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Abstract

Gaia is undertaking a deep synoptic survey of the Galaxy, but photometry from individual epochs has, as of yet,
only been released for a minimal number of sources. We show that it is possible to identify variable stars in Gaia
Data Release 2 by selecting stars with unexpectedly large photometric uncertainties given their brightness and
number of observations. By comparing our results to existing catalogs of variables, we show that information on
the amplitude of variability is also implicitly present in the Gaia photometric uncertainties. We present a catalog of
about 9.3 million candidate variable stars, and discuss its limitations and prospects for future tests and extensions.

Unified Astronomy Thesaurus concepts: Variable stars (1761); Sky surveys (1464); Catalogs (205)

Supporting material: machine-readable table

1. Introduction

A central theme of modern astrophysics is the shift from static
catalogs of celestial sources to an increasing focus on variables and
transients. One reason variability is of interest is because a
complete inventory of variable stars down to almost any magnitude
limit would provide important insights into stellar evolution and
Galactic structure. For instance, past discoveries of variable stars
have helped with the determination of cosmological parameters
(e.g., Freedman et al. 2001; Riess et al. 2016), improving the
distance scale (e.g., Thompson et al. 2001; Pietrzyński et al. 2013),
and calculating the ages of the oldest stars (e.g., Soszyński et al.
2015).

In our own Galaxy, recent wide-field surveys that have
produced catalogs of variable stars include, e.g., the Catalina
Real-Time Transient Survey (CRTS; Drake et al. 2014), the All-
Sky Automated Survey for Supernovae (ASAS-SN; Jayasinghe
et al. 2018), the Zwicky Transient Facility time-domain survey
(Bellm et al. 2019), and the Transiting Exoplanets Survey
Satellite (TESS; Ricker et al. 2015), among others. These
variable catalogs are distinguished by their overarching science
goals and therefore have different selections functions. For
example, CRTS avoids the Galactic Plane and the poles, while
ASAS-SN is limited to just the brighter sources with g 18.

A true deep, all-sky variability survey is ongoing with the
astrometric Gaia mission. However, the most recent Gaia data
release (Data Release Two, hereafter DR23) only presented
variability information for approximately 550,000 sources
(Holl et al. 2018), with per-epoch photometry for the full set
of sources expected to follow in future releases.

In this paper we show that incomplete—but still quite
valuable—information on which Gaia sources are variable is
implicitly present in DR2.

In Section 2 we provide a short summary of Gaia photometry
and assess its advantages over other surveys in the search for
optical variables. We summarize in Section 3 the algorithm we
developed to identify variable stars using uncertainties in flux
as measured by Gaia. In Section 4 we test the algorithm against
existing catalogs of variables and present our final catalog of
candidate variable stars.

2. Background: Gaia Photometry

Since 2014, Gaia has been collecting photometric and
astrometric observations of the entire sky. Gaia DR2, based on
data taken during the first 22 months of the mission (Gaia
Collaboration et al. 2018), provides broadband G photometry
for approximately 1.7 billion sources. Gaia DR2 also presents
photometry in blue and red (GBP and GRP) bands for a subset of
sources from separate photometers; these data will eventually
also give low-resolution spectra. Gaia photometry is calibrated
to a consistent and homogeneous photometric system (Lindeg-
ren et al. 2018), and its location above the Earth’s atmosphere
offers similar advantages to TESS, trading off the higher time
resolution of TESS for better depth and spatial resolution. This
makes Gaia especially well-suited for dense regions of the sky,
with a pixel size of∼ 0.06× 0 18, compared to TESS or
ASAS-SN, which have typical pixel sizes of 21″ and 8″,
respectively.
Gaia continually scans the sky by both spinning and slowly

precessing. This scanning law gives complete, but not uniform,
coverage of the sky. In addition, each transit of the focal plane by
a source provides not one, but nine independent G measurements
from different CCDs, though other parameters such as the source
density also affect the number of observations made of each
source. Overall, nearly all sources listed in the photometric catalog
have many observations, and the listed photometry is a weighted
average of the individual measurements (Evans et al. 2018; Riello
et al. 2018).
Individual epoch photometry has been published for a

minimal fraction of the full Gaia data set, principally objects
with many high-quality data points belonging to well-studied
classes of variables such as RR Lyraes, Cepheids, and long-
period variables (Holl et al. 2018). Short-timescale variability
has been explored for a yet smaller pilot sample of sources
(Roelens et al. 2018). These works have proven the usefulness
of Gaia photometry for studying stellar variability, but these
catalogs are far from—and make no representation of being—a
complete sample of variables. Indeed, the non-uniform Gaia
DR2 sky coverage, combined with a minimum required
number of focal plane transits in Holl et al. (2018), means
that some areas of the sky have literally zero identified
variables in that paper.
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Here we show that even without per-epoch photometry, it is
possible to accurately identify a large sample of variable stars
using the published Gaia DR2 catalog. In particular, we show
that variable stars can be selected by targeting stars with
unexpectedly high photometric uncertainties given their bright-
ness and number of observations.

3. Data and Methods

3.1. Photometric Uncertainty Encodes Variability

The essence of our method is shown in Figure 1, which
plots the Gaia G versus the G magnitude uncertainty for 1000
stars in a small patch of the sky (due to our signal-to-noise cut
described below, we assume symmetric magnitude uncertain-
ties). The expected shot-noise curve, with larger uncertainties
for fainter stars, is evident in Figure 1 for the bulk of the stars
(see also Evans et al. 2018). We refer to this distribution as the
“baseline curve.”

This field was not chosen at random: it is centered on a well-
known RR Lyrae variable star, TY Hyi (G= 14.3). Figure 1
shows that this star has a much larger G uncertainty than stars
of similar brightness on the baseline curve, consistent with the
idea that intrinsic variability can increase the magnitude
uncertainty of a star.

In Figure 2 we show a similar plot of G versus magnitude
uncertainty but now for all 70,680 published CRTS variable
stars with photometric periods <10 days, a conservative limit
chosen to ensure that variability would be sampled by the Gaia
data. It is evident that few of these stars sit on the baseline
curve, but instead, nearly all lie above the curve, with a larger
magnitude uncertainty than expected for other (non-variable)
stars of similar brightness.

More evidence that this effect is due to intrinsic variability
comes from considering the amplitude of the variability. The
points in Figure 2 are color-coded by variability amplitude.
Stars with larger variability amplitudes deviate more from the

baseline curve at a fixed magnitude, consistent with the idea
that the magnitude uncertainty is correlated with variability.

3.2. Number of Observations and Calculating the Baseline
Curve

3.2.1. G Photometry

Since the Gaia sky coverage is non-uniform, and the G
magnitude uncertainty also varies with the number of times a
source has been observed (Evans et al. 2018), different samples
of stars across the sky will produce different baseline curves.
Hence a simple magnitude-based statistic for selecting variables
will not work—the number of observations must also be
considered.
Figure 3 shows that, on average, the magnitude uncertainties

scale as expected with the number of observations: at fixed
brightness, the uncertainty decreases as the number of observa-
tions increases. To model this, we binned stars by the number of
G observations, Nobs,G, from 50 to 750 observations in intervals of
50. We further binned stars by magnitude, ranging from G= 14 to
G= 19.5 in intervals of 0.1 mag. The bright limit was chosen to
avoid an unusual feature in the magnitude uncertainty of stars in
the range of about G= 12.5–13.5 (see Figure 9 in Evans et al.
2018), and because for G< 12, saturation starts to become an
issue. The faint limit was chosen due to the flattening of the
baseline curve, beyond which the scatter in magnitude uncertainty
becomes too large for variable stars to be distinguished reliably.
Within each of these joint bivariate limits, we chose a random

sample of 2000 stars, enabling a significant but tractable population
of ∼1.5 million stars overall to model the set of baseline curves.
For example, we calculated one baseline curve for 2000 stars with
Nobs,G= 300–350 and 16<G< 16.1, another for Nobs,G=
350–400 and 16<G< 16.1, etc., for the 770 bivariate bins. For
each of these samples of 2000 stars, we calculated the mean
magnitude uncertainty and the median absolute deviation, the latter
as an estimate of the spread, robust to outliers.

Figure 1. A magnitude vs. magnitude uncertainty plot illustrating the
characteristic baseline curve along which most non-variable stars lie. This
plot contains 1000 stars, obtained using a cone search of radius 0°. 3 centered on
the known RR Lyrae variable TY Hyi at (R.A., decl.) of (38.2627379,
−71.0328164). This variable star, colored in red, does not fall on the baseline
curve, but instead has a noticeably larger magnitude uncertainty than other stars
of comparable magnitude.

Figure 2. G vs. G uncertainty for CRTS variables with periods less than 10
days (Drake et al. 2014, 2017), colored by their optical variability amplitude.
The black points are a random sample of 2000 stars, illustrating a baseline
curve for non-variable stars. The dashed lines are the mean magnitude
uncertainty of variables, in three bins from 0.0 to 1.2 mag in variability
amplitude. The G magnitude uncertainty increases with amplitude, implying
that stars with greater variability lie further off the baseline curve.
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Less than 0.2% of stars in the Gaia database have over 750
observations and their baseline curve is very similar to that for
the stars with Nobs,G= 700–750, so that baseline curve is used
for those stars with high numbers of observations. However,
for stars with fewer than 50 observations (corresponding to
stars with typically 5 or fewer Gaia focal plane transits), the
scatter in the uncertainties was large and no well-defined
baseline curve could be established. Therefore, stars with
Nobs,G< 50, which make up approximately 3% of the Gaia
DR2 database, along with stars having G< 14 or G> 19.5,
were excluded from the present work. Some high-amplitude
variable stars might still be identifiable among the faint sources
or those with few observations.

We also compared baselines at different Galactic latitudes.
However, we found that Galactic latitude alone has a negligible
effect on the baseline curve. Galactic latitude indirectly affects
our selection of variables because stars with close companions
(in projection) can be shifted to higher photometric uncertain-
ties even if not variable. The effects of crowding are addressed
in Section 3.3.1.

3.2.2. GBP and GRP Photometry

1.4 billion sources in Gaia DR2 that have reliable G
photometry also have independent blue (GBP, hereafter BP) and
red (GRP, hereafter RP) photometry (Gaia Collaboration et al.
2018). Adding these measurements allows us to construct a
subsample of our entire catalog of candidate variables that has
lower completeness but higher purity.

Figure 4 illustrates that, as observed in G, RP magnitude
uncertainties decrease as the number of photometric observa-
tions increase (the figure for BP is nearly identical and not
shown). We constructed BP and RP baseline curves using a
similar procedure as that for G but tailored to the lower number
of BP and RP observations. For each band, sources were
binned by the number of observations, from 20 to 100 in
intervals of 10, and binned again in magnitude from BP (or RP)

from 12 to 20 in intervals of 0.1 mag. For each of these 640
bivariate bins, we randomly selected 2000 stars to calculate the
baseline curves from the mean magnitude uncertainty and
median absolute deviation of each bin.

3.3. Initial Candidate Variable Star Flagging

We use the baseline curves to calculate an effective σ for
each bin in G and Nobs,G, where

( )s = 1.4826 MAD 1

(the median absolute deviation). Then, for each source we can

calculate the quantity Gσ as the ratio of the G magnitude

uncertainty in Gaia DR2 for that source to the σ for that bin.
As evidence that Gσ tracks variability, Figure 5 shows that

the mean amplitude of variability in the CRTS sample
correlates with Gσ: on average, stars that deviate more from
the baseline curve have higher amplitude variability.
We flagged an initial list of candidate variable stars as those

stars with Gσ> 3. This limit is justified by Figure 6, which
compares the lower tail of the σ distribution for the CRTS
variables (the sample discussed in Section 3.1) to a random
sample of Gaia sources. A 3σ cut includes 96% of CRTS
variables, while few randomly selected stars have Gσ> 3.
After running the algorithm across the entire sky, the initial list

Figure 3. G mag vs. mag uncertainty plot, with the color representing the
number of observations contributing to the Gaia G photometry. As expected,
sources with more observations have smaller mean uncertainties and hence
different baseline curves.

Figure 4. RP mag vs. mag uncertainty plot, with the color representing the
number of observations contributing to the Gaia RP photometry. The
qualitative behavior is similar to that for G (see Figure 3).

Figure 5. Amplitude of variability vs. Gσ for CRTS stars with periods < 10
days. The plotted points are the mean amplitudes and Gσ of CRTS variables
binned by amplitude in overlapping 0.1 mag bins, with bin centers from 0.1 to
0.45 mag. The uncertainties are given by standard errors of the mean, and the
red line is a least-squares fit to these points to guide the eye.
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of candidate variables with Gσ> 3 contained 56,704,871 stars.
Note that 47,256,102 stars were flagged with Gσ> 4, and
40,385,829 stars were flagged with Gσ> 5. Because our
catalog prioritizes identifying candidate variables where the
existence of any such variable is useful, we have chosen a cut
of Gσ> 3: Gσ values are provided in our catalog if the user
chooses to make stricter cuts.

3.3.1. False Positives: Galaxies and Stars with Neighbors

Two source classes can have Gσ> 3 even if they are not
variables. The first is resolved galaxies. We cross-checked our
list of candidates with galaxies in the GLADE (Dálya et al.
2018) and SDSS galaxy catalogs (Simard et al. 2011),
removing candidates that matched to sources in these catalogs
to within 2″.

The second class of potential “false positives” are sources
with higher-than-normal backgrounds, typically because they are
close to other stars, especially bright ones. Careful assessment
of the effects of neighboring stars led to the following criteria
for flagging candidates as potential false positives: (i) any
neighboring star within 5″; (ii) a neighboring star with G< 20
within 10″; (iii) a neighboring star with G< 12 within 30″; or
(iv) a neighboring star with G< 8 within 50″. A small subset of
sources with close neighbors was included in the “Bronze”
sample discussed in the next subsection.

Of the initial 56,704,871 sources flagged for Gσ> 3,
42,670,766 were removed as false positives. Of the remaining
14,034,105 sources, 4,734,587 were removed after cross-
matching with GLADE and SDSS galaxy catalogs.

3.4. Adding BP and RP: Gold, Silver, and Bronze Criteria

For stars that have BP and RP magnitudes, we determine
BPσ and RPσ values from their respective baseline curves in
the same manner as for Gσ.

We define the Gold sample as those sources with all of
Gσ> 3, BPσ> 3, and RPσ> 3 and that pass the nearby
neighbor criteria. This sample will be the least complete but
should have the highest proportion of true variable stars.

The Silver sample consists of those sources with Gσ> 3 and
either BPσ> 3 or RPσ> 3 and which also pass the nearby
neighbor criteria, but are not in the Gold sample.
The Bronze sample is the union of sources with (i) Gσ> 3

that pass the nearby neighbor criteria and do not fall into the
Gold or Silver samples, and (ii) sources that do not pass the
nearby neighbor criteria, but nevertheless have all of Gσ> 3,
BPσ> 3, and RPσ> 3.
We note that in the mean these three measurements are

positively correlated with one another, as would be expected
given their independent tracing of the variability. It is possible
that a careful consideration of the relative BPσ and RPσ values
for a given source could give interesting constraints on the
nature of its variability, but in this paper the main utility of
using multiple measurements is simply to average down the
noise for fainter or lower amplitude variables.
The magnitude distribution of each of these samples is

shown in Figure 7. The mean G magnitudes of our Gold,
Silver, and Bronze samples are 16.2, 17.4, 18.1, respectively.
Note that our Gold sample consists of brighter sources because
RP and BP photometry are available for fewer dim stars.
Figure 7 also shows an uptick in Silver sources at around
G= 18.5, which is likely due to the larger scatter in RP and BP
magnitude errors at fainter magnitudes as compared to G
magnitude errors (see Figures 3 and 4). We do not argue that
the different samples represent different classes of variable
objects, but rather that the Gold, Silver, and Bronze samples
primarily represent different levels of confidence that real
variability is present.

3.5. Our Full Catalogs

Our full catalog consists of 9,299,518 candidate variables
with 14<G< 19.5. As shown in Table 1, the majority of these
(8,546,936) fall into the Bronze sample, with 483,006 and
269,576 sources in the Silver and Gold samples, respectively.
A sample of 50 candidates is listed in Table 2, and we provide
the full catalog in machine-readable format.
The comparisons to existing catalogs in Sections 4.1 and 4.4

show that our method can identify periodic variables with shorter
periods and higher amplitudes with fidelity, with some sensitivity

Figure 6. Gσ distribution of CRTS stars with Gσ < 24 (black line). In red is
the Gσ distribution for a random sample of 2000 stars.

Figure 7. G mag distribution of candidate variable stars, with color
representing the Gold, Silver, or Bronze samples.
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to longer period or irregular variables. Figure 10 presents the
CRTS light curves of 15 new candidate variables contained in our
catalog that are not present in any of the aforementioned variable
star catalogs or any variable star catalogs in the Vizier4 database.
As another illustration of science enabled by our catalog, we
used this method to find the variable optical counterpart to the
new likely redback millisecond pulsar 4FGL J2333.1–5527
(Swihart et al. 2020), and this source is in our final catalog.

We emphasize that for non-periodic variables (such as young
stellar objects, flare stars, and some background active galactic
nuclei) our catalog is certainly incomplete and that the recovery
fraction for these sources is very uncertain. Additionally, we
note that the outlier rejection procedure used in the photometric
processing for DR2 was sub-optimal for variables, with un-
rejected faint outliers resulting in significantly dimmer mean
magnitudes for a small fraction of sample variables (see
Arenou et al. 2018). Because a dimmer mean magnitude will
also artificially raise the 3Gσ flagging threshold, we anticipate
some variables with un-rejected faint outliers will be missed in
our catalog.

4. Results

We tested our method for selecting candidate variable stars
and our subsamples in several ways.

4.1. CRTS Periodic Variables

Our first test is for periodic variables of relatively short period,
using a combination of the northern and southern CRTS Periodic
Variables Catalogs (Drake et al. 2014, 2017). Together these
catalogs contain 70,680 periodic variables with periods <10 days
and magnitudes 14<G< 19.5. We find that our Gold selection
recovers 39,600 of the CRTS variables, with the Silver and
Bronze samples adding 6492 and 19,134 sources, respectively.
The total Bronze+Silver+Gold sample recovers 65,226 (92%) of
the CRTS variables. We note that 68,076 (96%) of the variables
had Gσ> 3; hence the nearby neighbor cut led to only a 4% loss
in the recovery of variable stars. This loss estimate is likely
optimistic for our full-sky catalog since CRTS avoids the dense
Galactic Plane.

Given the still limited time range and number of visits in
DR2 compared to the expected final values, we expect that our
variable selection method will be less effective for long-period
variables. To test this, we expand our analysis of the CRTS
variable star sample to longer periods. Figure 8 shows the
recovery rate of CRTS variables as a function of period. While
still above 95% out to periods of half a year, it decreases
gradually for periods 100 days, reaching a recovery rate of
75% for periods longer than 1 yr. We expect that future data
releases will allow improved recovery of periodic variables
with longer periods using a similar methodology.

4.2. Gaia Periodic Variables

As another test of our catalog, we also compared it to the
initial catalog of RR Lyrae and Cepheid variables provided in
Gaia DR2 (Gaia Collaboration et al. 2018). The Cepheid
variable catalog contained 8465 sources with magnitudes
14<G< 19.5. Our Gold selection recovers 676 of the Cepheid
variables, while the Silver and Bronze selections recover 121
and 6864, respectively. These selections in total recover 7661
(91%) of the 8465 variables. However, we note that 100% of
the variables had Gσ> 3.
The RR Lyrae variable catalog contained 107,418 sources

with magnitudes 14<G< 19.5. Our Gold selection recovers
26,211 of the RR Lyrae variables, while the Silver and Bronze
selections recover 11,755 and 37,945. These selections in total
recover 75,911 (71%) of the 107,418 variables. 107,153 (99.8%)

of the variables had Gσ> 3.
These comparisons indicate that the photometric uncertainty

selection (Gσ> 3) correctly picks out nearly all of the Gaia
DR2 Cepheids and RR Lyrae variables so far identified, and
that the main source of incompleteness is the nearby neighbor
cuts needed to exclude false positives.

4.3. Zwicky Periodic Variables

The Zwicky variable catalog contains 556,521 sources with
magnitudes 14<G< 19.5 and periods <10 days. Our Gold
selection recovers 83,246 of the Zwicky variables, while the
Silver and Bronze selections recover 57,726 and 220,878,
respectively. These selections in total recover 361,850 (65%) of
the 556,521 variables. However, we note that 524,634 (94%) of
the variables had Gσ> 3, so again a substantial number of true
variables are excluded from our catalog due to having nearby
neighbors.

4.4. Stripe 82

Stripe 82 is a region of sky with many observations from
SDSS and hence one in which variability has been relatively
well-characterized.

4.4.1. Existing Catalogs

There are several existing catalogs of variables in the Stripe
82 region, including both Galactic variable stars and other
variable sources, such as background active galactic nuclei.
Sesar et al. (2007) identified 13,051 candidate variable

sources in Stripe 82 with root mean square variability of at
least 0.05 mag in g and r. Of the 5476 sources in our magnitude
range that pass our false positive selection criteria (not identified
as a galaxy or with nearby neighbors), 564 (10%), 236 (4%), and

Table 1

A Summary of our Catalog of Candidate Variable Stars in Gaia DR2

Catalog Subset # of Sources

Full Catalog 9,299,518

Bronzea 8,546,936

Silverb 483,006

Goldc 269,576

Gσ > 3d 56,704,871

Stars removed due to neighbor criteriae 42,670,766

Stars removed after galaxy cross-matchingf 4,734,587

Notes.
a
Only Gσ > 3 with no nearby neighbor or Gσ, RPσ, BPσ > 3 with a nearby

neighbor.
b
Gσ, RPσ > 3 or Gσ, BPσ > 3, with no nearby neighbor.

c
Gσ, RPσ, BPσ > 3, with no nearby neighbor

d
See Section 3.2.2.

e
See Section 3.3.1.

f
Number of sources matched to GLADE and SDSS galaxy catalogs within 2″.

See Section 3.3.1.
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Table 2

Parameters of Candidate Variables

DR2 source ID R.A._ICRS Decl._ICRS Gmag Gerr Nobs,G Gσ RPmag RPerr Nobs,RP RPσ BPmag BPerr Nobs,BP BPσ Neighbor

40439865874173824 59.6601591 16.3837984 19.1279 0.01492 221 26.50 17.7657 0.01914 22 0.20 19.8941 0.01914 21 0.33 0

44826779826993280 55.2163228 18.0217655 18.0111 0.00577 255 25.98 17.1618 0.01729 28 1.92 18.6785 0.01729 27 0.01 0

46738044570131712 61.9564343 17.2009303 19.4670 0.01528 158 15.38 17.9242 0.06463 14 2.37 20.4754 0.06463 13 2.87 0

48486989612456832 63.0898901 18.6801123 16.3860 0.00386 213 28.20 15.2971 0.00354 21 0.72 17.3459 0.00354 21 0.06 0

58445060267493632 53.8329090 21.2487259 16.6516 0.00295 140 7.08 15.4208 0.03208 15 11.04 16.8823 0.03208 16 21.56 1

86177389218730496 38.5010657 18.8148091 14.9954 0.00223 124 10.72 14.3205 0.00564 14 1.81 15.5253 0.00564 14 1.86 0

117100466555852800 50.6010598 24.8243226 17.1271 0.00164 235 3.48 15.7194 0.01731 24 13.60 17.9888 0.01731 23 8.21 1

143145251318785920 44.3635758 38.3653871 17.1593 0.02211 143 85.55 15.8443 0.00907 16 0.19 17.6432 0.00907 16 0.25 0

148930709705115904 64.0776437 23.2004018 16.1915 0.00490 260 51.33 14.8645 0.00555 33 7.82 16.5142 0.00555 36 4.97 1

151237485099759232 66.5508633 25.9898104 14.4475 0.00074 211 3.42 13.4180 0.00276 22 2.56 15.5048 0.00276 23 2.77 0

153617442441325184 72.8391093 26.3817344 18.4952 0.00341 292 5.98 17.4057 0.01234 30 0.03 19.3327 0.01234 31 1.04 0

154831032697082368 73.0370062 27.5345148 16.4009 0.00110 296 3.37 15.3566 0.00418 31 2.01 17.2968 0.00418 31 0.68 0

158823496855936384 68.5318062 29.0404116 18.3049 0.00485 193 6.21 17.0001 0.02587 21 5.33 18.3182 0.02587 22 3.20 1

160235647742062976 71.9329177 31.2417966 19.3166 0.00487 285 3.00 18.1348 0.02604 29 0.12 20.4003 0.02604 27 2.78 0

161013616643339520 71.8608366 31.6261585 18.9280 0.00394 287 3.60 17.9972 0.02629 25 0.86 19.5425 0.02629 28 1.25 0

162749367547364352 63.5556061 26.6509968 17.1580 0.00544 219 34.67 15.8288 0.00655 20 1.96 18.0270 0.00655 21 1.04 0

167529636084675968 60.2216751 30.0819135 15.0750 0.00077 443 7.70 14.0424 0.00475 39 10.03 15.9953 0.00475 42 6.02 1

174062865455998464 71.5737286 35.1224336 16.4165 0.00135 324 6.96 15.4715 0.00371 33 0.82 17.2830 0.00371 33 0.55 0

182092182262153216 79.7161673 34.6546606 19.3924 0.00860 113 3.13 18.1737 0.04528 12 0.39 19.8219 0.04528 12 0.02 0

191485756774370432 87.0439433 39.4491555 19.1127 0.00964 141 5.40 17.7361 0.03120 15 0.14 20.7538 0.03120 16 1.50 0

200480655246963328 75.5775918 39.0991264 18.7465 0.00399 210 3.62 17.8090 0.01975 22 0.02 19.7382 0.01975 21 0.70 0

203855610478434176 69.1737776 41.2508518 19.1515 0.00726 207 8.48 17.7001 0.05568 17 2.20 18.6667 0.05568 16 1.20 0

219852783110541056 56.9022158 35.3482434 14.1686 0.00055 413 6.35 13.6279 0.00202 45 2.90 14.5319 0.00202 46 2.05 0

227679106878611328 65.4274274 40.3566799 18.3717 0.00309 277 5.77 17.5991 0.01377 30 0.17 19.0430 0.01377 34 1.64 0

233789608386812416 64.0863131 46.2473880 16.7640 0.01450 213 123.65 15.4696 0.00518 23 2.37 17.2599 0.00518 24 1.35 0

266688228946846848 79.9534749 54.8495438 18.1489 0.00627 220 19.27 17.4057 0.01794 22 1.01 18.7789 0.01794 23 0.35 0

335563050354523264 42.7281710 39.3564237 17.0391 0.00604 157 27.75 16.3655 0.01924 16 1.86 17.5807 0.01924 16 1.91 0

357698521524964096 28.8992244 49.7254524 15.1485 0.00108 209 7.00 14.4436 0.00319 22 1.78 15.6625 0.00319 22 0.50 0

378601062200955136 5.1365342 36.9321169 18.7991 0.00410 342 8.06 17.7208 0.01464 40 0.66 19.7990 0.01464 39 0.50 0

390288011812738560 12.0939593 47.7519071 17.2524 0.00732 196 31.64 16.5988 0.00967 20 1.26 17.3824 0.00967 20 0.35 0

403774346560833152 19.1895076 51.1509764 19.2292 0.00953 236 13.53 17.2450 0.01446 21 0.57 18.7825 0.01446 23 0.34 0

409865056863583616 21.0002057 51.7827563 15.6915 0.00464 271 50.42 14.8769 0.00301 32 1.77 15.9502 0.00301 32 0.12 0

410463947104223104 20.9543133 53.3759829 17.3462 0.00156 270 3.36 16.6246 0.00912 23 0.54 17.8409 0.00912 24 0.05 0

412647469820585856 23.3232320 56.0670938 18.6842 0.00344 483 9.63 17.5507 0.01151 46 0.06 19.3642 0.01151 46 0.22 0

418061469380734976 8.3388897 54.0476103 17.9764 0.00159 765 7.80 17.1787 0.00615 76 0.27 18.4924 0.00615 79 0.90 0

419008144586789504 6.3448846 52.6580333 19.3008 0.00846 391 18.04 18.2719 0.02831 37 0.94 19.7138 0.02831 38 1.50 0

421811830519596160 7.4454725 57.0624586 19.1549 0.00570 318 9.78 17.9427 0.02408 30 1.25 19.7620 0.02408 29 2.58 0

425675724840727424 15.1997316 58.2080534 16.5802 0.00151 408 14.03 15.7121 0.00496 47 2.93 17.3134 0.00496 44 2.55 0

428039155142976768 7.7996961 58.9323984 19.2804 0.00603 357 10.66 18.3513 0.02880 34 0.68 20.0932 0.02880 36 0.48 0

431237329533972480 4.1228458 62.1501714 17.6958 0.00290 286 11.96 16.8993 0.01099 27 0.84 18.3370 0.01099 27 1.32 0

431740527902685568 0.4187533 64.3536029 17.2727 0.00193 297 6.95 16.3116 0.00682 29 0.26 18.1417 0.00682 28 0.96 0

436018688979761280 45.9688770 47.7504148 15.6459 0.00249 199 9.32 14.9966 0.00331 20 1.09 16.0294 0.00331 20 1.15 0

438538670849538432 41.8300422 48.2166719 16.8646 0.00210 210 8.90 15.9012 0.00582 21 0.82 17.7918 0.00582 21 0.57 0
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Table 2

(Continued)

DR2 source ID R.A._ICRS Decl._ICRS Gmag Gerr Nobs,G Gσ RPmag RPerr Nobs,RP RPσ BPmag BPerr Nobs,BP BPσ Neighbor

444000804098995328 55.1883997 53.0607704 17.4842 0.00264 233 8.67 16.4382 0.01028 27 1.97 18.5849 0.01028 28 0.08 0

454684140113693824 39.4934919 56.0635963 18.9622 0.00916 288 20.73 18.2259 0.02693 30 0.72 19.5495 0.02693 29 2.36 0

461998465116203648 47.6646909 59.0071831 18.5891 0.00877 549 51.24 17.3002 0.01131 53 0.82 19.4288 0.01131 54 1.05 0

462961469803934848 47.5753587 60.2087274 15.6061 0.00075 422 3.59 14.7368 0.00239 43 1.94 16.3636 0.00239 44 0.20 0

486794616988335872 53.0359731 62.2067988 18.1025 0.00360 296 9.72 16.9914 0.01141 30 1.50 19.1999 0.01141 28 0.91 0

810864266136126848 140.9142416 36.9725754 16.0517 0.00489 244 40.04 15.7567 0.01417 25 10.33 16.1887 0.01417 26 9.00 0

L L L L L L L L L L L L L L L L

Note. Column (1) Gaia DR2 source ID. Columns (2) and (3) R.A. and decl. Column (4) G-band mean magnitude. Column (5) G-band magnitude error. Column (6) Number of G-band photometric observations. Column

(7) Number of σ G-band magnitude error is off baseline curve. Column (8) RP-band mean magnitude. Column (9) RP-band magnitude error. Column (10) Number of RP-band photometric observations. Column (11)

Number of σ RP-band magnitude error is off baseline curve. Column (12) BP-band mean magnitude. Column (13) BP-band magnitude error. Column (14) Number of BP-band photometric observations. Column (15)

Number of σ BP-band magnitude error is off baseline curve. Column (16) has a value of 0 if star does not have a nearby neighbor meeting the criteria listed in Section 3.3.1, and a value of 1 if star does have nearby

neighbor.

(This table is available in its entirety in machine-readable form.)
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1713 (31%) are recovered in the Gold, Silver, and Bronze
samples respectively, for an overall recovery fraction of 46%.

In the enlarged SDSS Stripe 82 Variable Source Catalog,
constructed in a similar manner to Sesar et al. (2007) but with
observations from both SDSS-I and SDSS-II (Ivezić et al. 2007),
there are 24,719 sources that pass our criteria for evaluation as
variables (see Section 3.4), with respective Gold, Silver, and
Bronze sample recoveries of 688 (3%), 308 (1%), and 2454
(10%). The summed recovery percentage is only 14%.

Contrasting with the low recovery rate from this full catalog
of potential variables, we also looked at the Sesar et al. (2010)
sample of RR Lyraes selected from Ivezić et al. (2007). Of
these 483 RR Lyraes, 419 meet our criteria, and of these, we
recover 59% in our Gold sample and 406/419 (97%) in the
combined Gold+Silver+Bronze selection.

The ATLAS survey has also cataloged candidate variable
stars down to a magnitude limit generally consistent with our
Gaia limits over a wide area that includes Stripe 82 (Heinze
et al. 2018). We first consider their sample of “probable”
variables, which has 800 sources in Stripe 82 that pass our
magnitude and other cuts; we recover 253 (32%), 352 (44%),
and 114 (14%) in the respective Gold, Silver, and Bronze
samples, with a combined recovery rate of 90%. If we expand
to their larger sample of 5725 “dubious” variables, which
includes sources whose variability is less certain, we recover
827 (14%), 323 (6%), and 679 (12%), for a combined recovery
rate of 32%.

Both the CRTS results (Section 4.1) and those for Stripe
82 are consistent with a high recovery fraction for probable
variable stars, especially those with relatively short periods
and/or higher amplitudes. The status of the sources not
identified as variable using our Gaia method is less clear. Some
of the Stripe 82 objects have CRTS light curves, and an
examination of a random sample of these light curves shows
little or no evidence for variability in many cases. It may be that
these are periodic variable stars with periods too long to show
substantial variability in Gaia DR2, irregular variable stars, or
distant background sources such as active galactic nuclei with
no variability in DR2. This does not account for all the
variables found in previous surveys and not recovered by our
method. For example, some of the missing CRTS sources have

been classified as periodic variables. We closely examined light
curves for hundreds of these objects and confirmed that they do
indeed appear to be variable, but found no trend in variable
type, period, or amplitude suggesting why these sources were
not flagged as having Gσ> 3. In some cases it may be due to a
small total number of G observations and that these happen to
fall during orbital phases with less or no photometric variation.
It will be worthwhile to investigate these sources using future
Gaia data releases with a longer time baseline and a larger
number of observations.

4.4.2. New Variable Candidates in Stripe 82

Now we discuss the results from our method. In Stripe 82, our
Bronze sample contains 17,777 sources: 16,979with Gσ> 3 and
no nearby neighbors and 798 with nearby neighbors but all of
Gσ> 3, BPσ> 3, and RPσ> 3. The Silver and Gold samples
are much smaller: 719 and 820, respectively.
Of the 820 sources in the Gold sample, 743 are also found in

the SDSS Stripe 82 Variable Source Catalog or in the ATLAS
variable catalog (Ivezić et al. 2007; Heinze et al. 2018), an
overlap of 91%. The overlap fraction is smaller for the Silver
sample (50%) and yet smaller for the Bronze sample, where
only 3624 (20%) of the 17,777 sources are in the SDSS Stripe
82 or ATLAS catalogs. Of the 77 variables in the Gold Catalog
not present in the SDSS Stripe 82 or ATLAS variable catalogs,
CRTS light curves were available for 74. An inspection of
CRTS light curves for the 74 new variable star candidates
shows that some are indeed true variables (see example in
Figure 9). Based on the light curves, we estimate that 51 of the
variable candidates are false positives, making up ∼6% of the
820 sources in the Gold sample.

4.5. Test of a Random Sample

As an additional test, we randomly chose 1000 sources from
our catalog of candidate variables in approximate proportions
to the relative sample sizes (30 Gold, 60 Silver, and 910
Bronze), with the only proviso that they have CRTS data to
allow us to examine their light curves. Of these 1000 sources,
846 (85%) show clear variability in the CRTS data. This
comparison suggests that up to ∼15% of our catalog might be

Figure 8. Recovery rate vs. photometric period for binned CRTS stars with
periods >10 days and magnitudes 14 < G < 19.5. 2,870 CRTS stars were
sorted by period and binned so that an equal number of stars were in each bin.
Plotted is the mean recovery rate and period of each bin; note that the recovery
rate decreases with increasing period.

Figure 9. Light curve of a new candidate variable star in Stripe 82 located at
(R.A., decl.) = (311.4280398, 0.4186113) identified by our algorithm, but not
present in the ATLAS or SDSS Stripe 82 Variable Source Catalogs. Light
curve obtained from CRTS (Drake et al. 2009).
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false positives, though it is also possible that some of these

sources are true non-periodic variables that happen to not show

variability over the time range of the CRTS light curves.

4.6. Preliminary Comparison to Mowlavi et al. (2020)

After submission of the present paper, a preprint was posted

to the arXiv (Mowlavi et al. 2020) that employs a similar

Figure 10. Example light curves of 15 new candidate variables, not present in any known variable star catalogs. Light curves obtained from CRTS (Drake et al. 2009)
and folded on the candidate periods listed.
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method to this paper in identifying candidate variables, finding
a catalog of 23.3 million candidates (compared to our 9.3
million). A full comparison is outside of the scope of this
paper, but we give a brief comparison here. We find that 2.8
million of our 9.3 million candidates are listed as variables in
that catalog. Of our 6.5 million candidate variables not listed in
Mowlavi et al. (2020), we find that 368,717 cross-match with
some of the existing variable star catalogs discussed above,
including those from CRTS, ATLAS, and Zwicky, which
suggests that there are areas of parameter space where our
catalog is more complete. Further, we find that of their full
catalog of 23.3 million sources, 19.5 million were in our
preliminary catalog before we removed nearby neighbors,
suggesting a large part of the difference between the catalogs
concerns the treatment of sources with nearby neighbors.
Mowlavi et al. (2020) also includes analysis not present in this
paper, including using the relative evidence for variability in
the RP and BP bands to help classify the candidate variables.

5. Conclusions and Future Work

We have presented a catalog of over 9 million candidate
variable stars identified by their large photometric uncertainties.
Our catalog is divided into three samples (Gold, Silver, and
Bronze) based on probability of variability. After cross-
matching with several published variable catalogs, we estimate
our recovery rate to be high (>90%) for stars in non-crowded
regions with periods <10 days. After cross-matching in Stripe
82 and subsequently investigating light curves, we also
estimate the purity of our Gold sample to be 94%.

Epoch photometry for all sources observed from Gaia will
not be available until 2021 at the earliest. Until then, indirect
methods of probing variability across the whole sky, such as
the algorithm presented in this paper, can be useful. The longer
time baseline of Gaiaʼs Early Data Release 3, expected in late
2020, should allow the improved detection of variables though
application of a similar analysis.
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improved the quality, clarity, and precision of this work.
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