PPG3D: Does 3D head tracking improve camera-based PPG estimation?
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Abstract— Over the last few years, camera-based estimation
of vital signs referred to as imaging photoplethysmography
(iPPG) has garnered significant attention due to the relative
simplicity, ease, unobtrusiveness and flexibility offered by such
measurements. It is expected that iPPG may be integrated into a
host of emerging applications in areas as diverse as autonomous
cars, neonatal monitoring, and telemedicine. In spite of this
potential, the primary challenge of non-contact camera-based
measurements is the relative motion between the camera and
the subjects. Current techniques employ 2D feature tracking
to reduce the effect of subject and camera motion but they
are limited to handling translational and in-plane motion. In
this paper, we study, for the first-time, the utility of 3D face
tracking to allow iPPG to retain robust performance even in
presence of out-of-plane and large relative motions. We use a
RGB-D camera to obtain 3D information from the subjects and
use the spatial and depth information to fit a 3D face model
and track the model over the video frames. This allows us to
estimate correspondence over the entire video with pixel-level
accuracy, even in the presence of out-of-plane or large motions.
We then estimate iPPG from the warped video data that ensures
per-pixel correspondence over the entire window-length used
for estimation. Our experiments demonstrate improvement in
robustness when head motion is large.

I. INTRODUCTION

The heartbeat is a fundamental and important signal
among biological signals, so techniques of its measurement
have been researched since ancient times. In the conventional
method of measuring the heartbeat, electrodes are put on
the skin and the electrocardiogram (ECG) is measured. This
method can measure the heartbeat accurately, however it
requires direct contact with the skin which often causes
discomfort and stress. Recently, methods of measuring the
heartbeat without touching the skin have received attention.
Among the contactless heartbeat measurements, imaging
photoplethysmography (iPPG) has received much attention.
iPPG is the technique of measuring the pulse waveform
based on the optical properties of the human skin. The
principle is that the light absorption in skin changes with
changing concentration of hemoglobin in the blood with
each heartbeat [13], [15]. In these methods, the heartbeat is
usually estimated by measuring the changing intensities on
the face. However, it is difficult to track the face accurately,
especially in presence of motion. It is known that the
accuracy of the iPPG is significantly affected by the quality
of the facial regions in the video; cheeks and forehead are
regions where iPPG can usually be measured with high
accuracy [12]. However, there are few texture features to
track in those regions and the intensity information changes
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by moving the face slightly. Thus, it is difficult to track
these regions accurately. To solve the tracking problem, we
propose a method of tracking the face with 3D information
captured by the RGB-D camera. Using depth images, we aim
to measure iPPG more accurately than the state-of-the-art
methods using only 2D RGB images. We captured recordings
1) with subjects sitting as still as possible and 2) with
subjects moving their head during the measurements. We
compared the performance with the proposed 3D method and
a benchmark method using only 2D images and demonstrated
the effectiveness of our proposed method for heart rate (HR)
estimation.

II. RELATED WORK

The iPPG is a cheap and simple technique to measure
vital signs from video, however it is very prone to motion
artefacts. Many iPPG methods have been proposed using
RGB cameras. Poh et al. [14] proposed a HR measurement
method using Independent Component Analysis (ICA) on
the RGB intensity sequences obtained from a facial region
of interest (ROI). Wang et al. [16] proposed a method
to improve motion robustness by sampling multiple regions
simultaneously using multiple pixels. In this method, the
CSK tracking is adopted as an object tracking method. Since
these methods use only images for feature tracking, these
methods are not robust to changes in image intensity. When
subjects move a lot, or occlude a part of their face with their
hands, their faces may not be detected correctly and it is
hard to measure their HR.

Recently, some iPPG methods using the RGB-D camera
have been proposed. Gamni et al. [7] proposed a method
using MicroSoft Kinect v2 (MS kinect2) which is an RGB-
D camera. In this method, the HR was measured using the
image sequences obtained from the RGB camera of the
MS Kinect2. However, the KLT feature tracking algorithm
was used to track the feature points, and tracking was not
performed using depth information. Bakhtiyari et al [3]
also proposed a method for improving the HR measurement
accuracy by measuring respiratory signals using an MS
Kinect2. In this method, HR was measured using both
RGB and depth image sequences. However, the depth image
sequences were only used to estimate the HR signals and
respiratory signals, and the depth information was not used
to improve the tracking of the feature points. Therefore, these
methods using an RGB-D camera did not use 3D information
effectively for motion robustness.
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Fig. 1. Overview of the proposed tracking method. First, rigid transfor-
mation parameters are obtained by rigid 3D shape alignment. Next, the
occlusion area is calculated using the estimated parameters and a visible-
mask is created. Patches are tracked using a mask created by rigidly
transforming the 3D point cloud of the patch region and projecting it on
the image plane.

I1I. METHODS

We propose a method to improve the iPPG robustness to
motion by using the depth information to obtain 3D point
cloud registration for more accurate face tracking. Fig. 1
shows the overview of the proposed method. In the proposed
method, the iPPG is extracted from the RGB-D image
sequence. Rigid transformation parameters are estimated by
the iterative closest point (ICP) algorithm [4]. The visible
mask, which is a mask of pixels that can be observed
in all video frames, is generated using the estimated rigid
transformation parameters from all frames. The patch mask
is created by projecting the rigidly transformed patch onto
the plane using the transformation parameters and the visible
mask. We use the patch masks to compute the intensity
sequences from which we obtain iPPG signals. One frame
is defined as a reference frame. The point cloud data of
the reference frame is used as a reference point cloud for
registration. In the reference frame, a patch mask is set and
a reference patch point cloud is also created. The patches
can be tracked by rigidly transforming the patches’ point
clouds using the estimated rigid transformation parameters
and projecting them onto the image plane.

A. The 3D tracking method

To align the reference frame point cloud and the point
clouds from other frames, we applied the ICP algorithm to
the point clouds. The rigid transformation parameters were
estimated with the ICP algorithm, where the corresponding
point search distance was multi-scale. Multi-scale ICP allows
to initially align the global range and then to align the local
range. In each stage of the multi-scale ICP, the method of
Besl et al. [4] was used. The initial rigid transformation
parameters in the ICP of each frame used the rigid trans-
formation parameters of the previous frame. Face alignment
was implemented with [17].

B. Removal of occlusions in the face area

Because the reference patch used for tracking in the
proposed method is fixed, when the face of the subject

moves, some parts of the reference patch may be occluded.
Occlusions make the intensity sequences noisy, reducing
the accuracy of HR estimation. Therefore, it is necessary
to remove the occluded areas. After estimating the rigid
transformation parameters for each frame, we applied the
rigid transformation to the reference frame point clouds using
the estimated parameters. If any points in the transformed
reference point clouds were hidden by other points as viewed
from the camera position, those points were removed be-
cause they were occluded. To determine whether a point is
occluded with other points, we used a method based on [9].
By using this method to remove the occluded points from
the rigid transformation parameters from all frames, only the
points that could be observed in all frames were extracted.
We obtained the visible mask by projecting the extracted
points onto an image plane.

C. Creating observation patches

We averaged the RGB intensity values within each patch
for each frame. To create the patches, we used the 68 detected
facial landmarks. The position of the patches on the face
is very important. Forehead and cheeks are known to be
good regions for extracting the iPPG signals [12]. In this
study, the forehead regions were covered by the hair for
most subjects, so we only used the patches on the cheeks.
In the reference frame, the raw reference patch-mask was
calculated with facial landmarks. Pixels observed in both the
raw reference patch mask and the visible mask were taken as
a reference patch mask. The raw patch mask of each frame
was calculated by a rigid transformation in the 3D space with
estimated parameters and projecting the transformed patch to
the image plane. Then, the patch mask was complemented
by morphological transformation to fill in the holes in raw
patch-mask. To estimate HR we used the spatially averaged
intensity values of the pixels inside the patch masks.

D. Estimating HR from iPPG signals

First, we spatially averaged the pixel intensities within
each patch on the face for each RGB camera channel. Then,
we used ICA to decompose the normalized RGB intensity
sequences into three independent signals [14]. We used the
FastICA [2] to calculate the ICA. The output independent
signals are not ordered, therefore, we manually selected the
component that was the most periodic. If the independent
components were similar, we computed the Fast Fourier
transform (FFT) of each independent component and selected
the one with the highest ratio between the first and second
maximum peaks.

After selecting the independent component, we applied
the FFT to the selected independent component. Since the
frequency components obtained by FFT are discrete values,
we interpolated them with quadratic spline interpolation.
We computed the estimated HR as the frequency with the
maximum power spectrum multiplied by 60 to convert it
from Hertz (Hz) to beats-per-minute (bpm).
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Fig. 3. Examples of RGB images captured during the stationary and motion
tasks with the patches tracked with 2D (in green) and 3D (in red) tracking.
The overlap area between the 2D and 3D tracking is shown in yellow.

IV. EXPERIMENTS

We compared the HR estimation accuracy using the
proposed 3D tracking of the facial landmarks from depth
information to a benchmark method using only 2D images
and facial landmark detection. Fig. 2 shows the experimental
setup. The RGB-D sequences were recorded using Intel
Realsense SR300 [8]. The frame rate of both RGB and
Depth cameras was 30 frames per second (fps) with 640
x 480 pixel image resolution. We placed a band-pass filter
on the RGB camera with a passband of 400 nm to 700
nm to block any NIR structured light patterns projected by
the Intel Realsense SR300 for estimating depth. Because the
iPPG signal is a very weak intensity signal, varying ambient
light will introduce noise, for example when an AC light
source is used. To avoid this problem, we captured the RGB-
D sequences in a darkroom and we used illumination with
a DC power source. We recorded the ECG signals as the
ground truth ! synchronized with the RGB-D image capture.
We bandpass filtered the iPPG signals obtained from RGB
sequences in a physiological range of [0.75 Hz, 4.0 Hz].

The comparison method is a method that detects facial
landmarks from RGB images. First, we detected the face
ROI [11] and facial landmarks [10]. The method of detecting
the face ROI is called Max-Margin Object Detection. In
this method, the face ROI detection is realized by SVM
learning using the HOG (Histogram of Oriented Gradients)

Uhitps://store. healthcare.omron.co.jp/category/8/HCGs 01 g ET . html

features[5]. The method of facial landmarks is using an
ensemble of regression trees. In this method, the average
face shape is used as the initial position of the feature
points, the shift values of the feature point are estimated
based on the image feature, and the landmarks are detected
by repeatedly shifting the landmark points. These detection
methods were implemented in the dlib library [1]. After the
facial landmarks are detected in each frame, the patches
are created using the aforementioned method and the RGB
intensity sequences are computed. We captured two types of
experiments, referred to as “stationary” and “motion™ tasks
with 7 subjects each 2. During the stationary task the subjects
were asked to sit as still as possible. During the motion task
the subjects were asked to move their head out of plane
horizontally by about 30 degrees (see Fig. 3).

We evaluated our results using two error measures. 1)
mean absolute error (MAE) computed as the mean absolute
difference between the estimated and ground truth heart rate.
The HR was computed from 10 second time windows with
one second overlap. 2) signal-to-noise-ratio (SNR) defined
as:

S (U8
SNR = IOlogw( 07 ) (1)

(1= U(F)S(F))?

0.7

where S is the power spectrum of the estimated iPPG
signal, f is the frequency in Hz and U(f) is equal to one
for frequencies around the first and second harmonic of the
ground truth HR (HR - 0.1 Hz bpm to HR - 0.1 Hz and
2*HR - 0.1 Hz to 2*HR + 0.1 Hz), and zero everywhere
else [6].

A. Results: stationary task

Fig. 3 shows the results of tracking patches with our
proposed method and the benchmark method during the
stationary and motion tasks. Because there isn’t a lot of
motion, the estimated HR with the proposed method and the
benchmark method are comparable and the MAEs are almost
the same. However, the SNR is higher for our proposed
method because we are able to obtain cleaner iPPG signals
than the benchmark method.

B. Results: motion task

We obtain lower MAE and higher SNR with our proposed
method, demonstrating the effectiveness of 3D tracking in
presence of motion. However, the head motion in these
experiments was small and controlled. Consequently, the
improvements offered by 3D over 2D are subtle.

V. DISCUSSION

In the experiment, it took 1000 seconds on average for
both the registration calculation and the patch calculation.
The maximum memory required for calculation was about

2The experimental procedures involving human subjects described in this
paper were approved by the Institutional Review Board.
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Fig. 4. The SNR values and MAE values during the stationary task.

160 MB. The CPU used in the experiment was Intel Core i9-
9900k CPU. Since the proposed method uses 3D information,
it takes a lot of time for calculation. Thus, it is impossible
to run this method in real time. It is a future task to reduce
the calculation time and memory consumption to make it a
practical method.

VI. CONCLUSIONS

We presented a face tracking method using 3D information
to improve HR estimation from video in presence of motion.
We compared the MAE and SNR of our 3D tracking method
to the state-of-the-art 2D tracking method. Our 3D tracking
performs modestly better than the 2D tracking. However, the
dataset that we collected only had subjects sitting still or
moving only slightly, making it difficult to demonstrate the
advantages of the proposed 3D tracking. More experiments
are needed to conclude how much improvement in motion
robustness is offered by 3D tracking over 2D tracking.
Nonetheless, the 3D tracking approach may open up pos-
sibilities of faithfully computing iPPG signals in presence of
large motion, where current methods often fail, for example
in a driving or a fitness context.
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