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Abstract—Increasingly, individuals and companies adopt a cloud service provider as a primary data and IT infrastructure platform. The
remote access of the data inevitably brings the issue of trust. Data encryption is necessary to keep sensitive information secure and
private on the cloud. Yet adversaries can still learn valuable information regarding encrypted data by observing data access patterns.
To solve such problem, Oblivious RAMs (ORAMs) are proposed to completely hide access patterns. However, most ORAM
constructions are expensive and not suitable to deploy in a database for supporting query processing over large data. Furthermore, an
ORAM processes queries synchronously, hence, does not provide high throughput for concurrent query processing. In this work, we
design a practical oblivious query processing framework to enable efficient query processing over a cloud database. In particular, we
focus on processing multiple range and kNN queries asynchronously and concurrently with high throughput. The key idea is to
integrate indices into ORAM which leverages a suite of optimization techniques (e.g., oblivious batch processing and caching). The
effectiveness and efficiency of our oblivious query processing framework is demonstrated through extensive evaluations over large
datasets. Our construction shows an order of magnitude speedup in comparison with other baselines.

Index Terms—Data Privacy, Oblivious RAM, Oblivious Query Processing, Range and kNN Query.
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1 INTRODUCTION

INCREASINGLY, individuals and companies choose to
move their data and IT operations to a cloud service

provider (e.g., Azure, AWS) and use the cloud as their
primary infrastructure platform. While utilizing a cloud
infrastructure offers many attractive features and is a cost-
effective solution in many cases, the potential risk of com-
promising sensitive information poses a serious threat.

A necessary step for keeping sensitive information se-
cure and private on the cloud is to encrypt the data. To
that end, encrypted databases such as Cipherbase [1], [2],
CryptDB [3], TrustedDB [4], SDB [5], and Monomi [6], as
well as various query execution techniques over encrypted
databases [7], [8], [9], [10] have been developed. But query
access patterns over an encrypted database can still pose a
threat to data privacy and leak sensitive information, even
if the data is encrypted before uploading to the cloud and
a secure query processing method over encrypted data is
used [11], [12], [13], [14]. Islam et al. [15] demonstrate that
an attacker can identify as much as 80% of email search
queries by observing the access pattern of an encrypted
email repository alone. Moreover, by counting the frequency
of accessing data items from the clients, the server is able to
analyze the importance of different areas in the database.
With certain background knowledge, the server can learn
a great deal about client queries and/or data. For example,
knowing that the database stores spatial POIs from NYC, the
most frequently accessed records are probably from Man-
hattan area [11]. The recent Spectre attack [16] shows that
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potentially vulnerable code patterns can be exploited easily
by engaging speculation features in processors. At its heart,
the attack takes advantage of the fact that internal program
secrets are betrayed by the program’s access pattern. It thus
highlights the importance of ORAM primitives in protecting
an application’s access pattern and its sensitive data.

The examples above highlight the necessity of hiding
the access patterns of clients’ operations on a cloud and
protect against the sensitive information leakage. To that
end, Oblivious RAM (ORAM) is proposed by Goldreich [17]
and Ostrovsky [18] to protect the client’s access patterns
from the cloud. It allows a client to access encrypted data on
a server without revealing her access patterns to the server.

However, most existing practical ORAM constructions
are still very expensive, and not suitable for deployment in
a database engine to support query processing over large
data [11]. Furthermore, an ORAM by itself does not support
query-level concurrency, i.e., an ORAM processes incoming
queries synchronously: a new query request is not processed
until a prior ongoing query has been completed. This creates
a serious bottleneck under concurrent loads in a database
setting with multiple clients. Many ORAM constructions
[17], [19], [20], [21], [22], [23] do not even support operation-
level concurrency, i.e., these ORAMs handle operations (each
operation is to read or write a block) synchronously. Recent
studies have addressed this issue and proposed various
parallel ORAMs at the storage level that can handle operations
asynchronously, e.g., PrivateFS [24], Shroud [25], ObliviStore
[26], CURIOUS [27], and TaoStore [28], hence, achieving
operation-level concurrency at the storage level.

Since each query (e.g., a range or a kNN query) consists
of a sequence of read operations (read a block, which will al-
so result in write operations when operating over an ORAM
structure), parallel ORAMs with their support for operation-
level concurrency are useful in reducing query latency, which
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will improve system throughput indirectly, but they are
not designed for improving system throughput. For example, a
single expensive query that consists of many operations can
still seriously hurt system throughput even if its latency has
been reduced. In short, operation-level concurrency using a
parallel ORAM storage engine does not lead to query-level
concurrency in a query engine.

Just to clarify, our query-level concurrency works in a
batched manner. It means that if any query q1 (in the last
batch) is currently executed and a new query q2 arrives in
the meantime, we will not run q2 instantly. Query q2 will not
start until all the queries in the last batch (including q1) are
completed. If another query q3 arrives before the last batch
(containing q1) is completed, the execution of q2 and q3 can
be performed concurrently in the next batch. The details will
be demonstrated in Section 4.4 and Section 4.5.

Prior efforts mainly focus on designing efficient query
processing protocols for specific types of queries, e.g., join
[29], [30] and shortest path [19], [31]. Some studies focus
on providing theoretical treatment for SQL queries [13], but
are of only theoretical interest. There are also investigations
working on designing oblivious data structures [14], [32] that
help improve the efficiency of certain queries (e.g., binary
search) compared to processing these queries using a stan-
dard ORAM construction. The idea is that for some query
algorithms which exhibit a degree of predictability in their
access patterns, it will be beneficial to have customized and
more efficient ORAM constructions [32].

To the best of our knowledge, Opaque [12] and ObliDB
[33] are the state-of-the-art studies concerning generic oblivi-
ous analytical processing. However, to support kNN or range
queries, Opaque needs to perform expensive scan-based op-
erations (see Baseline part in Section 3). ObliDB [33] exploits
indexed storage method and builds oblivious B+ trees to
support point and range queries. In their implementation,
data is fixed to one record per block. But in our implementa-
tion of oblivious B-tree in Section 4.2, each block contains B
bytes, and the number of records that fit in each data block
is Θ(B) rather than one. Hence, our design is more suitable
for hard disk storage and reduces the number of disk seeks
in query processing. We also leverage a suite of optimization
techniques including batch processing and ORAM caching.
Extensive experimental evaluation shows that our design
with those optimizations achieves an order of magnitude
speedup in terms of query throughput, in comparison with
Opaque method (without the distributed storage) and the
basic oblivious index baseline (similar to ObliDB).
Our contributions. We propose a general oblivious query
processing framework (OQF) for cloud databases, which
is efficient and practical (easy to implement and deploy)
and supports concurrent query processing (i.e., concurrency
within a query’s processing) with high throughput. This
work focuses on (one and multi-dimensional) range and
kNN queries, and explores the design of OQF that is much
more efficient than baseline approaches. The proposed
framework can be extended to handle other query types
(e.g., joins), which is an active ongoing work. In particular,

• We formalize the definition of an oblivious query
processing framework (OQF) and review the back-
ground of oblivious query processing in Section 2.

• We describe the architecture of our OQF design in
Section 3, and a present baseline instantiation based
on a standard ORAM protocol.

• We present our design of an OQF in Section 4
that achieves concurrent query processing with high
throughput using the idea of integrating an (obliv-
ious) index into ORAM and also leveraging a suite
of optimization techniques (e.g., oblivious batch pro-
cessing and caching).

• We conduct extensive experiments in Section 5 us-
ing our oblivious query processing framework on
large datasets. The results demonstrate a superior
performance gain (at least one order of magnitude)
achieved by our design over baseline constructions.

The paper is concluded in Section 7 with a review of
related work in Section 6.
2 PRELIMINARIES

2.1 Problem Definition and Security Model
Consider a client who would like to store her data D on
a remote server (e.g., cloud) and ask other clients (includ-
ing herself) to issue queries (such as range and k nearest
neighbor queries). A trusted coordinator collects queries
from different clients and answers them by interacting with
the server. The communication between clients and the
coordinator are secured and not observed by the server.
Index structures such as B-tree and R-tree are often built
to enable efficient query processing. Suppose the query
sequence to the server for queries collectively issued by
all clients is {(op1, arg1), · · · , (opm, argm)}, where opi is a
query type (which may be range or kNN in our context) and
argi provides the arguments for the ith query qi. Our goal
is to protect the privacy of clients by preventing the server
from inferring knowledge about the queries themselves, the
returned results, and the database D.

While traditional encryption schemes can provide con-
fidentiality, they do not hide data access patterns. This
enables the server to infer the query behavior of clients by
observing access locality from the index structure and the
data itself. Formally, our problem can be defined as below:
Definition 1. Oblivious Query Processing. Given an input
query sequence ~q = {(op1, arg1), (op2, arg2), · · · , (opm,
argm)}, an oblivious query processing protocol P should interact
with an index structure I built on the server over the encrypted
database D to answer all queries in ~q such that all contents of
D and I stored on the server and messages involved between
the coordinator and the server should be confidential. Denote
the access pattern produced by P for ~q as P (~q). In addition to
confidentiality, for any other query sequence ~q∗ so that the access
patterns P (~q) and P (~q∗) have the same length, they should be
computationally indistinguishable for anyone but the coordinator
and clients.
Security model. Note that multiple clients may exist and
retrieve the data as long as they are trusted by the client
who is the original data owner and follow the same client
side protocol. In this paper, we consider an “honest-but-
curious” server, which is consistent with most existing work
in the literature. To ensure confidentiality, the client needs to
store the secret keys of a symmetric encryption scheme. The
encryption should be done with a semantically secure encryp-
tion scheme, and therefore two encrypted copies of the same
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data block look different [34]. The client should re-encrypt
a block before storing it back to the cloud and decrypt a
block after retrieving it. Since these encryption/decryption
operations are independent of the design of an OQF, we
may omit them while describing an OQF.

Data is encrypted, retrieved, and stored in atomic units
(i.e., blocks), same as in a database system. We must make
all blocks of the same size; otherwise, the cloud can easily
distinguish these blocks by observing the differences in size.
We use N to denote the number of real data blocks in the
database. Each block in the cloud or client storage contains
B bytes (note that the number of entries that fit in a block
is Θ(B) and the constants will vary depending on the entry
types, e.g., encrypted record versus encrypted index entry).

Definition 1 implies that we must make different access
types (read and write operations) indistinguishable. This is
achieved by performing read-then-write (potentially a dum-
my write) operations, which is commonly used in existing
ORAMs. Our security definition requires indistinguishabil-
ity only for query sequences inducing access patterns of
the same length. We will discuss how to protect against
volume leakage from range query by introducing padding
techniques in Section 4.6.

Definition 1 does not consider privacy leakage through
any side-channel attack like time taken for each operation
(timing attack). Existing work [35] actually offers mecha-
nisms for bounding ORAM timing channel leakage to a
user-controllable limit. Oblix [36] also considers any side-
channel leakage as out of scope. Orthogonal solutions [37],
[38] in Oblix also work for our setting.
Remarks. Note that our setting is that multiple clients submit
queries at any time instead of the scenario where one unique
client makes a large number of queries. The coordinator
runs the oblivious query algorithms acting as a trusted
middle layer between multiple clients and the untrusted
cloud (the same setting in TaoStore [28]). The coordinator
and the clients are in a closed and private internal network.
Analogously, ObliviStore [26] hosts the trusted components
in a small-scale private cloud, while outsourcing the untrusted
storage to a remote cloud. If the cloud has a secure hardware
that comes with trusted private memory regions, e.g., the
enclave from SGX [39], we can make it co-located on the
cloud, serving as the trusted coordinator.

2.2 ORAM and Oblivious Data Structure

Oblivious RAM. Oblivious RAM (ORAM) is first proposed
by Goldreich and Ostrovsky where the key motivation is
to offer software protection from an adversary who can
observe the memory access patterns. In the ORAM model,
the client, who has a small but private memory, wants to
store and retrieve her data using the large but untrusted
server storage, while preserving data privacy. Generally,
ORAM is modeled similar as a key-value store. Data is
encrypted, retrieved, and stored in atomic units (i.e., blocks)
annotated by unique keys. An ORAM construction will hide
access patterns of block operations (i.e., get() and put())
to make them computationally indistinguishable to server.

An ORAM construction consists of two components: an
ORAM data structure and an ORAM query protocol, where
a part of the ORAM data structure is stored on the server
side, and another (small) part of the ORAM data structure

is stored on the client side. Client and server then run the
ORAM query protocol to read and write any data blocks.
Path-ORAM. Path-ORAM is a key representative among
proposed ORAM constructions due to its good performance
and simplicity [11], [23]. It organizes the server side ORAM
structure as a full binary tree where each node is a bucket
that holds up to a fixed number of encrypted blocks (from
the client’s database), while the client hosts a small amount
of local data in a stash. Path-ORAM maintains the invariant
that at any time, each block b is mapped to a leaf node
chosen uniformly at random in the binary tree, and is
always placed in some bucket along the path to the leaf
node that b is mapped to. The private stash stores a small
set of blocks that have not been written back to the server.

When block b is requested by the client, Path-ORAM
protocol will retrieve an entire path, with the leaf node that
b is mapped to, from the server into the client’s stash. Then,
the requested block b is re-mapped to another leaf node, and
the entire path that was just accessed is written back to the
server. When a path is written back, additional blocks may
be evicted from the stash if the above invariant is preserved
and there is free space in some bucket along that path.

In this construction, the client has to keep a position map
to keep track of the mapping between blocks and leaf node
IDs, which brings a linear space cost to the client; note that
even though it is linear with N , the number of blocks in the
database, the mapping information is much smaller than the
actual database size. We may choose to recursively build
Path-ORAMs to store position maps until the final level
position map is small enough to fit in client memory.

To store N blocks of size B, a basic Path-ORAM protocol
requires O(logN +N/B) client side blocks and can process
each request at a cost of O(logN). In a recursive Path-
ORAM, the client needs a memory size of O(logN) and
each request can be processed in O(logBN · logN) cost.
Oblivious data structure. For certain data structure (such
as map and queue) whose data access pattern exhibits some
degree of predictability, one may improve the performance
of oblivious access by making these data structures “obliv-
ious” (in the memory hierarchy sense), rather than simply
storing (data and index) blocks from such a data structure
bluntly into a generic ORAM construction. Wang et al. [32]
design oblivious data structures and algorithms for some
standard data structures. In particular, they propose the
methodology to build oblivious data structures for AVL tree.
The main idea is that each node keeps the position map in-
formation of its children nodes together with their page IDs.
When retrieving a node from this oblivious data structure,
we acquire the position map for its children simultaneously.
Note that most query algorithms over tree indices traverse
the tree from the root to the leaf. As a result, the client only
needs to remember the position tag for the root node block,
and all other position map information can be fetched on the
fly from the oblivious data structure stored on the server.

3 FRAMEWORK

Our proposed OQF consists of four parties: the data owner,
clients (data owner can be a client), a trusted coordinator,
and the server. The trusted coordinator has limited storage,
and answers queries from different clients by interacting
with the server while ensuring the security in Definition 1.
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Fig. 2. B-tree internal node layout.

In a pre-processing step, the data owner partitions
records in the database D into blocks, encrypts these data
blocks, and builds an ORAM data structure (e.g., Path-
ORAM) over these data blocks. She then uploads both
encrypted data blocks and the ORAM data structure to the
server. She shares the encryption/decryption keys and other
metadata (e.g., position map in Path-ORAM), which are
needed to execute an ORAM protocol, with the coordinator.
The server stores the encrypted data blocks and the ORAM
data structure into a secure cloud data storage.

Subsequently, clients may issue (range and kNN) queries
against the cloud server through the coordinator. Using an
oblivious query algorithm that will be described later in de-
tails, the coordinator reads/writes blocks from/to the server
based on an ORAM protocol and returns query results to
the clients. The clients and the coordinator are trusted. The
communication between them are secured and not observed
by the cloud. The oblivious query framework is shown in
Figure 1.

Note that an ORAM protocol refers to steps taken in order
to read or write a single data block securely and obliviously with
the help of the ORAM metadata on the coordinator and the
ORAM data structure on the server. The oblivious query
algorithm is constructed based on this ORAM protocol to
answer a range or kNN query securely and obliviously.
Baseline. The most straightforward solution is to encrypt
each data block from the database D, store these encrypted
blocks to the server, and process queries obliviously by scan-
ning through all the encrypted blocks over the coordinator.

Specifically, the coordinator can answer a range query
simply by retrieving each encrypted data block from the
server, decrypting it and checking all records in the block
against the query range. For a kNN query, the coordinator
will scan through all encrypted data blocks as well, calcu-
late the distance from each data point to the query, and
maintain a bounded priority queue to figure out the global
kNN result. Note that the coordinator has to retrieve every
encrypted block in a fixed order to process each query. From the
server’s perspective, the access pattern from the coordinator
is always the same, thus no information can be inferred by
observing access patterns. As a result, simple encryption is
enough and ORAM is not required.

This baseline is clearly very expensive, but simple to
implement. This is essentially the solution explored by the
recent work known as Opaque [12]. Opaque uses the above
baseline with a distributed cloud storage.

4 EFFICIENT OQF
4.1 Integrate an Index into ORAM
A better solution is to add an index (e.g., B-tree or R-tree)
over the database D before uploading data to the cloud. It
takes some care to utilize the index obliviously though.

The key idea is to ignore the semantic difference of the
(encrypted) index and data blocks from the data owner, and
store all the blocks into an ORAM construction, say Path-
ORAM. Take B-tree as an example: each node in a B-tree
can be organized in a disk page as shown in Figure 2a; the
pointers to its children nodes in the tree are page IDs. Hence,
we can treat such pages as ORAM blocks uniquely identified
by their page IDs (i.e., ORAM block IDs).

In this case, the ORAM data structure on the server is
the Path-ORAM data structure over both encrypted index
and data blocks. The ORAM protocol is simply the read and
write (a single block) operations through Path-ORAM.

When answering a query, we follow the range or kNN
query algorithm in a B-tree or R-tree, and start with re-
trieving the root block (of the index) from the server. We
then traverse down the tree to answer the incoming query.
Whenever we need a tree node that does not reside in the
coordinator memory, we retrieve the block by looking up its
block ID through the ORAM protocol. Intuitively, we query
the index structure by running the same algorithm as that
over a standard B-tree or R-tree index. The only difference
is that we are retrieving index and data blocks through an
ORAM protocol with the help of the ORAM data structure.

Suppose we exploit the basic Path-ORAM protocol as
the underlying ORAM protocol. Retrieving a block has
O(logN) overhead in both communication and computa-
tion, where N is the total number of data blocks. The fanout
for index blocks is Θ(B), where B is the block size in bytes.
Now take a B-tree point query as an example. Each point
query would cost O(logBN · logN), where the height of B-
tree is O(logBN). Recall that the basic Path-ORAM protocol
requires O(logN + N/B) client side memory to record the
position map, which may be not practical for a coordina-
tor over a large dataset. To address this problem, we can
adopt recursive Path-ORAM protocol which only requires
O(logN) memory in the coordinator but increases the cost
of retrieving one block to O(logBN · logN). Hence, the
above B-tree query algorithm will cost O(log2

B N · logN).
One can easily generalize this query algorithm to range

and kNN queries using the corresponding range and kNN
query algorithms for a B-tree or an R-tree.

4.2 Oblivious B-tree and R-tree
Another approach is to explore the idea of building an obliv-
ious data structure [14], [32], which will eliminate the need
of storing any position map at the coordinator. In particular,
Wang et al. [32] leverage pointer-based technique to build
an oblivious AVL tree. In our design, we simply replace a
standard B-tree or R-tree in Section 4.1 with an oblivious
B-tree or R-tree. Note that B-tree/R-tree has much larger
fanout in index levels than AVL tree and then achieves a
lower tree height. Suppose N is the number of real data
blocks and B is the block size in bytes. In B-tree/R-tree,
the fanout is Θ(B) and the tree height is O(logB N); but in
AVL tree, the fanout is only two, which leads to O(logN)
tree height. Since the cost of searching over a tree index is
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related to the tree height, oblivious B-tree/R-tree achieves
higher query performance than oblivious AVL tree.

The main idea of building oblivious tree structures is that
each node in the index keeps the position map information
of its children nodes together with their block IDs. Figure
2b shows the new B-tree node for an oblivious B-tree. When
retrieving a node from the server using the ORAM protocol,
we have acquired the position map for its children nodes
simultaneously. Note that most query algorithms over tree
indices traverse the tree from the root to leaf nodes. As a
result, the coordinator only needs to remember the position
tag of the root node, and all other position map information
can be fetched on the fly as part of the query algorithm.

As before, the Path-ORAM structure on the cloud stores
both index and data blocks and makes no distinction be-
tween these two types of blocks. We illustrate how to answer
a query obliviously in this case, using again B-tree point
query as an example (see Figure 3 for an illustration):

1) The coordinator retrieves the root node block from
the cloud through the Path-ORAM protocol by us-
ing its position map, and then assigns the root node
block to a random leaf node ID in the Path-ORAM
tree by altering its position map.

2) By observing key values in the retrieved node b,
the coordinator decides which child node to retrieve
next and acquires its position map information di-
rectly from the parent node b.

3) The coordinator retrieves the child node using the
position map acquired in the last step and assigns a
new random leaf node ID to the child node block by
altering the position map stored in its parent node.

4) Repeat Step 2 and 3 until the coordinator reaches
a leaf node. The record(s) that matches the point
query search key will be found.

Note that when retrieving any node b other than the root
node, we need to alter the position tag of its parent node
to store the fact that b is assigned to the path with a new
random leaf node in the Path-ORAM tree. Thus, we need
to modify the Path-ORAM protocol slightly, to prevent the
protocol from writing an index block back to the cloud while
we are still traversing its descendants.

In summary, by integrating the position map information
to the block content of a tree node, we can avoid saving
the full position map in coordinator memory or using the
expensive recursive Path-ORAM construction. Specifically,
this new method requires O(logN) coordinator memory,
which includes the Path-ORAM stash (with O(logN) size)
and the memory needed (with O(logBN) size) to store the
traversed path for updating the position map information
recursively. Its query cost for each B-tree point query is
O(logBN · logN), the same as that of using the original
Path-ORAM construction with a standard index.

Lastly, a similar design and analysis can be carried out

for constructing an oblivious R-tree from a standard R-tree;
we omit the details in the interest of space.
4.3 A Comparison of Different Designs
Table 1 compares Baseline (Opaque) in Section 3 (essentially
Opaque method [12] without distributed storage in cloud),
ORAM+Index in Section 4.1 (ORAM with a standard in-
dex) and Oblivious Index in Section 4.2. The comparison
is based on B-tree point query in terms of cloud storage,
coordinator storage, number of communication rounds per
query, and computation overhead per query. Recall that for
all the designs, per query, number of accessed blocks in the
cloud, communication overhead in bytes, and computation
cost in the coordinator have the same Big-O complexity.
Hence, we use the computation overhead to denote the Big-
O complexity of those metrics. Note that Oblivious Index
saves the coordinator memory size, but involves O(1) times
more computation overhead and communication rounds
than ORAM+Index to recursively update the position map
information to the server. Therefore, Oblivious Index may
be suitable when the coordinator only has limited memory.
4.4 Optimizations
In most practical database applications with multiple
clients, a critical objective is to improve the overall query
throughput. A useful optimization technique is to process
queries in batches. This allows the coordinator to retrieve
index and data blocks from the cloud in batch.

Batch processing brings the benefit of ORAM caching.
The coordinator can leverage a good caching strategy that
takes advantage of the access pattern for queries in the same
batch. In detail, the coordinator introduces an ORAM buffer
of a given size on her side, and the ORAM buffer stores a
set of blocks from the Path-ORAM structure on the cloud
that she has previously retrieved. If there is a buffer hit for a
subsequent block request, the coordinator does not need to
retrieve that block from the cloud again using the expensive
ORAM protocol. Note that each of these blocks can be either
an index or a data block from the original database with an
index (e.g., a B-tree/R-tree or an oblivious B-tree/R-tree).

An important and interesting challenge arises from this
discussion, which is how to design a good caching strategy
for the coordinator to improve the overall performance of
the proposed oblivious query processing framework.

4.4.1 ORAM Caching at the Coordinator
Formally, given a buffer size τ (number of data blocks that
can be stored in the coordinator’s buffer) and a query batch
size g (g queries in one query batch), our objective is to
design a good ORAM caching strategy to reduce the cost
of processing a sequence of query batches obliviously and
improve the overall query throughput of the proposed OQF,
where the system query throughput is simply defined as the
number of queries processed per minute.

To illustrate the key idea of our design, we assume for
now that given a query batch with g queries {q1, · · · , qg},
the coordinator is able to infer the set of blocks (index and
data blocks) to be retrieved by each query, i.e., there is a
mapping function h that takes a query q and outputs the
set of block IDs that refers to blocks to be accessed while
processing q. We will discuss how to design h in Section 4.5.

The following analysis assumes the basic Path-ORAM
protocol, where the coordinator would traverse a whole
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TABLE 1
Comparison of different designs.

Design Computation Overhead Cloud Storage Communication Round Coordinator Storage
Baseline (Opaque) O(N) O(N) O(N) O(1)
ORAM+Index O(logBN · logN) O(N) O(logBN) O(logN +N/B)
Oblivious Index O(logBN · logN) O(N) O(logBN) O(logN)

path (read-and-then-write) from the Path-ORAM structure
stored on the cloud server through Path-ORAM protocol,
when a cache miss happens for reading a particular block b.
Formally, the problem is reduced to the followings.

Given a query sequence of s query batches: {(q1,1, · · · ,
q1,g), · · · , (qs,1, · · · , qs,g)}, the ith batch needs to retrieve
a set of mi blocks with IDs {idi,1, · · · , idi,mi} that will be
accessed by (qi,1, · · · , qi,g). We also let m = min{m1, · · · ,
ms}. When the context is clear, we drop the subscript for a
batch i. Our objective is to design a good ORAM caching
strategy to minimize the number of cache misses over the
s batches, with the following constraint: queries within a
batch can be processed in arbitrary order, but queries across
different batches cannot be re-ordered. Hence, we can bound
and adjust the query latency for each query by tuning the
query batch size g.

Offline optimal strategy. In offline setting, the coordinator
knows block IDs from all (future) query batches. We denote
the optimal strategy for a given query sequence as opt.

Online strategy. In online setting, the coordinator knows
only block IDs from the current query batch. The goal is
to find a strategy that enjoys a good competitive ratio [40].
Specifically, suppose I represents the class of all valid inputs
(each input in I is a sequence of batches of queries), A
represents the class of all valid online algorithms for the
ORAM caching problem, and cost(A, I) represents the cost
of running algorithm A ∈ A over an input I ∈ I . Then the
competitive ratio of A is

ρ(A) = max
I∈I

cost(A, I)

cost(opt, I)
,

where cost(A, I) (or cost(opt, I)) is proportional to the
number of retrieved blocks from the cloud through ORAM.
ORAM caching strategy. We are given a query sequence
Q = {(q1,1, · · · , q1,g), · · · , (qs,1, · · · , qs,g)} that will access
a block sequence Qb = {(id1,1, · · · , id1,m1), · · · , (ids,1,
· · · , ids,ms)}. Whenever the coordinator needs to replace
a cached block, she evicts the block in her cache that is not
accessed until Furthest-In-Future (FIF) with regard to Qb.
The evicted block is then re-mapped to a new leaf node ID
in Path-ORAM data structure, before being placed into the
private stash with the new mapping information.

Recall that in Path-ORAM protocol, when reading a
block b, an entire path (which contains b) will be retrieved
from the cloud. Here, we assume the coordinator only
caches the block b in her buffer and places other real blocks
along that path into the stash as that in the original protocol.

Under this setting, each cache miss (caused by the re-
quest to access a block) leads to the same cost, which is to
read a block from the ORAM data structure in the cloud
using the ORAM protocol. Recall that the coordinator re-
orders the queries within a batch. After that, the ordering
of queries is fixed. This setting leads to the following result.
The proof is fairly straightforward, and hence omitted.

Theorem 1. For a query sequence with fixed ordering of queries,
the optimal offline method for our ORAM caching problem is the
FIF caching strategy.

The offline optimal method inspires us to design the
following online strategy. In online setting, the coordinator
can only see Qb,i = {(idi,1, · · · , idi,mi)} for query batch
Qi = {(qi,1, · · · , qi,g)}. After processing the jth query from
Qi, there are two classes of blocks in the ORAM cache:
class a: those who will appear in {(qi,j+1, · · · , qi,g)}; class
b: those who will not appear in {(qi,j+1, · · · , qi,g)}. A key
observation is that if the coordinator was to see the entire future
query batches as in offline setting, each block from class b
should be evicted first before evicting any block from class
a. Each block in class b is guaranteed to be referenced only
further-in-the-future than any block in class a, and in the
offline optimal method, evicted first.

This observation leads to the following online strategy.
At any point while processing a query batch, we perform
FIF for any blocks in the ORAM cache that belong to class
a as defined above at this point, and we use Least Recently
Used (LRU) for the remaining blocks in the ORAM cache
that belong to class b as also defined above. We always evict
a block from class b before evicting any block in class a, and
only start evicting blocks from class a if class b is already
empty. An evicted block is re-mapped to a randomly chosen
leaf node ID in Path-ORAM data structure and placed into
the private stash, waiting to be written back to the server.
We denote this algorithm as batch-FIF.

Theorem 2. 1 If there are duplicate block IDs within any batch,
ρ(batch-FIF) ≤ τ (τ is the buffer size); otherwise,

A) If τ ≤ m, the competitive ratio ρ(batch-FIF) ≤ 2;
B) Otherwise, the competitive ratio ρ(batch-FIF) ≤ τ .

4.4.2 Other Optimizations
Query locality. The coordinator can re-order queries within
each query batch to improve their locality, which will lead
to better ORAM caching performance regardless of which
caching strategy is to be used. For one-dimensional queries,
this is easily done by sorting (based on the query point if it
is a kNN query or the left-range point if it is a range query).
For two-dimensional queries, we can leverage a space-filling
curve, and use the z values of the query point for a kNN
query and the centroid of a range query box for sorting and
re-ordering queries in a batch.
Batch writing. In the original protocol, for each read opera-
tion the coordinator needs to retrieve the entire path and
then write the same path back to the cloud. Details are
represented in “Path-ORAM” part in Section 2.2. Instead
of immediately writing each path back to the cloud, we can
also introduce a batch concept to wait for retrieving λ paths
and then write all the λ paths back to the cloud at once.
Batch writing to tree-based ORAM is also leveraged in prior

1. Due to the space limit, all proofs of lemmas and theorems are given
in the supplemental material.
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Fig. 4. Partial path retrieval.

studies [28], [36], [41]. Specifically, the coordinator can keep
the set H that stores the leaf node indices of the retrieved
paths, where max |H| = λ. During batch writing, she writes
the λ paths in H back to the cloud from the bottom level
to the top level, which ensures that blocks in her cache and
stash can be pushed as deep down into the tree as possible.

Given a leaf node index x, let P (x, `) denote the bucket
in level ` of path P (x). Now for any given block b, for each
leaf node index x in H, if b is mapped to x (according to
the position map information), and the bucket P (x, `) still
has space to hold more blocks, the coordinator pushes b
into P (x, `) and removes b from her cache or stash. The
coordinator repeats this process until no more blocks from
her cache or stash can be written back to one of the λ paths.

Finally, for each leaf node index x inH and each level ` of
path P (x), if bucket location P (x, `) still holds blocks with
the number less than the maximum capacity of a bucket,
the coordinator appends some randomly generated dummy
blocks to P (x, `) to fulfill its maximum capacity. Finally, she
writes all λ paths in H back to the cloud and clears H.

In our implementation, queries need to be blocked tem-
porarily while writing the λ paths back to the cloud. As
in TaoStore [28], we can also keep an additional subtree
structure for saving these paths in coordinator and asyn-
chronously write back the λ paths in the background.
Partial path retrieval. In the original Path-ORAM protocol,
for each block access operation, the coordinator needs to
retrieve a whole path from the cloud. With the ORAM
caching mechanism and batch writing optimization that
we have introduced, for each block access operation, the
coordinator only needs to retrieve a partial path, which is
not kept in her cache and stash, rather than a whole path
in the original Path-ORAM protocol. To be clear, this partial
path operation is only performed as part of a batch retrieval,
where the part of the path not retrieved in this sub-operation
is still retrieved in a larger batch retrieval operation.

An example is shown in Figure 4. Suppose that blocks
along the red-colored paths have already been retrieved and
cached by the coordinator. Now the coordinator needs to
retrieve the blue-colored path P (x) for a block b, which is
mapped to the leaf level node with node ID x. Here, she
only needs to retrieve the leaf bucket, since all the remaining
buckets (the dotted blue-colored part in path P (x)) have
already been retrieved.

To decide which part of P (x) to retrieve, the coordinator
builds a set H to store the leaf node indices of retrieved
paths. Given a path to be retrieved by the current operation,
identified by the leaf node ID x, she finds:

left(x) = argmaxy∈H y < x,

right(x) = argminy∈H y > x.

R-Tree

Cached Level

65
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3 4 7 8 9

10 191817161514131211 23222120
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R17
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Fig. 5. An example of the set cover based technique.

The coordinator checks which part of P (x) is not covered
by P (left(x)) ∪ P (right(x)) and only retrieves the blocks
from the partial path. Furthermore, and more importantly,
the coordinator can check this without the access to the Path-
ORAM’s binary tree structure.

Theorem 3. Under partial path retrieval, for any path P (x),
each block is either retrieved or already in the stash.

Block sorting. If the coordinator has the function h that
maps queries to block IDs to be accessed, she can further sort
the block IDs in the current batch based on their position
tags in Path-ORAM. This improves the performance when
combined with batch writing and partial path retrieval
optimizations. For those optimizations to make sense, there
must be some blocks that reside in the overlap part of the
λ paths. Sorting blocks based on their position tags aims
to increase the number of overlapping blocks. Intuitively,
paths in Path-ORAM that share more overlapping blocks
will be put close to each other in the block access sequence
after sorting, due to Path-ORAM’s full binary tree structure.
Then, more overlapping blocks along paths lead to less
communication and computation overhead in Path-ORAM.
Besides, block sorting also improves the performance of
ORAM caching. It makes duplicate block accesses occur in
a sequential way, and the coordinator only needs to retrieve
each block once rather than multiple times.

4.5 Query to Block ID Mapping
Lastly, in order to apply our ORAM caching algorithm, a
mapping function h that maps a query to a set of block
IDs is needed. These block IDs represent the index and data
blocks that the coordinator needs to retrieve from the cloud.

Intuitively, the coordinator caches only one specific level of
B-tree or R-tree index in her storage, which is a popular
tree-based ORAM optimization [41], [42], [43]. Since the
fanout is large in aB-tree orR-tree index (see the analysis in
Section 4.1), this overhead to the coordinator’s storage is still
far less than storing the entire index. Given any query, the
coordinator first finds which set of blocks that she may need to
access by performing a local search algorithm on the cached
level of the index. More specifically, for every node u that
is cached at the coordinator, we remember the set of index
and data blocks from the subtree of u. Henceforth, the local
search will return the super set of index and data blocks a
query will need to access. This super set allows us to infer
the set covers of block IDs to access for all queries in a query
batch, and our caching decision will be made based on these
set covers of block IDs, instead of the exact set of block IDs.

We take range query in R-tree as an example, as shown
in Figure 5. This R-tree index has three index levels and one
leaf level with data blocks. Each (index or leaf) node in the
R-tree is shown with its block ID. Suppose that we have a
query batchQ = {(q1, q2)}, and results of q1 and q2 reside in
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data blocks (13, 14, 15, 17) and (14, 16, 17, 18) respectively.
Thus, the coordinator needs to access blocks (0, 1, 4, 5, 6,
13, 14, 15, 17) to answer q1 (highlighted in red), and blocks
(0, 1, 2, 5, 6, 7, 14, 16, 17, 18) to answer q2 (highlighted in
blue). Assume that the coordinator caches the second level
of the R-tree index, which contains the MBRs (minimum
bounding rectangle) of blocks in the third level of the index,
as well as the set of all block IDs from the subtree of node
1 and node 2 respectively. She will know the results of q1
reside in the MBRs of blocks (4, 5, 6) and those of q2 reside
in the MBRs of blocks (5, 6, 7). Thus, the block sequence to
be accessed should be Qb = {(4, 5, 6, [12, 13], [14, 15], [16,
17], 5, 6, 7, [14, 15], [16, 17], [18, 19])}, where [idx1

, idx2
, · · · ]

means that the coordinator may access one or more blocks that
reside in that set of blocks. In our ORAM caching strategy,
to find the furthest reference to a given block in the current
query batch, we look for either the exact block ID or a set
that covers that block ID. The rest of the caching strategy
remains the same as that in Section 4.4.

A similar procedure can be developed for kNN queries
by maintaining the priority queue using the MBRs for the
children nodes of the cached level.

4.6 Security Analysis
The security of the oblivious index structure (oblivious B-
tree and R-tree) and the query protocol as proposed in
Section 4.2 follows directly from the same security guar-
antee and analysis as that in the design of oblivious data
structure [32]. The security of the ORAM caching introduced
in Section 4.4 relies on the two critical facts. One is that the
clients and the coordinator are trusted. The other is that the
communication between them is secured and not observed
by the cloud server. From the server’s point of view, he still
receives a sequence of requests to read one block at a time
and those blocks being read are written back to a randomly
chosen path from the Path-ORAM’s binary tree structure. In
other words, the Path-ORAM protocol is still followed while
accessing a sequence of seemingly random blocks.

For batch writing optimization together with partial path
retrieval optimization in Section 4.4.2, from the perspective
of the cloud, the coordinator still first retrieves λ uniform
random paths and then writes these λ paths back to the
cloud. The security guarantee and analysis are similar to
those for write-back operation in TaoStore [28]. TaoStore
also writes in batches of λ paths, and leaks no additional
information to normal Path-ORAM, except for value of λ
which only pertains to the implementation, not the actual
data or queries. Hence, it still satisfies Definition 1.

For security analysis in ORAM caching, the additional
sensitive information leaked is only that each ORAM re-
trieval corresponds to a cache miss in trusted coordinator.
But since we do not consider timing attack (see “Security
model” part in Section 2.1), as most existing ORAM con-
structions, such leakage is not a major concern in our setting.
Introducing ORAM caching still follows Definition 1.

To be honest, there does exist some security issue regard-
ing query correlation. Suppose we build 5 levels of B-tree
index for a sequence of data blocks. If batch 1 makes exact
5 Path-ORAM accesses and batch 2 makes 5X more ORAM
accesses than a specific number, the adversary does learn
some query correlation information across batches.

Last, since volume leakage from range query may facil-
itate reconstruction attacks over encrypted databases [44],
we also introduce a padding mode, similar to that in
Opaque [12] and ObliDB [33], to protect against such vol-
ume leakage. A basic approach is to pad the total number of
Path-ORAM accesses for queries in each batch to the worst-
case number by issuing dummy block requests, which leaks
nothing with regard to the queries. Furthermore, some
novel padding techniques can be introduced, e.g., exploring
differential privacy rather than full obliviousness to reduce
the padding number [45], or padding the number of Path-
ORAM accesses in each batch to the closest power of a
constant x (e.g., 2 or 4) [46], [47], [48], leading to at most
logx |Rmax| distinct numbers, where |Rmax| is the worst-case
number of Path-ORAM accesses in each batch.

5 EXPERIMENTAL EVALUATION

5.1 Datasets and Setup

Basically, we evaluate our method (OQF+Optimization),
Baseline (Opaque) in Section 3, ORAM+Index in Section 4.1,
and Oblivious Index in Section 4.2. Note that our method
uses either ORAM+Index or Oblivious Index. The costs of
the two instantiations under (OQF+Optimization) are simi-
lar while Oblivious Index needs less coordinator memory.

Shared Scan is an improved approach over Baseline
(Opaque). Shared Scan answers each batch of queries all
together by leveraging only one single scan operation. Dur-
ing query processing, it keeps the states of all queries in a
batch at the same time and shares the retrieved blocks from
the scan operation across the queries within that batch.

For one-dimensional range query, we also make an eval-
uation of disk-based Oblivious AVL Tree. In our implemen-
tation, we put consecutive nodes in each level of the original
oblivious AVL tree into blocks and make each block still
contain B bytes. Our implementation reduces the number
of disk seeks, since retrieving one block can help us access
Θ(B) nodes, although the fanout of the tree is still two.

Lastly, we also compare our method with Raw Index.
Raw Index builds a B-tree/R-tree index over data blocks
and stores all index and data blocks to the cloud without
using any encryption or any ORAM protocol. During query
processing, the coordinator performs batch query process-
ing and caching with the same cache size as that in our
method. The caching strategy is LRU.

We compare these methods on three datasets in our
experiments. Statistics on the datasets are given in Table 2.
USA. USA is from the 9th DIMACS Implementation Chal-
lenge (Shortest Paths) 2, which contains points on road
networks in USA.
Twitter. Twitter dataset is sampled from the geo-locations in
tweets collected by us from October to December in 2017.
OSM. OSM (short for OpenStreetMap) 3 is a collaborative
project to create a free editable map of the world. The full
OSM data contains 2,682,401,763 points in 78 GB.
SETUP. We use a Ubuntu 14.04 machine with Intel Core i7
CPU (8 cores, 3.60 GHz) and 18 GB main memory as the
coordinator. The cloud server is a Ubuntu 14.04 machine

2. http://www.diag.uniroma1.it/challenge9/
3. https://www.openstreetmap.org/
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TABLE 2
Datasets.

Dataset # of Points Raw Data Size
USA 23,947,347 681 MB
Twitter 247,032,130 7.1 GB
OSM 40M 40,000,000 1.1 GB
OSM 200M 200,000,000 5.6 GB
OSM 400M 400,000,000 12 GB
OSM 800M 800,000,000 23 GB
OSM 1600M 1,600,000,000 46 GB

a OSM XXM is a random sample of the full OSM dataset.

with Intel Xeon E5-2609 CPU (8 cores, 2.40 GHz), 256 GB
main memory and 2 TB hard disk. The bandwidth is 1 Gbps.

In our experiments, the cloud server hosts a MongoDB
instance as the outsourced storage. We also implement a
MongoDB connector class, which supports insertion, dele-
tion and update operations on blocks inside the MongoDB
engine. The cloud server supports read and write operations
from the coordinator through the basic operations on blocks.

All methods are implemented in C++. AES/CFB from
Crypto++ library is adopted as our encryption function in
all methods. The key length of AES encryption is 128 bits.
Default parameter values. The default values for key pa-
rameters are as follows. We set the size of each encrypted
block to 4 KB (the same as [11], [19], [26]). We set the number
of blocks in each bucket of Path-ORAM to 4 (the same as
[11], [23]). We set default cache reserved factor c to 50, which
means the threshold of cache size τ = c · logN (N is the
number of blocks in database). We set default query batch
size g (see Section 4.4.1) to 50. We set default batch-write
size λ (see “Batch writing” part in Section 4.4.2) to 10.
Query generation. We generate 2,000 queries for each query
type, where each query batch contains g queries. For R-tree
query, given the center point of each query batch, a new
query point is generated by adding a random offset (no
larger than a given batch locality parameter) over each dimen-
sion of the center point. The default batch locality parameter
is 0.05 (for both longitude and latitude dimensions). By de-
fault, the range size for eachR-tree range query is 0.05×0.05
(longitude dimension×latitude dimension), and k = 10 for
each R-tree kNN query. A similar procedure works for B-
tree range query generation. The only difference is we set
the default result size of each B-tree range query to be 1,000.
Remarks. Ideally, if the coordinator accesses the same num-
ber of blocks in the cloud for answering each query, the
communication cost between the cloud and the coordinator
should be roughly inversely proportional to the query through-
put for each method. It is confirmed by our experimental
results (see Figures 8-10 and Figures 12-16) to some extent.
For simplicity, we mainly focus on experimental results
for query throughput while brushing lightly over those for
communication cost in the following sections.

5.2 Cloud and Coordinator Storage Costs
Figure 6a shows the cloud storage cost in default setting.
Baseline (Opaque) and Shared Scan achieve the same and
minimum cost, since they only store all encrypted data
blocks to the cloud. Raw Index needs a little more cost,
since it also builds an index over the data blocks. The other
four methods have a similar storage overhead (roughly 10X
larger than Baseline (Opaque), Shared Scan and Raw Index),
since they all require Path-ORAM data structure on cloud.
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Fig. 6. Cloud and coordinator storage costs.
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Fig. 7. Overall initialization time cost.

Figure 6b shows the coordinator storage cost. Baseline
(Opaque) has the minimum cost, since the coordinator on-
ly keeps a constant number of blocks during scan-based
operations. Shared Scan needs a little more cost, since it
also keeps the parameters and states of all queries in a
batch during query processing. Oblivious AVL Tree and
Oblivious Index achieve less cost than ORAM+Index, since
they integrate position map information into tree nodes to
reduce the coordinator memory size. Especially, Oblivious
AVL Tree needs a little more private memory than Oblivious
Index, since Oblivious AVL Tree has a larger tree height and
needs O(logN) (rather than O(logBN)) memory to store a
traversed tree path. Raw Index and our method have larger
private memory sizes (which are set to be the same) than
ORAM+Index, since the coordinator keeps an additional
ORAM cache with the threshold c · logN .

5.3 Overall Initialization Time Cost
Initializing the original Path-ORAM [23] is very expensive,
since each real block insertion pays a Path-ORAM write
operation with O(logN) cost. To avoid the high initializa-
tion cost, we pre-build the ORAM data structure in trusted
storage and then upload it to the cloud using bulk loading.

In our bulk loading based initialization, the communi-
cation overhead and I/O cost of the whole data structure
dominate the overall initialization cost, which is roughly
proportional to cloud storage cost. Figure 7 shows the
overall initialization time cost of different methods. Baseline
(Opaque) and Shared Scan have the minimum cost, since
they simply store the encrypted data blocks to the cloud.
Raw Index needs a little more cost, since it also builds an
index over the data blocks. All other four methods have a
similar cost (still roughly 10X larger than Baseline (Opaque),
Shared Scan and Raw Index), due to building the Path-
ORAM data structure. When the raw data size increases
from 1.1 GB to 46 GB, their initialization cost increases from
656 seconds to 32,451 seconds.

5.4 Query Performance in Default Setting
Figure 8a shows query throughput for R-tree range query
in default setting. The label on y-axis “qpm” is short for
“queries per minute”. Not surprisingly, Baseline (Opaque)
has the lowest query throughput, and Raw Index achieves
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Fig. 8. Performance of R-tree range query.
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Fig. 9. Performance of R-tree kNN query.
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Fig. 10. Performance of B-tree range query.

the largest one. Shared Scan achieves around 50X larger
query throughput than Baseline (Opaque). The reason is
that Shared Scan leverages only one single scan to answer
each batch of queries, while Baseline (Opaque) must scan all
the blocks once for each query in the batch. ORAM+Index
has roughly 2X larger query throughput than Oblivious
Index, since in ORAM+Index the coordinator only performs
a get() operation through Path-ORAM protocol for each
block access, while in Oblivious Index she also perform-
s a put() operation for each block access (see Step 4
in Figure 3). In general, Shared Scan, ORAM+Index and
Oblivious Index have comparable performances in terms of
query throughput. Our method achieves much larger query
throughput than those three methods (by almost one to two
orders of magnitude), due to the ORAM caching and other
optimizations that we have introduced. Figure 8b shows
the communication cost for R-tree range query in default
setting. For each method, the communication cost is roughly
inversely proportional to the query throughput.

The performances ofR-tree kNN query andB-tree range
query are shown in Figure 9 and 10. The trends are similar
to those forR-tree range query in Figure 8. Especially, forB-
tree range query (aka one-dimensional range query), Figure
10 shows that Oblivious Index achieves 2X-4X larger query
throughput and less communication cost than Oblivious
AVL Tree, due to higher fanout and lower tree height.

5.5 Scalability
We focus on R-tree range query on OSM dataset to report
the experimental results regarding scalability.

Figure 11a shows the cloud storage cost against raw data
size. Baseline (Opaque) and Shared Scan have the minimum
cost, since they simply store all encrypted data blocks to the
cloud. Raw Index needs a little more cost, since it also builds
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Fig. 11. Storage cost against raw data size.
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Fig. 12. Query performance against raw data size.
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Fig. 13. Influence of query selectivity.

an index over the data blocks. When raw data size increases
from 1.1 GB to 46 GB, all other three methods have a similar
storage cost, increasing from 16 GB to 512 GB. Figure 11b
shows the coordinator memory size against raw data size.
Baseline (Opaque) still has the minimum cost. Shared Scan
has a little more cost, due to storing parameters and states of
all queries in each batch. Oblivious Index still has much less
cost than ORAM+Index, Raw Index and our method, which
increases with the data size logarithmically, not linearly. For
the other three methods, the cost grows (roughly) linearly
with the data size. The reason is that O(N/B) blocks in
the position map dominate the coordinator storage when
the number of blocks is large. However, since position map
entries are small in size, our coordinator storage size only
increases from 8 MB to 73 MB, when raw data size increases
from 1.1 GB to 46 GB. It can be further mitigated if we
instantiate our method with oblivious index.

Figure 12 shows query performance against raw data
size. Baseline (Opaque) has the lowest performance, while
Raw Index still achieves the best. Our method still achieves
4X-405X larger query throughput and 5X-106X less commu-
nication cost than Shared Scan, ORAM+Index and Oblivious
Index, when raw data size varies from 1.1 GB to 46 GB.
5.6 Selectivity, Locality, Batching and Caching
We focus on R-tree range query on OSM 400M to report
the experimental results regarding selectivity, locality, query
batch size g and caching strategy. We also focus on R-tree
range query to report results regarding batch-write size λ.

Query selectivity. Figure 13 shows query performance a-
gainst query range size. Baseline (Opaque) has the lowest
but stable query performance due to scan-based opera-
tions. Shared Scan also has a stable query performance,
around 50X better than Baseline (Opaque). Raw Index still
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Fig. 14. Influence of query locality.
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Fig. 15. Influence of query batch size g.
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Fig. 16. Influence of batch-write size λ.

achieves the best performance. When range size is small
(≤ 0.01× 0.01), ORAM+Index and Oblivious Index achieve
better performance than Shared Scan, due to index search-
ing. When range size varies from 0.005× 0.005 to 0.1× 0.1,
our method achieves 18X-40X larger query throughput and
around 20X less communication cost than Shared Scan,
ORAM+Index and Oblivious Index.

Query locality. Figure 14 shows query performance against
batch locality parameter. Baseline (Opaque), Shared Scan,
ORAM+Index, and Oblivious Index have a stable query
performance, since the coordinator does not perform ORAM
caching and cannot take advantage of any locality informa-
tion. For our method and Raw Index, when the parame-
ter increases, query points in a batch will be distributed
more sparsely, which leads to less locality, i.e., less cache
hit rate and less query throughput. When the parameter
varies from 0.005 to 0.5, our method achieves 5X-243X larger
query throughput and 7X-106X less communication cost
than Shared Scan, ORAM+Index and Oblivious Index.

Query batching. Figure 15 shows query performance a-
gainst query batch size g. Baseline (Opaque), ORAM+Index
and Oblivious Index have a stable query performance, s-
ince these methods do not introduce any optimization in
batch processing. Shared Scan achieves roughly g times
performance improvement than Baseline (Opaque) when g
increases. Raw Index also has a stable query performance,
since LRU caching strategy does not benefit from any in-
formation in future block accesses, no matter how large g
grows. For our method, the performance improvement is
very limited when g grows, since the cache size is relatively
large in our setting. Hence, a basic LRU caching strategy
has achieved very high cache hit rate, and batch-FIF only
obtains limited advantage from future block accesses. Figure
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Fig. 17. ORAM caching strategy against query locality.
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(b) Query throughput.
Fig. 18. ORAM caching strategy against cache size.
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Fig. 19. Communication cost a-
gainst cache size.
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Fig. 20. R-tree range query laten-
cy.

16 shows query performance against batch-write size λ in
default setting. When λ increases from 1 to 20, our method
achieves 23%-35% larger query throughput and 19%-26%
less communication cost, due to batch writing and partial
path retrieval optimizations.

ORAM caching. Here, we compare the performance of three
ORAM caching strategies. Offline OPT is the offline optimal
caching strategy (i.e., FIF algorithm in Section 4.4). ORAM
Caching+Exact Block ID is our online algorithm when given
the exact block IDs to access in a query batch (i.e., the online
batch-FIF algorithm in Section 4.4), which shows the ideal
case of our ORAM caching strategy. ORAM Caching+Block
ID Mapping is the same online ORAM caching strategy but
now working with query to block ID mapping as described
in Section 4.5. In all three caching strategies, the coordinator
keeps an cache with the same threshold of cache size.

Figure 17 shows query performance against query lo-
cality with default cache size threshold. The three caching s-
trategies have comparable cache hit rate and query through-
put in our block access sequence. When locality parameter
is below 0.1, the cache hit rate is above 96% and query
throughput is above 620 qpm for all caching strategies.
Figure 18 shows query performance against cache size. Both
cache hit rate and query throughput have Offline OPT >
ORAM Caching+Exact Block ID > ORAM Caching+Block
ID Mapping. When private memory size is below 22 MB,
ORAM Caching+Block ID Mapping only has 1.6X-1.8X less
query throughput than ORAM Caching+Exact Block ID,
which demonstrates the effectiveness of our query to block
ID mapping strategy under a small cache size. When private
memory size is up to 24 MB, the cache hit rate is above
94% and query throughput is above 190 qpm for ORAM
Caching+Block ID Mapping. Figure 19 shows the commu-
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nication cost against cache size, which has Offline OPT <
ORAM Caching+Exact Block ID < ORAM Caching+Block
ID Mapping. When private memory size is up to 22 MB, the
communication cost of ORAM Caching+Block ID Mapping
is below 3 MB/Query.
5.7 Query Latency
Lastly, Figure 20 shows query latency forR-tree range query
in default setting. For Baseline (Opaque), ORAM+Index and
Oblivious Index, the query latency is roughly proportional
to communication cost, since they all process incoming
queries synchronously and sequentially. Shared Scan has
roughly the same query latency with Baseline (Opaque),
since the query results of each query in a batch are not
fully generated until the scan operation for that batch is
completed. For our method and Raw Index, the coordinator
needs to re-order the queries in a batch to improve query
throughput, which in fact hurts query latency to some
extent. But our method still has comparable query latency
with ORAM+Index and Oblivious Index.

6 RELATED WORK

Generic ORAMs. ORAMs allow the client to access encrypt-
ed data in a remote server while hiding her access pattern-
s. For detailed analysis on various ORAM constructions,
please refer to recent work [11]. However, most ORAM con-
structions are not suitable for the multi-user scenario, since
they handle operation requests synchronously in a sequential
fashion. Hence, the system throughput is seriously limited.

Range ORAMs [46], [47] are well-designed ORAMs to
specifically support range queries. To minimize the number
of disk seeks, they take advantage of data locality informa-
tion and access ranges of sequentially logical blocks. How-
ever, range ORAMs need much larger cloud storage cost,
since they must deploy O(logN) separate sub-ORAMs.
They also bring much more bandwidth overhead and I/O
cost in bytes, although they achieve a less number of disk
seeks. Besides, they are only suitable for key-value stores
but do not work for relational tables with multiple columns.

There exist more advanced ORAM constructions, such
as PrivateFS [24], Shroud [25], ObliviStore [26], CURIOUS
[27] and TaoStore [28]. They focus on building oblivious file
systems, supporting multiple clients, enabling paralleliza-
tion, supporting asynchronous operations and building dis-
tributed ORAM data stores. In other words, those construc-
tions above focus on achieving operation-level parallelism or
asynchronicity. In contrast, our OQF focuses on improving
query-level throughput where each query consists of multiple
operations in a sequence. Hence, those constructions are
orthogonal to our study. OQF can use such a construction
(e.g., TaoStore) as the secure ORAM storage on the cloud.

Recent studies also investigate how to support the O-
RAM primitive more efficiently inside the architecture de-
sign of new memory technologies (e.g., [49]). Our design of
OQF can benefit from these hardware implementations.
Oblivious query processing. Oblivious query processing
techniques for specific types of queries have also been
explored. Li et al. [29] study how to compute theta-joins
obliviously. Arasu et al. [13] design oblivious algorithms
in theory for a rich class of SQL queries, and Krastnikov
et al. [30] improve their oblivious binary equi-join algo-
rithm. Xie et al. [19] propose ORAM based solutions to

perform shortest path computation and achieve perfor-
mance improvement on private information retrieval (PIR)
based solutions [50], [51]. ZeroTrace [43] is a new library of
oblivious memory primitives, combining ORAM techniques
with SGX. However, it only performs basic get/put/insert
operations over Set/Dictionary/List interfaces. Obladi [52]
is the first system to provide oblivious ACID transactions.
The contribution is orthogonal to our study.

To the best of our knowledge, Opaque [12] and ObliDB
[33] are the state-of-the-art studies concerning generic obliv-
ious analytical processing. We have compared with Opaque
(without the distributed storage) and ObliDB (similar to
Oblivious Index baseline) in Section 5 and achieved an order
of magnitude speedup in query throughput. Lastly, as we
point out in “Remarks” part of Section 2.1, the coordinator
in OQF can be replaced with an enclave from SGX [39] on
cloud, which eliminates the need for a trusted coordinator.
Oblivious data structures. Prior studies [14], [32], [53]
also design oblivious data structures. Wang et al. [32] ap-
ply pointer-based and locality-based techniques to some
commonly-used data structures (e.g., binary search trees). In
this work, we extend their construction and propose obliv-
ious B-tree and oblivious R-tree. Hoang et al. [14] propose
some new oblivious data structures including Oblivious
Tree Structure (OTREE). However, OTREE only works for
binary tree structures but cannot be extended for larger fanout
(e.g., in B-tree and R-tree). Oblix [36] builds an oblivious
sorted multimap (OSM) based on oblivious AVL tree [32]
and supports queries over 〈key, sorted list of values〉 pairs.
ObliDB [33] exploits indexed storage method and builds
oblivious B+ trees to support point and range queries. In
their implementation, data is fixed to one record per block.
But in our implementation of oblivious B-tree in Section 4.2,
each block contains B bytes, and the number of records that
fit in each data block is Θ(B) rather than one. Hence, our
design is more suitable for hard disk storage and reduces
the number of disk seeks in query processing.
Private index. Existing work [9], [54], [55], [56] also designs
specialized private index to support some specific types of
queries including secure nearest neighbor query and kNN
query. Hu et al. [57] devise secure protocols for point query
onB-tree andR-tree. However, their method works for two-
party model where the client owns the query and the cloud
server owns the data, which is different from our model.

A number of searchable indices [58], [59], [60], [61], [62],
[63] are also proposed to support range query over en-
crypted data using searchable encryptions. However, those
searchable indices cannot protect query access patterns.
Secure multi-party computation. Some recent work ex-
plores building an ORAM for secure multi-party compu-
tation (MPC) [64], [65]. MPC is a powerful cryptographic
primitive that allows multiple parties to perform rich data
analytics over their private data, while no party can learn
the data from another party. Hence, MPC-based solutions
[64], [65], [66], [67], [68] have a different problem setting
from our cloud database setting and we do not evaluate
them in our study.
Differential privacy. Differential privacy (DP) is an effective
model to protect against unknown attacks with guaranteed
probabilistic accuracy. Existing DP-based solutions build
key-value data collection [69], build index for range query
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[70] or support general SQL queries [45], [71]. In brief, DP-
based solutions [45], [69], [70], [71], [72], [73], [74], [75], [76]
provide differential privacy for query results, while our setting
is to answer queries exactly.

7 CONCLUSION

This paper proposes an oblivious query framework (O-
QF). We investigate different instantiations of an OQF
and demonstrate a design that is practical, efficient, and
scalable. Our design introduces ORAM caching and oth-
er optimizations and integrates these optimizations with
oblivious indices like oblivious B-tree and oblivious R-
tree. Extensive experimental evaluation has demonstrated
the superior efficiency and scalability of the proposed de-
sign when being compared against other alternatives and
state-of-the-art baselines that exist in the literature. Our
investigation focuses on range and kNN queries, however,
the proposed framework is generic enough and can be
extended to handle other query types (e.g., joins), which
is an active ongoing work. The current design does not
address challenges associated with ad-hoc updates, which
is another future direction to explore.
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