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The root system is critical for the survival of nearly all land plants and a key target for improving abiotic stress tolerance, nutrient
accumulation, and yield in crop species. Although many methods of root phenotyping exist, within field studies, one of the most
popular methods is the extraction and measurement of the upper portion of the root system, known as the root crown, followed by
trait quantification based on manual measurements or 2D imaging. However, 2D techniques are inherently limited by the
information available from single points of view. Here, we used X-ray computed tomography to generate highly accurate 3D
models of maize root crowns and created computational pipelines capable of measuring 71 features from each sample. This
approach improves estimates of the genetic contribution to root system architecture and is refined enough to detect various
changes in global root system architecture over developmental time as well as more subtle changes in root distributions as a
result of environmental differences. We demonstrate that root pulling force, a high-throughput method of root extraction that
provides an estimate of root mass, is associated with multiple 3D traits from our pipeline. Our combined methodology can
therefore be used to calibrate and interpret root pulling force measurements across a range of experimental contexts or scaled

up as a stand-alone approach in large genetic studies of root system architecture.

1. Introduction

In maize, the entirety of primary, seminal, lateral, crown,
and brace roots together form a complex architecture which
controls the plant’s ability to effectively acquire water,
scavenge nutrients, and resist lodging [1]. As a result, root
growth and development are fundamental to overall plant
development and competitiveness [2], and several promi-
nent large-effect, loss-of-function mutants in cereal seed-
ling root development have been identified and reviewed
previously [3, 4]. However, root system architecture of
mature, field-grown plants at the quantitative level has
been understudied and underutilized due to the relative
difficulty in obtaining measurements, with significant trade-
offs intrinsic to any particular phenotyping method [5, 6].
Nevertheless, because root growth is highly plastic and
affected by environmental conditions such as substrate mois-
ture and texture [7, 8], field-based studies are valuable despite
their challenges.

In its simplest form, root phenotyping of crop species
such as maize or rice can be performed by manual mea-
surement of a limited set of amenable traits, such as root
mass, length, width, or the growing angle, either in soil
or soil-free conditions. Currently known genes controlling
quantitative root system architecture traits in rice were
identified using such measurements, including PSTOLI
[9], DROI [10], and a recent DROI homolog [11]. In
field conditions, additional techniques for quantifying
roots exist, such as the use of minirhizotrons, soil core
sampling, and measuring of root pulling force [12-15].
Historically, root pulling force (RPF) has been useful as
a field assay because of its simplicity; it also has the
greatest potential for large-scale phenotyping and has
been applied to both monocots and dicots [16-21]. While
RPF is generally correlated with greater root biomass and
branching, more nuanced interpretations and its associa-
tion with recently tractable architectural measurements
have yet to be established, and the relationship between
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RPF above-ground traits is even more complex due to
pleiotropy and other effects. In a B. napus doubled hap-
loid mapping population, RPF was positively associated
with later flowering time and subsequently lower grain
yield [22], while in maize, QTLs for RPF colocalized with
leaf abscisic acid concentration [23], suggesting that
additional context-specific measurements are required to
interpret RPF.

More intricate phenotyping of root system architecture
can be performed upon two-dimensional images of either
field-excavated root crowns, or young gel-media grown root
systems, followed by analysis with specialized software
[24-31]. Such methods have been used to quantify root sys-
tem architecture in diverse crops such as maize, wheat, rice,
and cowpea [32-35]. However, 2D-based measurements
have a limitation in that images are typically taken from only
one or two camera perspectives, with information lost from
roots occluding each other in the image.

As a result, interest and capacity towards three-
dimensional root phenotyping have been increasing, driven
in part by technical advances and interdisciplinary
approaches [36]. For example, young cereal plants grown
in a gel-based media can be imaged over a 360" rotation,
allowing digital reconstruction in 3D and high-throughput
feature extraction [37, 38]. By scaling this technique to map-
ping populations, studies have identified new univariate or
multivariate root QTLs, demonstrating the value of high-
throughput and high-information-content trait capture for
dissection of plant architecture [39, 40]. Other 3D-based
solutions include the use of X-ray computed tomography
(XRT), which is capable of imaging any plant structure,
including roots within soil based upon physical density
properties [41-48]. While XRT has been applied to plant
physiology in some form for nearly two decades, instrument
accessibility and technical limitations typically restrict its use
to small plant structures, low throughput, and/or limited
fields of view.

Here, we integrate two protocols, first sampling via
RPF and washing mature, lignified, field-grown maize root
crowns, followed by imaging via XRT and trait quantifica-
tion for over 290 roots across multiple field seasons. By
imaging the roots absent of soil or other media, scanning
and segmentation times were significantly reduced such
that replication across two environments and/or two time
points was possible. We extracted up to 71 3D features
for each root crown sample, including up to 65 traits with
significant variation between genotypes, as well as root
shape or distributional traits, which showed differences
between experimental contexts. The median broad-sense
heritability across all traits ranged from 0.23 to 0.56,
depending on the germplasm and conditions. Finally, we
examined covariance between 3D traits and RPF values
to identify correlations between high-resolution phenomics
and high-throughput field data. This study therefore dem-
onstrates how XRT can provide insights into the root
architectural attributes that influence RPF, which can then
be used together for more informative studies in the map-
ping and breeding of root traits, including in multienvir-
onment analyses.
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2. Materials and Methods

2.1. Experimental Design. All plants were grown at the
Colorado State University Agricultural Research Develop-
ment and Education Center in Fort Collins, CO, USA
(40.649N, -105.000 W), in 2017 and 2018. 260 genotypes
from the Genomes 2 Fields (G2F) germplasm (https://www
.genomes2fields.org/) were planted in May 2017 in a split-
plot design with full irrigation or limited irrigation (drought)
treatments, with two field replicates per treatment for a total
of 1060 plots. Prior to planting, the field was fertilized with
nitrogen at 651bs per acre.

The Shoot Apical Meristem (SAM) diversity panel [49]
along with 11 hybrid and 4 inbred check lines, for a total
of 390 genotypes, was planted in May 2018 using a split-
plot design with full irrigation or limited irrigation (drought)
treatments, with three field replicates per treatment. Prior to
planting, the field was fertilized with nitrogen at 1901b per
acre. Root systems were harvested at 9 weeks after planting
(time point 1) and again at 16 weeks after planting (time
point 2).

In both the G2F and SAM experiments, each plot con-
sisted of two 12-foot rows with 30-inch spacing between
rows and 9-inch spacing between plants within rows, corre-
sponding to a planting density of 62000 plants/ha. The irri-
gated treatments received approximately 1 inch of water per
week, while the drought treatments were irrigated until well
established (approx. 5 weeks after planting) and then
received only natural precipitation (103.8 mm and 69.9 mm
in the 2017 and 2018 growing seasons, respectively), except
at the root harvesting when it also received irrigation to
homogenize the root harvesting process.

2.2. Field Phenotyping and 2D Root Imaging. The protocol
used for root pulling and harvesting was similar to that in
[22]. Briefly, all plants were irrigated 24 hours prior to sam-
pling to homogenize soil conditions at root harvest. Maize
plants were tied at the base of the stem, just above the root
crown, with a rope attached to a dynamometer. The root
system was extracted from the soil by vertical manual pull-
ing (Figure 1), with the force (Kg) needed for extraction
measured using a hand-held Imada DS2 digital force gauge
(Imada Inc., Northbrook, IL, USA). Within each field treat-
ment (full vs. limited irrigation), two roots per genotype
were harvested from the G2F population and an average of
4 roots per genotype (across two time points) were harvested
for the SAM population. Based on root pulling force values,
30 representative genotypes from the G2F 2017 experiment
and 20 representative genotypes from the SAM 2018 exper-
iment (Table S1, Figure S1A) were selected for further
analysis. After pulling, root samples were washed to
remove all remaining soil, allowed to air dry, and weighted
for dry mass (g) before imaging.

Roots from the G2F 2017 experiment were also imaged
in 2D (Figure S1F) using a photography station equipped
with a Sony a7 II mirrorless camera and Sony FE 28 mm
£/2.0 lens, mounted 31 inches above the stage. Roots were
placed horizontally on a flat surface with a black cloth
background, with lighting provided by a LS Photography
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FiGuURrk 1: Pipeline for 3D root imaging using X-ray computed tomography. Samples are excised from the soil in the field using the root
pulling force method, and the measurement is recorded. The root crown is washed, dried, and then imaged using the NorthStar Imaging
X5000 (see Methods) to generate radiographs as the sample is rotated 360° across the vertical axis. From the radiographs, a 3D
reconstruction is generated using the FDK algorithm. Slices along the vertical axis are exported for automated thresholding, from which
a skeleton and point cloud model of the root crown are generated. 3D root traits are then measured from the skeleton and point cloud

and analyzed.

PPH67 ring light, and the resulting images (60 pixels/cm)
were then cropped and analyzed using DIRT [25] on
CyVerse with threshold =10, scale marker =39, “require
segmentation” checked, and “require stem reconstruction”
unchecked.

2.3. 3D Root Imaging and Feature Extraction. For 3D pheno-
typing of samples from the selected G2F and SAM popula-
tions (N =107 and 187, respectively), root crowns were
clamped at the stem with a small vise and imaged using a
North Star X5000 X-ray system (North Star Imaging,
MN, USA) (Figure 1). Depending on the physical dimensions
of the largest root crown sample within a given sample batch,
the object stage and detector were positioned 1036-1055 mm
and 1186-1210mm away from the object source, respec-
tively. After gain calibration, the X-ray source was set to
70kV and 1500-1700 A and a focal spot size of 105-119
microns. Each root crown sample was continuously imaged
within a single 360° rotation using efX-DR (North Star Imag-
ing), generating 1800 radiographs per sample at 10fps
(100 ms integration time). To provide an internal calibration
of the image geometry, a fixed standard (15mm large tool,
North Star Imaging) was imaged with each sample batch.
The radiographs were then reconstructed using efX-CT
(North Star Imaging) and exported as an unadjusted RAW
volume, resulting in a voxel size of 109-113 ym depending
on the sample batch.

For each sample, the RAW volume was converted to 2D
slices using the custom Python script raw2img. The slices
were then thresholded, binarized, and skeletonized using
the custom scripts batch-segmentation, which performs basic
thresholding of the roots from air in the 3D volume, and
batch-skeleton, which calls the skeletonization and feature
extraction pipeline previously developed and described in
[31, 39], and [50]. These 19 traits were computed, and where
applicable, converted to physical units by dividing values by
the voxel size, the voxel size squared, or the voxel size cubed.
In addition, 52 root traits were newly added to the pipeline
for this study, which predominantly focus on 3D distribu-
tion of roots in the root crown. Mean, standard deviation,
skewness, kurtosis, energy, entropy, and smoothness from
the distributions of root volume (estimating root mass), con-
vex hull, and solidity were calculated using the method
described in [51]. Fractal dimension, which measures the
degree to which root subsections approximate a smaller copy

of the whole root crown [52], was estimated by taking the
2D projection of the 3D volume, then calculated using a
similar approach to that described in [53]. DensityS fea-
tures are computationally similar to plant compactness
traits described in [54].

A list and basic description of root features measured
using batch-skeleton are available in Table S2. The raw
phenotype data is available in Data File S1, with an
example of a root crown 3D reconstruction and models
shown in Figure SIB-F. A more extensive description of
trait implementations, all scripts used for image processing
and feature extraction, and links to repositories required to
reproduce the work are available at https://github.com/
Topp-Roots-Lab/3d-root-crown-analysis-pipeline/

2.4. Statistical Analysis. All downstream (i.e., post feature
extraction) analysis was performed in the R statistical com-
puting environment. Initially, principal component analysis
using all 71 3D root traits was used to identify large outliers,
leading to the removal of 2 samples in the G2F 2017 data
and 3 samples in the SAM 2018 data. Additionally, for all
univariate analyses, outliers within each trait were identified
and omitted if they were beyond the 1st quartile minus 1.5 *
interquartile-range or the 3rd quartile plus 1.5 * interquar-
tile-range.

After univariate outlier removal, analysis of variance
(ANOVA) was performed for each trait using the car pack-
age [55]. Subsequently, the ANOVA p values from car were
adjusted using the Benjamini-Hochberg method to account
for multiple testing and control the false discovery rate to an
adjusted p value < 0.05. Individual two-sample comparisons
as seen in boxplots were performed using Mann-Whitney U
tests. Correlations between root traits were calculated using
Spearman’s correlation coefficient. Linear regressions were
performed using the Im function in R.

Variance components were estimated by using the Ime4
package [56] to fit the linear model Y, ~G;+E;+
(G * E);; + e, where Y is the phenotypic value, G, is the i

genotype, E;is the ] " environment, (G * E), jj is the inter-
action between the i™ genotype and the j* env1r0nrnent and
€ is the re51dua1 error of the k™ sample from the i geno-
type and ' " environment. Broad-sense heritability was calcu-
lated using the equation H* = 05/(0G + 0 p/e + O resiqual/Te)
where o is the estimated phenotypic variance due to
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genotype, 0,y is the estimated phenotypic variance due to
genotype x environment, 0,4, 1S the residual variance, e
is the number of environments, and re is the average number
of biological replicates per genotype across both environ-
ments [57]. This heritability estimator is optimized as a pre-
dictor of the response to selection. For the SAM 2018 data,
variance components and broad-sense heritability were cal-
culated separately for the two time points.

Principal component analysis (PCA) of the 3D root data
within the G2M and SAM experiments was performed using
the base R prcomp function. For PCA-LDA, PCA was per-
formed upon each genotype subset, and the number of prin-
cipal components required to explain 90% of the trait
variance was used as inputs into the LDA function from
the MASS package [58]. The randomForest [59] and caret
[60] R packages were used for random forest classification,
with mtry and ntree parameters found using a grid search
approach between every combination of mtry between 1
and 20 and ntree values of 500, 1000, 2500, and 5000.
Parameters giving the best accuracy were kept, as calculated
by 10-fold cross-validation repeated 3 times. From the final
random forest models, the proximity matrix was calculated
and nonmetric multidimensional scaling was used to visual-
ize the distances between samples.

3. Results

3.1. Field and 3D Phenotyping Capture Variation in Maize
Root System Architecture. In each of two field seasons, maize
genotypes (30 from the G2F panel and 20 from the SAM
panel) were grown under two different irrigation treatments,
providing two environments in terms of soil moisture. At
the designated time point(s) for sampling (see Methods),
root crowns were excavated by root pulling force. The root
crowns, which maintain their overall 3D structure due to lig-
nification, were washed clean and subsequently imaged
using a Northstar X5000 X-ray computed tomography sys-
tem (Figure 1). In total, 71 traits from the 3D volumes were
extracted and used for analysis (Table S2). Correlations
between the most directly comparable 3D traits and 2D
traits (via DIRT) were as we expected—for example, 3D
surface area and 3D volume had a Pearson correlation
coefficient of 0.754 and 0.703 to 2D area, respectively
(Figure S2).

To assess the degree to which traits derived from field-
pulled root crown samples would respond to selection, we
estimated broad-sense heritability (H?) in the G2F experi-
ment for each 3D and 2D trait, as well as for RPF
(Figure S3). Traits related to overall root crown size showed
similar H? values between 3D measurements (e.g, 3D
surface area H? = 0.47) and 2D measurements (e.g., 2D area
H? =0.44). The traits with the highest heritability, however,
were 3D-derived maximum root count (H?=0.76) and
average root radius (H? = 0.74), illustrating where 3D root
phenotyping is particularly adept. Among 2D traits, high
heritability did not necessarily result in high association
with RPF, although some traits such as 2D area had a
strong positive association (Figure S3E-F). Nevertheless,

Plant Phenomics

depending on the experimental conditions and amount of
replication, it is probable that many root traits—though
computationally extractable—have questionable value due
to high background noise and sensitivity to sampling
variation. In total, for example, 19 3D traits and 33 2D
traits had calculated H? values of less than 0.05; therefore,
both 3D and 2D root traits must be screened and evaluated
for a given data set before drawing conclusions. RPF itself
had a H? value of 0.67 in the G2F experiment, which is
high for a physical field-based root assay, and competitive
with some of the architectural traits measured from 3D
images.

In the SAM experiment, broad-sense heritability for 3D
traits (2D traits were not captured here) was calculated sep-
arately within each time point (Figure S4A-C). In general,
H? values here were higher than in the G2F experiment,
which reflects a combination of the field conditions,
genetic variation, and sample sizes. As an average across
both time points, root crown width (“HorEqDiameter,”
mean H? =0.81), fractal dimension top view (mean H? =
0.81), maximum root count (mean H? = 0.80), convex hull
volume (mean H?=0.79), and surface area (mean H’ =
0.79) were among the most heritable traits, although the
individual performance of these traits fluctuated depending
on the time point. However, the average heritability across
all 3D traits was only slightly higher at first time point
(0.510) than at second time point (0.505), suggesting that
heritability of most root traits is relatively static over this
time span. One interesting exception to this is RPF itself,
which had a H? value of only 0.59 at the first time
point, but significantly increased to a H? value of 0.85 by the
second time point. This indicates that RPF measurements
taken later in the plant life cycle may be more informative
and reliable for the purposes of distinguishing genotypic
differences in maize root system architecture, as well as
for breeding. Overall, however, traits with higher average
heritability across time points tended to also have a
greater correlation in measurements between time points
(Figure S4D).

Focusing on 3D root traits and RPF, we subsequently
wanted to examine whether genotype and environment
effects were significant factors on a trait-by-trait basis
(Figure 2). Using analysis of variance (ANOVA), in the
G2F experiment, we detected 21 root traits where genotype
had a significant effect and 35 traits where the environment
(irrigation regime) had a significant effect (Figure 2(b),
Figure S5A, Figure S6). Root traits affected by both
genotype and environment include RPF, average root
radius, median/maximum number of roots, convex hull
skewness, and solidity in several regions along the middle
of the root crown. Nonparametric tests for differences
between environments confirmed that RPF, average root
radius, and convex hull volume, for example, were higher
in the high irrigation environment, whereas solidity was
higher in the low irrigation environment (Figure 2(c)).
These meet expectations of soil moisture effects on root
system architecture (e.g., more expansive growth under
higher moisture availability), providing confidence to our
3D phenotyping.
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Ficure 2: RPF and 3D global root system architecture traits are affected by genotype, environment, and developmental time point. (a) 3D
reconstructions from X-ray imaging of genotype Tx601 root crowns in the SAM 2018 experiment, at the two time points (9 vs. 16 weeks)
and from each environment (limited vs. full irrigation). (b) ANOVA for genotype, environment, and time point (in SAM 2018) effects upon
RPF and 3D root traits (adjusted p < 0.05); for legibility, G2F 2017 and SAM 2018 experiments were separately scaled, and nonsignificant
features were set at a -log10(p) value of 0. (c) Boxplot of selected traits significantly different between the two environmental conditions in
the G2F 2017 experiment (Mann-Whitney U test p < 0.05). (d) Boxplot of selected traits significantly different between the two development
time points and/or the two environmental conditions in the SAM 2018 experiment (Mann-Whitney U test p < 0.05).

In the SAM experiment, the situation was somewhat
reversed: in support of the overall higher trait heritability,
a remarkable 65 root traits had a significant effect from
genotype, but only 17 traits had a significant effect from
environment, while 37 traits had a significant effect from
time point (Figure 2(b), Figure S5A, Figure S7). Traits such
as RPF, surface area, volume, root crown depth, fractal
dimension side view, and biomass distribution skewness
were affected by all three variables. Again, nonparametric
tests for differences in RPF, volume, and fractal dimension
side, for example, confirmed the impacts of environment
and time point as detected by ANOVA (Figure 2(d)). The

somewhat divergent trends in 3D root phenotypes between
the G2F and SAM experiments, however, indicate that
additional generalizations about root system architecture
and how growth plasticity relates to it may be difficult to
come by, as root variation is highly dependent on the
experimental conditions, population, and developmental
stage, similar to other quantitative traits [61]. Indeed,
although the sample sizes here precluded strong statistical
power to test genotype-environment interactions using
ANOVA, variance component analysis suggests that such
interactions may have a significant influence on a number
of root architecture traits (Figure S3B, Figure S4B-C).



3.2. Root Architecture Relationships and Correspondence to
Root Pulling Force. Root pulling force has been used histor-
ically and recently as a proxy for root mass and root volume.
Nevertheless, to have additional and more detailed informa-
tion on the architectural changes that RPF measures would
increase its utility as a field assay. We first calculated
correlations between RPF and 3D root phenotype across all
measured samples, irrespective of genotype and environ-
ment, or time point in the case of the SAM data. In both
experiments, RPF was most correlated with root volume,
fractal dimension, surface area, total root length, root crown
width, number of bifurcating clusters, and number of root
tips. (Figures 3(a) and 3(b), Table S3). Traits negatively
correlated with RPF were generally weaker and less
consistent between the two experiments but did include
convex hull energy (a measure of root system uniformity)
and Density S5 in both cases.

Associations between root pulling force and root system
architecture traits are most useful if they are not only signif-
icantly correlated but also exhibit a close linear relationship.
Regression analysis between RPF and positively correlated
3D architecture traits (as observed in the G2F experiment),
such as fractal dimension and surface area, showed a reason-
ably good fit (Figures 3(c)-3(e)). In contrast, there was a rel-
atively poor fit with convex hull kurtosis, the most negatively
correlated trait (Figure 3(f)). These may in part be due to
sampling error or noise, but also because multiple root char-
acteristics that may not be strongly correlated to each other
nevertheless each contribute to RPF in various ways. Never-
theless, the regression fit between physical root mass (i.e.,
root crown weight) in the SAM experiment and RPF or
other positively correlated 3D architecture traits was
extremely high, while again relatively poor with negatively
correlated traits such as solidity in the upper root crown
(Figures 3(g)-3(j)). This high goodness-of-fit was not a by-
product of regression between two time points; rather,
regression between physical root mass (g) and these 3D
traits remained high even when observing trends and regres-
sions within each time point (Figure S5B-]). Furthermore,
regression fit was typically higher in time point 1 than in
time point 2, which might be due to root crown traits
beginning to diverge in ways more independent of root
mass, such as in architectural and spatial orientation,
which could nonetheless contribute to RPF.

To explore the degree to which trends across multiple
traits may be associated with RPF, we performed principal
component analysis (PCA) from the G2F and SAM data
using the 3D-based root phenotypes alone (Figure S8A, E).
In the G2F data, RPF was more tightly associated with
principal component 2 (Figure S8B), which was primarily
composed of traits related to overall size, e.g., surface area,
volume, total root length, and number of root tips, but also
significantly composed of 3D biomass distribution traits
(Figure S8I). On the other hand, in the SAM data, RPF
was more tightly associated with principal component 1
(Figure S8F), which as with the G2F data was primarily
composed of traits related to overall size, including surface
area, volume, and total root length, and additionally
fractional dimension side/top, but notably not of 3D
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biomass distribution traits (Figure S8]). Both PC1 and PC2
were statistically different between the two environmental
conditions in the G2F data and between the two time
points in the SAM data (Figure S8C-H), but the differences
between the G2F and SAM results here likely derive from
the fact that much of the phenotypic variation in the SAM
data is greatly affected by sampling time point, which an
unsupervised method such as PCA does not distinguish.

3.3. 3D Root System Architecture Is Shaped by Genetics,
Environment, and Development. We next applied supervised
multivariate classification methods to determine which traits
were most closely associated with differences in genotype,
environment, or time (Table S4). Because of the high
number of genotypes (18 in the G2F set and 16 in the
SAM set, after filtering for genotypes with the least missing
data), in both experiments, the data was split into every
possible combination of three genotypes, generating 816
different genotype combinations in the G2F set and 560
different genotype combinations in the SAM set. We
performed PCA-LDA for genotype classification upon each
three-genotype data subset, in each case using the
minimum number of principal components to explain 90%
of the variance (5-7 principal components with a median
of 6 in G2F data; 9-13 principal components with a
median of 11 in SAM data) as the inputs for LDA
(Figures 4(a) and 4(b)). Across all genotype combination
subsets, the average classification accuracy using leave-one-
out cross-validation was 54.6% in the G2F and 67.2% in
the SAM, both significantly higher than the 1/3 expected
by random chance and therefore indicating that this
approach is sensitive to distinguish between many of the
genotypes, especially considering that numerous genotypes
may in fact be phenotypically similar (Figure S1A).

We examined what traits were most important towards
PCA-LDA classification across all genotype combinations
(Figure S9-S10). In both the G2F and SAM populations,
maximum root count, average root radius, and specific
root length tended to be very important for genotype
discrimination. Additionally, the median root count,
number of root tips, elongation, and average edge length
were important in genotypic classification among the G2F
population, while several root solidity and density traits
were important in genotypic classification among the
SAM population. Although RPF was not among the top
traits for genotypic classification, it was still well above
average, ranking 12" overall in the G2F set and 19™
overall in the SAM set. Interestingly, traits related to
overall root size such as volume or surface area did not
seem to be important factors overall in discriminating
between genotypes, suggesting that these metrics, although
intuitive and undoubtedly important in other contexts, are
by themselves insufficient to distinguish between multiple
and often subtly distinct genotypes, highlighting the need
for the more comprehensive phenotyping described here to
fully capture quantitative differences in root development.

To evaluate the overall effect of the environment (influ-
ential in the G2F experiment) and time (highly influential
in the SAM experiment), we performed random forest
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classification to distinguish between the two possible levels
of each variable upon root system architecture. For these
classifications, we included all genotypes, which increased
the sample size for each model. Using 10-fold cross-valida-
tion, the best model parameters resulted in a classification

accuracy of 81.0%, indicating that while the environment
had an effect which was detectable using classification
techniques, the contrasting irrigation regimes were not so
dramatic as to result in a shift in root system architecture
obvious across every sample (Figure 4(c)). Nevertheless,
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changes in density and solidity distributions, as well as
root crown depth, were the most distinguishing features,
with RPF being less important (Figure 4(d)). Here, the
importance of solidity distributions in the upper half of the
root crown (including SolidityVHist 02-11) is consistent with
ANOVA analysis (Figure S5A); in particular, the low broad-
sense heritability of SolidityVHist 05-10, coupled with
disproportionately high variance from environment and
genotype-environment effects, indicates that these are more
determined by environmental factors than by genetics in
this experiment (Figure S3A-B). On the other hand,
DensityS5 (a measure of relative compactness), which had a
moderately high heritability in this experiment, is still
important for distinguishing the effect of environment,
suggesting that this trait is strongly affected by both
genotype and environment.

For classifying roots based on time point in the SAM
data, using 10-fold cross-validation, the best model parame-
ters resulted in a random forest classification accuracy of

78.6% (Figure 4(e)), which was reasonable when considering
that samples across both environmental conditions were
included. Here, differences in convex hull volume, volume,
depth, root crown width, and solidity distribution were the
most distinguishing features, with RPF closely behind these
and other important traits (Figure 4(f)). Furthermore, solid-
ity distribution features at the very top and bottom of the
root crown (SolidityVHist 01 and 17-19) appear to be rele-
vant. These results are consistent with the increasing root
crown size over time and with ANOVA results on time point
effects upon these traits (Figure 2(b)).

Overall, multiple analytical approaches corroborate the
conclusion that distinct sets of root traits are relevant
depending on the germplasm, environment, and develop-
mental time stage, reinforcing the relevance of high-
dimensional root phenotyping. This also demonstrates not
only the complexity of root system architectures, but its pro-
pensity to change under different contexts and genetic influ-
ences, and its ability to adapt to various conditions.
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4. Discussion

We have shown that using X-ray computed tomography,
changes in 3D root architecture between different treatments
and conditions in the field can be measured in a biologically
interpretable way, while also with high precision and detail.
For example, soil moisture conditions affect the solidity of
the root system, particularly in the midportion of the crown.
In contrast, changes over time influence not only the overall
size of the root crown but also solidity in the upper and
lower portions of the crown. Interestingly, in both contexts,
the depth (i.e., the length of the vertical axis) of the root
crown also was a distinguishing feature. This is likely specific
to root crowns excavated using the root pulling method, as
under standard shovel excavation, the root depth would be
more arbitrary unless carefully controlled for in the experi-
mental design and execution. By using root pulling, how-
ever, the depth is a function of the root system and the soil
conditions, as these determine where the root crown breaks
and therefore encapsulates some information. Finally, in
many instances, the 3D architectural measurements were
easily sufficient to distinguish different maize genotypes, pri-
marily using an entirely different set of traits including spe-
cific root length, median/maximum root count, and average
root radius.

To date, 2D imaging has been by far the most popular
form of quantifying root system architecture, whether in
Arabidopsis grown on media plates, or root crowns exca-
vated from the field. While relatively straightforward and
convenient, 2D imaging does not represent true root system
architecture in its natural form and therefore may omit
important information. More recently, optical imaging plat-
forms have been developed to perform 3D imaging of plants
growing in gel media [37, 39, 50]. Here, we present a new
approach to quantifying hundreds of field-excavated root
crowns using X-ray CT, which is typically restricted to very
small sample sizes or reconstituted soils from pot experi-
ments [41]. Once the equipment and protocols are estab-
lished, processing thousands of roots from a single field
experiment and season is possible, making association map-
ping of 3D phenotypes feasible. Our results suggest that 3D
imaging and the root system architectural traits derived
from it have higher heritability (and therefore may be more
informative) than methods using 2D imaging. Thus, future
studies in quantitative root system architecture should
increasingly utilize 3D phenotyping, either through XRT or
the use of other imaging methods [62].

Still, the significant overhead associated with 3D imaging
and analysis of roots will be a limitation to many researchers
for the foreseeable future. We also addressed this by making
explicit comparisons between high information content 3D
phenotypes and root pulling force, which is accessible and
can be scaled to high throughput levels. RPF measurements
had several significant positive correlations with 3D archi-
tecture traits including volume, surface area, total root
length, number of roots, and fraction dimension. Indeed,
fractal dimension was a surprisingly powerful trait, not only
being highly correlated with RPF but also having high heri-
tability and contributing significantly to differentiating root

system architecture over time. This is additional evidence
that fractal dimension of root systems [53, 63-66] is a useful
feature for quantifying maize root crowns under a variety of
scenarios.

However, there remain sufficient sources of variance
among features such that future improvements could
strengthen the relationship between the above traits and
RPF values. For example, we performed root pulling manu-
ally by hand, but a field robot or other form of mechanical
assistance may result in more consistent RPF measurements
[67]. Furthermore, while the fields were flooded just prior to
root pulling to standardize the soil moisture conditions at
the time of RPF sampling, local heterogeneity in soil texture
or compactness may influence the measurements. This can
be addressed in part by integrating larger studies whereby
spatial effects can be modeled, which likewise would be facil-
itated with mechanization of the root pulling process.
Finally, it should be noted that several traits not measurable
by our XRT system could contribute to RPF, including the
abundance of root hairs and variation in rhizosheath forma-
tion. Indeed, RPF heritability was notably higher later in
development, consistent with a previous study showing high
RPF heritability after maturity [19]. This observed difference
might also suggest that RPF is controlled by different genetic
factors over time, and therefore it may also be possible to
select for early and later root phenotypes at least partially
independently.

A better understanding of the exact nature and the
potential interactions between the many root traits investi-
gated here, such as exactly how fractal dimension and root
volume together affect RPF, as well as the addition of more
traits that could theoretically be calculated from 3D imaging
(such as those relating to topology), may lead to additional
insight into the relationship between root system architec-
ture and RPF. As the interplay between these traits and
above-ground performance such as yield and shoot biomass
can be weak or inconsistent due to pleiotropy, linkage, and a
gap in the understanding of root-shoot interactions, fully
resolving how these traits interact would be beneficial for
isolating desirable phenotypes and increasing selection effi-
ciency within breeding applications. This would also be useful
in multienvironment or stress-related studies, which typically
require high sample sizes that the RPF method is well-suited
for. Indeed, our study suggests that many more field-scale
studies, utilizing wide-ranging conditions and germplasms,
will be needed to fully characterize and understand quantita-
tive root system architecture and genotype-environment
interactions in diverse plant species such as maize.
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