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Abstract

Mitochondrial (mt) respiration depends on proteins encoded both by the mitochondrial and
nuclear genomes. Variation in mt-DNA mutation rates exists across eukaryotes, although the
functional consequences of elevated mt mutation rates in some lineages remain underexplored.
In the angiosperm genus Silene, closely related, ecologically similar species have either ‘fast’ or
‘slow’ mt-DNA mutation rates. Here, we investigated the functional consequences of elevated
mt-DNA mutation rates on mt respiration profiles of Silene mitochondria. We found that while
overall levels of respiration were similar among species, fast species had lower respiration
efficiency and relied up to 49% more than slow species on nuclear-encoded respiratory enzymes
alternative oxidase (AOX) and accessory dehydrogenases (DHex), which participate in stress
responses in plants. However, not all fast species showed these trends. Respiratory profiles of
some enzymes were correlated, most notably AOX and DHex. We conclude that subtle
differences in mt physiology among Silene lineages with dramatically different mt mutation rates
may underly similar phenotypes at higher levels of biological organization, betraying the

consequences of mt mutations.
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1. Introduction

The mitochondria (mt) of most eukaryotes contain their own genome which encodes essential
proteins that form the functional core of the mitochondrial electron transport system (ETS, figure
la). The primary function of the ETS is to generate ATP via oxidative phosphorylation
(OXPHOS) which provides a critical resource for myriad cellular functions. Proteins encoded by
mt-DNA alone, however, are insufficient for OXPHOS. Many nuclear (N) DNA-encoded
proteins are targeted to mitochondria and interact with mt encoded protein subunits to form
functional chimeric ETS complexes (figure 1a, e.g., CI, CIII, CIV, and CV). The resulting mito-
nuclear interactions are proposed to be critical for OXPHOS and other mitochondrial functions,

and to play broad roles in evolution [1-3].

The ETS also contains strictly N encoded proteins that act as alternative entry (alternative
NAD(P)H dehydrogenases; DHex) and exit (alternative oxidase; AOX) pathways for electrons
(figure 1a) that are activated under certain cellular conditions to maintain OXPHOS [4]. AOX
and DHex activation mitigates changes in cellular redox conditions which, if left unchecked, can
lead to oxidative stress and damage to cellular components, including nucleic acids [5—7]. Such
changes in redox conditions occur, for example, when the cytochrome pathway (CIII-CIV) is
impeded by endogenous or exogenous stressors. Accordingly, DHex and AOX have been

hypothesized to play general roles in cellular stress responses, especially in plants [4,8—12].

While mt mutation rates are elevated compared to nuclear DNA in most bilaterian animals [13]
this trend is reversed in most angiosperm lineages [14]. However, closely related species within
the angiosperm genus Silene have experienced a relatively recent, rapid increase in mt evolution
and have dichotomous mt mutation rates, despite overall similar morphology and ecology [15].

‘Fast’ species have mt mutation rates on par with mammals (i.e., mt-DNA evolves faster than N-

3



48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

DNA), while ‘slow’ species show rates similar to typical angiosperms (i.e., mt-DNA evolves
slower than N-DNA). The accumulation of slightly deleterious mt mutations in particular is
predicted to disrupt mitochondrial function, owing to the uniparental inheritance of mt-DNA and
resulting Hill-Robertson like effects [16,17]. Yet, how the recent acceleration in mt mutation

accumulation in Silene has affected mt physiology is unknown.

To illustrate the evolutionary rate differences in Silene, in the mt-encoded gene COX1, 32 amino
acid substitutions have accumulated in the fast species S. conica since it shared a common
ancestor with Arabidopsis, while only seven have accumulated in the slow species S. latifolia
[15]. Previous work suggests that these substitutions are driven by increased mutation rates and
not demographic processes such as a bottleneck in population size— although more definitive
tests are needed. Fast species show increases in both nonsynonymous (dn) and synonymous (ds)
substitutions in mt-encoded genes, but not an elevated dn / ds ratio (a hallmark of relaxed
selection) [18,19]. Similarly, only N-mt genes show increased dn / ds in fast species, whereas all

N genes are expected to show increased dn / ds after a genetic bottleneck [18,19].

In this study we assessed the functional consequences of mutation accumulation on
mitochondrial respiration in fast and slow Silene species. We calculated flux control factors
(FCFs), which describe the capacity of an ETS complex to contribute to mitochondrial
respiration [see electronic supplementary material, 25]. If rapid increases in mt mutation rates
cause deleterious effects, we predicted that chimeric ETS complexes from fast species would
show a lower contribution to respiration than those from slow species. Additionally, we
predicted that fast species would show increased reliance on strictly N encoded accessory

complexes associated with stress responses.

2. Materials and methods
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(a) Plant care and representative species

We grew 100 plants representing seven ‘fast’ and six ‘slow’ Silene species in an environmental
chamber under fixed light, humidity, and watering schedules to minimize variation from
environmental effects, similar to [21]. Multiple accessions were used for many species (i.e.,
species were represented by multiple collections when possible). See electronic supplemental

material, table S1 for sample sizes, species, accessions, and origins.

(b) Mitochondrial isolation and respirometry

To account for slight variation in growth rates among individuals, we developmentally matched
our samples by harvesting plants with mature leaves prior to flowering and included
representatives from both speeds on each sampling day. We sampled 1 g of cauline/rosette leaves
from each plant for mitochondrial isolation, following [21]. Briefly, leaves were minced, ground
in ice cold mt isolation buffer [22] and intact mitochondria were isolated using differential

centrifugation.

To quantify mt respiration we used an established protocol [21] to measure seven specific
aspects of respiratory control of the ETS and overall OXPHOS function using high-resolution
respirometry (see electronic supplemental material for details). Briefly, we measured the rate of
O2 consumption from isolated mitochondria from each sample in the presence of specific ETS
electron-donors and inhibitors using the Oroboros O2K system (Innsbruck, Austria). From these
consumption rates we calculated six flux control factors (FCFs): chimeric core ETS complexes
CI and CIV, the entirely N-encoded core ETC complex CII, the N-encoded alternative
complexes DHex and AOX, and overall OXPHOS efficiency. OXPHOS efficiency in our

protocol is similar to the widely used respiratory control ratio and is calculated as the ratio of
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respiration rate before and after the addition of ADP [20]. We also recorded the maximum

respiration rate observed prior to the addition of ETS inhibitors.

(c) Statistical analyses

We used linear mixed effects models (LMMs) to compare differences in FCFs between fast and
slow mutation rates and among species. To control for multiple observations within a species, we
included accession as a random factor (see electronic supplemental material for details). We
found heteroscedasticity in AOX FCFs between fast and slow rates, so we estimated standard
errors separately for each group. We log-transformed the CIV FCF and maximum respiration to
meet the assumption of normality. Because FCFs have no meaningful units, we present the
results as % change from the slow taxa with 95% confidence intervals (95% CI). We also
modeled correlations among FCFs and whether correlations differed in slow vs. fast species by
fitting LMMs with the same random factor as above. We performed these analyses and

visualization in R 4.0.0. [23]

3. Results

For the entirely N-encoded accessory ETS complexes AOX and DHex, we found that average
FCF values for fast Silene species were 48.3 % (= 30.9, 95% CI) and 29.1% (£ 20.3) greater than
slow species, respectively (figure 1b. AOX; d.f- =71, p=0.019. DHex: d.f. = 70, p = 0.038).
However, FCF values of CII, which is also strictly nuclear encoded but considered a part of the
core ETS, were slightly lower in fast species, although not statistically different (figure 1b, table
S2,df. =72, p=0.35). OXPHOS efficiency of fast species was 15.1% (+ 7.4) lower than slow

species (figure 1b. d.f. = 71, p = 0.005). We found that chimeric ETS complexes, CI and CIV,
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and maximum respiration capacity tended to be slightly lower in fast species, although not

statistically different (figure 1b, table S2. p > 0.38 for all comparisons).

The magnitude of some FCF values were variable among fast species (figure 1b, table S3, S4)
such that the overall trends observed between fast vs. slow species are not uniformly distributed
across the sampling of species in this study. The greatest differences in FCFs among fast species
were in AOX (p =0.001), CII (p = 0.01), CIV (p = 0.02), and Max respiration (p = 0.002) (table
S4). Silene subconica, and to a lesser extent, S. grisebachii, and S. conica typically showed

greater differences from the slow average than the other fast species (figure 1b).

Among the seven respiratory measures calculated, we found that several were correlated, and
that the magnitude of that correlation was similar between fast and slow species in most cases
(figure 2a-f, figure S1). However, the strength of the relationship between AOX and DHex
depended on mt mutation rate (interaction p < 0.001). OXPHOS efficiency was lower when
AOX flux was higher in both fast and slow species (p = 0.002, interaction p = 0.44). CII values
increased with DHex in both groups (p < 0.0001; interaction p = 0.72). Higher CIV, AOX, and
DHex FCFs were associated with lower maximum respiration rates in both groups (figure 2d-f; p

<0.01 for all; interaction p > 0.37 for all).

Discussion
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Here we found subtle, yet measurable differences in mt physiology between closely related
species with dramatically different mt mutation rates. Overall, mitochondria from fast species
performed similarly to slow species, but showed a higher capacity of nuclear-encoded accessory
respiratory proteins to contribute to mitochondrial respiration (figure 1b). The greatest difference
we found was in AOX capacity, which functions primarily as a stress mediator, preventing mt
damage from excessive reactive oxygen species (ROS) production [24-26]. Mitochondria from
fast species are possibly primed to mitigate oxidative or other stressors that could impede
chimeric ETS function. Electron flow through AOX is typically activated when metabolic flux
through the chimeric cytochrome pathway complexes is inhibited [4]. Impeded electron flow
through the cytochrome pathway causes an overly reduced ETS and has the potential to produce
excessive ROS [27]. A historic, relatively rapid increase in mt mutation rate during Silene
evolution [15,19] may have caused a dramatic shift in oxidation state due to inhibition of
electron flow through the cytochrome pathway [28] resulting in an increased reliance on AOX

respiration that is maintained in some contemporary lineages.

Rescue of mitochondrial function from deleterious mt mutations could arise from compensatory
changes in N-DNA (e.g., ‘mitonuclear coevolution’ [29,30]) or plasticity in alternative metabolic
pathways. Here we show that nuclear responses to accelerated mt mutation rates in Silene may
extend beyond molecular evolution, to mt physiology as well. Although there is currently no
evidence of positive selection on AOX or accessory NADHs in fast species, the responses
observed here may be due to molecular evolution in the nuclear genes encoding these proteins
and/or ancestral plastic responses in mt physiology. We speculate that increased AOX respiration

allows for adequate ATP production and maintenance of redox homeostasis to prevent the over-
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production of ROS, in conjunction with complementary N evolution that may act to mitigate

harmful effects on chimeric ETS complex function.

In addition to the physiological differences in some fast vs. slow species we found here,
responses to increased mt mutation rates may also include complementary N mutations. Nuclear
coevolution in response to elevated mt evolution rates has been well documented in Silene
[18,19,31]. Fast species show elevated rates of evolution and signatures of positive selection in N
encoded, mt-interacting genes [19]. However, co-evolutionary responses in AOX, DHex, and
other accessory nuclear mt proteins should be investigated further to complement the changes in

mitochondrial physiology observed here.

Differences in FCF values attributed to fast mutation rates were subtle and not universal and may
be driven by select species (figure 1b). Most notably, S. subconica relied heavily on AOX and
DHex, supporting our previous comparisons of S. subconica and S. conica [2]. It is unclear
whether mt mutation rates remain elevated in fast species, which may explain interspecific
variation if individual species or lineages have slowed to different degrees. Furthermore, low
effective population size in some fast species like S. subconica may cause inefficient selection on
mt genes and further reliance on nuclear-encoded complexes. Future work could focus on
examining species-level differences in mitochondrial dynamics, including quantifying ETS

protein content and gene expression, within fast species.

We found that higher AOX values were associated with lower OXPHOS efficiency across
mutation speeds (figure 2a). Electron flow through AOX is inherently inefficient for OXPHOS
because AOX does not translocate protons across the inner mitochondrial membrane required for
phosphorylation of ADP [8]. Additionally, flux through AOX bypasses CIII-CIV, which do

translocate protons, leaving only CI to contribute to the requisite proton gradient (figure 1a). We

9
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also found that the correlation between AOX and DHex flux was stronger in fast species than
slow species (figure 2b). DHex and AOX can form a supercomplex which cycles electrons
rapidly to shift the redox balance to an oxidized state, which disfavors ROS production [26].
Therefore, it is possible that increased reliance on AOX and DHex in fast species is a plastic
nuclear response to oxidative stress caused by mt mutation accumulation. This agrees with
previous studies implicating these alternative ETS complexes in environmental stress responses

[9,25,32,33] but extends the response to “domestic” stressors.

Predictions about the impact of mt mutations on mt function are varied: efficient mt selection
results in fixation of only neutral mutations and has recently been suggested to be common
despite classic mutation accumulation theory [34-36]. Alternatively, compensatory evolution in
the nuclear genome may offset deleterious mt mutations, making them effectively neutral (or
even advantageous) [37,38]. Here, we find evidence that despite drastically elevated mt mutation
rates, overall mt function is minimally impacted in fast Silene species. This is likely due to both
mitonuclear coevolution and nuclear-mediated responses in mt physiology, most notably
increased reliance on AOX. Our results highlight the importance of considering physiological

outcomes when making predictions about the importance of mitonuclear interactions.
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Figure Captions

Figure 1. (a) Overview of relevant aspects of plant mitochondrial electron transport chain
components. Electrons enter through complex I, (CI), CII, or the alternative NADH
dehydrogenases (DHex/in) and follow either the alternative oxidase pathway (AOX) or the
cytochrome pathway CIII — CIV to reduce oxygen to water. CI, CIII, and CIV translocate
protons to establish the protonmotive force used by CV for ATP production. (b) Differences in
mitochondrial (mt) flux control factors (FCF) and maximum respiration between Silene species
with slow or fast evolving mt-DNA. Means with 95% confidence intervals (CI) that do not

overlap the slow mean are statistically different at o = 0.05.

Figure 2. Relationships among FCF types in Silene with different mitochondrial mutation rates.
Dashed lines show the relationship between the two variables overall from linear mixed effects
models. The brown circles and line show the individual samples and model estimated slope for

the slow species and the green circles and line show the same for the fast species.
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