(X), (2.2)

where D1 and D2 are positive constants.

We call a Borel measure μ satisfying (2.2) to be Ahlfors d-regular, and denote the maximal lower bound 
and minimal upper bound in (2.2) by D1(μ) and D2(μ) respectively [22,52]. Our models of metric measure 
spaces are the Euclidean space Rd, the sphere Sd ⊂ Rd+1 and the torus Td.
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For the metric measure space (X, ρ, μ), we can find a finite overlapping cover by balls B(xi, δ), xi ∈ Xδ, 
for all δ > 0 such that B(xi, δ/2), xi ∈ Xδ, are mutually disjoint. In particular, given a dense subset Y ⊂ X, 
let Xδ be a maximal subset of Y such that B(xi, δ/2), xi ∈ Xδ, are mutually disjoint, i.e.,

B(xi, δ/2) ∩ B(xj , δ/2) = ∅ for all distinct xi, xj ∈ Xδ, (2.3)

and

B(y, δ/2) ∩
(

∪xi∈Xδ
B(xi, δ/2)

)
�= ∅ for all y ∈ Y. (2.4)

Then one may verify that the above family of closed balls {B(xi, δ), xi ∈ Xδ} covers the whole space X
with finite overlapping,

1 ≤
∑

xi∈Xδ

χB(xi,δ)(x) ≤ 3dD2(μ)
D1(μ) , x ∈ X, (2.5)

where the first inequality holds as Xδ is closed and

ρ(x, Xδ) = inf
y∈Xδ

ρ(x, y) ≤ δ, x ∈ X

by (2.4), and the second one follows since

∑
xi∈Xδ

χB(xi,δ)(x) ≤
∑

xi∈B(x,δ)

μ(B(xi, δ/2))
D1(μ)(δ/2)d

=
μ

(
∪xi∈B(x,δ) B(xi, δ/2)

)
D1(μ)(δ/2)d

≤ μ(B(x, 3δ/2))
D1(μ)(δ/2)d

≤ 3dD2(μ)
D1(μ)

by (2.2) and (2.3).
We say that a domain D of the metric measure space (X, ρ, μ) is a Corkscrew domain if any ball B(x, r)

with center at the boundary x ∈ ∂D and radius 0 < r ≤ diam ∂D contains one ball inside the domain with 
a fraction of radius,

B(y, cr) ⊂ D ∩ B(x, r) for some y ∈ D, (2.6)

where c ∈ (0, 1) is an absolute constant. Our illustrative model is Lipschitz domains in Rd, such as rect-
angular regions [−R/2, R/2]d with side length R ≥ 1 or balls B(0, R) with center at the origin and radius 
R ≥ 1. In this paper, we consider bounded Corkscrew domain Ω satisfying the following:

Assumption 2.2. The bounded domain Ω and its complement Ωc satisfy the Corkscrew condition (2.6) and

diam(∂Ω) ≥ 1.

For a bounded domain Ω satisfying the above assumption, we find a nice covering in the following 
proposition, see Section 6.1 for the proof, which plays a crucial role in our consideration of sampling and 
reconstruction of signals concentrated on the domain Ω.

Proposition 2.3. Let (X, ρ, μ) be a d-dimensional metric measure space and Ω be a bounded Corkscrew 
domain satisfying Assumption 2.2. Then for any δ ∈ (0, 1) there exists a discrete set Ωδ ⊂ Ω such that
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B(xi, cδ) ⊂ Ω for all xi ∈ Ωδ, (2.7a)

B(xi, δ/2) ∩ B(xj , δ/2) = ∅ for all distinct xi, xj ∈ Ωδ, (2.7b)

and

1 ≤
∑

xi∈Ωδ

χB(xi,5δ)(x) ≤ 11dD2(μ)
D1(μ) for all x ∈ Ω, (2.7c)

where D1(μ) and D2(μ) are the maximal lower bound and minimal upper bound in (2.2) respectively, and c
is the ratio in the Corkscrew condition (2.6) for the domain Ω.

Given a discrete set ΓΩ ⊂ Ω, we say that Iγ , γ ∈ ΓΩ, is a Voronoi partition of the domain Ω if

∪γ∈ΓΩIγ = Ω, Iγ ∩ Iγ′ = ∅ for all distinct γ, γ′ ∈ ΓΩ, (2.8a)

and

Iγ ⊂
{

x ∈ Ω, ρ(x, γ) = ρ(x, ΓΩ)
}

for all γ ∈ ΓΩ. (2.8b)

By Proposition 2.3, we have the following unit partition of the Corkscrew domain Ω.

Proposition 2.4. Let (X, ρ, μ) be a metric measure space and Ω be a bounded Corkscrew domain satisfying 
Assumption 2.2. Then for any δ ∈ (0, 1) there exists a discrete set Ωδ ⊂ Ω such that the corresponding 
Voronoi partition Iγ , γ ∈ Ωδ, of the domain Ω satisfies (2.1), where c is the ratio in the Corkscrew condition 
(2.6) for the domain Ω.

2.2. Sampling and reconstruction of signals in a reproducing kernel space

For a kernel function K on X × X, we define its Schur norm ‖K‖S and modulus of continuity ωδ(K) by

‖K‖S = max
(

sup
x∈X

‖K(x, ·)‖1, sup
y∈X

‖K(·, y)‖1

)

and

ωδ(K)(x, y) = sup
ρ(x′,x)≤δ, ρ(y′,y)≤δ

|K(x′, y′) − K(x, y)|, x, y ∈ X,

respectively. To consider sampling and reconstruction of ε-concentrated signals in Vp,Ω,ε, we always assume 
the following:

Assumption 2.5. The integral kernel K of the idempotent operator T in (1.2) has certain off-diagonal decay 
and Hölder continuity,

‖K‖S,θ := ‖K‖S + sup
0<δ≤1

δ−θ‖ωδ(K)‖S < ∞ (2.9)

for some 0 < θ ≤ 1.
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One may verify that Assumption 2.5 is met for kernels K being Hölder continuous,

|K(x, y) − K(x′, y′)| ≤ C(ρ(x, x′) + ρ(y, y′))θ(1 + ρ(x, y) + ρ(x′, y′))−α

for all x, x′, y, y′ ∈ X, and having polynomial decay,

|K(x, y)| ≤ C(1 + ρ(x, y))−α

for all x, y ∈ X, where α > d and C is a positive constant. It is well known that the integral operator with 
its kernel having finite Schur norm is bounded operator on Lp. Hence the range space Vp in (1.1) is a closed 
subspace of Lp. In the following proposition, we show that it is a reproducing kernel space of Lp, which is 
established in [40] for the Euclidean space setting, see Section 6.2 for a sketch of the proof.

Proposition 2.6. Let (X, ρ, μ) be a metric measure space, T be an idempotent operator whose kernel K

satisfies Assumption 2.5, and Vp, 1 ≤ p ≤ ∞, be the range space of the operator T defined by (1.1). Then Vp

is a reproducing kernel space of Lp, and for any f ∈ Vp

‖f‖q ≤ (D1(μ))−1/p+1/q‖K‖1−p/q
S,θ ‖f‖p, p ≤ q ≤ ∞, (2.10)

where D1(μ) is the maximal lower bound in (2.2) and ‖K‖S,θ is given in (2.9).

To consider sampling and reconstruction of signals f ∈ Vp concentrated on a bounded domain Ω, we 
recall the iterative algorithm

f0 = SΓf and fn = f0 + fn−1 − SΓfn−1, n ≥ 1, (2.11)

to reconstruct signals f ∈ Vp from their samples f(γ), γ ∈ Γ, taken on the sampling set Γ ∩ Ω in the domain 
Ω and the sampling set Γ ∩Ωc outside the domain Ω, where {Iγ , γ ∈ Γ ∩Ω} and {Iγ , γ ∈ Γ ∩Ωc} are Voronoi 
partitions of the domain Ω and its complement Ωc respectively, and the preconstruction operator SΓ on Lp

is defined by

SΓg(x) =
∑
γ∈Γ

μ(Iγ)(Tg)(γ)K(x, γ), g ∈ Lp. (2.12)

The above iterative algorithm (2.11) has been widely used in reconstructing signals in various linear spaces, 
see for instance [4,5,9,20,25,40,50]. In the following proposition, we show that the above algorithm converges 
exponentially, see Section 6.3 for the proof.

Proposition 2.7. Let (X, ρ, μ) be a metric measure space, T be an idempotent operator whose kernel K

satisfies Assumption 2.5, Vp, 1 ≤ p ≤ ∞, be the range space (1.1) of the operator T , and Ω be a bounded 
domain. If Γ is a sampling set satisfying

δ(Γ) := max
(

sup
x∈Ω

ρ(x, Γ ∩ Ω), sup
y∈Ωc

ρ(y, Γ ∩ Ωc)
)

< ‖K‖−2/θ
S,θ ,

then for any f ∈ Vp, the sequence fn, n ≥ 0, in the iterative algorithm (2.11) converges to f exponentially,

‖fn − f‖p ≤
1 + ‖K‖2

S,θ(δ(Γ))θ

1 − ‖K‖2 (δ(Γ))θ

(
‖K‖2

S,θ(δ(Γ))θ
)n+1‖f‖p.
S,θ
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3. Sampling and reconstruction of concentrated signals

Stability of a sampling scheme is an important concept for the robustness and uniqueness for sampling and 
reconstruction of signals in a linear space, see [5,8,20,40,50,51,53]. In this section, we first consider weighted 
stability of bi-Lipschitz type for the sampling procedure on a sampling set ΓΩ ⊂ Ω for ε-concentrated signals 
on the domain Ω.

Theorem 3.1. Let 1 ≤ p ≤ ∞, ε ∈ (0, 1), (X, ρ, μ) be a metric measure space, T be an idempotent integral 
operator whose kernel K satisfies Assumption 2.5, Vp be the range space of the operator T defined by (1.1), 
Ω be a bounded domain, and Vp,Ω,ε be the set of ε-concentrated signals given in (1.3). If ΓΩ ⊂ Ω is a discrete 
sampling set satisfying

dH(ΓΩ, Ω) <
( 1 − ε

‖K‖S,θ

)1/θ

, (3.1)

then for all f, g ∈ Vp,Ω,ε,

(
1 − ε − ‖K‖S,θ(dH(ΓΩ, Ω))θ

)
‖f − g‖p − 2ε min(‖f‖p, ‖g‖p)

≤
∥∥(

f(γ) − g(γ)
)

γ∈ΓΩ

∥∥
p,μ(ΓΩ) ≤

(
1 + ‖K‖S,θ(dH(ΓΩ, Ω))θ

)
‖f − g‖p, (3.2)

where dH(ΓΩ, Ω) is the Hausdorff distance between ΓΩ and Ω, Iγ , γ ∈ ΓΩ, is a Voronoi partition of the 
domain Ω, and for any h ∈ Vp

∥∥(
h(γ)

)
γ∈ΓΩ

∥∥
p,μ(ΓΩ) =

{ ( ∑
γ∈ΓΩ

|h(γ)|pμ(Iγ)
)1/p if 1 ≤ p < ∞

supγ∈ΓΩ
|h(γ)| if p = ∞.

(3.3)

By (2.2) and (2.8b), we have

μ(Iγ) ≤ D2(μ)(dH(ΓΩ, Ω))d, γ ∈ ΓΩ,

where D2(μ) is the minimal upper bound in (2.2). Therefore we have the following unweighted inequalities 
for the sampling scheme f �−→ (f(γ))γ∈ΓΩ , cf. (1.4).

Corollary 3.2. Let the metric measure space (X, ρ, μ) and the set Vp,Ω,ε of ε-concentrated signals be as in 
Theorem 3.1. If ΓΩ ⊂ Ω is a discrete sampling set of the domain Ω satisfying (3.1), then

( ∑
γ∈ΓΩ

|f(γ)|p
)1/p

≥ 1 − ε − ‖K‖S,θ(dH(ΓΩ, Ω))θ

(D2(μ))1/p(dH(ΓΩ, Ω))d/p
‖f‖p

hold for all f ∈ Vp,Ω,ε, 1 ≤ p < ∞.

Given a sampling set ΓΩ and noiseless samples h(γ), γ ∈ ΓΩ, of h ∈ Vp, we define

hI =
∑

γ∈ΓΩ

h(γ)χIγ
, (3.4)

where χE is the indicator function on a set E. One may verify easily that

hI(γ) = h(γ), γ ∈ ΓΩ, (3.5)
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and

‖hI‖p,Ω =
∥∥(h(γ))γ∈ΓΩ

∥∥
p,μ(ΓΩ). (3.6)

By (3.6) with h replaced by f − g, the proof of Theorem 3.1 reduces to showing

‖hI − h‖p,Ω ≤ ‖K‖S,θ(dH(ΓΩ, Ω))θ‖h‖p, h ∈ Vp, (3.7)

see Section 6.4 for the detailed argument.
Given noiseless samples f(γ), γ ∈ ΓΩ, of an ε-concentrated signal f ∈ Vp,Ω,ε ⊂ Vp, the signal fI in (3.4)

coincides with the original signal f on the sampling set ΓΩ by (3.5). However the signal fI does not reside 
in the reproducing kernel space Vp and it does not provide an approximation to the original signal f , except 
that the Hausdorff distance dH(ΓΩ, Ω) between ΓΩ and Ω is small, since in that case

‖fI − f‖p ≤ ‖fI − f‖p,Ω + ‖f‖p,Ωc ≤
(
‖K‖S,θ(dH(ΓΩ, Ω))θ + ε

)
‖f‖p

by (1.3) and (3.7).
Based on the iterative algorithm (2.11), for any f ∈ Vp we define

g0 =
∑

γ∈ΓΩ

μ(Iγ)f(γ)K(·, γ) ∈ Vp, (3.8a)

and gn ∈ Vp, n ≥ 1, inductively by

gn = g0 + gn−1 − SΓgn−1, n ≥ 1, (3.8b)

where the preconstruction operator SΓ on Lp is given in (2.12) with Γ = ΓΩ ∪ΓΩc , ΓΩc is a discrete sampling 
set of the complement Ωc of the domain Ω satisfying

dH(ΓΩc , Ωc) ≤ min
(
ε1/θ‖K‖−1/θ

S,θ , (2‖K‖2
S,θ)−1/θ

)
, (3.9)

and {Iγ , γ ∈ ΓΩ} and {Iγ , γ ∈ ΓΩc} are Voronoi partitions of the domain Ω and its complement Ωc

respectively. In the following theorem, we show that gn, n ≥ 0, reconstructed from samples f(γ), γ ∈ ΓΩ, 
inside the domain Ω provide good approximations to the original ε-concentrated signal f ∈ Vp,Ω,ε, see 
Section 6.5 for the detailed argument.

Theorem 3.3. Let 1 ≤ p ≤ ∞, ε ∈ (0, 1), (X, ρ, μ) be a metric measure space, T be an idempotent operator 
whose kernel K satisfies Assumption 2.5, Vp be the range space of the operator T defined by (1.1), Ω be a 
bounded Corkscrew domain satisfying Assumption 2.2, ΓΩ be a discrete sampling set of the domain Ω, and 
Vp,Ω,ε be the set of ε-concentrated signals given in (1.3). If the Hausdorff distance between the sampling set 
ΓΩ and the domain Ω satisfies

dH(ΓΩ, Ω) < ‖K‖−2/θ
S,θ , (3.10)

then for any ε-concentrated signal f ∈ Vp,Ω,ε, the reconstructed signals gn in (3.8) with

n + 1 ≥ max
( ln(1/ε) − ln ‖K‖S,θ

θ ln(1/dH(ΓΩ, Ω)) − 2 ln ‖K‖S,θ
,

ln(1/ε) − ln ‖K‖S,θ

ln 2

)
(3.11)

are (9C0ε)-concentrated signals in Vp, i.e.,
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gn ∈ Vp,Ω,9C0ε, (3.12)

and they provide good approximations to the original signal f ,

‖gn − f‖p ≤ 4C0ε‖f‖p, (3.13)

where

C0 = ‖K‖S,θ max
(

2,
(
1 − ‖K‖2

S,θ(dH(ΓΩ, Ω))θ
)−1

)
. (3.14)

The reconstructed signals gn, n ≥ 0, in (3.8) do not interpolate the sampling data f(γ), γ ∈ ΓΩ, however 
they have small sampling difference to the original signal f on the sampling set ΓΩ, since it follows from 
(3.7) and (3.13) that

∥∥(
gn(γ) − f(γ)

)
γ∈ΓΩ

∥∥
p,μ(ΓΩ) ≤

(
1 + ‖K‖S,θ(dH(ΓΩ, Ω))θ

)
‖gn − f‖p

≤ 4C0
(
1 + ‖K‖S,θ(dH(ΓΩ, Ω))θ

)
ε‖f‖p (3.15)

for all f ∈ Vp,Ω,ε, 1 ≤ p ≤ ∞.

Remark 3.1. Take the hat function h(x) = max(1 −|x|, 0), the concentration domain ΩR = [−R, R] for some 
integer R ≥ 2, and signals f±(x) = h(x) ± δh(x − R − 1), δ ∈ (0, 1), in the shift-invariant space

Vp(h) =
{ ∑

k∈Z

c(k)h(x − k), (c(k))k∈Z ∈ �p
}

, 1 ≤ p ≤ ∞,

generated by the integer shifts of the hat function h. One may verify that the shift-invariant space Vp(h)
is the range space of some idempotent integral operator with kernel satisfying Assumption 2.5, and f±
are ε-concentrated signals onto ΩR with ε = δ for p = ∞ and ε = δ(1 + δp)−1/p for 1 ≤ p < ∞, since 
‖f±‖p,R\ΩR

= δ‖h‖p and ‖f±‖p = δ‖h‖p/ε. As signals f± coincide on the domain ΩR, the signals gn,±
constructed in (3.8) from their samples inside the domain ΩR are the same, which implies that

max
(
‖gn,+ − f+‖p, ‖gn,− − f−‖p

)
≥ 1

2‖f+ − f−‖p = δ‖h‖p = ε‖f±‖p.

Therefore the error estimate in (3.13) is suboptimal in the sense that the constant 4C0 cannot be replaced 
by a positive constant strictly less than one in general.

Reconstructing a signal from noisy data and estimating the reconstruction error are important problems 
in sampling theory [1,5,7,9,40,50,53]. In this paper, we propose the following algorithm g̃n, n ≥ 0, for 
signal reconstruction when samples f(γ), γ ∈ ΓΩ, of f ∈ Vp are corrupted by some deterministic noise 
ξξξ = (ξ(γ))γ∈ΓΩ :

g̃n = g̃0 + g̃n−1 − SΓg̃n−1, n ≥ 1, (3.16a)

where

g̃0 =
∑

γ∈ΓΩ

μ(Iγ)(f(γ) + ξ(γ))K(·, γ) ∈ Vp, (3.16b)

and the preconstruction operator SΓ on Lp is given in (2.12) with Γ = ΓΩ∪ΓΩc , and ΓΩc is a discrete sampling 
set of the complement Ωc satisfying (3.9). In the following theorem, we show that the reconstructed signals 
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g̃n with large n provide good approximations to the original ε-concentrated signal f , see Section 6.6 for the 
proof.

Theorem 3.4. Let 1 ≤ p ≤ ∞, ε ∈ (0, 1), (X, ρ, μ) be a metric measure space, T be an idempotent operator 
whose kernel K satisfies Assumption 2.5, Vp be the range space of the operator T defined by (1.1), Ω
be a bounded Corkscrew domain satisfying Assumption 2.2, ΓΩ be a discrete sampling set of the domain 
Ω satisfying (3.10), Vp,Ω,ε be the set of ε-concentrated signals given in (1.3), and ξξξ = (ξ(γ))γ∈ΓΩ be a 
deterministic noise vector with ‖ξξξ‖p,μ(ΓΩ) < ∞. Then for any ε-concentrated signal f ∈ Vp,Ω,ε, signals g̃n

in (3.16) with n satisfying (3.11) provide approximations to the original signal f ,

‖g̃n − f‖p ≤ 4C0ε‖f‖p + C0‖ξξξ‖p,μ(ΓΩ), (3.17)

where C0 is given in (3.14) and the norm ‖ · ‖p,μ(ΓΩ) is defined by (3.3).

4. Random sampling and reconstruction of concentrated signals

In this section, we consider sampling ε-concentrated signals in Vp,Ω,ε at i.i.d. random positions drawn 
on Ω, and reconstructing the original ε-concentrated signals in Vp,Ω,ε from their samples taken on these 
random positions. We establish a weighted stability inequality of bi-Lipschitz type for the random sampling 
procedure in Theorem 4.1. In Theorem 4.3 and Corollary 4.4, we show that, with high probability, signals 
concentrated on a bounded Corkscrew domain Ω can be reconstructed approximately from their samples 
taken at i.i.d. random positions drawn on Ω, provided that the sampling size is at least of the order 
μ(Ω) ln(μ(Ω)). Finally in Theorem 4.6 we prove that with high probability, an original ε-concentrated signal 
can be reconstructed approximately from its random samples corrupted by i.i.d. random noises, when the 
random sampling size is large enough.

Theorem 4.1. Let (X, ρ, μ) be a metric measure space, Vp, 1 ≤ p ≤ ∞, be the range space of an idempotent 
integral operator T whose kernel K satisfies Assumption 2.5, Ω be a bounded Corkscrew domain satisfying 
Assumption 2.2, and let Vp,Ω,ε, ε ∈ (0, 1), be the set of ε-concentrated signals given in (1.3). If {γ, γ ∈ ΓΩ}
are i.i.d. random positions drawn on Ω with respect to the probability measure (μ(Ω))−1dμ, then for any 
ε̃ ∈ (0, 1 − ε), the following weighted stability inequalities of bi-Lipschitz type

(
1 − ε − ε̃

)
‖f − g‖p − 2ε min(‖f‖p, ‖g‖p)

≤
∥∥(

f(γ) − g(γ)
)

γ∈ΓΩ

∥∥
p,μ(ΓΩ) ≤

(
1 + ε̃

)
‖f − g‖p, f, g ∈ Vp,Ω,ε (4.1)

hold with probability at least

1 − 10dμ(Ω)
cdD1(μ)(ε̃/‖K‖S,θ)d/θ

(
1 − cdD1(μ)(ε̃/‖K‖S,θ)d/θ

10dμ(Ω)

)N

,

where N is the size of the sampling set ΓΩ and the norm ‖ · ‖p,μ(ΓΩ) is defined by (3.3).

By Theorem 3.1, the proof of Theorem 4.1 reduces to the following crucial estimate on the probability 
on the Hausdorff distance dH(ΓΩ, Ω) > δ1 where 0 < δ1 < 1, see Section 6.7 for the proof.

Proposition 4.2. Let (X, ρ, μ) be a d-dimensional metric measure space and Ω be a bounded Corkscrew 
domain satisfying Assumption 2.2. Suppose that {γ, γ ∈ ΓΩ} are i.i.d. random positions drawn on Ω with 
respect to the probability measure (μ(Ω))−1dμ. Then for 0 < δ1 ≤ 1,
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P
{

dH(ΓΩ, Ω) > δ1
}

≤ 10dμ(Ω)
cdD1(μ)δd

1

(
1 − cdD1(μ)δd

1
10dμ(Ω)

)N

. (4.2)

Remark 4.1. Applying Corollary 3.2 and Proposition 4.2 with δ1 replaced by (2‖K‖S,θ)−1/θ, we obtain that 
the following sampling inequalities

( ∑
γ∈ΓΩ

|f(γ)|p
)1/p

≥ (1/2 − ε)(D2(μ))−1/p(2‖K‖S,θ)d/(pθ)‖f‖p, f ∈ Vp,Ω,ε (4.3)

hold with probability at least

1 − 10d(2‖K‖S,θ)d/θμ(Ω)
cdD1(μ)

(
1 − cdD1(μ)

10d(2‖K‖S,θ)d/θμ(Ω)

)N

,

where ε ∈ (0, 1/2) and 1 ≤ p < ∞. We remark that the above sampling inequalities (4.3) for random 
sampling of ε-concentrated signals in Vp,Ω,ε can be considered as a weak version of the corresponding 
sampling inequalities for bandlimited/wavelet signals concentrated on [−R/2, R/2]d in [11,12,27,34,37,42,59].

Remark 4.2. Let τ ∈ (0, 1/2], 1 ≤ p < ∞, and

N ≥ N0(μ(Ω), τ) :=
5d2d+1+d/θ‖K‖d/θ

S,θμ(Ω)
cdD1(μ) ln

(10d(2‖K‖S,θ)d/θμ(Ω)
cdD1(μ)τ

)
. (4.4)

Applying Corollary 3.2 and Proposition 4.2 with

δ1 =
( 10d

cdD1(μ)
μ(Ω)

N
ln

(N

τ

))1/d

,

we conclude that the following sampling inequalities

∑
γ∈ΓΩ

|f(γ)|p ≥ (1/2 − ε)pcdD1(μ)
10dD2(μ)

(
ln N

τ

)−1 N

μ(Ω)‖f‖p
p, f ∈ Vp,Ω,ε (4.5)

hold with probability at least 1 −τ . We remark that the sampling inequalities (4.5) for random sampling of ε-
concentrated signals in Vp,Ω,ε can be considered as a weak version of the corresponding sampling inequalities 
for bandlimited/wavelet signals concentrated on [−R/2, R/2]d in [11,12,27,37], where the lower bound in 
(4.5) is replaced by a multiple of N‖f‖p

p/μ(Ω).

To the best of our knowledge, there is no algorithm available to find good approximations to ε-
concentrated signals from their random samples inside the domain Ω. By Theorem 3.3 and Proposition 4.2
with δ1 replaced by (2‖K‖2

S,θ)−1/θ, such approximations are constructed explicitly.

Theorem 4.3. Let the metric measure space (X, ρ, μ), the domain Ω, the set Vp,Ω,ε of ε-concentrated signals, 
and the sequence gn ∈ Vp, n ≥ 0, be as in Theorem 3.3. Suppose that {γ, γ ∈ ΓΩ} are i.i.d. random positions 
drawn on Ω with respect to probability measure (μ(Ω))−1dμ, and denote the size of ΓΩ by N . Then for

n + 1 ≥ ln(1/ε) − ln ‖K‖S,θ

ln 2 , (4.6)

the following reconstruction error estimates
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‖gn − f‖p ≤ 8‖K‖S,θε‖f‖p, f ∈ Vp,Ω,ε (4.7)

hold with probability at least

1 − τ(μ(Ω), N) := 1 −
10d(2‖K‖2

S,θ)d/θμ(Ω)
cdD1(μ)

(
1 − cdD1(μ)

10d(2‖K‖2
S,θ)d/θμ(Ω)

)N

. (4.8)

For any 0 < τ < 1, one may verify that

τ(μ(Ω), N) ≤ τ

when

N ≥ N1(μ(Ω), τ) :=
10d(2‖K‖2

S,θ)d/θμ(Ω)
cdD1(μ) ln

10d(2‖K‖2
S,θ)d/θμ(Ω)

cdD1(μ)τ . (4.9)

Therefore by Proposition 2.6 and Theorem 4.3, we have the following corollary.

Corollary 4.4. Let ε, τ ∈ (0, 1), and let the metric measure space (X, ρ, μ), the domain Ω, the set Vp,Ω,ε

of ε-concentrated signals, the random sampling set ΓΩ, and the reconstructed signals gn, n ≥ 0, be as in 
Theorem 4.3. If the size N of the random sampling set ΓΩ satisfies (4.9), then for any integer n satisfying 
(4.6) and p ≤ q ≤ ∞,

‖gn − f‖q ≤ 8(D1(μ))−1/p+1/q‖K‖2−p/q
S,θ ε‖f‖p, f ∈ Vp,Ω,ε (4.10)

hold with probability at least 1 − τ .

Next, we consider signal reconstruction when random samples f(γ), γ ∈ ΓΩ, of a signal f ∈ Vp are 
corrupted by some bounded noise ξξξ = (ξ(γ))γ∈ΓΩ ,

f̃γ = f(γ) + ξ(γ), γ ∈ ΓΩ. (4.11)

Following the argument used in the proofs of Theorem 3.4 and Corollary 4.4, we have the following result 
when random samples are corrupted by bounded deterministic noises.

Corollary 4.5. Let ε, τ ∈ (0, 1), and let the metric measure space (X, ρ, μ), the domain Ω, the set Vp,Ω,ε of ε-
concentrated signals and the random sampling set ΓΩ be as in Theorem 4.3, ξξξ = (ξ(γ))γ∈ΓΩ be bounded noise 
vector with bound ‖ξξξ‖∞ = supγ∈ΓΩ

|ξ(γ)|, and the reconstructed signals g̃n, n ≥ 0, be as in Theorem 3.4. If 
the size N of the random sampling set ΓΩ satisfies (4.9), then for any integer n satisfying (4.6),

‖g̃n − f‖∞ ≤ 8(D1(μ))−1/p‖K‖2
S,θε‖f‖p + 2‖K‖S,θ‖ξξξ‖∞, f ∈ Vp,Ω,ε (4.12)

hold with probability at least 1 − τ .

Remark 4.3. Let 0 �= h0 ∈ Vp,Ω,ε0 satisfy

32(D1(μ))−1/p‖K‖2
S,θ‖h0‖pε0 ≤ ‖h0‖∞. (4.13)

Such a signal exists for sufficiently small ε0 when Vp is the shift-invariant space generated by the integer 
shifts of the hat function and Ω = [−R/2, R/2], R ≥ 2, see Remark 3.1. Take x ∈ Ω with |h0(x)| ≥ ‖h0‖∞/2
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and let g̃n, n ≥ 0, be as in Theorem 3.4 reconstructed from noisy sampling data (4.11) with f = 0 and 
ξ(γ) = h0(γ), γ ∈ ΓΩ. Then we obtain from Corollary 4.4 that

|g̃n(x) − h0(x)| ≤ 8(D1(μ))−1/p‖K‖2
S,θε0‖h0‖p (4.14)

hold with probability at least 1 − τ for large n. Therefore for large n,

|g̃n(x) − f(x)| = |g̃n(x)| ≥ ‖ξξξ‖∞/4

hold with probability at least 1 − τ , since ‖ξξξ‖∞ ≤ ‖h0‖∞ by the definition of the noise vector ξξξ, and

|g̃n(x)| ≥ |h0(x)| − 8(D1(μ))−1/p‖K‖2
S,θε0‖h0‖p ≥ ‖h0‖∞/4

by (4.13) and (4.14). This demonstrates that the error estimate in (4.12) is suboptimal in the sense that the 
second part of the bound estimate 2‖K‖S,θ‖ξξξ‖∞ cannot be replaced by A‖ξξξ‖∞ for some small constant A.

By Remark 4.3, the term 2‖K‖S,θ‖ξξξ‖∞ related to the noise vector ξξξ can not be ignored in the error 
estimate (4.12) of Corollary 4.5, no matter how large the sampling size N is. In the following theorem, 
we show that the scenario will be completely different if the noise vector ξξξ has its components being i.i.d. 
random variables, see [6,7,18,24] and references therein for reconstruction of signals in various linear spaces 
from their samples corrupted by random noises.

Theorem 4.6. Let the metric measure space (X, ρ, μ), the domain Ω, the set Vp,Ω,ε of ε-concentrated signals, 
the random sampling set ΓΩ, and the sequence g̃n, n ≥ 0, be as in Theorem 4.3. Suppose that τ ∈ (0, 1/2)
and ξ(γ), γ ∈ ΓΩ, are i.i.d. random variables with mean zero and variance σ2,

E(ξ(γ)) = 0, Var(ξ(γ)) = σ2, γ ∈ ΓΩ. (4.15)

Let f ∈ Vp,Ω,ε and set

δ̃1 = min
(

(2‖K‖2
S,θ)−1/θ,

( τε2σ−2‖f‖2
p

D2(μ)(D1(μ))2/p−1

)1/d
)

. (4.16)

If the size N of the random sampling set ΓΩ satisfies

N ≥ 10dμ(Ω)
cdD1(μ)δ̃d

1
ln 10dμ(Ω)

cdD1(μ)τ δ̃d
1

, (4.17)

then for any integer n satisfying (4.6), the approximation error estimates

‖g̃n − f‖∞ ≤ 10(D1(μ))−1/p‖K‖2
S,θε‖f‖p (4.18)

hold with probability at least 1 − 2τ , where D1(μ) and D2(μ) are the maximal lower bound and minimal 
upper bound in (2.2) respectively, and c is the ratio in the Corkscrew condition (2.6) for the domain Ω.

5. Numerical demonstrations

In this section, we demonstrate effectiveness of the algorithms (3.8) and (3.16) to approximate concen-
trated signals in the reproducing kernel space
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Fig. 1. Plotted on the left is a concentrated signal fL,α in (5.1) with L = 50 and α = 0, while on the right is another concentrated 
signal fL,α in (5.1) with L = 50 and α = 0.8, where the concentration ratio ‖fL,α‖2,Ωc

L
/‖fL,α‖2 = 0.6433/7.2628 = 0.0886 for the 

signal in the left figure and 0.0244/1.6869 = 0.0145 for the signal in the right figure.

V2(Φ) =
{ ∑

i∈Z

ciφi :
∑
i∈Z

|c(i)|2 < ∞
}

generated by (non-)uniform shifts of the Gaussian function exp(−x2), where Φ := {φi(x) = exp(−(x − i −
θi)2), i ∈ Z} and θi ∈ [−1/10, 1/10], i ∈ Z, are randomly selected [10,20,35,48]. Our numerical simulations 
indicate that the correlation matrix AΦ := (〈φi, φj〉)i,j∈Z has bounded inverse on �2, and hence the inverse 
A−1

Φ = (bij)i,j∈Z has polynomial off-diagonal decay of any order by Wiener’s lemma for infinite matrices 
[29,32,44,47,49]. Therefore the linear space V2(Φ) is the range space of an idempotent integral operator with 
integral kernel function

KΦ(x, y) =
∑

i,j∈Z

bjiφi(x)φj(y)

satisfying Assumption 2.5 with θ = 1.
In our simulations, we consider the following family of signals

fL,α =
L∑

i=−L

ri(1 + |i|)−αφi ∈ V2(Φ) (5.1)

concentrated on the interval ΩL = [−L, L], where L ≥ 1, α ≥ 0, and random variables ri, −L ≤ i ≤ L, 
are independently selected in [−1, 1]\(−1/2, 1/2) with uniform distribution, see Fig. 1 for two examples of 
concentrated signals fL,α with L = 50 and α = 0, 0.8 respectively.

Due to the Riesz basis property for the generator Φ and randomness of ri, −L ≤ i ≤ L, we have

‖fL,α‖2,Ωc
L

‖fL,α‖2
� L−α( ∑

|i|≤L(1 + |i|)−2α
)1/2 �

⎧⎪⎨
⎪⎩

L−1/2 if α < 1/2
(L ln L)−1/2 if α = 1/2
L−α if α > 1/2,

and
√

E‖fL,α‖2
2,Ωc

L√
E‖fL,α‖2

2
=

( ∑
|i|≤L(1 + |i|)−2α

∫
R\[−L,L] |φi(x)|2dx

)1/2

( ∑
(1 + |i|)−2α

∫
|φ (x)|2dx

)1/2

|i|≤L R i
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Fig. 2. Plotted on the top left/top right/bottom left are the minimal/average/maximal concentration ratio ‖fL,α‖2,Ωc
L

/‖fL,α‖2
over 1000 trials for α = 0, 0.2, 0.4, 0.6, 0.8 respectively. On the bottom right is the concentration ratio εL,α selected in (5.2) for 
the family of concentrated signals fL,α, 50 ≤ L ≤ 350, which is approximately the maximal concentration ratio plotted on the 
bottom left figure. It is observed that the average concentration ratio ‖fL,α‖2,Ωc

L
/‖fL,α‖2 is almost proportional to the selected 

concentration ratio εL,α for α = 0, 0.2, 0.4, 0.6, 0.8. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

≈

⎧⎪⎨
⎪⎩

L−1/2 if α < 1/2
(L ln L)−1/2 if α = 1/2
L−α if α > 1/2.

Here for two positive items A and B, A � B means that A/B is bounded by an absolute constant, and 
A ≈ B if both A/B and B/A are bounded by an absolute constant. Therefore signals fL,α in (5.1) are 
concentrated on ΩL with concentration ratio being about a multiple of L− max(α,1/2) for α �= 1/2. The 
above estimate on the concentration ratio ‖fL,α‖2,Ωc

L
/‖fL,α‖2 is confirmed by our numerical simulations, 

see Fig. 2. So in our simulations, we consider that the family of concentrated signals fL,α in (5.1) have 
concentration ratio

εL,α = CαL− max(α,1/2), (5.2)

where Cα = 1.15, 1, 0.75, 0.80, 1.45 for α = 0, 0.2, 0.4, 0.6, 0.8 respectively.
In the first part of our numerical simulations, we consider the sampling set ΓL = {γk, 1 ≤ k ≤ N}

with γi+1 − γi, 0 ≤ i ≤ N − 1, being independently selected on [1/4, 3/4] with uniform distribution, where 
γ0 = −L, γN+1 = L and N is chosen so that γN+1 −γN ∈ [0, 1/4]. The size of the sampling set ΓL is between 
8L/3 and 8L, while most of them have their sizes around 4L. To construct the preconstruction operator 
in (2.12) associated with the above sampling set ΓL, we take uniformly sampling set on the complement 
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Table 1
Average of the relative approximation error EL,α(n) in (5.3)
over 500 trials for n = 0 and 3.

n = 0

L
RAE α

0 0.2 0.4 0.6 0.8

50 0.1021 0.0891 0.0777 0.0674 0.0617
70 0.0926 0.0814 0.0722 0.0643 0.0608
90 0.0857 0.0766 0.0683 0.0615 0.0593
110 0.0811 0.0736 0.0665 0.0605 0.0582
170 0.0741 0.0682 0.0631 0.0589 0.0584
230 0.0701 0.0657 0.0623 0.0593 0.0580
290 0.0677 0.0639 0.0609 0.0586 0.0579
350 0.0665 0.0630 0.0604 0.0581 0.0580

n = 3

L
RAE α

0 0.2 0.4 0.6 0.8

50 0.0846 0.0679 0.0515 0.0343 0.0213
70 0.0725 0.0574 0.0427 0.0279 0.0165
90 0.0634 0.0501 0.0368 0.0235 0.0133
110 0.0567 0.0453 0.0330 0.0207 0.0111
170 0.0461 0.0363 0.0256 0.0152 0.0077
230 0.0397 0.0315 0.0223 0.0128 0.0063
290 0.0352 0.0275 0.0190 0.0108 0.0053
350 0.0328 0.0248 0.0174 0.0097 0.0044

Ωc
L = R\[−L, L] with gap δL,α := CαL− max(α,1/2)/2, where Cα is given in (5.2). Under the above setting, 

the preconstruction operator in (2.12) becomes

SL,αf(x) =
N∑

k=1

|Iγk
|f(γk)KΦ(x, γk) + δL,α

∞∑
m=0

f(γ+
m)KΦ(x, γ+

m)

+δL,α

∞∑
m=0

f(γ−
m)KΦ(x, γ−

m), f ∈ V2(Φ),

where γ±
m = ±(L +(m +1/2)δL,α), m ≥ 0, |Iγ1 | = L + γ2+γ1

2 , |IγN
| = L − γN +γN−1

2 , and |Iγk
| = γk+1−γk−1

2 , 2 ≤
k ≤ N −1. Let gn,L,α, n ≥ 0, be the n-th term in the iterative algorithm (3.8) with the original concentrated 
signal being fL,α and the above sampling set ΓL with the Hausdorff distance dH(ΓL, [−L, L]) ≤ 3/8. Shown 
in Table 1 is the average of the relative approximation error (RAE)

EL,α(n) = ‖gn,L,α − fL,α‖2/‖fL,α‖2 (5.3)

over 500 trials for n = 0, 3. Our numerical simulations show that

EL,α(n) ≤ εL,α, n ≥ 3,

for all 50 ≤ L ≤ 350 and α = i/5, 0 ≤ i ≤ 4, see Table 1 and Fig. 3. This demonstrates the conclusion in 
Theorem 3.3 on the approximation property of gn,L,α, n ≥ 0, to the original concentrated signal fL,α for large 
n. We observe from Fig. 3 that gn,L,α, n ≥ 1, in the iterative algorithm (3.8) provide better approximations 
to the original signal fL,α than the preconstructed signal g0,L,α does, and that gn,L,α, n ≥ 3, have almost 
perfect approximations to the original signal fL,α inside the domain far from the boundary.

In the second part of our numerical simulations, we consider the sampling set ΓN,L = {γk, 1 ≤ k ≤ N}
with γk, 1 ≤ k ≤ N , being independently selected on [−L, L] with uniform distribution. We order these 
random sampling positions in increasing order and denote by −L ≤ μ1 ≤ . . . ≤ μN ≤ L. Similar to our first 
simulation, we take uniformly sampling set on the complement [−L, L]c with gap δL,α := CαL− max(α,1/2)/2
and Cα given in (5.2). Under the above setting, the preconstruction operator in (2.12) becomes
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Fig. 3. Plotted on the top left and bottom left are the difference g0,L,α − fL,α between the preconstructed signal g0,L,α and the 
original signal fL,α given in Fig. 1 with α = 0 (top) and α = 0.8 (bottom), while on the top right and bottom right are the 
difference gn,L,α − fL,α between the constructed signal gn,L,α at the third iteration (n = 3) and the original signal fL,α with 
α = 0 (top) and α = 0.8 (bottom). Here the number of samples in the reconstruction procedure is 4L + 3 = 203, and the relative 
preconstruction error ‖g0,L,α − fL,α‖2/‖fL,α‖2, the relative approximation error ‖gn,L,α − fL,α‖2/‖fL,α‖2 and the concentration 
ratio ‖fL,α‖2,Ωc

L
/‖fL,α‖2 of the original signal fL,α are 0.1050, 0.0772 and 0.0886 respectively for the top figures, and 0.0598, 

0.0126 and 0.0145 respectively for the bottom figures.

S̃N,L,αf(x) =
N∑

k=1

|Iμk
|f(μk)KΦ(x, μk) + δL,α

∞∑
m=0

f(γ+
m)KΦ(x, γ+

m)

+δL,α

∞∑
m=0

f(γ−
m)KΦ(x, γ−

m), f ∈ V2(Φ),

where γ±
m = ±(L +(m +1/2)δL,α), m ≥ 0, |Iμ1 | = L + μ2+μ1

2 , |IμN
| = L − μN +μN−1

2 and |Iμk
| = μk+1−μk−1

2 , 2 ≤
k ≤ N − 1. Let g(n)

N,L,α, n ≥ 0, be the n-th term in the iterative algorithm (3.8) with the original signal 
being fL,α and the random sampling set being ΓN,L of size N . Our simulations indicate that most of signals 
g

(n)
N,L,α, n ≥ 6, reconstructed from the iterative algorithm (3.8) provide good approximations to the original 

signal fL,α when N ≥ 12L, see Fig. 4 for the average of the relative approximation error

EN,L,α(n) = ‖g
(n)
N,L,α − fL,α‖2/‖fL,α‖2

to two concentrated signals in Fig. 1 over 500 trials. Shown in Table 2 is the success rate of the iterative 
algorithm (3.8) to approximate the original signal fL,α over 500 trials, where a trial is considered as successful 
if the relative approximation error satisfies EN,L,α(n) ≤ εL,α for n = 6. We observe that the success 
rate is higher as the random sampling size N increases. Recall from Fig. 2 that εL,α = CαL− max(α,1/2)
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Fig. 4. Shown on the top left and right are the average of the relative approximation error EN,L,α(n) over 500 trials with n = 6
and N = 8L (left) and N = 12L (right). Plotted on the bottom left and right are the difference g

(n)
N,L,α − fL,α between the 

reconstructed signal g(n)
N,L,α at the sixth iteration (n = 6) and the original signal fL,α given in Fig. 1, where L = 50, α = 0 (left) 

and α = 0.8 (right), cf. Fig. 3. Here the number of random samples in the reconstruction procedure is N = 8L = 400, and the 
relative approximation error ‖g

(n)
N,L,α − fL,α‖2/‖fL,α‖2 is 0.0783 for the bottom left figure and 0.0128 for the bottom right figure.

Table 2
Success rate to reconstruct the concentrated signals fL,α from random samples of size 
N = 8L, 12L over 500 trials.

N 8L 12L

L

SR α
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

50 94.0 92.6 86.8 83.0 87.2 99.8 100.0 99.6 99.2 98.8
70 90.8 88.0 84.2 78.6 85.0 99.8 100.0 99.0 99.0 98.2
90 87.4 85.4 81.4 75.8 72.8 99.8 100.0 98.8 98.8 98.4
110 85.0 80.4 76.0 68.8 68.4 99.6 99.2 99.0 98.6 98.4
170 72.4 73.0 56.8 49.4 51.8 99.2 99.4 98.8 97.0 96.4
230 60.4 57.4 51.2 35.8 36.8 98.8 99.6 98.2 96.8 96.6
290 52.2 48.6 39.4 30.6 24.4 99.4 99.8 98.4 96.8 93.2
350 39.0 36.2 31.0 15.6 19.4 99.2 98.2 96.8 95.6 91.6

decreases as L and α increase. This together with Table 2 demonstrates the conclusion in Theorem 4.3 that 
with high probability, g(n)

N,L,α, n ≥ O(ln L), provide good approximations to the original signal fL,α when 
N ≥ O(L ln L).

In the third part of our numerical simulations, we follow numerical simulations in the second part, except 
that the sampling data of a concentrated signal f on the sampling set ΓN,L = {γk, 1 ≤ k ≤ N} being 
corrupted by i.i.d. random noises ξ(γk) ∈ [−δ, δ], γk ∈ ΓN,L, with uniform distribution,
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f̃γk
= f(γk) + ξ(γk), γk ∈ ΓN,L. (5.4)

Let g̃(n)
N,L,α, n ≥ 0, be the n-th term in the algorithm (3.16) with the original concentrated signal fL,α in 

Fig. 1 and the noisy data given in (5.4). By Theorem 4.6, the reconstructed signals g̃(n)
N,L,α, n ≥ O(ln L), 

provide good approximations to the original signal fL,α when

N ≥ O(Lδ2/ε2
L,α ln(Lδ2/ε2

L,α)) = O(Lmax(2α+1,2)δ2 ln(Lmax(2α+1,2)δ2)).

The above conclusion is observed from Fig. 5, where L = 50, δ = Lmin(1/2−α,0)/2 and ẼN,L,α = ‖g̃
(n)
N,L,α −

fL,α‖/‖fL,α‖2 is the relative approximation error between the reconstructed signal g̃
(n)
N,L,α at the sixth 

iteration (n = 6) from noisy data and the original signal fL,α given in Fig. 1.

6. Proofs

In this section, we collect the proofs of Propositions 2.3, 2.6, 2.7 and 4.2, and Theorems 3.1, 3.3, 3.4 and 
4.6.

6.1. Proof of Proposition 2.3

Let Xδ be a discrete set of X such that (2.3) and (2.5) hold, and set

X̃δ = {xi ∈ Xδ ∩ Ω, ρ(xi, ∂Ω) > δ}. (6.1)

Let Yδ = {yk} ⊂ ∂Ω and Ỹδ = {zk} ⊂ Ω be chosen so that

∂Ω ⊂ ∪yk∈Yδ
B(yk, δ) (6.2)

and

B(zk, cδ) ⊂ B(yk, δ) ∩ Ω, yk ∈ Yδ, zk ∈ Ỹδ. (6.3)

The existence of the set Ỹδ follows from the Corkscrew condition (2.6) for the domain Ω.
Let Ωδ ⊂ X̃δ ∪ Ỹδ be a maximal set such that

X̃δ ⊂ Ωδ, (6.4)

B(xi, δ/2) ∩ B(xj , δ/2) = ∅ for all distinct xi, xj ∈ Ωδ, (6.5)

and

B(y, δ/2) ∩
(

∪xi∈Ωδ
B(xi, δ/2)

)
�= ∅ for all y ∈ X̃δ ∪ Ỹδ. (6.6)

Now we show that the above maximal set Ωδ satisfies (2.7). By (6.1), (6.3) and (6.5), we see that the 
maximal set Ωδ satisfies (2.7a) and (2.7b).

Next we establish the first inequality in (2.7c). Take x ∈ Ω. For the case that ρ(x, ∂Ω) > 2δ, there exists 
xi ∈ Xδ by (2.5) such that ρ(x, xi) ≤ δ, which implies that ρ(xi, ∂Ω) > δ and hence xi ∈ X̃δ. Then for the 
case that ρ(x, ∂Ω) > 2δ,

ρ(x, Ωδ) ≤ ρ(x, X̃δ) ≤ δ (6.7)
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Fig. 5. Presented on the top left and right are the average of the relative approximation error ẼN,L,0 and ẼN,L,0.8, L2/5 ≤ N ≤ 6L2, 
over 100 trials respectively. Plotted on the middle left and right are noisy sampling data in (5.4) with N = 2L2 = 5000 and α = 0, 0.8
respectively. Shown on the bottom left and right are the difference g̃(n)

N,L,α − fL,α between the reconstructed signal g̃(n)
N,L,α at the 

sixth iteration (n = 6) from noisy sampling data in the middle figures and the original signal fL,α, where α = 0, 0.8 for left/right 
figures respectively, cf. Figs. 3 and 4. The relative approximation error ‖g

(n)
N,L,α − fL,α‖2/‖fL,α‖2 and the concentration ratio 

‖fL,α‖2,Ωc
L

/‖fL,α‖2 are 0.1036 and 0.0886 for the bottom left figure and 0.0948 and 0.0145 for the bottom right figure.

by (6.4). For the case that ρ(x, ∂Ω) ≤ 2δ, there exists yk ∈ Yδ such that ρ(yk, x) ≤ 3δ by the covering 
property (6.2), which together with (6.3) implies that

ρ(x, Ỹδ) ≤ 4δ. (6.8)
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By the maximal property (6.6), we have

ρ(y, Ωδ) ≤ δ for all y ∈ X̃δ ∪ Ỹδ. (6.9)

Combining (6.8) and (6.9), we show that

ρ(x, Ωδ) ≤ 5δ (6.10)

for the case that ρ(x, ∂Ω) ≤ 2δ. Therefore the first inequality in (2.7c) follows from (6.7) and (6.10).
Finally we establish the second inequality in (2.7c). Take x ∈ Ω. We obtain from (2.2) and (6.5) that

∑
xi∈Ωδ

χB(xi,5δ)(x) ≤
∑

xi∈B(x,5δ)∩Ωδ

μ(B(xi, δ/2))
D1(μ)(δ/2)d

=
μ

(
∪xi∈B(x,5δ)∩Ωδ

B(xi, δ/2)
)

D1(μ)(δ/2)d

≤ μ(B(x, 11δ/2))
D1(μ)(δ/2)d

≤ 11d D2(μ)
D1(μ) .

This completes the proof.

6.2. Proof of Proposition 2.6

Following the argument used in [40], we have

‖Tf‖p ≤ ‖K‖S‖f‖p for all f ∈ Lp. (6.11)

Then V is a closed subspace of Lp.
By the interpolation property between Lp and L∞ [14], it suffices to prove

‖f‖∞ ≤ (D1(μ))−1/p‖K‖S,θ‖f‖p, f ∈ Vp. (6.12)

Take x ∈ X. By (1.1), we obtain

|f(x)| =
∣∣∣ ∫

X

K(x, y)f(y)dμ(y)
∣∣∣ ≤ ‖K(x, ·)‖p′‖f‖p, (6.13)

where 1/p + 1/p′ = 1.
By the definition of the modulus of continuity, we have

|K(x, y′)| ≤ ω1(K)(x, y) + |K(x, y)|, y ∈ B(y′, 1).

This together with (2.2) and (2.9) implies that

‖K(x, ·)‖∞ ≤ sup
y′∈X

1
μ(B(y′, 1))

∫
B(y′,1)

(
ω1(K)(x, y) + |K(x, y)|

)
dμ(y)

≤ (D1(μ))−1‖K‖S,θ. (6.14)

Obviously, ‖K(x, ·)‖1 ≤ ‖K‖S,θ. Interpolating the L1 and L∞ norms of K(x, ·) yields

sup
x∈X

‖K(x, ·)‖p′ ≤ (D1(μ))−1/p‖K‖S,θ. (6.15)

Combining (6.13) and (6.15) proves (6.12) and hence (2.10).
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6.3. Proof of Proposition 2.7

We follow the argument used in [40], where a similar result is established for a reproducing kernel space 
on the Euclidean space Rd. Set δ = δ(Γ), ΓΩ = Γ ∩ Ω and ΓΩc = Γ ∩ Ωc. Then it follows from (2.8b) that 
ρ(y, γ) = ρ(y, ΓΩ) ≤ δ for every γ ∈ ΓΩ and y ∈ Iγ , and that ρ(y, γ) = ρ(y, ΓΩc) ≤ δ for every γ ∈ ΓΩc and 
y ∈ Iγ . Therefore ρ(y, γ) ≤ δ for all γ ∈ Γ and y ∈ Iγ . Hence for all x ∈ X, we obtain

|SΓf(x) − f(x)| ≤
∑
γ∈Γ

∫
Iγ

|K(x, γ)f(γ) − K(x, y)f(y)|dμ(y)

≤
∑
γ∈Γ

∫
Iγ

|K(x, γ) − K(x, y)||f(y)|dμ(y)

+
∑
γ∈Γ

∫
Iγ

|K(x, γ)|
( ∫

X

|K(γ, z) − K(y, z)||f(z)|dμ(z)
)

dμ(y)

≤
∫
X

ωδ(K)(x, y)|f(y)|dμ(y)

+
∫
X

∫
X

(
|K(x, y)| + ωδ(K)(x, y)

)
ωδ(K)(y, z)|f(z)|dμ(z)dμ(y)

=:
∫
X

KΓ(x, y)|f(y)|dμ(y), f ∈ Vp. (6.16)

Observe that

‖KΓ‖S ≤ ‖ωδ(K)‖S(1 + ‖K‖S + ‖ωδ(K)‖S) ≤ ‖K‖2
S,θδθ. (6.17)

By (6.16) and (6.17), we obtain the following crucial estimate in the proof,

‖SΓf − f‖p ≤ ‖ωδ(K)‖S(1 + ‖K‖S + ‖ωδ(K)‖S)‖f‖p ≤ ‖K‖2
S,θδθ‖f‖p (6.18)

for f ∈ Vp.
By (2.11), we can prove by induction on n ≥ 1 that

fn − fn−1 = (I − SΓ)n−1(f1 − f0) = (I − SΓ)nSΓf (6.19)

and

fn =
n∑

k=0

(I − SΓ)kf0 =
(

T +
n∑

k=1

(T − SΓ)k
)

SΓf, n ≥ 1. (6.20)

Define

R := T +
∞∑

k=1

(T − SΓ)k. (6.21)

Then one may verify that R is a bounded operator on Lp by (6.18),
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‖Rf‖p ≤
∞∑

k=0

‖(I − SΓ)kTf‖p ≤
(
1 − ‖K‖2

S,θδθ
)−1‖Tf‖p, f ∈ Lp, (6.22)

and R is a pseudo-inverse of the preconstruction operator SΓ,

RSΓf = SΓRf = f, f ∈ Vp. (6.23)

By (6.18), (6.20), (6.21) and (6.23), we have

‖fn − f‖p ≤
∞∑

k=n+1

‖(I − SΓ)kSΓf‖p

≤
1 + ‖K‖2

S,θδθ

1 − ‖K‖2
S,θδθ

(
‖K‖2

S,θδθ
)n+1‖f‖p, f ∈ Vp.

This proves that fn, n ≥ 0, converge to f exponentially.

6.4. Proof of Theorem 3.1

For h ∈ Vp, let hI be as in (3.4) and set δ = dH(ΓΩ, Ω). Following the argument after the statement of 
Theorem 3.1, it suffices to prove

‖hI − h‖p,Ω ≤ ‖K‖S,θδθ‖h‖p, h ∈ Vp. (6.24)

For any γ ∈ ΓΩ and x ∈ Iγ , it follows from the Voronoi partition property (2.8) that ρ(x, γ) = ρ(x, ΓΩ) ≤ δ. 
This together with (1.1) implies that

|hI(x) − h(x)| =
∣∣∣ ∫

X

∑
γ∈ΓΩ

(
K(γ, y) − K(x, y)

)
χIγ

(x)h(y)dμ(y)
∣∣∣

≤
∫
X

ωδ(K)(x, y)|h(y)|dμ(y), x ∈ Ω. (6.25)

Combining (6.11) and (6.25) proves (6.24).
For any f, g ∈ Vp, by (6.24) with hI and h replaced by fI − gI and f − g respectively, we have

‖fI − gI − (f − g)‖p,Ω ≤ ‖K‖S,θδθ‖f − g‖p, (6.26)

which implies

‖fI − gI‖p,Ω ≤ ‖f − g‖p,Ω + ‖K‖S,θδθ‖f − g‖p

≤
(
1 + ‖K‖S,θδθ

)
‖f − g‖p. (6.27)

Moreover, for any f, g ∈ Vp,Ω,ε, we obtain by (6.26) that

‖fI − gI‖p,Ω ≥ ‖f − g‖p,Ω − ‖K‖S,θδθ‖f − g‖p

≥ ‖f − g‖p − ‖f − g‖p,Ωc − ‖K‖S,θδθ‖f − g‖p

≥
(
1 − ε − ‖K‖S,θδθ

)
‖f − g‖p − 2ε min(‖f‖p, ‖g‖p), (6.28)
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where we use

‖f − g‖p,Ωc ≤ ‖f‖p,Ωc + ‖g‖p,Ωc ≤ ε(‖f‖p + ‖g‖p)

= ε
∣∣‖f‖p − ‖g‖p

∣∣ + 2ε min(‖f‖p, ‖g‖p)

≤ ε‖f − g‖p + 2ε min(‖f‖p, ‖g‖p).

Combining (3.6), (6.27) and (6.28) completes the proof.

6.5. Proof of Theorem 3.3

For f ∈ Vp,Ω,ε and a sampling set ΓΩc outside the domain Ω, define

f c
0 =

∑
γ∈ΓΩc

μ(Iγ)f(γ)K(·, γ) ∈ Vp and f c
I =

∑
γ∈ΓΩc

f(γ)χIγ
.

One may verify easily that

‖f c
0‖p ≤ ‖K‖S,θ‖f c

I ‖p = ‖K‖S,θ‖f c
I ‖p,Ωc . (6.29)

Set δ̃ = dH(ΓΩc , Ωc). Applying similar argument used to prove (3.7) and using (3.9), we obtain

‖f c
I − f‖p,Ωc ≤ ‖K‖S,θ δ̃θ‖f‖p ≤ ε‖f‖p.

This together with (1.3) and (6.29) implies that

‖f c
0‖p ≤ ‖K‖S,θ‖f c

I ‖p,Ωc ≤ 2‖K‖S,θε‖f‖p. (6.30)

Set δ = max(dH(ΓΩ, Ω), dH(ΓΩc , Ωc)). Define fn, n ≥ 0, as in (2.11) with Γ = ΓΩ ∪ ΓΩc . Then it follows 
from (3.9), (3.10) and Proposition 2.7 that fn, n ≥ 0, converge to f exponentially,

‖fn − f‖p ≤ 2
1 − ‖K‖2

S,θδθ

(
‖K‖2

S,θδθ
)n+1‖f‖p, n ≥ 0. (6.31)

Observe that f0 = g0 + f c
0 and

fn = gn +
( n∑

k=0

(I − SΓ)k
)

fc
0 , n ≥ 1.

Therefore

‖fn − gn‖p ≤
n∑

k=0

(
‖K‖2

S,θδθ
)k‖f c

0‖p ≤ ‖f c
0‖p

1 − ‖K‖2
S,θδθ

≤ 2C0ε‖f‖p (6.32)

by (3.9), (3.10), (6.18) and (6.30).
Combining (6.31), (6.32) and then using (3.11), we have

‖gn − f‖p ≤ ‖fn − f‖p + ‖gn − fn‖p ≤ 4C0ε‖f‖p, n ≥ 0.

This proves (3.13).
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The conclusion (3.12) is trivial for ε ≥ 1/(9C0). Now we consider the case that ε < 1/(9C0). By (3.13)
and the assumption f ∈ Vp,Ω,ε, we have

‖gn‖p,Ωc ≤ ‖f − gn‖p + ‖f‖p,Ωc ≤ 5C0ε‖f‖p (6.33)

and

‖gn‖p ≥ ‖f‖p − ‖gn − f‖p ≥ (1 − 4C0ε)‖f‖p ≥ 5
9‖f‖p. (6.34)

Combining (6.33) and (6.34) proves (3.12), and hence the reconstructed signals gn in (3.8) are (9C0ε)-
concentrated signals in Vp.

6.6. Proof of Theorem 3.4

Let gn, n ≥ 0, be as in (3.8). By Theorem 3.3, it suffices to prove that

‖gn − g̃n‖p ≤ C0‖ξξξ‖p,μ(ΓΩ). (6.35)

Following similar argument used to establish (6.32), we obtain

‖gn − g̃n‖p ≤
(
1 − ‖K‖2

S,θδθ
)−1

∥∥∥ ∑
γ∈ΓΩ

μ(Iγ)ξ(γ)K(·, γ)
∥∥∥

p
,

where δ is in (6.31). This together with (6.29) proves (6.35) and hence completes the proof.

6.7. Proof of Proposition 4.2

Let Ωδ1/10 be the discrete set in Proposition 2.3 with δ replaced by δ1/10. By (2.7c), we have

P
{

dH(ΓΩ, Ω) > δ1
}

≤ P
{

B(xi, δ1/2) ∩ ΓΩ = ∅ for some xi ∈ Ωδ1/10
}

≤
∑

xi∈Ωδ1/10

P
{

B(xi, δ1/2) ∩ ΓΩ = ∅
}

. (6.36)

We observe that

P
{

B(xi, δ1/2) ∩ ΓΩ = ∅
}

≤
(

1 − μ(B(xi, δ1/2) ∩ Ω)
μ(Ω)

)N

≤
(

1 − D1(μ)(cδ1/10)d

μ(Ω)

)N

(6.37)

by (2.7a) and the assumption on the random sampling, and also that

#Ωδ1/10 ≤
∑

xi∈Ωδ1/10

μ(B(xi, cδ1/10))
D1(μ)(cδ1/10)d

=
μ(∪xi∈Ωδ1/10B(xi, cδ1/10))

D1(μ)(cδ/10)d
≤ 10dμ(Ω)

cdD1(μ)δd
1

(6.38)

by Assumption 2.1 and Proposition 2.3. Combining (6.36), (6.37) and (6.38) completes the proof.
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6.8. Proof of Theorem 4.6

By (4.17) and Proposition 4.2, we have

P
{

dH(ΓΩ, Ω) > δ̃1
}

≤ 10dμ(Ω)
cdD1(μ)δ̃d

1

(
1 − cdD1(μ)δ̃d

1
10dμ(Ω)

)N

≤ τ. (6.39)

Therefore it suffices to establish the conclusion under the hypothesis that

dH(ΓΩ, Ω) ≤ δ̃1. (6.40)

Take x ∈ X and let gn and g̃n, n ≥ 0, be defined by (3.8) and (3.16) respectively. For a sampling set ΓΩ

with dH(ΓΩ, Ω) ≤ δ̃1, we obtain from Proposition 2.6 and Theorem 3.3 that

|gn(x) − f(x)| ≤ 8(D1(μ))−1/p‖K‖2
S,θε‖f‖p (6.41)

for all integers n satisfying (4.6).
Set hn = g̃n − gn, n ≥ 0. Following the argument used in the proof of Proposition 2.7, we can show that

hn(x) =
∑

γ∈ΓΩ

ξ(γ)μ(Iγ)
∫
X

Kn,ΓΩ(x, y)K(y, γ)dμ(y), (6.42)

and

‖Kn,ΓΩ‖S ≤
n∑

k=0

(
‖K‖2

S,θ

(
max(dH(ΓΩ, Ω), dH(ΓΩc , Ωc))

)θ
)k

≤ 2, (6.43)

where the last inequality follows from (3.9), (4.16) and (6.40).
By (4.15) and (6.42), we have

Eξξξ

{
hn(x)|dH(ΓΩ, Ω) ≤ δ̃1

}
=

∑
γ∈ΓΩ

Eξξξ(ξ(γ))μ(Iγ)
∫
X

Kn,ΓΩ(x, y)K(y, γ)dμ(y) = 0, (6.44)

and

Varξξξ

{
hn(x)|dH(ΓΩ, Ω) ≤ δ̃1

}
= σ2

∑
γ∈ΓΩ

|μ(Iγ)|2
∣∣∣ ∫

X

Kn,ΓΩ(x, y)K(y, γ)dμ(y)
∣∣∣2

. (6.45)

For a sampling set ΓΩ satisfying (6.40), we obtain from (2.2), (2.8), (6.14) and (6.43) that

μ(Iγ) ≤ D2(μ)δ̃d
1 (6.46)

and
∣∣∣ ∫

X

Kn,ΓΩ(x, y)K(y, γ)dμ(y)
∣∣∣ ≤ ‖Kn,ΓΩ‖S‖K(·, γ)‖∞ ≤ 2(D1(μ))−1‖K‖S,θ (6.47)

for all γ ∈ ΓΩ. Similarly, we have
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∑
γ∈ΓΩ

μ(Iγ)
∣∣∣ ∫

X

Kn,ΓΩ(x, y)K(y, γ)dμ(y)
∣∣∣

≤
∫
Ω

∫
X

|Kn,ΓΩ(x, y)|(|K(y, z)| + ωδ(K)(y, z))dμ(y)dμ(z)

≤ ‖Kn,ΓΩ‖S
(
‖K‖S + ‖ωδ(K)‖S

)
≤ 2‖K‖S,θ, (6.48)

where δ = max(dH(ΓΩ, Ω), dH(ΓΩc , Ωc)). Combining (6.44)–(6.48), we get

Varξξξ

{
hn(x)|dH(ΓΩ, Ω) ≤ δ̃1

}
≤ 4σ2(D1(μ))−1D2(μ)‖K‖2

S,θ δ̃d
1 .

Then applying Chebyshev inequality yields

Pξξξ

{
|hn(x)| ≥ 2(D1(μ))−1/p‖K‖S,θε‖f‖p |dH(ΓΩ, Ω) ≤ δ̃1

}
≤ σ2D2(μ)δ̃d

1
(D1(μ))1−2/pε2‖f‖2

p

≤ τ, (6.49)

where the second inequality holds by (4.16). Combining (6.39), (6.41) and (6.49) completes the proof.
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