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signals approximately from their (un)corrupted sampling data taken on a sampling
set contained in ). We establish a weighted stability of bi-Lipschitz type for a
(random) sampling scheme on the set of concentrated signals in a reproducing kernel
space. The weighted stability of bi-Lipschitz type provides a weak robustness to the
sampling scheme, however due to the nonconvexity of the set of concentrated signals,

MSC: it does not imply the unique signal reconstruction. From (un)corrupted samples
94A12 taken on a finite sampling set contained in {2, we propose an algorithm to find
42C40 approximations to signals concentrated on a bounded Corkscrew domain 2. Random
65T60

sampling is a sampling scheme where sampling positions are randomly taken
according to a probability distribution. Next we show that, with high probability,

}I_{{eyzl)ords: . 4 signals concentrated on a bounded Corkscrew domain 2 can be reconstructed
reizngguscﬁzi mg an approximately from their uncorrupted (or randomly corrupted) samples taken at

i.i.d. random positions drawn on €2, provided that the sampling size is at least of
the order () In(u(€2)), where p(£2) is the measure of the concentrated domain €.
Finally, we demonstrate the performance of proposed approximations to the original
concentrated signals when the sampling procedure is taken either with large density
or randomly with large size.

Reproducing kernel space
Corkscrew domain
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1. Introduction

Sampling signals of interest in a stable way and reconstructing the original signals exactly or approxi-
mately from their (un)corrupted sampling data are fundamental problems in sampling theory. A common
assumption is that signals of interest have some additional properties, such as residing in a linear space, or
having sparse representation in a dictionary, or having finite rate of innovation [5,16,19,26,40,46,50,53,56].
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In this paper, we consider (random) sampling and reconstruction of signals in a reproducing kernel space
concentrated on a bounded Corkscrew domain.

Let (X, p, ) be a metric measure space and LP := LP(X,p,u),1 < p < oo, be the linear space of all
p-integrable functions on the metric measure space (X, p, 1) with the standard p-norm denoted by || - ||,. In
this paper, we use the range space

V= {Tf, fe I’} ={fel’, Tf=f}, 1 <p< o, (1.1)

of an idempotent integral operator

Tf(z) = / K, 9)f (n)du(y), | € L, (1.2)

X

as the reproducing kernel space for signals to reside in, where the integral kernel K having certain off-diagonal
decay and Holder continuity, see Assumption 2.5. The above range space Vj,1 < p < oo, was introduced
by Nashed and Sun in the Euclidean setting [40], and it has rich geometric structure and lots of flexibility
to approximate real data set in signal processing and learning theory. Our illustrative examples are spaces
of p-integrable (non-)uniform splines [4,48 54], shift-invariant spaces with their generators having certain
regularity and decay at infinity [5,8,53], and spaces of signals with finite rate of innovation [20,23,50,56].
Sampling and reconstruction of signals in the range spaces of integral operators in the Euclidean space
has been well studied, see [20,34,40] and references therein. For signals in V,,1 < p < oo, as shown in
Proposition 2.7, they can be recovered exactly via an exponentially convergent algorithm from their samples
taken on a sampling set with large density.

For some engineering applications, signals of interest are concentrated on a bounded domain 2 and only
finitely many sampling data taken inside the domain 2 are available [1,11,12,20,31,33]. This motivates us
to consider sampling and reconstruction of signals in the space V},1 < p < 00, concentrated on a bounded
domain 2,

Vose = 1{f €Vp Ifllpe <ellfllp}, (1.3)

where € € (0,1), Q° C X is the complement of the domain 2, and || f||,.qc is the standard p-norm on the
complement €2°. The set V), o . of e-concentrated signals has been introduced for time-frequency analysis
[28,55], phase retrieval [2,3,30], and (random) sampling of bandlimited and wavelet signals [11,12,20,27,59].
As signals in V, o . are essentially supported on the domain §2, it is more natural to consider a sampling
procedure taken on a finite sampling set I'g contained inside the domain Q only. In Section 3, we show
that the sampling procedure f +— (f(v))yer, for e-concentrated signals in V}, o . has weighted stability of
bi-Lipschitz type when the Hausdorff distance

dr (T, ) == sup p(z,T'q)
zeQ

between the sampling set I'q C 2 and the bounded Corkscrew domain 2 is small, see Theorem 3.1 and
Corollary 3.2. For signals in a linear space, stability of a sampling scheme guarantees robustness and unique-
ness of reconstructing signals from their (noisy) samples, see [5,20,40,51]. However, the weighted stability in
Theorem 3.1 does not imply the unique reconstruction even it provides a weak robustness for the sampling
scheme on V,, o ., see [11] and Remark 3.1. Therefore we should consider reconstructing e-concentrated sig-
nals in V), o . approximately, instead of exactly, from their samples inside the domain. A challenge to derive
such good approximations to e-concentrated signals in V), q . is that the set V), o . is a nonconvex subset of
the reproducing kernel space V, (and hence it is not a linear space), which prevents the direct application
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of reconstruction algorithms used for signals in a linear space [4,5,9,20,25,40,50,54,58]. In Theorems 3.3 and
3.4, we propose an algorithm to construct suboptimal approximations to e-concentrated signals in V, o .
from their (un)corrupted samples taken on a finite sampling set T'q C Q.

Random sampling is a sampling scheme where sampling positions are randomly taken according to a
probability distribution [15,39,57]. It has received a lot of attention in the communities of signal processing,
compressive sensing, learning theory and sampling theory, see [13,16,17,21,36,38,41,43,45,46,60] and refer-
ences therein. Random sampling of concentrated signals was first discussed by Bass and Grochenig, and
they proved the following result for bandlimited signals concentrated on the cube Cg := [-R/2, R/2]¢, see
[12, Theorem 3.1].

Theorem 1.1. Let R > 2, ¢ € (0,1) and p € (0,1 — ). If sampling positions v € T'r are i.i.d. random
variables that are uniformly distributed over the cube Cr, then there exist absolute positive constants A and
B such that the sampling inequalities

N N

S —c=wIfI3 < 32 1P < 2r L+ wIfIE, f € Ber (14)
YElR

hold with probability at least 1 — Aexp(—Bu2N/R?), where N = #I'g is the size of the sampling set T'r, B

is the space of signals bandlimited to [—1/2,1/2]%, and Be g = {f € B, ||fll2ra\cn < VEIfll2} is the set of

bandlimited signals concentrated on CR.

The sampling inequality of the form (1.4) has been extended to signals in a shift-invariant space, with
finite rate of innovation and in a reproducing kernel space on the Euclidean space R?, see [11,27,34,37,42,59).
In this paper, we introduce a completely different approach to obtain a weighted sampling inequality, see
Theorem 4.1 and Remarks 4.1 and 4.2. The sampling inequality of the form (1.4) provides an estimate to
the signal energy with high probability, however it does not yield a stable reconstruction of e-concentrated
signals in a reproducing kernel space. To the best of our knowledge, there is no algorithm available to
perform the reconstruction of e-concentrated signals in a reproducing kernel space approximately from their
random samples in the considered domain. In Theorems 4.3 and 4.6, we show that the algorithm proposed in
Theorem 3.3 provides good approximations to the e-concentrated signal from its uncorrupted (or randomly
corrupted) random samples, with high probability, when the sampling size is large enough.

The main contributions of this paper are as follows: (i) We consider sampling and reconstruction of
signals concentrated on a bounded Corkscrew domain 2 of a metric measure space, instead of signals
concentrated on a cube [—R/2, R/2]? of the d-dimensional Euclidean space in the literature [11,12,27,34,
37,59]. (ii) For a (random) sampling scheme for signals concentrated on a bounded Corkscrew domain, we
establish a weighted stability of bi-Lipschitz type instead of the sampling inequality of the form (1.4), which
provides weak robustness of the sampling scheme. (iii) The set of e-concentrated signals is nonconvex and the
(random) sampling operator is not one-to-one in general. We propose an algorithm to construct suboptimal
approximations to the original e-concentrated signals from their (random) samples on the considered domain.
(iv) We show that, with high probability, signals concentrated on a bounded Corkscrew domain 2 can be
reconstructed approximately from their samples taken at i.i.d. random positions drawn on 2, provided that
the sampling size is at least of the order u(Q)In(u(Q2)), where () is the measure of the concentrated
domain €. (v) We show that with high probability, an original e-concentrated signal can be reconstructed
approximately from its random samples corrupted by i.i.d. random noises, when the random sampling size
is large enough.

The paper is organized as follows. In Section 2, we present some preliminaries on Corkscrew domains
2 of a metric measure space on which sampling is taken, and reproducing kernel spaces V,,,1 < p < oo,
in which e-concentrated signals on a Corkscrew domain €2 reside. In Section 3, we consider the sampling



276 Y. Li et al. / Appl. Comput. Harmon. Anal. 54 (2021) 273-302

procedure f — (f(7))yer, taken on a finite sampling set I'q contained in a Corkscrew domain  for e-
concentrated signals f in the reproducing kernel space V,,. We establish the stability of bi-Lipschitz type for
the above sampling procedure in Theorem 3.1, and we construct suboptimal approximations to the original
e-concentrated signals from their (un)corrupted samples, see Theorems 3.3 and 3.4. In Section 4, we consider
random sampling of e-concentrated signals in the reproducing kernel space V,, with large sampling size, and
we show that, with high probability, any e-concentrated signal can be reconstructed approximately from its
(un)corrupted samples taken randomly on the Corkscrew domain €2, see Theorems 4.3 and 4.6. In Section 5,
we demonstrate the performance of the proposed approximations to the original e-concentrated signals when
the sampling procedure is taken either with sufficient density or randomly with large size. In Section 6, we
include the proofs of all theorems and propositions.

2. Preliminaries on Corkscrew domains and reproducing kernel spaces

In this section, we present some preliminaries on Corkscrew domains Q of a metric measure space (X, p, u)
and the range space V,, of an idempotent integral operator T' for e-concentrated signals on ) to reside
in. Our illustrative model of Corkscrew domains is Lipschitz domains in R¢, such as rectangular regions
[-R/2, R/2]¢ with side length R > 1 or balls B(0, R) with center at the origin and radius R > 1. For a
bounded Corkscrew domain © with diam(0€2) > 1, we observe that for any ¢ € (0, 1) there exist a finite set
Qs and a disjoint partition I,y € (s, of the domain {2 with the property that

B(v,cd) C I, C B(y,9) for all v € Qj, (2.1)

where ¢ € (0, 1) is an absolute constant, see Proposition 2.4. For the range space V,, with the integral kernel
K having certain off-diagonal decay and Holder continuity, we show that it is a reproducing kernel space and
signals in V, can be reconstructed from their samples by an exponentially convergent iterative algorithm,
see Propositions 2.6 and 2.7.

2.1. Corkscrew domains in a metric measure space

A metric p on a set X is a function p : X x X — [0, 00) such that (i) p(z,y) = 0 if and only if z = y;
(ii) p(x,y) = p(y, z) for all x,y € X; and (iii) p(z,y) < p(x, 2) + p(z,y) for all z,y, 2 € X. A metric measure
space (X, p, ) is a metric space (X, p) with a non-negative Borel measure p compatible with the topology
generated by open balls {y € X, p(x,y) < r} with center € X and radius r > 0. For a metric measure
space (X, p, 1), we denote the diameter of a set Y C X by diam(Y"), and define the closed ball with center
x € X and radius r > 0 by

B(x,r) = {y e X, plz,y) < r}.
In this paper, we always assume the following:
Assumption 2.1. The metric measure space (X, p, ) has dimension d > 0 in the sense that
Dir® < pu(B(z,7)) < Dor® for all z € X and 0 < 7 < diam(X), (2.2)
where Dy and Dy are positive constants.
We call a Borel measure u satisfying (2.2) to be Ahlfors d-regular, and denote the maximal lower bound

and minimal upper bound in (2.2) by D;(u) and Dy(p) respectively [22,52]. Our models of metric measure
spaces are the Euclidean space R¢, the sphere S ¢ R and the torus T¢.
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For the metric measure space (X, p, 1), we can find a finite overlapping cover by balls B(x;, d), x; € X5,
for all & > 0 such that B(z;,0/2),x; € X5, are mutually disjoint. In particular, given a dense subset Y C X,
let X5 be a maximal subset of Y such that B(z;,8/2),z; € X5, are mutually disjoint, i.e.,

B(z;,0/2) N B(z;,6/2) =0 for all distinct z;,z; € X, (2.3)
and
B(y,6/2) N (Ug,ex; B(2,6/2)) #0 forall y € Y. (2.4)

Then one may verify that the above family of closed balls {B(z;,0),2; € Xs} covers the whole space X
with finite overlapping,

d
< 3D2(p)

1< Z XB(z:,5)(2) < T(M)a

z;€Xs

reX, (2.5)

where the first inequality holds as X is closed and
p(z,Xs) = inf p(z,y) <6, v € X
yeXs

by (2.4), and the second one follows since

1(B(2i,6/2)) 1 Us,eB(as) B, 0/2))
Z XB(a:i,(S)(m) < Dl(M)(é/z)d = D1(,u)(6/2)d

;€Xs z;€B(x,0)

p(B(2,30/2)) _ 3'Da(n)
= Di(w)(9/2)* T Di(p)

by (2.2) and (2.3).

We say that a domain D of the metric measure space (X, p, 1) is a Corkscrew domain if any ball B(x, )
with center at the boundary x € 0D and radius 0 < r < diam 9D contains one ball inside the domain with
a fraction of radius,

B(y,cr) C DN B(z,r) for some y € D, (2.6)

where ¢ € (0,1) is an absolute constant. Our illustrative model is Lipschitz domains in R?, such as rect-
angular regions [—R/2, R/2]¢ with side length R > 1 or balls B(0, R) with center at the origin and radius
R > 1. In this paper, we consider bounded Corkscrew domain €2 satisfying the following:

Assumption 2.2. The bounded domain 2 and its complement Q€ satisfy the Corkscrew condition (2.6) and
diam(99Q) > 1.

For a bounded domain 2 satisfying the above assumption, we find a nice covering in the following

proposition, see Section 6.1 for the proof, which plays a crucial role in our consideration of sampling and

reconstruction of signals concentrated on the domain Q.

Proposition 2.3. Let (X, p,u) be a d-dimensional metric measure space and Q be a bounded Corkscrew
domain satisfying Assumption 2.2. Then for any § € (0,1) there exists a discrete set Qs C Q such that
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B(zi,cd) C Q for all z; € Qs, (2.7a)
B(z;,6/2) N B(x;,6/2) =0 for all distinct z;,z; € Qj, (2.7b)
and
117Dy (1)

1< Z XB(x:,56) (T) < for all z € Q, (2.7¢)

;€05

D1 (p)

where D1 (1) and Do(p) are the mazimal lower bound and minimal upper bound in (2.2) respectively, and ¢
is the ratio in the Corkscrew condition (2.6) for the domain .

Given a discrete set I'q C 2, we say that I,y € I'q, is a Voronoi partition of the domain € if
Uyergly =Q, I,N I, =0 for all distinct v,7" € g, (2.8a)
and
L, c{z€Q, p(z,7) = p(x,Tq)} forall vy € q. (2.8b)
By Proposition 2.3, we have the following unit partition of the Corkscrew domain 2.
Proposition 2.4. Let (X, p, ) be a metric measure space and Q be a bounded Corkscrew domain satisfying
Assumption 2.2. Then for any § € (0,1) there exists a discrete set Qs C Q such that the corresponding

Voronoi partition I,y € Qs, of the domain Q satisfies (2.1), where c is the ratio in the Corkscrew condition
(2.6) for the domain .

2.2. Sampling and reconstruction of signals in a reproducing kernel space

For a kernel function K on X x X, we define its Schur norm || K||s and modulus of continuity ws(K) by
1K s = max (‘sup [K (.. sup [K (o)l )
reX yeX
and

ws(K)(z,y) = sup |K(2',y') — K(z,y)|, z,y € X,
p(a,2) <6, p(y’,y) <8

respectively. To consider sampling and reconstruction of e-concentrated signals in V), o ., we always assume
the following:

Assumption 2.5. The integral kernel K of the idempotent operator T in (1.2) has certain off-diagonal decay
and Holder continuity,

1K

s0:=|IKls+ sup 0 °|ws(K)|ls < o0 (2.9)
0<6<1

for some 0 < 6 < 1.
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One may verify that Assumption 2.5 is met for kernels K being Holder continuous,

K (2,y) — K(',y)| < Clp(z,2") + ply,y")° (1 + pla,y) + pla’,y')

for all z,2’,y,y’ € X, and having polynomial decay,

|K(2,y)] < C(1+ p(x,y))"

for all z,y € X, where a > d and C is a positive constant. It is well known that the integral operator with
its kernel having finite Schur norm is bounded operator on L”. Hence the range space V,, in (1.1) is a closed
subspace of LP. In the following proposition, we show that it is a reproducing kernel space of L?, which is
established in [40] for the Euclidean space setting, see Section 6.2 for a sketch of the proof.

Proposition 2.6. Let (X, p, ) be a metric measure space, T be an idempotent operator whose kernel K
satisfies Assumption 2.5, and V,,,1 < p < oo, be the range space of the operator T defined by (1.1). Then V,
is a reproducing kernel space of LP, and for any f € V,,

_ 1-
1fllg < (Dr() =P VYK 5 fllpy p < g < o0, (2.10)
where D1 (p) is the mazimal lower bound in (2.2) and | K||s,g is given in (2.9).

To consider sampling and reconstruction of signals f € V, concentrated on a bounded domain €2, we
recall the iterative algorithm

fo=Srf and f, = fo+ fno1 — Srfu-1, n2>1, (2.11)

to reconstruct signals f € V, from their samples f(7),y € T, taken on the sampling set I' N in the domain
 and the sampling set I'NQ° outside the domain ©, where {I,,y € TNQ} and {I,,7y € 'NQ°} are Voronoi
partitions of the domain {2 and its complement )¢ respectively, and the preconstruction operator Sr on L”
is defined by

Srg(a) =Y uL,)(Tg)()K (x,7), g € LP. (2.12)
~yel

The above iterative algorithm (2.11) has been widely used in reconstructing signals in various linear spaces,
see for instance [4,5,9,20,25,40,50]. In the following proposition, we show that the above algorithm converges
exponentially, see Section 6.3 for the proof.

Proposition 2.7. Let (X, p,u) be a metric measure space, T be an idempotent operator whose kernel K
satisfies Assumption 2.5, V,,1 < p < oo, be the range space (1.1) of the operator T, and Q be a bounded
domain. If T is a sampling set satisfying

§(T") := max (Slelg plz, T NQ), Sequz) ply,I'N Qc)) < ||K||;29/9,
x Yy ¢

then for any f € V,, the sequence f,,n > 0, in the iterative algorithm (2.11) converges to f exponentially,

L+ || K% 4(8(T))8 nt1
=l < 'K::gz&riie (13,6 (B@)")" ) £1lp-
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3. Sampling and reconstruction of concentrated signals

Stability of a sampling scheme is an important concept for the robustness and uniqueness for sampling and
reconstruction of signals in a linear space, see [5,8,20,40,50,51,53]. In this section, we first consider weighted
stability of bi-Lipschitz type for the sampling procedure on a sampling set I'q C €2 for e-concentrated signals
on the domain .

Theorem 3.1. Let 1 < p < oo, € € (0,1), (X, p, ) be a metric measure space, T' be an idempotent integral
operator whose kernel K satisfies Assumption 2.5, V,, be the range space of the operator T defined by (1.1),
Q be a bounded domain, and Vj, o be the set of e-concentrated signals given in (1.3). If T C Q is a discrete
sampling set satisfying

1—¢e \1/¢
dy(To, Q) < (m) (3.1)
then for all f,g € Vp.a.,
(1 -~ IKlls.o(drTa, 2)°)If = gll, — 2emin(| £, l9ll,)
<D =900 er | oy < L+ 1K Is0(dsr (T, )71 = gl (3:2)

where dp(T'q, Q) is the Hausdorff distance between T'q and , I,,v € T'q, is a Voronoi partition of the
domain 2, and for any h €'V,

1/p .
h - (Z’)’GFQ |h(7)|pﬂ(17)) if1<p<oo 53
H ( (,7))’761"9 Hp,u(l"n) { Sup'yeFQ |h(’)/)| if p = 0. ( )

By (2.2) and (2.8b), we have

p(1y) < Do(p)(dr (Do, )%, v € Tq,

where Dy (p) is the minimal upper bound in (2.2). Therefore we have the following unweighted inequalities
for the sampling scheme f — (f(7))yerq, cf. (1.4).

Corollary 3.2. Let the metric measure space (X, p, ) and the set V, o . of e-concentrated signals be as in
Theorem 3.1. If T C Q is a discrete sampling set of the domain § satisfying (3.1), then

» Ur 1—¢e—||K|s0(du(Tq,Q))?
(gp:glf(v)l) = (DQ(H))l/pde(fﬂvé’))d/p £,

hold for all f € Vyg.,1 <p < o0.

Given a sampling set I'q and noiseless samples h(7y),y € T'q, of h € V,,, we define

hi = h(y)xu,, (3.4)

v€lq

where y g is the indicator function on a set E. One may verify easily that

hi(y) = h(7), v € Ta, (3.5)
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and

lerlln.e = D) verall - (3.6)

By (3.6) with h replaced by f — g, the proof of Theorem 3.1 reduces to showing
Ihr =l < Klso(dr(Ta, )Py, b€V, (3.7)

see Section 6.4 for the detailed argument.

Given noiseless samples f(7),7 € Iq, of an e-concentrated signal f € V, g C V,, the signal f; in (3.4)
coincides with the original signal f on the sampling set I'q by (3.5). However the signal f; does not reside
in the reproducing kernel space V}, and it does not provide an approximation to the original signal f, except
that the Hausdorff distance dg (', 2) between I'g and 2 is small, since in that case

11 = fllp < I1fr = Fllp.o + ]

pee < (IKs0(dr(Ta, )7 + )l £l

by (1.3) and (3.7).
Based on the iterative algorithm (2.11), for any f € V), we define

go= Y wI)F(MK(7) €V, (3.8a)
v€le
and g, € V,,n > 1, inductively by
gn =90 + gn—1 — Srgn-1, n =1, (3.8b)

where the preconstruction operator Sy on LP is given in (2.12) with I' = T'qUT'ge, I'ge is a discrete sampling
set of the complement Q¢ of the domain §2 satisfying

. —1/6 —
A (Do, ) < min (9] K547, (21K (13,0)7), (3.9)

and {I,,v7 € I'q} and {I,,7 € Tgc} are Voronoi partitions of the domain © and its complement Q°
respectively. In the following theorem, we show that g,,n > 0, reconstructed from samples f(v),v € T'q,
inside the domain @ provide good approximations to the original e-concentrated signal f € V, ., see
Section 6.5 for the detailed argument.

Theorem 3.3. Let 1 < p < oo, € € (0,1), (X, p, ) be a metric measure space, T be an idempotent operator
whose kernel K satisfies Assumption 2.5, V,, be the range space of the operator T defined by (1.1), Q be a
bounded Corkscrew domain satisfying Assumption 2.2, T'q be a discrete sampling set of the domain 2, and
Vo0, be the set of e-concentrated signals given in (1.3). If the Hausdorff distance between the sampling set
I'q and the domain Q satisfies

dn(Ta, Q) < |K|55°, (3.10)

then for any e-concentrated signal f € V}, o -, the reconstructed signals g, in (3.8) with

In(1/e) —In[|Kls.0 In(1/e) —1In IIKlls,e)

1>
n 4+ —max(@ln(l/dH(FQ7Q))_21nHK||S’97 In2

(3.11)

are (9Cye)-concentrated signals in V,, i.e.,



282 Y. Li et al. / Appl. Comput. Harmon. Anal. 54 (2021) 273-302

gn € ‘/;),9790057 (3.12)

and they provide good approximations to the original signal f,

lgn = Fllp < 4Coe]| £llp, (3.13)

where
Co = |[K|s.0 max (2, (1 = K3 o(dn (T, 2)") ). (3.14)

The reconstructed signals g,,n > 0, in (3.8) do not interpolate the sampling data f(v),v € I'q, however
they have small sampling difference to the original signal f on the sampling set I'q, since it follows from
(3.7) and (3.13) that

|| (gn('Y) - f(’y))’VEFQ HILM(FQ) < (1 + | Kls,6(du (T, Q))G) lgn — flip
<4Co(1+ | K|ls.0(dr (Ta, 2)%)el £l (3.15)

forall feVy,a.1<p<o0.

Remark 3.1. Take the hat function h(z) = max(1—|z|,0), the concentration domain Qg = [—R, R] for some
integer R > 2, and signals fy(z) = h(z) £ 0h(x — R —1),d € (0,1), in the shift-invariant space

Vo) = { 3 elk)hla = k), (c(k)rez € £}, 1< p < o0,
keZ

generated by the integer shifts of the hat function h. One may verify that the shift-invariant space V,(h)
is the range space of some idempotent integral operator with kernel satisfying Assumption 2.5, and f4
are e-concentrated signals onto Qp with € = § for p = oo and € = §(1 + 67)~/P for 1 < p < oo, since
I f+llpr\Qr = OllR|lp and || f+|l, = 6||h||,/e. As signals fi coincide on the domain Qg, the signals g, +
constructed in (3.8) from their samples inside the domain Qg are the same, which implies that

1
max (lgn,+ = fellps lgn,— = f-llp) = 515+ = f-llp = SlAlly = el f=]p-
Therefore the error estimate in (3.13) is suboptimal in the sense that the constant 4Cy cannot be replaced
by a positive constant strictly less than one in general.

Reconstructing a signal from noisy data and estimating the reconstruction error are important problems
in sampling theory [1,5,7,9,40,50,53]. In this paper, we propose the following algorithm §,,n > 0, for
signal reconstruction when samples f(v),v € T'q, of f € V, are corrupted by some deterministic noise

§= (5(7))761“9 :

gn = gO + gn—l - Sl"gn—la n > 17 (3168,)
where
do= > L)) +ENE(7) €Vp, (3.16D)
v€lq

and the preconstruction operator Sr on L? is given in (2.12) with I' = TqUTlqe, and e is a discrete sampling
set of the complement Q¢ satisfying (3.9). In the following theorem, we show that the reconstructed signals
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GJn, with large n provide good approximations to the original e-concentrated signal f, see Section 6.6 for the
proof.

Theorem 3.4. Let 1 < p < oo, ¢ € (0,1), (X, p, ) be a metric measure space, T be an idempotent operator

5, V,, be the range space of the operator T defined by (1.1), Q
be a bounded Corkscrew domain satisfying Assumption 2.2, T'q be a discrete sampling set of the domain
Q satisfying (3.10), Vya,. be the set of e-concentrated signals given in (1.3), and & = (£(7))very be a
deterministic noise vector with ||€||, ) < 00. Then for any e-concentrated signal f € V., signals gy
in (3.16) with n satisfying (3.11) provide approxzimations to the original signal f,

whose kernel K satisfies Assumption 2.

1Gn = fllp < 4C0llfllp + Coll€llp.pura), (3.17)

where Cy is given in (3.14) and the norm || - ||, u(rq) is defined by (3.3).
4. Random sampling and reconstruction of concentrated signals

In this section, we consider sampling e-concentrated signals in Vj, o . at i.i.d. random positions drawn
on {2, and reconstructing the original e-concentrated signals in V, o . from their samples taken on these
random positions. We establish a weighted stability inequality of bi-Lipschitz type for the random sampling
procedure in Theorem 4.1. In Theorem 4.3 and Corollary 4.4, we show that, with high probability, signals
concentrated on a bounded Corkscrew domain 2 can be reconstructed approximately from their samples
taken at i.i.d. random positions drawn on 2, provided that the sampling size is at least of the order
() In(p(92)). Finally in Theorem 4.6 we prove that with high probability, an original e-concentrated signal
can be reconstructed approximately from its random samples corrupted by i.i.d. random noises, when the
random sampling size is large enough.

Theorem 4.1. Let (X, p, 1t) be a metric measure space, V,,1 < p < 00, be the range space of an idempotent
integral operator T whose kernel K satisfies Assumption 2.5, Q be a bounded Corkscrew domain satisfying
Assumption 2.2, and let V, o, € (0,1), be the set of e-concentrated signals given in (1.3). If {,v € T'q}
are i.i.d. random positions drawn on Q with respect to the probability measure (p(Q))~tdu, then for any
€€ (0,1 —¢), the following weighted stability inequalities of bi-Lipschitz type

(1—e=&)f - gllp — 2e min(|[ fll,, [lgll,)
<[P0 =9 era by piray < A+ = gllps f.9 € Voo (4.1)

hold with probability at least

_ 1074(9) ( B Cle(u)(é/llKlls,e)d/")N
Dy () (/11K |s.0)4° 10() ’

where N is the size of the sampling set I'q and the norm || - ||, u(rq,) s defined by (3.3).

By Theorem 3.1, the proof of Theorem 4.1 reduces to the following crucial estimate on the probability
on the Hausdorff distance dg(I'q, ) > 61 where 0 < 01 < 1, see Section 6.7 for the proof.

Proposition 4.2. Let (X, p,u) be a d-dimensional metric measure space and Q be a bounded Corkscrew
domain satisfying Assumption 2.2. Suppose that {~,y € T'q} are i.i.d. random positions drawn on Q with
respect to the probability measure (u(Q))~tdu. Then for 0 < §; <1,
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]P){dH(FQ,Q) > (51} <

1044(Q) (1 B clew)éf)N. (4.2)

Dy ()of \ 109u()

Remark 4.1. Applying Corollary 3.2 and Proposition 4.2 with ¢; replaced by (2| K||s.¢) "'/, we obtain that
the following sampling inequalities

(3 1) " = (172 = Do) QU5 )N fl £ € Vi (43)

v€lq

hold with probability at least

1

_ 10d(2llK\|s,e)d/9M(Q)< _ c'Di (1) )N
¢’ Dy (1) 1042/ Kls.0)*°n(Q)/

where ¢ € (0,1/2) and 1 < p < oo. We remark that the above sampling inequalities (4.3) for random
sampling of e-concentrated signals in V), . can be considered as a weak version of the corresponding
sampling inequalities for bandlimited /wavelet signals concentrated on [—R/2, R/2]% in [11,12,27,34,37,42,59].

Remark 4.2. Let 7 € (0,1/2],1 < p < o0, and

da/e
5l K (@) . <1Od(2llKlls,e)d/9N(Q))

N > No(p(22 = 44
= O(M( )77_) Cle(/J) Cle(,u)T ( )
Applying Corollary 3.2 and Proposition 4.2 with
104 u(Q) ., (Ny\/d
hh=|—-"——"In(—
! (cle(u) N n(T)) ’
we conclude that the following sampling inequalities
(1/2 — &)Pct Dy (1) NN-1 N
P> In — — | fIZ V 4.5
> 1P 2 S () s I € Vaae (45)

v€lQ

hold with probability at least 1 —7. We remark that the sampling inequalities (4.5) for random sampling of e-
concentrated signals in V), o . can be considered as a weak version of the corresponding sampling inequalities
for bandlimited /wavelet signals concentrated on [—R/2, R/2]% in [11,12,27,37], where the lower bound in
(4.5) is replaced by a multiple of N||f[|}/u(Q2).

To the best of our knowledge, there is no algorithm available to find good approximations to e-
concentrated signals from their random samples inside the domain €2. By Theorem 3.3 and Proposition 4.2
with d; replaced by (2| K H?s,a)_l/ 9 such approximations are constructed explicitly.

Theorem 4.3. Let the metric measure space (X, p, jt), the domain Q, the set V, q . of e-concentrated signals,
and the sequence g, € Vp,m > 0, be as in Theorem 3.3. Suppose that {~,v € T'q} are i.i.d. random positions
drawn on 0 with respect to probability measure (11(2)) " du, and denote the size of Tq by N. Then for

In(1/e) —In||K]||s.6
In2 ’

n+1> (4.6)

the following reconstruction error estimates
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lgn = Fllp < 8l Klls0¢ll fllps f € Voo (4.7)

hold with probability at least

/
1—7(u(Q),N) :=1— LIS o) () Dy () (Q)>N~ (4.8)

Dy (p) ( 102K )
For any 0 < 7 < 1, one may verify that
T(u(Q2),N) <7

when

N Ny, r) 104K [3,)" () | 10%( K ) ()
= T Dy (1) Dy ()T

Therefore by Proposition 2.6 and Theorem 4.3, we have the following corollary.

Corollary 4.4. Let ¢,7 € (0,1), and let the metric measure space (X, p, ), the domain 2, the set V..
of e-concentrated signals, the random sampling set I'q, and the reconstructed signals gn,,n > 0, be as in
Theorem /.3. If the size N of the random sampling set T, satisfies (4.9), then for any integer n satisfying
(4.6) and p < g < o0,

lgn — £llg < 8(D1 ()P K |G % fllp, | € Viore (4.10)
hold with probability at least 1 — T.

Next, we consider signal reconstruction when random samples f(v),y € I'q, of a signal f € V, are
corrupted by some bounded noise & = (£(7))~erg,

fy=71()+&(), v ela. (4.11)

Following the argument used in the proofs of Theorem 3.4 and Corollary 4.4, we have the following result
when random samples are corrupted by bounded deterministic noises.

Corollary 4.5. Let e, 7 € (0,1), and let the metric measure space (X, p, i), the domain Q, the set Vo . of e-
concentrated signals and the random sampling set T'q be as in Theorem 4.3, & = (£(7))~ery, be bounded noise
vector with bound ||§||c = sup,cr, [£(7)|, and the reconstructed signals gn,n > 0, be as in Theorem 3.4. If
the size N of the random sampling set T'q satisfies (4.9), then for any integer n satisfying (4.6),

130 = flloo < 8(D1(k) " PIK 5 pellf 1y + 21K s 01€ 0, f € Vigre (4.12)
hold with probability at least 1 — 7.
Remark 4.3. Let 0 # hg € V}, o ¢, satisfy
32(D1(u)) " PIIE |5 pllhollpeo < Iholloo. (4.13)

Such a signal exists for sufficiently small g when V}, is the shift-invariant space generated by the integer
shifts of the hat function and Q2 = [-R/2, R/2], R > 2, see Remark 3.1. Take x € Q with |ho(z)| > ||ho]|co/2



286 Y. Li et al. / Appl. Comput. Harmon. Anal. 54 (2021) 273-302

and let g,,n > 0, be as in Theorem 3.4 reconstructed from noisy sampling data (4.11) with f = 0 and
&(y) = ho(7),vy € Tq. Then we obtain from Corollary 4.4 that

|Gn (@) — ho(@)] < 8(D1(k) VP IIKII5 p2olloll, (4.14)
hold with probability at least 1 — 7 for large n. Therefore for large n,
|9n (@) = f(@)] = Gn (@) = [|€]loc/4
hold with probability at least 1 — 7, since [|€|loo < ||ho|loo by the definition of the noise vector €, and
G (@)] = [ho(2)] = 8(D1(1)~VPIKII% peollolly = [1holloo /4

by (4.13) and (4.14). This demonstrates that the error estimate in (4.12) is suboptimal in the sense that the
second part of the bound estimate 2| K|

s.0/l€lloo cannot be replaced by A||§|| for some small constant A.

By Remark 4.3, the term 2| K||s¢||€|lc related to the noise vector £ can not be ignored in the error
estimate (4.12) of Corollary 4.5, no matter how large the sampling size N is. In the following theorem,
we show that the scenario will be completely different if the noise vector € has its components being i.i.d.
random variables, see [6,7,18,24] and references therein for reconstruction of signals in various linear spaces
from their samples corrupted by random noises.

Theorem 4.6. Let the metric measure space (X, p, (1), the domain Q, the set V, q . of e-concentrated signals,

the random sampling set T'q, and the sequence g,,n > 0, be as in Theorem 4.3. Suppose that 7 € (0,1/2)

and £(v),7y € Tq, are i.i.d. random variables with mean zero and variance o2,

E(¢(v) =0, Var(¢(y)) =0?, v €Tq. (4.15)
Let f € Vp 0, and set
- Te2072|| 1|2 1/d
51 = min <(2||K||?S,0)1/07 (DQ(L;(Dl(/L{)Lp/p_l) ) ) (4'16)

If the size N of the random sampling set I'q satisfies

1070(Q) | - 109u(Q)

— In —, 4.17
— Dy (p)of Dy ()Tt (17

then for any integer n satisfying (4.6), the approximation error estimates
13 = flloo < 10(D1 (1)~ PIK 5 0 £ (4.18)

hold with probability at least 1 — 27, where D1(u) and D2(p) are the mazimal lower bound and minimal
upper bound in (2.2) respectively, and c is the ratio in the Corkscrew condition (2.6) for the domain €.

5. Numerical demonstrations

In this section, we demonstrate effectiveness of the algorithms (3.8) and (3.16) to approximate concen-
trated signals in the reproducing kernel space
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Fig. 1. Plotted on the left is a concentrated signal fr, o in (5.1) with L = 50 and « = 0, while on the right is another concentrated
signal fr,o in (5.1) with L = 50 and o = 0.8, where the concentration ratio || fr,«ll2,05 /|| fL,all2 = 0.6433/7.2628 = 0.0886 for the
signal in the left figure and 0.0244/1.6869 = 0.0145 for the signal in the right figure.

o) = {Zcm Y e < oo}

1€EZ i€Z

generated by (non-)uniform shifts of the Gaussian function exp(—z?), where ® := {¢;(x) = exp(—(z — i —
0;)?), i € Z} and 6; € [-1/10,1/10],4 € Z, are randomly selected [10,20,35,48]. Our numerical simulations
indicate that the correlation matrix Ag := ((¢;, ¢;))i jez has bounded inverse on ¢2, and hence the inverse
Agl = (bij)i,jez has polynomial off-diagonal decay of any order by Wiener’s lemma for infinite matrices
[29,32,44,47,49]. Therefore the linear space Vo(®) is the range space of an idempotent integral operator with
integral kernel function

y) = Z bji¢i();(y)

,jEZL

satisfying Assumption 2.5 with 8 = 1.
In our simulations, we consider the following family of signals

L

fra= Y ri(l+1i]) "¢ € Va(®) (5.1)

i=—L

concentrated on the interval Q = [—L, L], where L > 1,a > 0, and random variables r;, =L < i < L,
are independently selected in [—1,1]\(—1/2,1/2) with uniform distribution, see Fig. 1 for two examples of
concentrated signals fr o with L = 50 and o = 0, 0.8 respectively.

Due to the Riesz basis property for the generator ® and randomness of r;, —L < i < L, we have

” o L= if < 1/2
< _ 7z S (LInL)='2 if a =1/2
(Z|i\§L(1+|7’|)_2a) L« if a>1/2,

and

VEILalBa;  (Zen (14172 f gy [0:(@)2de) "

VEIRLalB  (Sen(l+ 102 fy l6s(@)Pdr) '
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Fig. 2. Plotted on the top left/top right/bottom left are the minimal/average/maximal concentration ratio ||fr,all2,0: /|lfr,all2
over 1000 trials for « = 0,0.2,0.4, 0.6, 0.8 respectively. On the bottom right is the concentration ratio e, o selected in (5.2) for
the family of concentrated signals fr o,50 < L < 350, which is approximately the maximal concentration ratio plotted on the
bottom left figure. It is observed that the average concentration ratio || fr,«all2,0¢ /|| fL,«ll2 is almost proportional to the selected
concentration ratio ez, for @« = 0,0.2,0.4,0.6,0.8. (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

L~1/? if <1/2
~{ (LInL)~Y% if a=1/2
L=« if a>1/2.

Here for two positive items A and B, A < B means that A/B is bounded by an absolute constant, and
A ~ B if both A/B and B/A are bounded by an absolute constant. Therefore signals fr . in (5.1) are
concentrated on Qy with concentration ratio being about a multiple of L~ ™ax(@1/2) for o = 1/2. The
above estimate on the concentration ratio || fr,all2,0s /Il fL.«ll2 is confirmed by our numerical simulations,
see Fig. 2. So in our simulations, we consider that the family of concentrated signals fr, o in (5.1) have
concentration ratio

Lo = C«aLf max(oz,l/2)7 (52)

where C,, = 1.15,1,0.75,0.80, 1.45 for a« = 0,0.2,0.4, 0.6, 0.8 respectively.

In the first part of our numerical simulations, we consider the sampling set T';, = {7%,1 < k < N}
with ;41 — v;,0 < i < N — 1, being independently selected on [1/4,3/4] with uniform distribution, where
Yo = —L,yy+1 = L and N is chosen so that ynx411—vn € [0, 1/4]. The size of the sampling set I'y, is between
8L/3 and 8L, while most of them have their sizes around 4L. To construct the preconstruction operator
in (2.12) associated with the above sampling set 'z, we take uniformly sampling set on the complement
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Table 1
Average of the relative approximation error Ep, o(n) in (5.3)
over 500 trials for n = 0 and 3.

n =20
RAE \ «

0 0.2 0.4 0.6 0.8
L
50 0.1021  0.0891 0.0777 0.0674 0.0617
70 0.0926 0.0814 0.0722 0.0643  0.0608
90 0.0857  0.0766  0.0683 0.0615  0.0593
110 0.0811 0.0736  0.0665 0.0605  0.0582
170 0.0741  0.0682  0.0631 0.0589  0.0584
230 0.0701  0.0657 0.0623 0.0593  0.0580
290 0.0677  0.0639 0.0609 0.0586  0.0579
350 0.0665 0.0630 0.0604 0.0581 0.0580
n=3
RAE \ «

0 0.2 0.4 0.6 0.8
L
50 0.0846  0.0679  0.0515 0.0343 0.0213
70 0.0725 0.0574 0.0427 0.0279 0.0165
90 0.0634 0.0501 0.0368 0.0235 0.0133
110 0.0567  0.0453 0.0330 0.0207 0.0111
170 0.0461 0.0363 0.0256 0.0152  0.0077
230 0.0397 0.0315 0.0223 0.0128 0.0063
290 0.0352  0.0275 0.0190 0.0108 0.0053
350 0.0328 0.0248 0.0174 0.0097 0.0044

Q% = R\[~L, L] with gap 0y, o := Co L™ ™2x(*1/2) /2 wwhere C,, is given in (5.2). Under the above setting,
the preconstruction operator in (2.12) becomes

Spaf(z Z| Wl f () Ko (2, 7%) + 01,0 Z Fom) Ke(@,7,)

m=0

+5L,o< Z f('Y;L)K‘I)(Ivv;v,)v f € VQ(Q)a

m=0

where 5 = £(L+(m+1/2)01.4), m >0, |L,,| = L+ 221 |1 | = L—%, and |, | = B2L 9 <
k < N—1.Let gn,1.a,n > 0, be the n-th term in the iterative algorithm (3.8) with the original concentrated
signal being fr, o, and the above sampling set I'z, with the Hausdorff distance dy (T'r, [—L, L]) < 3/8. Shown
in Table 1 is the average of the relative approximation error (RAE)

Epa(n) = |lgn,L,a = frall2/lfrall2 (5-3)

over 500 trials for n = 0, 3. Our numerical simulations show that
Epo(n) <epa, n>3,

for all 50 < L < 350 and « = /5,0 < i < 4, see Table 1 and Fig. 3. This demonstrates the conclusion in
Theorem 3.3 on the approximation property of g, 1., 7 > 0, to the original concentrated signal fr, . for large
n. We observe from Fig. 3 that g, .o, n > 1, in the iterative algorithm (3.8) provide better approximations
to the original signal f7 . than the preconstructed signal go r . does, and that g, r,.,n > 3, have almost
perfect approximations to the original signal fr, , inside the domain far from the boundary.

In the second part of our numerical simulations, we consider the sampling set I'n j, = {v,1 < k < N}
with v%,1 < k < N, being independently selected on [—L, L] with uniform distribution. We order these
random sampling positions in increasing order and denote by —L < u; < ... < uy < L. Similar to our first
simulation, we take uniformly sampling set on the complement [—L, L]¢ with gap 0y, o := Cp L™ ™2x(®1/2) /9
and C,, given in (5.2). Under the above setting, the preconstruction operator in (2.12) becomes
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Fig. 3. Plotted on the top left and bottom left are the difference go,r,o — fL,o between the preconstructed signal go,1,o and the
original signal fr . given in Fig. 1 with a = 0 (top) and o = 0.8 (bottom), while on the top right and bottom right are the
difference gn,r,o — fL,o between the constructed signal g, 1, at the third iteration (n = 3) and the original signal fr o with
a =0 (top) and a = 0.8 (bottom). Here the number of samples in the reconstruction procedure is 4L + 3 = 203, and the relative
preconstruction error ||go,r,o — fr,all2/||fL |2, the relative approximation error ||gn,r,a — fr,all2/||fL,o|l2 and the concentration
ratio || fr,all2,0¢ /| fL,all2 of the original signal fr, are 0.1050,0.0772 and 0.0886 respectively for the top figures, and 0.0598,
0.0126 and 0.0145 respectively for the bottom figures.

Sn.Laf(x Z [ Ly | f (i) Ko (2, 1) + 61,0 Z ) Ka(2,7)

k=1 m=0

o0 Y, F(m) Ko (@,75), € Va(®),

m=0

(LA (m+1/2)0,0),m 2 0, |1y, | = LA 22300 |1, | = L— BN and |1, | = Mgkt 2 <
1. Let g%l)L o

where v,
k<N -

being fr » and the random sampling set being I'y 1, of size N. Our simulations indicate that most of signals
(n)
IN,L,a>

31gnal fr,o when N > 12L, see Fig. 4 for the average of the relative approximation error

n > 0, be the n-th term in the iterative algorithm (3.8) with the original signal

n > 6, reconstructed from the iterative algorithm (3.8) provide good approximations to the original

EN,L,a(n) = ”gNL o fL,aH2/||fL,a||2

to two concentrated signals in Fig. 1 over 500 trials. Shown in Table 2 is the success rate of the iterative
algorithm (3.8) to approximate the original signal fr, o over 500 trials, where a trial is considered as successful

6. We observe that the success
rate is higher as the random sampling size N increases. Recall from Fig. 2 that e, = C, L™ ™ax(1/2)

if the relative approximation error satisfies En 1.o(n) < €r o for n
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Fig. 4. Shown on the top left and right are the average of the relative approximation error En 1 o(n) over 500 trials with n = 6
and N = 8L (left) and N = 12L (right). Plotted on the bottom left and right are the difference g%’)La — fL,a between the
reconstructed signal g](\:)L’a at the sixth iteration (n = 6) and the original signal fr, o given in Fig. 1, where L = 50, « = 0 (left)
and a = 0.8 (right), cf. Fig. 3. Here the number of random samples in the reconstruction procedure is N = 8L = 400, and the

relative approximation error Hg%’;)L,a — fr,all2/ll fL,all2 is 0.0783 for the bottom left figure and 0.0128 for the bottom right figure.

Table 2
Success rate to reconstruct the concentrated signals fr, o from random samples of size
N = 8L, 12L over 500 trials.

N 8L 12L

SR\ «

T 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
50 94.0 92.6 86.8 83.0 87.2 99.8 100.0 99.6 99.2 98.8
70 90.8 88.0 84.2 78.6 85.0 99.8 100.0 99.0 99.0 98.2
90 87.4 85.4 81.4 75.8 72.8 99.8 100.0 98.8 98.8 98.4
110 85.0 80.4 76.0 68.8 68.4 99.6 99.2 99.0 98.6 98.4
170 72.4 73.0 56.8 49.4 51.8 99.2 99.4 98.8 97.0 96.4
230 60.4 57.4 51.2 35.8 36.8 98.8 99.6 98.2 96.8 96.6
290 52.2 48.6 39.4 30.6 24.4 99.4 99.8 98.4 96.8 93.2
350 39.0 36.2 31.0 15.6 19.4 99.2 98.2 96.8 95.6 91.6

decreases as L and « increase. This together with Table 2 demonstrates the conclusion in Theorem 4.3 that
with high probability, gg\Z)L’a, n > O(In L), provide good approximations to the original signal fr, , when
N >O(LInL).

In the third part of our numerical simulations, we follow numerical simulations in the second part, except
that the sampling data of a concentrated signal f on the sampling set I'y . = {yx,1 < k < N} being
corrupted by i.i.d. random noises £(yx) € [—9, 0], 7% € I'n,r, with uniform distribution,
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f'Yk = f(w) + &), e € Tnr. (5.4)

Let QE\Z)L@,TL > 0, be the n-th term in the algorithm (3.16) with the original concentrated signal fr . in

Fig. 1 and the noisy data given in (5.4). By Theorem 4.6, the reconstructed signals g%”Lya,n > O(InL),
provide good approximations to the original signal fr, o when

N > O(L6*[e} o In(L6% /2] ,)) = O(LMexRatl2) 52 I (pmax(Zatl2) 52)),
The above conclusion is observed from Fig. 5, where L = 50,8 = L™*(1/2-2.0) /9 and Ey o = ||§§\7,1)La -
fr.all/llfr.all2 is the relative approximation error between the reconstructed signal g%‘)L ., at the sixth
iteration (n = 6) from noisy data and the original signal f7 , given in Fig. 1.

6. Proofs

In this section, we collect the proofs of Propositions 2.3, 2.6, 2.7 and 4.2, and Theorems 3.1, 3.3, 3.4 and
4.6.

6.1. Proof of Proposition 2.3
Let X be a discrete set of X such that (2.3) and (2.5) hold, and set
Xs = {z; € X5NQ, p(x;,00) > 5} (6.1)
Let Y5 = {yr} C 9Q and Y5 = {zr} C Q be chosen so that
990 C Uy,ev; B(yr, 9) (6.2)
and
B(z,¢0) C B(yr,0)NQ, yr € Vs, 2z € Ys. (6.3)

The existence of the set Y5 follows from the Corkscrew condition (2.6) for the domain Q.
Let Qs C X5 UY; be a maximal set such that

X5 C Qs, (6.4)
B(x;,8/2) N B(xj,8/2) = 0 for all distinct z;,z; € Qs, (6.5)

and
B(y,6/2) N (Ugeqs B(:,0/2)) #0 for all y € X5 U Y. (6.6)

Now we show that the above maximal set 25 satisfies (2.7). By (6.1), (6.3) and (6.5), we see that the
maximal set Q5 satisfies (2.7a) and (2.7b).

Next we establish the first inequality in (2.7¢). Take = € Q. For the case that p(z, dQ) > 2§, there exists
x; € X5 by (2.5) such that p(x, z;) < d, which implies that p(z;, 0Q) > § and hence z; € Xs. Then for the
case that p(x,0Q) > 26,

pla, Q) < pl, X5) <6 (6.7)
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Fig. 5. Presented on the top left and right are the average of the relative approximation error E~N,L,0 and EN’LVOAg, L2/5 < N < 6L?,
over 100 trials respectively. Plotted on the middle left and right are noisy sampling data in (5.4) with N = 2L? = 5000 and « = 0, 0.8
respectively. Shown on the bottom left and right are the difference []%?Lya — fL,a between the reconstructed signal _(7](\71)&& at the
sixth iteration (n = 6) from noisy sampling data in the middle figures and the original signal fr, », where o = 0, 0.8 for left/right
figures respectively, cf. Figs. 3 and 4. The relative approximation error ||g§\7)L o — fr.all2/lfr,all2 and the concentration ratio
Ifr,all2,0s /Il fL,all2 are 0.1036 and 0.0886 for the bottom left figure and 0.0948 and 0.0145 for the bottom right figure.

by (6.4). For the case that p(xz,0Q) < 26, there exists yp € Ys such that p(yx,z) < 36 by the covering
property (6.2), which together with (6.3) implies that

plw, Vi) < 46. (6.8)
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By the maximal property (6.6), we have
p(y, Q) < 6 for all y € X5 U Y;. (6.9)

Combining (6.8) and (6.9), we show that
p(x,Q5) <56 (6.10)

for the case that p(z,0Q) < 24. Therefore the first inequality in (2.7¢) follows from (6.7) and (6.10).
Finally we establish the second inequality in (2.7¢). Take x € 2. We obtain from (2.2) and (6.5) that

x w(B(xi,6/2)) M(UmiGB(I,E:&)ﬁQ(; B(xi,5/2))
D P VR it Dy (1)(0/2)7
W(B(x.116/2)) _ . 4 Da(p)
Di()(6/2)¢ = D)

This completes the proof.
6.2. Proof of Proposition 2.0

Following the argument used in [40], we have
ITfllp < 1K)l flp for all f € LP. (6.11)

Then V is a closed subspace of LP.
By the interpolation property between LP and L [14], it suffices to prove

1£llse < (D1(u)) " PIK |50l /5 | € Vp (6.12)

Take x € X. By (1.1), we obtain

£@) =] [ Ko @t < 1Kl (6.13)

X

where 1/p+1/p' = 1.
By the definition of the modulus of continuity, we have

|K (z,9")] < wi(K)(x,y) + |K(z,y)], y € By, 1).

This together with (2.2) and (2.9) implies that

1
1K (2, )]loe < sup

vex MB(Y, 1)) / (w1 (K) (2, y) + | K (2, 9)]) duly)

B(y',1)

< (D1() MK |s.6- (6.14)

Obviously, || K (z,)|l1 < ||K|s,e. Interpolating the L' and L* norms of K (z,-) yields
sup [[K ()l < (D) "7 .o (6.15)
xT

Combining (6.13) and (6.15) proves (6.12) and hence (2.10).
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6.3. Proof of Proposition 2.7

295

We follow the argument used in [40], where a similar result is established for a reproducing kernel space
on the Euclidean space R?. Set § = §(T'),'q = ' N Q and I'ge = T'NQ°. Then it follows from (2.8b) that
p(y,v) = p(y,Tq) <6 for every v € T'q and y € I, and that p(y,v) = p(y,T'ac) < 6 for every v € I'ge and

y € I,. Therefore p(y,v) < d for all v € I' and y € I,. Hence for all z € X, we obtain

Sef(@) — f@)] < 30 / K (2,7) () — K (2,9) £ () i)

'yGI‘IW

<3 [ 1K) - K@l w)ldut)

I8
vE I,

+ 3 [ 1Kl [ 1502 - K215 dul) duty)

T
ye I,

< / ws (K) (&, 9)|f () du(y)

X

[ [ (1G] + s 5w 0) s ) 0 2 2 ()
X X
= [ KelIf@ldntw). 1 € V.
X

Observe that
1Kr s < llws ()5 (1 + 1Kl + Jws (K)lls) < 155 60
By (6.16) and (6.17), we obtain the following crucial estimate in the proof,

I1S0f = fllp < llws(K)ls (1 + 1K ls + llws(K) )1 1p < 1 K115,68° 1 £ 115

for f € V.
By (2.11), we can prove by induction on n > 1 that

fo— facr =T = S0)"" ' (fr — fo) = (I — Sp)"Srf

and

n n

fa= 320 = 80) fo = (T+ (T = S0)*)Sef, n> 1.
k=0 k=1
Define
R=T+ i(T — S,
k=1

Then one may verify that R is a bounded operator on L? by (6.18),

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)
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IRfly < DI = ST fllp < (L= 1K 3,60%) 1T f ], f € L,
k=0

and R is a pseudo-inverse of the preconstruction operator Sr,
RS[‘f = SFRf = f, f S Vp.

By (6.18), (6.20), (6.21) and (6.23), we have

o0

fn = fllo < D2 I = So)*Sefllp

k=n+1
1+ || K3 0

n+1
< i S (K2 607 fllps £ €V
TR o 1802 Wl SV

This proves that f,,,n > 0, converge to f exponentially.

6.4. Proof of Theorem 3.1

(6.22)

(6.23)

For h € V,,, let h; be as in (3.4) and set § = dg (g, ). Following the argument after the statement of

Theorem 3.1, it suffices to prove

Iht = hllp.0 < [1K]|s,60°|Ihllp, € V.

(6.24)

For any v € I'qg and x € I, it follows from the Voronoi partition property (2.8) that p(x,v) = p(z,T'q) < 4.

This together with (1.1) implies that

ha(o) = bia)l = | [ 3 (K) = Ko, (2)h5)duty)
x 7€la

< / ws (), y) | h(w)|duy), = € Q.

Combining (6.11) and (6.25) proves (6.24).

For any f,g € V},, by (6.24) with h; and h replaced by f; — gr and f — g respectively, we have

11 =91 = (f = Dllpa < [IKls.00°1f = gll,,

which implies

Ifr = g1llp < If = gllps + 1 Klls.00°Lf = gl
< (L + 1K 5.00°) 1S = gllp-

Moreover, for any f,g € V, q., we obtain by (6.26) that

11 = grllpe > 1f = gllpo = 1K]5.00°llf = gll,
> |If = glly = If = gllp.0c = 1K]5,00° . = gll,
> (1—e—[IK|s08°)1f = gllp — 2¢ min(|[ £, l9ll,).

(6.25)

(6.26)

(6.27)

(6.28)
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where we use

1 = 9llp.0e < [ fllp.ae + l9llp.0e < e(llfllp + llgllp)
= ellfllp = llgllp| + 2e min(ll £, llgll,)
<ellf = gllp + 2e min(|[ f[lp, [9]l»)-

Combining (3.6), (6.27) and (6.28) completes the proof.
6.5. Proof of Theorem 3.3

For f € V, 0, and a sampling set I'ge outside the domain €2, define

f§= > wI)fMK(y) €V and fi= > f(y)xr

vElqe v€lqe

One may verify easily that

1f5llp <

fllp = 1Kl 01l f71p.ce- (6.29)
Set § = dg(Tqe, Q°). Applying similar argument used to prove (3.7) and using (3.9), we obtain

/7 = Fllpoe < 1K ]ls,08° [ fllp < €l fllp-
This together with (1.3) and (6.29) implies that

1f5lle < I1Klls.ollf7

lp.e < 2[|K][s 0l flp- (6.30)

Set 6 = max(dy(Tq, ), dy(Cae, 2°)). Define f,,n >0, as in (2.11) with I' = T'q U T'ge. Then it follows
from (3.9), (3.10) and Proposition 2.7 that f,,n > 0, converge to f exponentially,

2 +1
1fn = Fllp < W(IIKII%,M)" I £1lp, > 0. (6.31)
S,0

Observe that fo = go + f§ and

vt (D=8 fon = 1.
k=0
Therefore

n fc
1=l < 3 (1K13.00°) 15l < B < 26011, (6.32)
k=0 S,0

by (3.9), (3.10), (6.18) and (6.30).
Combining (6.31), (6.32) and then using (3.11), we have

lgn = Fllp < 1fn = fllp + llgn = fully < 4Coell fllp, n = 0.

This proves (3.13).
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The conclusion (3.12) is trivial for e > 1/(9Cy). Now we consider the case that e < 1/(9Cy). By (3.13)
and the assumption f € V}, o ., we have

gnllp.0c < 1f = gnllp + 1 Fllp.0c < 5Coellflp (6.33)

and

)
lgnlly = 111> = llgn = fllp = (1 = 4Coe)lIfllp = 511 Fllp- (6.34)

Combining (6.33) and (6.34) proves (3.12), and hence the reconstructed signals g, in (3.8) are (9Cye)-
concentrated signals in V,.

6.6. Proof of Theorem 3./
Let g,,n > 0, be as in (3.8). By Theorem 3.3, it suffices to prove that

19n = Gnllp < Coll€llp.ura)- (6.35)

Following similar argument used to establish (6.32), we obtain

lgn = dally < (1= 1K13,06) 7| 32 w(L)E0)E )]
v€lQ

)
p

where § is in (6.31). This together with (6.29) proves (6.35) and hence completes the proof.
6.7. Proof of Proposition 4.2
Let Qs, /10 be the discrete set in Proposition 2.3 with ¢ replaced by d,/10. By (2.7c), we have

]P’{dH(FQ,Q) > 51} < ]P’{B(:cl-,él/Q) NTq = 0 for some z; € 951/10}

< Y. P{B(xi,6:1/2)NTq = 0}. (6.36)

€025, /10

We observe that

u(B(xi,61/2) N )\ N Dy (1) (¢51/10)"\ N
, -l < (1- < (1 2R i
P{B(x;,6,/2) NTq =0} < (1 o ) < (1 ) ) (6.37)
by (2.7a) and the assumption on the random sampling, and also that
/,L(B(l'l, 051/10)) M(UILEQ(; /10B(xi7 C61/10)) IOd,u(Q)
Q < = ! < 6.38
#o0= 2 D e /10y Do) = @we O

by Assumption 2.1 and Proposition 2.3. Combining (6.36), (6.37) and (6.38) completes the proof.
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6.8. Proof of Theorem /.6

By (4.17) and Proposition 4.2, we have

. 107(92) Dy (SN
Pidu(Tq,Q) > 6} < —(1-— <7 6.39
{dn(Te, @) > o1} Dy (11)5? ( 107,(Q) ) (6.39)
Therefore it suffices to establish the conclusion under the hypothesis that
di (T, Q) < 6. (6.40)

Take z € X and let g, and g,,n > 0, be defined by (3.8) and (3.16) respectively. For a sampling set '
with dg(Tq, ) < 81, we obtain from Proposition 2.6 and Theorem 3.3 that

|gn(2) — f(2)] < 8(D1(p))~ (6.41)

for all integers n satisfying (4.6).
Set hy, = gn — gn,n > 0. Following the argument used in the proof of Proposition 2.7, we can show that

= 3 e, / Ko ra (2 9)K (9, 7)dp(y), (6.42)
v€lQ X
and
[Knralls < 3 (K13 o (max(dn (T, 0),di(Cae,2)) < 2 (6.43)

k=0

where the last inequality follows from (3.9), (4.16) and (6.40).
By (4.15) and (6.42), we have

Be{hn(@)ldn (o, 9) <61} = 3 Be(€ully) [ Kurale) Kl 1)dute) =0, (649
’YGFQ X
and
2
Varg {hn(2)|dg (Do, Q) < o1} =0 Y |u(l,)]? ‘/Knrn z,y) K (y,7v)du(y)| - (6.45)
yel'a

For a sampling set I'q satisfying (6.40), we obtain from (2.2), (2.8), (6.14) and (6.43) that
(1) < Dy(p)df (6.46)

and

| [ Koo ) K )di(w)] < 1K 1K) e < 2(Da(0)” (6.47)

for all v € I'q. Similarly, we have
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> u(Iv)‘/Kn,rg(x,y)K(y,v)du(y)’
X

v€lq

< [ [ 1Konra oK (,2)] + s 0. 2) )2
QX
< 1Koralls (1K s + s(K) s) < 21K (0.45)

where § = max(dy (T, ), dg (Tae, 2°)). Combining (6.44)—(6.48), we get
Varg {hn(2)|dn (Do, Q) < d1} < 40(D1(1) ™" Da ()1 K]1% 07

Then applying Chebyshev inequality yields

Dyt _ (6.49)

Pe{lhn ()| = 21 ()R 502l 1drs (Do, 9) < 81} < 5oy <

where the second inequality holds by (4.16). Combining (6.39), (6.41) and (6.49) completes the proof.
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