
Revisiting Fairness in MPC:
Polynomial Number of Parties and

General Adversarial Structures

Dana Dachman-Soled ?

University of Maryland
danadach@umd.edu

Abstract. We investigate fairness in secure multiparty computation
when the number of parties n = poly(λ) grows polynomially in the
security parameter, λ. Prior to this work, efficient protocols achieving
fairness with no honest majority and polynomial number of parties were
known only for the AND and OR functionalities (Gordon and Katz,
TCC’09). We show the following:
– We first consider symmetric Boolean functions F : {0, 1}n →
{0, 1}, where the underlying function fn/2,n/2 : {0, . . . , n/2} ×
{0, . . . , n/2} → {0, 1} can be computed fairly and efficiently in
the 2-party setting. We present an efficient protocol for any such
F tolerating n/2 or fewer corruptions, for n = poly(λ) number of
parties.

– We present an efficient protocol for n-party majority tolerating
n/2+1 or fewer corruptions, for n = poly(λ) number of parties. The
construction extends to n/2 + c or fewer corruptions, for constant c.

– We extend both of the above results to more general types of
adversarial structures and present instantiations of non-threshold ad-
versarial structures of these types. These instantiations are obtained
via constructions of projective planes and combinatorial designs.

1 Introduction

In secure multiparty computation (MPC), parties compute the joint
function of their inputs in a distributed fashion, while keeping their inputs
private. Formally defining the security model for MPC is quite complex
and there are various different flavors of security such as computational
vs. information-theoretic, security-with-abort vs. fairness vs. guaranteed
output delivery, broadcast-channel vs. no broadcast channel, rushing
vs. non-rushing.

? Supported in part by NSF grants #CNS-1933033, #CNS-1453045 (CAREER) and
by financial assistance awards 70NANB15H328 and 70NANB19H126 from the U.S.
Department of Commerce, National Institute of Standards and Technology.

In this work, we focus on the setting of computationally-secure, n-
party MPC in the presence of a broadcast channel with a rushing adver-
sary. Further, we will require the fairness guarantee, which, informally,
states that if one party obtains the output of the function being computed,
then all parties must obtain the output.

It is known how to securely compute every functionality in the above
setting, assuming honest majority (i.e. more than half the parties are
uncorrupted) [18, 10, 12, 37, 17]. On the other hand, impossibility results,
showing that there are n-party functionalities that cannot be computed
fairly (even computationally and even with a broadcast channel), are
known in the case of no honest majority. Negative results on fairness
include the early work of Cleve [13], who showed that fair coin-tossing
is impossible when n/2 out of n parties are fail-stop (i.e. behave in
an honest-but-curious manner with the exception that they may abort
early). In the 2-party case, non-trivial functions that can be computed
fairly without honest majority, were first discovered in the seminal work
of Gordon et al. [19]. By now, the 2-party setting is well-understood, with
a full characterization of the necessary and sufficient conditions for fair
computation of large classes of functionalities [2, 3].

In this paper we focus on the n-party case, where n = poly(λ) is any
polynomial in λ, the security parameter. We will begin by considering
threshold adversaries, these are adversaries who may corrupt up to some
threshold th number of parties. In this case, Cleve’s result [13] tells us that
it is impossible to achieve fairness for all functionalities when th ≥ n/2.

Threshold adversaries. The relevant prior works that we are aware of
are those of Gordon and Katz [21] and Asharov et al. [3]. Gordon and
Katz [21] present fair protocols for 3-party majority and for the OR
function (and by symmetry for the AND function) for any polynomial
n number of parties and n − 1 or fewer corruptions. Asharov et al. [3]
present n-party protocols with up to n/2 corruptions for functions F
for which every n/2-size partition can be computed fairly in the 2-party
setting. We emphasize, however, that the protocol of Asharov et al. [3]
only scales to O(log λ) number of parties, regardless of the efficiency of
the underlying fair 2-party protocol employed. Moreover, extending their
results to more than n/2 out of n corruptions was considered an open
problem in their work. Thus, prior to our work, AND and OR were the
only functionalities for which efficient protocols achieving fairness with
no honest majority for any n = poly(λ) parties were known.

We also consider non-threshold adversaries. Specifically, we consider
adversarial structures Aadv for which it is known to be impossible to

2

achieve fairness for all functionalities. We ask whether for such adversarial
structures there exist non-trivial functions that can be computed fairly.

Background on MPC with general adversarial structures. An adversarial
structure Aadv on a set [n]—corresponding to n parties P1, . . . , Pn—is a
monotone collection of non-empty sets S. We say that an MPC protocol
is secure with fairness for adversarial structure Aadv if it is secure with
fairness under any set of corruptions S ∈ Aadv. In the seminal works
of Hirt and Maurer [26, 27], they defined a set of adversarial structures
Q(2), which consists of adversarial structures Aadv for which no two sets
in Aadv cover [n]. They presented an (inefficient) information-theoretic
secure protocol for fail-stop adversaries for adversarial structures Q(2).
They also gave a simple argument that it is impossible to achieve (even
computational) fairness for adversarial structures not in Q(2) using the
classical result of Cleve [13].

Fairness for (Aadv, F)-pairs. In this work, we initiate the research
direction of achieving MPC protocols with fairness against—possibly non-
threshold—adversarial structures Aadv that are not in Q(2). While for any
adversarial structure Aadv /∈ Q(2), it is impossible (even computationally)
to achieve MPC with fairness for all functionalities F , there can be some
functionalities F for which it is possible to achieve MPC with fairness.
We will investigate pairs of functionalities and adversarial structures
(Aadv, F) for which is it possible to achieve fairness in the multiparty
setting. To the best of our knowledge, prior work on complete fairness
in multiparty computation for adversarial structures outside Q(2) has
considered only threshold adversarial structures.

1.1 Our Results

Consider a symmetric Boolean function1 F (w) = F (x,y), where w =
x||y and x,y ∈ {0, 1}n/2. We consider n-party MPC protocols for
computing the function F . Note that since F is symmetric, there exists

a two-input function f such that F (x,y) = fn/2,n/2(
∑n/2

i=1 xi,
∑n/2

i=1 yi).
In our first result, we present a fair MPC protocol for functionalities
F that are symmetric and for which the corresponding fn/2,n/2 can be
computed fairly in the 2-party setting. Importantly, our protocol handles
any polynomial n = poly(λ) number of parties (polynomial in security
parameter λ) and is secure against n/2 or fewer corruptions. Recall that
Asharov et al. [3] gave a transformation from fair 2-party protocols to

1 In this context, we mean a Boolean function whose output depends only on the
number of ones in the input. See [36], Def. 2.8.

3

fair n-party protocols, secure against n/2 or fewer corruptions. Their
transformation, however, requires running the underlying protocol with
all possible subsets S ⊆ [n] of size |S| = n/2 playing the part of the two
parties in the underlying 2-party protocol. This means that their protocol
can only handle a number of parties n that is at most logarithmic in the
security parameter n = O(log(λ)). In this work, we show how to extend
their construction to any number of parties n that is polynomial in the
security parameter n = poly(λ). However, the extension applies only to
symmetric Boolean functions.

Theorem 1 (Informal). Let F : {0, 1}n → {0, 1} be a symmetric
function, such that there is an efficient protocol for computing fn/2,n/2
fairly in the two-party setting. Then for any n = poly(λ), there is an
efficient protocol for computing F fairly in the n-party setting with up to
n/2 corruptions.

We extend the above result to more general, non-threshold, adversarial
structures outside of Q(2), which may include corrupted sets of parties
of size greater than n/2. For symmetric F and any n′ ∈ [n − 1], we

consider F (x,y) = fn′,n−n′(
∑n′

i=1 xi,
∑n−n′

i=1 yi), and require that for all
n′ ∈ [n − 1] there is an efficient protocol computing fn′,n−n′ fairly
in the two-party setting. For any such F , we define a corresponding
set of adversarial structures Q(F). Informally, Q(F) contains adversarial
structures Aadv such that Aadv can be partitioned into Aadv,1 ∈ Q(2) and
Aadv,2 /∈ Q(2) such that for any pair of distinct sets (T, T ′) ∈ Aadv,2,
T ′ 6⊆ T . Additionally, we require certain efficient secret sharing schemes
corresponding to Aadv,1 and Aadv,2. See the full version for a formal
definition of Q(F).

Theorem 2 (Informal). Let F : {0, 1}n → {0, 1} be a symmetric
function, such that there is an efficient protocol for computing fn′,n−n′

fairly in the two-party setting for all n′ ∈ [n − 1]. Let Q(F) be defined
as above. Then for any n = poly(λ), there is an efficient protocol for
computing F fairly in the n-party setting under any adversarial structure
Aadv ∈ Q(F).

As an additional result of interest, we show that (ignoring efficiency
requirements for the underlying secret-sharing schemes) any projective
plane can be used to construct a non-threshold adversarial structure in
Q(F). See the full version for additional details.

4

In our second main result, we present a fair MPC protocol for the
majority function, for any polynomial n = poly(λ) number of parties,
and n/2 + 1 or fewer corruptions.

Theorem 3 (Informal). There is an efficient protocol for computing n-
party Majority fairly for any n = poly(λ) (s.t. n ≥ 8) with n/2 + 1 or
fewer corruptions.

The construction can be straightforwardly extended to work for n/2+c
or fewer corruptions, where c is a constant.

As before, we extend the result to more general, non-threshold,
adversarial structures outside of Q(2), by defining a set of adversarial
structures Q(Maj). Informally, Q(Maj) contains adversarial structures Aadv

such that Aadv can be partitioned into Aadv,1 ∈ Q(2) and Aadv,2 /∈ Q(2)

such that for any pair of distinct sets (T, T ′) ∈ Aadv,2 such that T ′ ⊆ T ,
it is the case that |T \ T ′| ≤ c. Additionally, we require certain efficient
secret sharing schemes corresponding to Aadv,1 ∈ Q(2) and Aadv,2 /∈ Q(2).
See the full version for a formal definition of Q(Maj).

Theorem 4 (Informal). There is an efficient protocol for computing
n-party Majority fairly for any n = poly(λ) under every adversarial
structure Aadv ∈ QMaj.

As an additional result of interest, we show that (ignoring efficiency
requirements for the underlying secret-sharing schemes) starting from an
appropriate type of combinatorial design and adding certain sets to it, we
obtain a non-threshold adversarial structure in Q(Maj). See the full version
for additional details.

1.2 Technical Overview

Half (n/2) or fewer corruptions. Recall that [3] showed that, for n =
O(log(λ)) number of parties, a function F (x1, . . . , xn) is computable with
fairness under n/2 corruptions if and only if for every partition (SL, SR) of
[n] of size n/2, F ([xi]i∈SL , [xi]i∈SR) is computable with complete fairness
in the two party setting, where one party holds input [xi]i∈SL and the
other holds input [xi]i∈SR . We begin by re-casting the protocol of [3]
in a player-simulation model (similar to Hirt and Maurer [26, 27]). The
protocol of [3] considers all possible 2-partition (SL, SR) of [n] of size n/2
(where SL always contains 1) and for each partition, parties Pi, i ∈ SL
simulate virtual party PL and parties Pi, i ∈ SR simulate virtual party
PR in the fair two party protocol ΠF for functionality F ([xi]i∈SL , [xi]i∈SR)

5

that exists by assumption. WLOG, we can take the states of PL and PR
in round r of ΠF to simply consist of “backup values” ar, br, respectively.
For simplicity, we first construct an n-party protocol in a “trusted dealer”
model (later we will show how to get rid of the assumption). In each
round r, the dealer secret shares the backup values of each virtual party
PL (resp. PR) across the corresponding parties in SL (resp. SR). This
is referred to as the inner secret sharing scheme in [3]. If at any time,
all the real parties simulating a certain virtual party (say PL) abort, the
dealer stops handing out shares and the remaining real parties reconstruct
virtual PR’s state to obtain the corresponding backup value. The above
description relies on the fact that there are at most n/2 corruptions,
since if exactly n/2 parties corresponding to some virtual party PL abort
there is a uniquely identifiable corresponding virtual party PR, simulated
by exactly the remaining set of n/2 parties (all of whom are honest).
The remaining parties can therefore identify PR and compute the correct
backup value. On the other hand, if the protocol completes, any set of
parties of size n/2 or more can reconstruct the correct value, since all
subsets of size n/2 receive the output of the functionality in the final
round. To implement the dealer and ensure that the protocol continues if
less than n/2 parties abort, [3] additionally perform an (n/2+1)-out-of-n
secret sharing of each real party’s state during the preprocessing, called
the outer secret sharing. In each round, the parties send their share of
the outer-secret sharing to each party. In case at most n/2 − 1 parties
abort, the remaining parties can continue the protocol by simulating the
aborting parties using the (n/2 + 1)-out-of-n secret sharing. The number
of simulated sub-protocols is essentially

(
n
n/2

)
≈ 2n/

√
n. Thus, they can

only handle at most n = O(log(λ)) number of parties, where λ is security
parameter.

In our first result we show that the above paradigm can be modified
to work for symmetric functions F : {0, 1}n → {0, 1} without requiring
the blowup of running the protocol across each possible subset. Since
F is symmetric, its value at all inputs is equivalent to the output of
some fn/2,n/2 : {0, . . . , n/2} × {0, . . . , n/2} → {0, 1}. Let us assume
that there is a fair protocol Πfn/2,n/2 for computing fn/2,n/2. We describe
the constructed fair protocol for n-party functionality F in the “trusted
dealer” setting: The dealer receives all the parties’ inputs x = x1, . . . , xn
and computes N =

∑n
i=1 xi. For every z ∈ {0, . . . , n/2}, the dealer

runs protocol Πfn/2,n/2(z,N − z) and Πfn/2,n/2(N − z, z) “in the head”

6

to obtain backup values for each party and each round.2 Specifically, for
virtual party PL (resp. PR), its share when running with input z (resp.
N − z) in the r-th round is denoted ar,z,N−z (resp. br,z,N−z). We now
use an appropriate type of secret sharing scheme to share ar,z,N−z (resp.
br,z,N−z), which ensures that a set of corrupted parties can open only
the backup values corresponding to one of the virtual parties’ views in a
single execution of the (at most) n/2+1 executions of the underlying 2PC
protocol (i.e. corresponding to the view of PL or PR in a single (z,N − z)
pair). This is done by defining an augmented set [n]×{0, 1} and defining
access structures over this set. Specifically, a party Pi holding input bit
b, will correspond to the element (i, b) ∈ [n]× {0, 1}. Thus, parties along
with their inputs correspond to subsets S+ of [n]×{0, 1}, and a share that
a party receives from the dealer depends both on its index i as well as its
input b. Let S0 := {(i, 0) : i ∈ [n]} and S1 := {(i, 1) : i ∈ [n]}. We will
use a secret sharing scheme to share ar,z,N−z (resp. br,z,N−z) so that its
value can be reconstructed by any set S+ that consists of party P1 holding
either input 0 or 1 (resp. does not include party P1), z (resp. N−z) parties
holding input 1 (i.e. |S+ ∩ S1| ≥ z, resp. |S+ ∩ S1| ≥ N − z) and n/2− z
(resp. n/2 − (N − z)) parties holding input 0 (i.e. |S+ ∩ S0| ≥ n/2 − z,
resp. |S+∩S0| ≥ n/2−(N−z)). If exactly n/2 parties abort, the remaining
honest parties output the “backup” value corresponding to the remaining
party in the same underlying protocol execution. E.g., if a set of n/2
parties, including P1, holding z number of 1’s, abort, the remaining parties
can open br,z,N−z, since if the corrupt parties hold z number of 1’s, the
honest parties must hold N − z number of 1’s and n/2− (N − z) number
of 0’s. On the other hand, if less than n/2 parties abort, the outer secret
sharing scheme is used to ensure that all the honest parties continue to
receive their shares in each round.

Difficulty of a generic transformation for more than n/2 corruptions. In
the following, we provide some intuition on the difficulty of extending
the above protocol to more than n/2 corruptions. We do not make any
formal claims here. For concreteness, let us assume we want to handle
n/2 + 1 corruptions. First, we must ensure that if n/2 + 1 parties abort,
the remaining parties can output some backup value from the underlying
protocol, as otherwise there is no hope of obtaining a fair protocol. But
this means that any set of n/2− 1 parties must be able to reconstruct a
view from the underlying execution, which means that the set of n/2 + 1
corrupted parties will be able to reconstruct multiple views (since there

2 If N − z is an invalid input (i.e. N − z /∈ {0, . . . , n/2}), then the dealer simply uses
dummy values.

7

are multiple subsets of size n/2 − 1—with distinct values of z—among
the set of n/2 + 1 corrupted parties, and each must be able to open an
underlying view). When using a generic protocol, it is not clear how to
argue that if the underlying protocol is fair when a party sees a single view,
it is still fair when a party sees multiple views of the protocol running in
parallel with correlated inputs. Another difficulty is that if less than n/2+1
parties abort—say n/2− 1 parties abort—then the remaining parties do
not necessarily know which backup value to output. As before, there are
multiple subsets of size n/2 − 1—with distinct values of z—among the
set of n/2 + 1 remaining parties, and each may correspond to a different
backup value. Further, note that the outer secret sharing can no longer
be used when n/2 − 1 (or more) parties abort, since if the outer secret
sharing scheme can be reconstructed by n/2+1 or fewer parties, then the
set of corrupt parties can recover backup values for round r before round
r is executed, thus negating the fairness guarantees of the underlying
protocol. Our solution for n/2 + 1 or fewer corruptions will resolve each
of these problems, but will use special properties of a specific protocol,
and will not work generically for any underlying fair-2-PC protocol.

Direct construction for Majority with n/2 + 1 or fewer corruptions. We
next present our protocol for n-party computation of Maj assuming at
most n/2+1 corruptions. As discussed above, the generic transformation
techniques no longer work. Therefore, we extend the two-party protocol
of Gordon et al. [19] and the analysis of Asharov et al. [2] to our setting.
Specifically, recall that in the 2-party protocol of Gordon et al. [19], the
dealer chooses a designated round r∗, drawn from a geometric distribution
with parameter α (and with all but negligible probability is assured
that r∗ ≤ rounds, where rounds = ω(log(λ)) · 1/α is the number of
rounds in the protocol) in which to begin releasing the correct output
of the functionality. In the rounds previous to this, each party receives
the output of the functionality evaluated with its own input and a
randomly chosen input for the other party. Now, in the n party case,
we set R := {1, 2, 3}. In each round r, the dealer computes backup
values ar,R

′,n′,z for each R′ ⊆ R, n′ ∈ {n/2 − 1, n/2, n/2 + 1} and each
z ∈ {0, . . . , n′}. For r < r∗, each value ar,R

′,n′,z is chosen as fn′,n−n′(z, x̂),
where x̂ is chosen uniformly from {0, . . . , n − n′}, and fn′,n−n′ outputs
1 when the sum of its inputs is at least n/2 + 1. For r ≥ r∗, each
value ar,R

′,n′,z is set to fn′,n−n′(x, y), where x, y are the inputs of the
corrupted and uncorrupted parties, respectively. Each ar,R

′,n′,z is shared
so that it can be opened by any set S that has a subset W of size n′

such that W ∩ R = R′ and has a subset W ′ of size n′ consisting of

8

z parties holding a 1 input and n′ − z parties holding a 0 input. We
observe than any set of corrupt parties of size at most n/2 + 1 can
open at most a constant number, deg, of backup values. Furthermore,
if n/2− 1 or more parties abort in round r, the remaining set of parties,
S′, which has size n′ ∈ {n/2− 1, n/2, n/2 + 1} and for which S′∩R = R′,
run a secure computation protocol (with fairness and guaranteed output
delivery, since when n ≥ 8 we have an honest majority among the
remaining parties) to recover ar−1,R

′,n′,z for the appropriate values of
R′, n′, and z. The set R′ is needed since in the security proof, we will
argue that the backup value opened by the remaining parties cannot be
opened by the set of corrupt parties before aborting. If less than n/2− 1
parties abort, then each remaining party can still recover its share in
each round using the outer secret sharing scheme and so the protocol
continues. By setting α correctly, the ideal adversary is able to skew the
output appropriately (as in [19]), even though the corrupt parties see
multiple random values in rounds r < r∗. Intuitively, this comes from the
fact that the real adversary will with some 1/ poly(n) probability obtain
the same view in round r when r = r∗ or when r < r∗. In the case r = r∗,
the honest parties output their backup value (which is distributed as
described above) in the real world, but always output the correct output
value in the ideal world. In the case that r < r∗, the honest parties still
output their backup value in the real world. However, the simulator in
the ideal world can lie about the corrupted parties’ inputs and submit
values from a carefully constructed distribution to the ideal functionality,
since the ideal functionality has not yet been called in the simulation (it
is only called in round r∗). Thus, it is possible that for a fixed adversarial
view, the distribution of outputs of the honest parties is the same in the
real and ideal worlds. To analyze the resulting distributions in the real
and ideal world, we follow the techniques of Asharov [2], who explicitly
computes the required probabilities as a vector and finds the sufficient
conditions so that this vector falls within the convex hull of a set of
vectors corresponding to the rows of the truthtable. Unfortunately, the
proof of Asharov [2] works only for constant-size domain. Since we want
to extend our case to any polynomial number of parties n, we necessarily
require a polynomial domain (since the domain will be exactly {0, . . . , n}).
Specifically, Asharov’s technique [2] fixed the domain size to be constant
and used existence theorems to prove that α can be set sufficiently small
so that the vector is contained in the convex hull. Instead, we consider
the spectral norm of the matrix corresponding to the inverse of M+

f̃
,

where M
f̃

is the truthtable corresponding to a function f̃ that is closely

9

related to fn′,n−n′ , and M+

f̃
is equal to M

f̃
concatenated with a column

of 1’s, and show that it is upper bounded by a constant. This allows us to
achieve the desired result. We note that the techniques outlined above can
be straightforwardly extended to the case of n/2 + c corruptions, where
c is a fixed constant.

Extending to more general adversarial structures. Secret sharing schemes
are used in two ways in the results for threshold adversarial structures
described above: (1) The outer secret sharing scheme, which ensures
that when certain sets of parties abort, the protocol can continue. We
require that no set from the adversarial structure is an authorized set
for the access structure corresponding to this scheme. (2) The inner
secret sharing scheme, which ensures that if the surviving parties cannot
continue the protocol using the outer secret sharing scheme, they can
reconstruct a backup value using this scheme. We can no longer require
that no set from the adversarial structure is an authorized set for the
access structure corresponding to this scheme. Instead, we merely limit
the number of instances of the inner secret sharing scheme that can be
opened by the corrupt parties.

To achieve this, we view an arbitrary adversarial structure as the
union of a Q(2) adversarial structure, Aadv,1 and a non-Q(2) adversarial
structure, Aadv,2. The outer secret sharing scheme will correspond to
access structure, Ahon,1, which is equal to the complement of Aadv,1. For
the inner secret sharing scheme, we consider Ahon,2 = Aadv,2 and we
partition Ahon,2 according to the size n′ of the authorized sets, yielding

sets An′hon,2. We then obtain monotone access structures An
′,+

hon,2 for all

n′ ∈ [n], consisting of An′hon,2 and all supersets of sets in An′hon,2. We then
construct a secret sharing scheme for each n′ and each z ∈ {0, . . . , n′},
which allows a set of parties to reconstruct the secret if the set of parties

is contained in An
′,+

hon,2 and the set of parties includes z number of parties
holding a 1 and n′ − z number of parties holding a 0. For the first result
(corresponding to fair computation of symmetric functions) we require
that Aadv,2 does not contain any two sets T, T ′ such that T ′ (T . For the
second result (corresponding to fair computation of Maj) we require that
for any two sets T, T ′ ∈ Aadv,2 if T is a superset of T ′, it can only contain
c additional elements, where c is a constant.

1.3 Related Work

The 2-party setting. Subsequent to the seminal paper of Gordon et
al. [19], a large body of work has been dedicated to understanding which

10

functionalities can be computed fairly in the two-party setting. Various
works, culminating in a full characterization for symmetric, constant-size-
domain functionalities, include [2, 3].

The n-party setting. Hirt and Maurer [26, 27] characterized the set
of access structures that are necessary and sufficient for fair n-party
computation of all functionalities, and dubbed this set Q(2). The question
remained of whether there are non-trivial functionalities that can be
computed fairly for adversarial structures outside of Q(2). In particular,
the works of [21] and [3], which have already been discussed above,
considered threshold access structures outside of Q(2).

Partial fairness and other notions. Another line of works has consid-
ered achieving partial fairness (also called 1/p-fairness) guarantees for
large classes of functionalities, even when there is no honest majority.
Specifically, the goal is to obtain protocols for which the real and ideal
world are distinguishable by at most 1/p, for some polynomial p = p(λ).
Partial fairness has been studied in both the 2-party and multiparty
setting [22, 9, 7]. Note that our focus in the current work is to achieve
“complete” fairness, where the real and ideal world are computationally
indistinguishable. “Best of both worlds” security has also been studied–
where protocols are required to achieve fairness in the case of honest
majority and security-with-abort in the case of honest minority [29, 28, 7].
We also mention other desirable security properties related to fairness
that have been considered in the literature such as guaranteed output
delivery [14, 23] and security with identifiable abort [30, 31].

Partial fairness for coin-tossing. For the special case of coin-tossing, it
is known by the classical result of Cleve [13] that complete fairness is
impossible. However, there are several results in the two-party and multi-
party settings that deal with achieving partial fairness—i.e. bias of 1/p—
for the best possible p [34, 8, 35, 1, 11, 6].

Lower bounds. Lower bounds on number of rounds or computational
assumptions necessary to achieve (partially) fair protocols have also been
studied [15, 16, 25, 24]. Complete primitives for fairness and primitives
that imply secure coin-tossing were studied in [20, 4]. Further works have
elucidated properties of protocols necessary to achieve fairness [33].

2 Notation, Definitions and Preliminaries

Definitions of MPC with full security (i.e. fairness) and security-with-
abort are deferred to the full version. We follow [5] for the definitions of

11

access structures and secret sharing schemes. Given a set S ⊆ [n], denote
by S := [n] \ S and by P(S) the power set of S.

Useful Access Structures. We consider access structures over the set
[n], as well as the set [n]×{0, 1}. Let S0 := [n]×{0} and S1 := [n]×{1}.
Access structure Aa,z,n′−z,2n, for n′ ∈ [n] and z ∈ {0, . . . , n′}, consists of
sets S+ ⊆ [n] × {0, 1} with corresponding S := {i : (i, 0) or (i, 1) ∈
S+} that satisfy all of the following: (1) 1 ∈ S; (2) |S+ ∩ S1| ≥ z;
(3) |S+ ∩ S0| ≥ n′ − z.

Access structure Ab,z,n′−z,2n, for n′ ∈ [n] and z ∈ {0, . . . , n′}, consists
of sets S+ ⊆ [n] × {0, 1} with corresponding S := {i : (i, 0) or (i, 1) ∈
S+} that satisfy all of the following: (1) 1 /∈ S; (2) |S+ ∩ S1| ≥ z;
(3) |S+ ∩ S0| ≥ n′ − z.

More generally, let R be a set of distinguished elements of [n]. Let R′ ⊆
R and let R′′ = R \R′. Access structure AR,R′,z,n′,2n, for R′ ⊆ R, n′ ∈ [n]
and z ∈ {0, . . . , n′}, consists of sets S+ ⊆ [n]× {0, 1} with corresponding
S := {i : (i, 0) or (i, 1) ∈ S+} that satisfy all of the following: (1) R′ ⊆ S;
(2) R′′ ∩ S = ∅; (3) |S+ ∩ S1| ≥ z; (4) |S+ ∩ S0| ≥ n′ − z.

See full version for constructions.

3 Symmetric Functions and n/2 Corruptions

Let F : {0, 1}n/2 × {0, 1}n/2 → {0, 1} be a symmetric Boolean function.
Then we have that for all x ∈ {0, 1}n/2 and y ∈ {0, 1}n/2, F (x,y) =

fn/2,n/2(
∑n/2

i=1 xi,
∑n/2

i=1 yi), for some fn/2,n/2. Assume that fn/2,n/2 :
{0, . . . , n/2}×{0, . . . , n/2} can be fairly computed in the two-party setting
and let Πfn/2,n/2 denote the two-party protocol (with parties PL, PR) that
fairly computes fn/2,n/2(x, y). For x, y ∈ {0, . . . , n/2}, let Πfn/2,n/2(x, y)
denote an execution of Πfn/2,n/2 , where PL has input x and PR has input

y. Let ax,y,rfn/2,n/2
denote the backup value of PL in the r-th round of an

execution of Πfn/2,n/2(x, y) and let bx,y,rfn/2,n/2
denote the backup value of

PR in the r-th round of the same execution of Πfn/2,n/2(x, y). In the
following, p is set to p = 2 · (n/2 + 1).

Theorem 5. Let F , fn/2,n/2 be as above. Assume there is an efficient
protocol for computing fn/2,n/2 fairly in the two-party setting. Then for
any n = poly(λ), the protocol presented in Figure 1 (and Figure 2) is an
efficient protocol for computing F fairly in the n-party setting with n/2
or fewer corruptions.

The protocol in Figure 1 uses a secret sharing scheme for access
structure Aa,z,n/2−z,2n and Ab,z,n/2−z,2n, defined in Section 2.

12

1. The parties P1, . . . , Pn hand their inputs, denoted x = x1, . . . , xn ∈ {0, 1}n,
respectively, to the dealer. If a party Pj does not send an input, then the
dealer selects xj ∈ {0, 1} uniformly at random. If half of the parties do not

send an input, then the dealer sends fn/2,n/2(
∑n/2
i=1 xi,

∑n
i=n/2+1 xi) to the

honest parties and halts. Let N :=
∑n
i=1 xi.

2. The dealer computes for z ∈ {max{0, N − n/2}, . . . ,min{N,n/2}}, r ∈
[rounds], the backup outputs az,r := az,N−z,rfn/2,n/2

||0λ, bN−z,r := bz,N−z,rfn/2,n/2
||0λ for

an execution of Πfn/2,n/2
(z,N − z). The dealer also sends back to each Pi an

authentication of its input xi.
3. If N > n/2, then for z ∈ {0, . . . , N − n/2 − 1}, r ∈ [rounds] set az,r := 0,

bz,r := 0.
4. If N < n/2, then for z ∈ {N+1, . . . , n/2}, r ∈ [rounds], set az,r := 0, br,z := 0.
5. For r ∈ [rounds],

(a) For z ∈ {0, . . . , n/2}, the dealer secret shares az,r using access structure
Aa,z,n/2−z,2n, producing (authenticated) shares [s̃b,z,ri]b∈{0,1},i∈[n]. Each

party Pi holding input b receives shares [s̃b,z,ri]z∈{0,...,n/2}. If n/2 parties
abort, including P1, then the remaining parties (corresponding to set
S) submit their (authenticated) inputs and shares from round r − 1 to

F
th,n/2
Recon,S,p, output whatever it outputs and halt. Note that all parties in S

are honest.
(b) For z ∈ {0, . . . , n/2} the dealer secret shares br,z using access structure
Ab,z,n/2−z, producing (authenticated) shares [sb,z,ri]b∈{0,1},i∈[n]. Each

party Pi holding input b receives shares [sb,z,ri]z∈{0,...,n/2}. If n/2 parties
abort, not including P1, then the remaining parties (corresponding to set
S) submit their (authenticated) inputs and shares from round r to ideal

functionality F
th,n/2
Recon,S,p, output whatever it outputs and halt. Note that all

parties in S are honest.

6. Otherwise, the remaining parties (set S) submit their (authenticated) inputs

and shares to ideal functionality F
th,n/2
Recon,S,p, output whatever it outputs and

halt. If some set S̃ of parties abort, preventing the remaining parties from
receiving output, the remaining parties: S := S \ S̃ go back to the beginning of

Step 6 and resubmit their shares to F
th,n/2
Recon,S,p. This continues until the honest

parties receive the output from the ideal functionality.

Fig. 1. Fair, efficient, multiparty computation of F with n parties and n/2
or fewer corruptions.

Proof. Let T ⊆ [n], |T | = n/2 denote the set of corrupt parties. Assume
WLOG that 1 ∈ T . Sim applies the simulator Simfn/2,n/2 of the two-party
protocol Πfn/2,n/2 .

– Sim constructs the following adversary Afn/2,n/2 for Πfn/2,n/2 , playing
the same role as A.
• Afn/2,n/2 invokes A expecting its inputs x.
• Afn/2,n/2 sends inputs x =

∑
i∈T xi to the dealer of Πf .

13

Functionality F
th,n/2
Recon,S,p

– Input: Set S ⊆ [n] of size n′. For i ∈ S, the i-th party’s input is
(authenticated) bit xi and p shares [s̃ki]k∈[p]. Let S′ be the set of parties who
submit input shares that are properly authenticated. We have that |S′| ≥ n/2.
We also assume WLOG that |S′| = n/2. If it is greater, then we just compute
with some subset of the input shares. Let z :=

∑
i∈S′ xi.

– Function Computation: If 1 ∈ S′ (resp. 1 /∈ S′), then for k ∈ [p],
run reconstruction algorithm Recon for secret-sharing scheme Aa,z,n′−z,2n
(resp. Ab,z,n′−z,2n) with input shares [s̃ki]i∈S′ . to obtain candidates [secretk =
secretk1 ||secretk2]k∈[p].

– Output: secretk1 corresponding to the first k ∈ [p] such that secretk2 = 0λ.

Fig. 2. Reconstruction Functionality with respect to p sets of secret
shares.

• For r = 1, . . . , rounds, upon receiving backup value ar, set ax,r =
ar||0λ and az,r = 0 for z ∈ {0, . . . , n/2}\{x}. For z ∈ {0, . . . , n/2},
secret share az,r using access structure Aa,z,n/2−z,2n, producing

shares [s̃b,z,ri]b∈{0,1},i∈[n]. Each party Pi holding input b receives

shares [s̃b,z,ri]z∈{0,...,n/2}.
• If all the parties in T abort, then Afn/2,n/2 aborts, otherwise it

continues.
• If the final round rounds completes, Afn/2,n/2 submits shares for all

remaining parties in T to the ideal functionality and simulates an
output of out in return.

– Let Simfn/2,n/2 be the simulator for Afn/2,n/2 in the hybrid model.
– The simulator Sim interacts with the two-party protocol simulator

Simfn/2,n/2 by invoking it on adversary Af with input x. It then
receives a simulated view for Afn/2,n/2 , containing its random coins and
backup outputs. Having received this view of Afn/2,n/2 , the simulator
Sf can extract from it the view of A in this execution, as it is implied
by the view of Afn/2,n/2 . Specifically, the randomness Afn/2,n/2 uses
to share different secrets determines the shares that the corrupted
parties see. If Afn/2,n/2 does not abort before the final reconstruction,
Simfn/2,n/2 obtains from Afn/2,n/2 ’s view any inputs to the functionality

F
th,n/2
Recon,S,p. It uses the output out contained in the view (since the last

round was reached) to simulate the output of the ideal functionality

F
th,n/2
Recon,S,p. If some parties abort and the remaining parties re-submit

their inputs to the ideal functionality, Simfn/2,n/2 can still use out to
simulate the output each time.

14

3.1 Implementing the Dealer and F
th,n/2
Recon,S,p

This is done similarly to Asharov et al. [3] and our exposition follows
theirs. Following [3, 7, 8], we eliminate the trusted on-line dealer of our
multiparty protocols in a few steps using a few layers of secret-sharing
schemes. In the first step, we convert the on-line dealer to an off-line
dealer. That is, we construct a protocol in which the dealer sends only
one message to each party in an initialization stage; the parties then
interact in rounds using a broadcast channel (without the dealer) and in
each sub-round of round i each party learns its shares of the r-th round.
Specifically, in round r, party Pj learns a share in a secret sharing scheme
for access structure Aa,z,n/2−z,2n, Ab,z,n/2−z,2n, for every z ∈ {0, . . . , n/2}
(we call these shares Pj ’s shares of the inner secret-sharing scheme).

For this purpose, the dealer computes, in a preprocessing phase, the
appropriate shares for the inner secret-sharing scheme. For each round,
the shares of each party Pj are shared in a special 2-out-of-2 secret-sharing
scheme, where Pj gets one of the two shares (called the mask). In addition,
all parties (including Pj) receive shares in a n/2+1-out-of-n secret-sharing
scheme of the other share of the 2-out-of-2 secret sharing. We call the
resulting secret-sharing scheme the outer (n/2 + 1)-out-of-n scheme (n/2
parties and the holder of the mask are needed to reconstruct the secret).

The use of the outer secret-sharing scheme with threshold n/2+1 plays
a crucial role in eliminating the on-line dealer. On one hand, it guarantees
that an adversary, corrupting at most n/2 parties cannot reconstruct the
shares of round r before round r. On the other hand, at least n/2 parties
must abort to prevent the reconstruction of the outer secret-sharing
scheme. Note that n/2 aborting parties can prevent the remaining parties
from receiving their shares and, indeed, in the description of the protocol,
if n/2 parties abort, the remaining parties no longer receive shares from
the dealer. Finally, we replace the off-line dealer by using a secure-with-
abort and cheat-detection protocol computing the functionality computed
by the dealer.

To prevent corrupted parties from cheating, by e.g., sending false
shares and causing reconstruction of wrong secrets, every message that
a party should send during (any possible flow of) the execution of
the protocol is signed in the preprocessing phase (together with the
appropriate round number and the party’s index). In addition, the dealer
sends a verification key to each of the parties. To conclude, the off-line
dealer gives each party the signed shares for the outer secret-sharing
scheme together with the verification key.

15

Whenever F
th,n/2
Recon,S,p is run in Steps 5a and 5b, all parties are honest,

so it can be trivially implemented. When F
th,n/2
Recon,S,p is run in Step 6,

there may not be an honest majority. In this case, however, it is the
final round so the reconstruction protocol will output the same value,
regardless of which subset of parties participate (as long as the subset
includes all the n/2 honest parties). Thus, the adversary may get its
output early and abort to prevent the honest parties to obtain output.
The view of the adversary can be simulated since the ideal functionality
has already been called at this time. Moreover, the protocol simply gets
restarted until either no party aborts during the protocol (which happens
in the worst case when only honest parties are remaining).3 Therefore, the
honest parties are guaranteed to obtain their output. We emphasize that
the ideal functionality checks that the shares inputted by the parties are
correctly authenticated (and are those same shares that were distributed
by the “dealer”). Note also that corrupt parties may input an incorrect
verification key for verifying the authenticated inputs and shares. In
this case, the MPC functionality will partition the inputs according to
the submitted verification key. Each party will receive as output the
evaluation of the functionality with respect to the inputs of the set of
parties who inputted the same verification key as it did.

4 Majority and n/2 + 1 Corruptions

We begin by presenting the protocol for computing n-party majority
(Maj) in Figures 3 and 4. The protocol in Figure 3 uses a secret sharing
scheme for access structure AR,R′,z,n′−z,2n, defined in Section 2. In the
following, p is set to p = 8 · (3n/2 + 3).

Notation. Let T be the set of corrupted parties with corresponding input
x, where x is indexed by the elements of T . Let T = [n] \ T be the set
of uncorrupted parties with corresponding input y, where y is indexed
by the elements of T . Let x :=

∑
i∈T xi and y :=

∑
i∈T yi. Let T ′ ⊆ T ,

|T ′| ≥ n/2− 1 be the subset of parties who do not submit valid inputs in
Step 4. Let x+ =

∑
i∈T ′ xi, x

− =
∑

i∈T\T ′ xi.

Define f valn1,n2
(x, y) where n1 +n2 = n, x ∈ {0, . . . , n1}, y ∈ {0, . . . , n2}

and val ∈ {0, . . . , 2} to be the function that outputs 1 if x + y + val ≥
3 We require an identifiable abort property to allow elimination of abort-

ing/misbehaving parties and restarting of the protocol. Similar properties were
needed in the work of [21]. They required secure computation with designated abort:
If the output of the protocol is ⊥, the parties restart without the lowest indexed
party. Also, if the protocol outputs a set S (indicating those parties whose inputs
were inconsistent), the set S is eliminated.

16

1. The parties P1, . . . , Pn hand their inputs, denoted x = x1, . . . , xn ∈ {0, 1}n,
respectively, to the dealer. If a party Pj does not send an input, then the
dealer selects xj ∈ {0, 1} uniformly at random. If n/2 + 1 of the parties do

not send an input, then the dealer sends fn/2−1,n/2+1(
∑n/2−1
i=1 xi,

∑n
i=n/2 xi)

to the honest parties and halts.
2. The dealer chooses a r∗ from a geometric distribution with parameter α. For

r ∈ [rounds], r < r∗, n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′} and for

each subset R′ ⊆ R = {1, 2, 3}, sample x̂ ∼ Xreal,n−n′ and set ar,R
′,n′,z :=

fn′,n−n′(z, x̂). For r ∈ [rounds], r ≥ r∗, n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈
{0, . . . , n′}, set ar,R

′,n′,z := out, where out denotes the output of the Majority
function.

3. For r ∈ [rounds], r < r∗, for n′ ∈ {n/2− 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′}, and

for each subset R′ ⊆ R = {1, 2, 3}, the dealer secret shares ar,R
′,n′,z||0n using

access structure AR,R′,z,n′−z,2n, producing shares [s̃b,R,R
′,n′,z

i]b∈{0,1},i∈[n].

Each party Pi holding input b receives shares [s̃b,R,R
′,n′,z

i].
4. If n/2− 1 or more parties abort, then the remaining parties (corresponding to

set S) submit their shares from round r − 1 to ideal functionality F
th,n/2+1
Recon,S,p ,

output whatever it outputs and halt. Let S′ denote the set of parties who
submit properly authenticated shares to F

th,n/2+1
Recon,S,p . Note that S and S′ contain

an honest majority.
5. Otherwise, the remaining parties (set S) submit their final shares to ideal

functionality F
th,n/2+1
Recon,S,p , output whatever it outputs and halt. If some set T̃

of parties abort, preventing the remaining parties from receiving output, the
remaining parties: S := S \ T̃ go back to the beginning of Step 5 and resubmit

their final shares to F
th,n/2+1
Recon,S,p . This continues until the honest parties receive

the output.

Fig. 3. Fair, efficient, multiparty computation of Maj with n parties and
n/2 + 1 or fewer corruptions.

n/2 + 1 and outputs 0 otherwise. If val = 0, we sometimes abbreviate by
fn1,n2(x, y) = f valn1,n2

(x, y). Let M f valn1,n2
be the truth table corresponding

to f valn1,n2
. Define the distribution XReal,m to be the uniform distribution

over {0, . . . ,m}.
Let a be a vector of length 4n+12, indexed by tuples (R′, n′, z), where

R′ ⊆ R = {1, 2, 3}, n′ ∈ {n/2− 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′}. On input
x, We define a function φ(x) that outputs a set of triples (R′, n′, z), such
that (R′, n′, z) ∈ φ(x) if there exists a subset W ⊆ T of size |W | = n′

such that W ∩ R = R′ and a subset W ′ ⊆ T of size |W ′| = n′ such that
z =

∑
i∈W ′ xi. For any set T of size |T | ≤ n/2+1 and input x ∈ {0, 1}|T |,

|φ(x)| is at most a constant, deg, where deg ≤ 3 · 8 · 3 = 48. Define a0

(resp. a1) such that all indeces in φ(x) are set to 0 (resp. 1) and all other
indeces are set to ⊥.

17

Functionality F
th,n/2+1
Recon,S,p

– Input Stage: Set S ⊆ [n] of size n′. For i ∈ S, the i-th party’s input is
(authenticated) bit xi and p shares [s̃ki]k∈[p]. Let S′ be the set of parties who
submit input shares that are properly authenticated. Let R′ = S′∩R. We have
that |S′| ≥ n/2−1. We also assume WLOG that |S′| ≤ n/2+1. If it is greater,
then compute with some subset of the input shares. Let z :=

∑
i∈S′ xi.

– Function Computation: For k ∈ [p], run reconstruction algorithm Recon
for secret-sharing scheme AR,R′,z,n′−z,2n with input shares [s̃ki]i∈S′ . to obtain
candidates [secretk = secretk1 ||secretk2]k∈[p].

– Output: secretk1 corresponding to the first k ∈ [p] such that secretk2 = 0λ.

Fig. 4. Reconstruction Functionality with respect to p sets of secret
shares.

For (R′, n′, z) ∈ φ(x), define pR
′,n′,z(x) :=

Prŷ∼{0,...,n−n′}[fn′,n−n′(z, ŷ) = 1] and pR
′,n′,z(x) := 1 − pR

′,n′,z(x).

pR
′,n′,z(x) denotes the probability that the corrupt parties, using sets

W,W ′ ⊆ T , where W ∩R = R′, |W ′| = n′, and z =
∑

i∈W ′ xi, reconstruct

a 1. For (R′, n′, z) /∈ φ(x), define pR
′,n′,z(x) := 1 and pR

′,n′,z(x) := 1.

Definition 1. We say that a setting of parameters
(T, t,x, T ′, t′, x+, x−,a) is valid if:

1. T ⊆ [n], n/2− 1 ≤ |T | = t ≤ n/2 + 1.
2. T ′ ⊆ T , |T ′| = t′ ≥ n/2− 1.
3. x ∈ {0, 1}|T |
4. x+ =

∑
i∈T ′ xi. x

− =
∑

i∈T\T ′ xi,
5. Indeces of a in φ(x) are set to 0frm[o]−− and all other indeces are

set to ⊥.

We say that a setting of parameters (T, t,x, T ′, t′, x+, x−) is valid if
all the above except (5) hold.

For every valid (T, t,x, T ′, t′, x+, x−), for k ∈ {0, . . . , n − t}, define

the probabilities px
−,t,t′

y=k := Prx̂∼XReal,t′}[f
x−
t′,n−t(x̂, y = k) = 1]. px

−,t,t′

y=k

corresponds to the probability the honest parties output a 1 in the
Real execution in rounds prior to the designated round r∗, when the
combined input of the honest parties is y = k, the input of the t′ aborting
parties is chosen from XReal,t′ , and the input of the (t − t′) corrupt but
non-aborting parties is x−.

18

For every valid (T, t,x, T ′, t′, x+, x−), define the row

vectors Qx+,x−,a0 = (qx
+,x−,a0
y=n−t , . . . , qx

+,x−,a0
y=0) and Qx+,x−,a1 =

(qx
+,x−,a1
y=n−t , . . . , qx

+,x−,a1
y=0) indexed by k ∈ {0, . . . , n− t} as follows:

qx
+,x−,a0

y=k =


px
−,t,t′

y=k if fx
−

t′,n−t(x
+, y = k) = 1

px
−,t,t′

y=k +
α·px

−,t,t′
y=k

(1−α)·
∏

(R′,n′,z)(p
R′,n′,z(x))

) if fx
−

t′,n−t(x
+, y = k) = 0

qx
+,x−,a1

y=k =


px
−,t,t′

y=k if fx
−

t′,n−t(x
+, y = k) = 0

px
−,t,t′

y=k +
α·(px

−,t,t′
y=k −1)

(1−α)·
∏

(R′,n′,z) p
R′,n′,z(x)

) if fx
−

t′,n−t(x
+, y = k) = 1

For every valid (T, t,x, T ′, t′,a, x+, x−), such that a /∈ {a0,a1},
define the row vectors Qx+,x−,a = (qx

+,x−,a
y=n−t , . . . , q

x+,x−,a
y=0), indexed by

k ∈ {0, . . . , n− t} as follows: Qx+,x−,a = (px
−,t,t′

y=n−t, . . . , p
x−,t,t′

y=0).

Intuition. qx
+,x−,a
y=k corresponds to the probability that the Ideal honest

parties receive an output of 1, when the simulator chooses its input to

the Ideal functionality from distribution Xx+,x−,a
ideal,t′ ,in the case that the

adversary aborts in a round prior to the designated round r∗, the honest
parties collectively hold input y = k, the aborting parties hold input x+,
the corrupted but non-aborting parties hold input x−, and the view of

the adversary consists of a. Our goal is to set the values of qx
+,x−,a0

y=k so
that the distributions in the Ideal and Real world are identical. Note,
however, that the simulator does not know the value of y. Therefore,
the simulator can only sample from a single probability distribution for

all possible values of y, denoted Xx+,x−,a
ideal,t′ , and we must ensure that the

resulting distribution over outputs, corresponding to Xx+,x−,a
ideal,t′ ·M fx

−
t′,n−t

,

produces the desired values of Qx+,x−,a = (qx
+,x−,a
y=n−t , . . . , q

x+,x−,a
y=0).

In the upcoming theorem, we show that setting Qx+,x−,a =

(qx
+,x−,a
y=n−t , . . . , q

x+,x−,a
y=0) as described above, yields identical distributions

in the Ideal/Real worlds. Then, we must show that there exists a

probability vector Xx+,x−,a
ideal,t′ such that Xx+,x−,a

ideal,t′ ·M fx
−

t′,n−t
= Qx+,x−,a.

We observe that in some cases finding Xx+,x−,a
ideal,t′ as above is easy.

Specifically, for every valid (T, t,x, T ′, t′,a, x+, x−), and for a /∈ {a0,a1},
Xx+,x−,a

ideal,t′ = Xreal,t′ satisfies Xx+,x−,a
ideal,t′ ·M fx

−
t′,n−t

= Qx+,x−,a.

19

Theorem 6. Assume that for every valid setting of parameters

(T, t,x, T ′, t′, x+, x−,a), there exists a probability vector Xx+,x−,a
ideal,t′ such

that
Xx+,x−,a

ideal,t′ ·M fx
−

t′,n−t
= Qx+,x−,a.

Then the protocol in Figure 3 securely computes Maj for any n = poly(λ)
(s.t. n ≥ 8) and |T | ≤ n/2 + 1 corruptions.

Proof. We begin with a description of the simulator Sim:

– Sim invokes A expecting its inputs x, as sent to the dealer.
– Sim samples r∗ from a geometric distribution with parameter α.
– For every r = 1 to r∗ − 1
• For n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′}, and R′ ⊆ R,

sample x̂ ∼ Xreal,n−n′ and set ar,R
′,n′,z := fn′,n−n′(z, x̂). Secret

share each ar,R
′,n′,z||0n using access structure AR,R′,z,n′−z,2n,

producing shares [s̃b,R
′,n′,z,2n

i]b∈{0,1},i∈[n]. Each party Pi ∈ T

holding input b receives shares [s̃b,R
′,n′,z,2n

i].
• Fix the resulting view a, consisting of the ar,R

′,n′,z values that can
be reconstructed by the adversary holding input x.
• If n/2 − 1 parties abort, Sim simulates the ideal functionality

F
th,n/2+1
Recon,S,p. Recall that S′ ⊆ S submit valid inputs for F

th,n/2+1
Recon,S,p

to Sim. Let T ′ = [n] \ S′, where |T ′| = t′. Let x+ =
∑

i∈T ′ xi and

x− =
∑

i∈T\T ′ xi. Sim chooses x̂ ∼ Xx+,x−,a
Ideal,t′ and submits x̂ + x−

to the ideal functionality, receiving out in return. Note that the

set S enjoys an honest majority, and so we can compute F
th,n/2+1
Recon,S,p

with fairness and guaranteed output delivery. Sim returns out as

the output of F
th,n/2+1
Recon,S,p.

– For r = r∗

• Sim sends input x to the ideal functionality computing ft,n−t and
receives out = ft,n−t(x, y). For n′ ∈ {n/2 − 1, n/2, n/2 + 1},
z ∈ {0, . . . , n′}, and R′ ⊆ R, set ar,R

′,n′,z := out. Secret share
each ar,R

′,n′,z||0n using access structure AR,R′,z,n′−z,2n, producing

shares [s̃b,R
′,n′,z,2n

i]b∈{0,1},i∈[n]. Each corrupt party Pi ∈ T holding

input b receives shares [s̃b,R
′,n′,z,2n

i].
– For r > r∗

• For n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′} and R′ ⊆ R,
set ar,R

′,n′,z := out. Secret share each ar,R
′,n′,z||0n using access

structure AR,R′,z,n′−z,2n, producing shares [s̃b,R
′,n′,z,2n

i]b∈{0,1},v∈[n].

Each party Pi holding input b receives shares [s̃b,R
′,n′,z,2n

i].

20

– Final share reconstruction. At this point, Sim holds the output
out from the ideal functionality. Furthermore, the same out will be
reconstructed by any set of parties of size n/2 − 1 or more that
remain. Sim also obtains from A any inputs to the functionality

F
th,n/2+1
Recon,S,p in the last stage. It uses out to simulate the output of the

ideal functionality F
th,n/2+1
Recon,S,p. If some parties abort and the remaining

parties re-submit their inputs to the ideal functionality, Simf can still
use out to simulate the output each time.

In case the adversary aborts exactly at r∗, the simulator Sim sends
the input x to the trusted party, and so both parties receive ft,n−t(x, y),
unlike the real execution. Moreover, in case the adversary has aborted
at round r < r∗, upon viewing a at round i, the simulator Sim chooses

input x̂ according to distribution Xx+,x−,a
ideal,t′ and submits x̂ + x− to the

ideal functionality.

We show that the joint distribution of the view of the adversary and
the output of the honest party is distributed identically in the hybrid
and the ideal executions. This is done easily in the case where n/2− 1 or
more parties abort at some round r > r∗ (and thus, both parties receive
the correct output ft,n−t(x, y)). Now, we consider the case where r ≤ r∗.
The view of the adversary holding input x in the r-th round consists of:
ar,R

′,n′,z for all (R′, n′, z) such that a(R′,n′,z) 6= ⊥.

The view of the adversary until round i is distributed identically
in both executions. Thus, all that is left to show is that the view of
the adversary in the last round and the output of the honest party are
distributed identically in both executions. That is, we show that for every
(a, b), where b ∈ {0, 1} and a is such that all indeces in φ(x) are set to
0/1 and all other indeces are set to ⊥, it is the case that:

Pr[(Viewrhyb,Outhyb) = (a, b) | r ≤ r∗] = Pr[(Viewrideal,Outideal) = (a, b) | r ≤ r∗].
(4.1)

Formally, (Viewrhyb,Outhyb) and (Viewrideal,Outideal) denote the entire
view and output in the hybrid and ideal execution. Note that
Viewrhyb,View

r
ideal actually consist of secret shares, whereas a denotes

the reconstructed values for the instances that can be opened by the
adversary. We simplify our computations by assuming that the views
Viewrhyb,View

r
ideal consist only of the values the adversary can reconstruct

given its set of shares, and not the shares themselves. Given the “perfect
privacy” property of sharing schemes (see [5]), if the probabilities are the

21

same with respect to the reconstructed values, then they will also be the
same with respect to the original view.

Implicit in our argument, is that—in the hybrid execution—the
output b of the honest parties in round r < rounds is independent of
the view of the adversary, represented by a. While this is trivially true in
the two-party case, It is not as obvious in our protocol, since when n/2 or
n/2 + 1 parties are corrupted, the adversary can open many instances of
the secret sharing scheme. Specifically, we must show that for the instance
used in Step 4 to reconstruct—identified by (R

′
, n − t′, ∗)—it is always

the case that a
(R
′
,n−t′,∗) = ⊥.

This will follow from the following property that is straightforward to
check:

Property 1. Let t be the number of corruptions. If for some
(R1, n1, z1), (R2, n2, z2), a(R1,n1,z1) 6= ⊥ and a(R2,n2,z2) 6= ⊥ then

|R1 ∪R2|+ max(n1 − |R1|, n2 − |R2|) ≤ t.

Recall that the set of corrupted parties is denoted by T , and the set of
parties who abort and/or do not submit valid input in Step 4 is denoted

T ′. Let R′ = T ′∩R. Let |T ′| = t′. Then parties reconstruct with S′ := T
′
,

n′ = n−t′, and R
′
= T

′∩R. Note that {R′, R′} form a partition of R. Note
that corrupted parties can open (R′, t′, ∗), while the parties in S′ can open

(R
′
, n− t′, ∗). Assume towards contradiction that the adversary can also

open (R
′
, n− t′, ∗). Note that (t′−|R′|)+(n− t′−|R′|) = n−|R| = n−3.

Therefore, max(t′ − |R′|, n− t′ − |R′|) ≥ n/2− 1. Thus,

|R′ ∪R′|+ max(t′ − |R′|, n− t′ − |R′|) ≥ 3 + n/2− 1 > n/2 + 1 ≥ t,

which contradicts Property 1.

We now show that Eq (4.1) holds by considering all possible values
for (a, b). First, observe that

Pr[r = r∗ | r ≤ r∗] = α and Pr[r < i∗ | r ≤ i∗] = 1− α.

In the following we will consider only valid parameter settings
(T, t,x, T ′, t′, x+, x−,a).

In case fx
−

t′,n−t(x
+, y) = 0. Let a′ /∈ {a0,a1}. Let Sa′ be the set of

positions in a′ that are set to 0 and S′a′ be the set of positions in a′

that are set to 1. a0,a1 are defined as before. For condensed notation, we
let a0,a1,a

′ be indexed by t = (R′, n′, z).

22

In the table, we compute the probabilities of representative choices of
(a, b) in the Real and Ideal worlds:

View Real Ideal

(a0, 0) α · (1− px
−,t,t′
y) + (1− α)

∏
t

(ptx) · (1− px
−,t,t′
y) α+ (1− α)

∏
t

(ptx) · (1− qx
+,x−,a0
y)

(a0, 1) α · px
−,t,t′
y + (1− α)

∏
t

(ptx) · px
−,t,t′
y (1− α)

∏
t

(ptx) · (qx
+,x−,a0
y)

(a′, 0) (1− α)
∏

t∈Sa′

(ptx)
∏

t∈S′
a′

(ptx) · (1− px
−,t,t′
y) (1− α)

∏
t∈Sa′

(ptx)
∏

t∈S′
a′

(ptx) · (1− qx
+,x−,a′
y)

(a′, 1) (1− α)
∏

t∈Sa′

(ptx)
∏

t∈S′
a′

(ptx) · (px
−,t,t′
y) (1− α)

∏
t∈Sa′

(ptx)
∏

t∈S′
a′

(ptx) · (qx
+,x−,a′
y)

(a1, 0) (1− α)
∏
t

(ptx) · (1− px
−,t,t′
y) (1− α)

∏
t

(ptx) · (1− qx
+,x−,a1
y)

(a1, 1) (1− α)
∏
t

(ptx) · (px
−,t,t′
y) (1− α)

∏
t

(ptx) · (qx
+,x−,a1
y)

It can be seen that for a′ /∈ {a0,a1} we get the following constraint:

qx
+,x−,a′
y = px

−,t,t′
y . Thus, all constraints for a′ /∈ {a0,a1} can be satisfied

by setting Xx+,x−,a
ideal,t′ = Xreal,t′ .

Additionally, we obtain the constraints:

qx
+,x−,a0
y = px

−,t,t′
y +

α · px
−,t,t′
y

(1− α) ·
∏

(R′,n′,z)(p
(R′,n′,z)
x)

)

and
qx

+,x−,a1
y = px

−,t,t′
y ,

which are satisfied according to our assumptions in the theorem.

In case fx
−

t′,n−t(x
+, y) = 1. Let a′ /∈ {a0,a1}. Let Sa′ be the set of

positions in a′ that are set to 0 and S′a′ be the set of positions in a′

that are set to 1. a0,a1 are defined as before. For condensed notation, we
let a0,a1,a

′ be indexed by t = (R′, n′, z).

In the table, we compute the probabilities of representative choices of
(a, b) in the Real and Ideal worlds:

23

View Real Ideal

(a0, 0) (1− α)
∏
t

(ptx) · (1− px
−,t,t′
y) (1− α)

∏
t

(ptx) · (1− qx
+,x−,a0
y)

(a0, 1) (1− α)
∏
t

(ptx) · px
−,t,t′
y (1− α)

∏
t

(ptx)(qx
+,x−,a0
y)

(a′, 0) (1− α)
∏

t∈Sa′

(ptx)
∏

t∈S′
a′

(ptx) · (1− px
−,t,t′
y) (1− α)

∏
t∈Sa′

(ptx)
∏

t∈S′
a′

(ptx) · (1− qx
+,x−,a′
y)

(a′, 1) (1− α)
∏

t∈Sa′

(ptx)
∏

t∈S′
a′

(ptx) · (px
−,t,t′
y) (1− α)

∏
t∈Sa′

(ptx)
∏

t∈S′
a′

(ptx) · (qx
+,x−,a′
y)

(a1, 0) α · (1− px
−,t,t′
y) + (1− α)

∏
t

(ptx) · (1− px
−,t,t′
y) (1− α)

∏
t

(ptx) · (1− qx
+,x−,a1
y)

(a1, 1) α · px
−,t,t′
y + (1− α)

∏
t

(ptx) · (px
−,t,t′
y) α+ (1− α)

∏
t

(ptx) · (qx
+,x−,a1
y)

It can be seen that for a′ /∈ {a0,a1} we get the following constraint:

qx
+,x−,a′
y = px

−,t,t′
y . Thus, all constraints for a′ /∈ {a0,a1} can be satisfied

by setting Xx+,x−,a
ideal,t′ = Xreal,t′ .

Additionally, we obtain the constraints:

qx
+,x−,a1
y = px

−,t,t′
y +

α · (px
−,t,t′
y − 1)

(1− α) ·
∏

(R′,n′,z) p
(R′,n′,z)
x

)

and
qx

+,x−,a0
y = px

−,t,t′
y .

Since Xx+,x−,a
ideal,t′ ·M fx

−
t′,n−t

= Qx+,x−,a, the above constraints are satisfied.

This concludes the proof of Theorem 6.

The following lemma concludes the analysis of the protocol in Figure 3:

Lemma 1. There exists α = 1/ poly(n) such that for every valid setting
of parameters (T, t,x, T ′, t′, x+, x−,a), there exists a probability vector

Xx+,x−,a
ideal,t′ such that Xx+,x−,a

ideal,t′ ·M fx
−

t′,n−t
= Qx+,x−,a.

Proof. We begin by proving the lemma for the special case where t =
n/2 + 1, t′ = n/2− 1 and x− = 1.

24

Define P
1,n/2+1,n/2−1
y = (p

1,n/2+1,n/2−1
y=n/2−1 , . . . , p

1,n/2+1,n/2−1
y=0).

Note that the output of the function f1n/2−1,n/2−1 is 1 in position [x, y]

if the sum of x + y ≥ n/2. In the following example we set n/2 − 1 = 3.
The truthtable of f1n/2−1,n/2−1 is as follows:

y = 3 y = 2 y = 1 y = 0

x = 0 0 0 0 0

x = 1 1 0 0 0

x = 2 1 1 0 0

x = 3 1 1 1 0

And becomes the following in matrix form:

M f1
n/2−1,n/2−1

=


0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0


Since the final column of the matrix is all 0, we can simply remove

it, since p
1,n/2+1,n/2−1
y=0 = 0, qx

+,1,a0
y=0 = 0, and and qx

+,1,a1
y=0 = 0. Thus,

M f1
n/2−1,n/2−1

denotes the above matrix with the final column deleted.

For every valid (T, t = n/2 + 1,x, T ′, t′ = n/2 − 1, x+, x− = 1,a) we
need to find a vector s ∈ Rn/2−1 such that sM f1

n/2−1,n/2−1
= Qx+,1,a and

the vector s = s0, . . . , sn/2−1 further needs to correspond to a probability

distribution–i.e. we require that
∑n/2−1

k=0 sk = 1. In addition, we require
that each sk is non-negative.

Let M+
f1
n/2−1,n/2−1

denote the matrix obtained when a column vector of

1’s is concatenated with the matrix M f1
n/2−1,n/2−1

. For the case n/2−1 =

3, we obtain the following:

M+
f1
n/2−1,n/2−1

=


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1


We need to find a setting of α, such that α = 1/ poly(n) and such that

the unique solution for s, where sM+
f1
n/2−1,n/2−1

= (1||Qx,1,0,a) is non-

negative. In the following, we argue that by setting α sufficiently small,
but still 1/ poly(n) (yielding a protocol with 1/α · ω(log(λ)) = poly(n, λ)
rounds), we can find such a solution.

25

We know there is a non-negative solution s to sM+
f1
n/2−1,n/2−1

=

(1||P 1,n/2+1,n/2−1
y). In fact, the solution is simply s = (1

n/2 , . . . ,
1
n/2), as

this is the distribution Xreal,t′=n/2−1 over inputs x̂ ∈ {0, . . . , n/2 − 1}
that produces the real output distribution P

1,n/2+1,n/2−1
y . Note that

s has distance at least 2/n from any vector with negative entries
(since each coordinate of s has magnitude 2/n). If (1||Qx−1,1,a) =

(1||P 1,n/2+1,n/2−1
y) + w, where w is a vector with magnitude at most

d, we have that

(s+s′)M+
f1
n/2−1,n/2−1

= sM+
f1
n/2−1,n/2−1

+s′M+
f1
n/2−1,n/2−1

= (1||P 1,n/2+1,n/2−1
y)+w,

where
s′ = w(M+

f1
n/2−1,n/2−1

)−1.

Now, the matrix (M+
f1
n/2−1,n/2−1

)−1 has the following form:

(M+
f1
n/2−1,n/2−1

)−1 =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1


In other words, the diagonal entries are set to 1, the second diagonal

entries are set to −1 and all other entries are set to 0. We upper bound
the spectral norm of (M+

f1
n/2−1,n/2−1

)−1 by
√

5 (see full version). Bounding

the spectral norm of (M+
f1
n/2−1,n/2−1

)−1 by
√

5 guarantees that since w has

magnitude d, s′ has magnitude at most d′ =
√

5 ·d. By choosing d = 2√
5·n ,

we have that (s + s′) has all non-negative entries. To ensure that w has
magnitude at most d, it is sufficient to ensure that each coordinate of
w = (1||Qx−1,1,a) − (1||P 1

y) has magnitude at most d/
√
n. This can be

achieved by setting α ≤ 1/2 such that

2α∏
(R′,n′,z) p

(R′,n′,z)
x

≤ d/
√
n and

2α∏
(R′,n′,z)(p

(R′,n′,z)
x)

≤ d/
√
n. (4.2)

Now, both p
(R′,n′,z)
x and p

(R′,n′,z)
x must be at least 1/(n/2+2), since if they

are not identically 0 (resp. identically 1), then there is at least one value
of ŷ ∈ {0, . . . , n−n′} for which fn′,n−n′(z, ŷ) = 1 (resp. fn′,n−n′(z, ŷ) = 0)
and since n′ ≥ n/2 − 1, Prŷ∼{0,...,n−n′}[fn′,n−n′(z, ŷ) = 1] ≥ 1/(n/2 +
2) > 1/n (resp. Prŷ∼{0,...,n−n′}[fn′,n−n′(z, ŷ) = 0] ≥ 1/(n/2 + 2) >

26

1/n). Since, furthermore, |φ(x)| ≤ deg,
∏

(R′,n′,z) p
(R′,n′,z)
x ≥ 1/ndeg

and
∏

(R′,n′,z)(p
(R′,n′,z)
x) ≥ 1/ndeg. Thus, (4.2) is achieved by setting

α ≤ d
2ndeg+0.5 . Finally, plugging in d = 2√

5·n , we have that α ≤ 1√
5ndeg+1.5 .

This results in a number of rounds ω(log(λ)) · 1/α, which is polynomial
in the security parameter λ and in the number of parties n.

We now formalize the argument for any setting of t = n/2 + 1, t′ =
n/2 − 1 and x− = 1. In fact, we see that the only thing that changes in
the argument is M+

f1
n/2−1,n/2−1

. We must prove that M+

fx
−

t′,n−t
is invertible

and that the spectral norm of (M+

fx
−

t′,n−t
)−1 is bounded by

√
5.

In fact, we will show something slightly more general: For any m,n
and any threshold th, consider the function f thm,n : {0, . . . ,m}×{0, . . . , n}
defined as: f thm,n(x, y) = 1 iff x + y ≥ th. For non-triviality, we assume
that th > 0 and that m+ n ≥ th. Consider the matrix M f thm,n

.

We begin by removing from M f thm,n
columns that are all 0. I.e. columns

y = k such that m + k < th. The number of columns removed is `0 :=
th−m, if th−m ≥ 1 and 0 otherwise.

We next remove from M f thm,n
any columns (y = k) that are all 1 (this

is ok since in this case px
+,x−

y=k = 1, qx
+,x−,a0

y=k = 1, and qx
+,x−,a1

y=k = 1, and
since the column will be added back at the end). Column y = k will be
all 1 if k ≥ th. The number of columns removed is `1 := n − th + 1, if
n− th+ 1 ≥ 1 and 0 otherwise.

Now, we will show that the number of columns remaining ((n+ 1)−
`1−`0) is at least one fewer than the number of rows (m+1). The number
of columns remaining is

(n+ 1)− `1 − `0 ≤ (n+ 1)− (th−m)− (n− th+ 1)

= n+ 1− th+m− n+ th− 1 = m.

Furthermore, if m + 1 > (n + 1) − `1 − `0 + 1, then there must be two
identical rows, one of which can be removed. Therefore, after removing
the columns, removing duplicate rows and adding a column of 1’s, M+

f thm,n

has the form of a (non-singular) lower triangular matrix with 1’s in each
lower triangular entry and dimension (n+ 2− `1− `0)× (n+ 2− `1− `0).

4.1 Implementing the Dealer and F
th,n/2+1
Recon,S,p

Implementing the Dealer proceeds almost the same as the case of n/2
or fewer corruptions described in Section 3.1. The only differences are

27

that we use a different access structure for the inner/outer secret-sharing
schemes. Specifically, in round r, party Pj learns a share in a secret sharing
scheme for access structure AR,R′,n′−z,2n, for every R′ ⊆ R, n′ ∈ [n], z ∈
{0, . . . , n′} (we call these Pj ’s shares of the inner secret-sharing scheme).

For each round, the shares of each party Pj are then shared in a
special 2-out-of-2 secret-sharing scheme, where Pj gets one of the two
shares (called the mask). In addition, all parties (including Pj) receive
shares in a n/2 + 2-out-of-n Shamir secret-sharing scheme of the other
share of the 2-out-of-2 secret sharing. We call the resulting secret-sharing
scheme the outer (n/2 + 2)-out-of-n scheme (since n/2 + 1 parties and
the holder of the mask are needed to reconstruct the secret).

To implement ideal functionality F
th,n/2+1
Recon,S,p, when F

th,n/2+1
Recon,S,p is run in

Step 4, not all parties remaining in the sets S and S′ are necessarily
honest. However, our restriction on n ≥ 8 ensures that S and S′ contains

an honest majority. Therefore, F
th,n/2+1
Recon,S,p can be implemented with a fully

secure protocol (with fairness and guaranteed output delivery). When

F
th,n/2+1
Recon,S,p is run in Step 5, there may not be an honest majority, and the

same approach from the previous section (Section 3.1) works.

References

1. Bar Alon and Eran Omri. Almost-optimally fair multiparty coin-tossing with
nearly three-quarters malicious. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 307–335. Springer, Heidelberg,
October / November 2016.

2. Gilad Asharov. Towards characterizing complete fairness in secure two-party
computation. In Lindell [32], pages 291–316.

3. Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete
characterization of fairness in secure two-party computation of Boolean functions.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume
9014 of LNCS, pages 199–228. Springer, Heidelberg, March 2015.

4. Gilad Asharov, Yehuda Lindell, and Tal Rabin. A full characterization of functions
that imply fair coin tossing and ramifications to fairness. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 243–262. Springer, Heidelberg, March
2013.

5. Amos Beimel. Secret-sharing schemes: A survey. In Coding and Cryptology -
Third International Workshop, IWCC 2011, Qingdao, China, May 30-June 3,
2011. Proceedings, pages 11–46, 2011.

6. Amos Beimel, Iftach Haitner, Nikolaos Makriyannis, and Eran Omri. Tighter
bounds on multi-party coin flipping via augmented weak martingales and
differentially private sampling. In Mikkel Thorup, editor, 59th FOCS, pages 838–
849. IEEE Computer Society Press, October 2018.

7. Amos Beimel, Yehuda Lindell, Eran Omri, and Ilan Orlov. 1/p-Secure multiparty
computation without honest majority and the best of both worlds. In Phillip

28

Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 277–296. Springer,
Heidelberg, August 2011.

8. Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss with
dishonest majority. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 538–557. Springer, Heidelberg, August 2010.

9. Amos Beimel, Eran Omri, and Ilan Orlov. Secure multiparty computation with
partial fairness. Cryptology ePrint Archive, Report 2010/599, 2010. http://

eprint.iacr.org/2010/599.
10. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems

for non-cryptographic fault-tolerant distributed computation (extended abstract).
In STOC 1988 [39], pages 1–10.

11. Niv Buchbinder, Iftach Haitner, Nissan Levi, and Eliad Tsfadia. Fair coin flipping:
Tighter analysis and the many-party case. In Philip N. Klein, editor, 28th SODA,
pages 2580–2600. ACM-SIAM, January 2017.

12. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In STOC 1988 [39], pages 11–19.

13. Richard Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In 18th ACM STOC, pages 364–369. ACM Press, May
1986.

14. Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery
in secure multiparty computation. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 466–485. Springer,
Heidelberg, December 2014.

15. Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin.
On the black-box complexity of optimally-fair coin tossing. In Yuval Ishai, editor,
TCC 2011, volume 6597 of LNCS, pages 450–467. Springer, Heidelberg, March
2011.

16. Dana Dachman-Soled, Mohammad Mahmoody, and Tal Malkin. Can optimally-
fair coin tossing be based on one-way functions? In Lindell [32], pages 217–239.

17. Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, 2004.

18. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

19. S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete
fairness in secure two-party computation. In Richard E. Ladner and Cynthia
Dwork, editors, 40th ACM STOC, pages 413–422. ACM Press, May 2008.

20. S. Dov Gordon, Yuval Ishai, Tal Moran, Rafail Ostrovsky, and Amit Sahai. On
complete primitives for fairness. In Daniele Micciancio, editor, TCC 2010, volume
5978 of LNCS, pages 91–108. Springer, Heidelberg, February 2010.

21. S. Dov Gordon and Jonathan Katz. Complete fairness in multi-party computation
without an honest majority. In Reingold [38], pages 19–35.

22. S. Dov Gordon and Jonathan Katz. Partial fairness in secure two-party
computation. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 157–176. Springer, Heidelberg, May / June 2010.

23. S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness
and guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82. Springer,
Heidelberg, August 2015.

29

http://eprint.iacr.org/2010/599
http://eprint.iacr.org/2010/599

24. Iftach Haitner, Nikolaos Makriyannis, and Eran Omri. On the complexity of fair
coin flipping. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I,
volume 11239 of LNCS, pages 539–562. Springer, Heidelberg, November 2018.

25. Iftach Haitner and Eliad Tsfadia. An almost-optimally fair three-party coin-
flipping protocol. In David B. Shmoys, editor, 46th ACM STOC, pages 408–416.
ACM Press, May / June 2014.

26. Martin Hirt and Ueli M. Maurer. Complete characterization of adversaries tolerable
in secure multi-party computation (extended abstract). In James E. Burns and
Hagit Attiya, editors, 16th ACM PODC, pages 25–34. ACM, August 1997.

27. Martin Hirt and Ueli M. Maurer. Player simulation and general adversary
structures in perfect multiparty computation. Journal of Cryptology, 13(1):31–
60, January 2000.

28. Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank.
On achieving the best of both worlds in secure multiparty computation. Cryptology
ePrint Archive, Report 2010/029, 2010. http://eprint.iacr.org/2010/029.

29. Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining
privacy with guaranteed output delivery in secure multiparty computation. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 483–500.
Springer, Heidelberg, August 2006.

30. Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying cheaters without
an honest majority. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 21–38. Springer, Heidelberg, March 2012.

31. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation
with identifiable abort. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 369–386. Springer,
Heidelberg, August 2014.

32. Yehuda Lindell, editor. TCC 2014, volume 8349 of LNCS. Springer, Heidelberg,
February 2014.

33. Yehuda Lindell and Tal Rabin. Secure two-party computation with fairness - A
necessary design principle. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part I, volume 10677 of LNCS, pages 565–580. Springer, Heidelberg, November
2017.

34. Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In Reingold
[38], pages 1–18.

35. Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. Journal of
Cryptology, 29(3):491–513, July 2016.

36. Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
2014.

37. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM
Press, May 1989.

38. Omer Reingold, editor. TCC 2009, volume 5444 of LNCS. Springer, Heidelberg,
March 2009.

39. 20th ACM STOC. ACM Press, May 1988.

30

http://eprint.iacr.org/2010/029

	Revisiting Fairness in MPC: Polynomial Number of Parties and General Adversarial Structures

