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Abstract—Deep Convolutional Neural Networks (CNNs) have
performed remarkably well in JPEG steganalysis. However,
they heavily rely on large datasets to avoid overfitting. Data
augmentation is a popular technique to inflate the datasets
available without collecting new images. For JPEG steganalysis,
the augmentations predominantly used by researchers are limited
to rotations and flips (D4 augmentations). This is due to the fact
that the stego signal is erased by most augmentations used in
computer vision. In this paper, we systematically survey a large
number of other augmentation techniques and assess their benefit
in JPEG steganalysis.

Index Terms—Steganography, steganalysis, convolutional neu-
ral network, data augmentation

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are the superior
detectors of steganography today [1]. They replace the so-
called rich media models, which are high-dimensional fea-
ture representations hand-designed for specific purposes in
steganalysis as a well as the related field of digital forensics.
In contrast to rich models, CNNs learn the best (internal)
image representation as well as the detector itself via a training
process, which is usually a form of a Stochastic Gradient
Descent (SGD).

Data augmentation is a way to increase the training set
size by including in training transformed versions of the
images. Typical augmentations used in computer vision are
rotations, resizing, cropping, channel shuffle, dropout, and in
general any transformation that fundamentally preserves the
label assigned to the image. Larger training sets usually lead
to better detectors / classifiers because they are exposed to
more diverse content. Augmentations can be domain-specific,
depending on what task the CNN is trained on. For steganal-
ysis, the signal of interest is rather fragile, formed by slight
perturbations of cover image pixels or quantized DCT coef-
ficients (for JPEG images). Thus, augmentations that remove
or suppress this signal are undesirable and cannot improve the
detection performance. Steganalysts typically employ the so-
called dihedral D4 augmentation, which consists of rotations
by integer multiples of 90 degrees and mirrorrings. Indeed,
such transformations do not disturb the stego signal while
exposing the network to a more diverse dataset. On the other
hand, resizing and rotations by non-integer multiples of 90
degrees are not desirable as the resampling that is inherently
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part of these transformations disturbs the stego signal to a large
degree.

Previous work in steganalysis [2], [3] addressed the need
for an increased dataset size by acquiring more images using
similar devices or using other datasets that are close in
development to the test dataset. Not only this solution does
not follow our definition of data augmenting (i.e. not requiring
acquisition of new images), but it is unclear how one would
replicate a cover source as noted by the winners of the BOSS
competition who failed to duplicate the test set’s cover source
even when knowing the camera model and the development
script used [4]. Other steganalysis augmentation techniques
have been introduced, such as BitMix [5] (Section III-C) and
Pixels-off [6]. The latter was not included in this study because
it was not developed for the JPEG domain.

In this paper, we look beyond the usual random D4 aug-
mentation group in search for new augmentations that can
improve the detector performance for steganalysis of digital
images. We use the Albumentations Library [7] as well as
custom augmentations specifically designed for steganalysis.
In particular, we take a look at various forms of drop out
augmentations, which make good sense for computer vision
tasks because they simulate “occlusions” that may naturally
occur and thus robustify the classifier. We also study color
channel shuffle, bitmix, convex combinations of cover and
stego images (with soft labels), and multiple stego image
sampling to expose the network to multiple versions of the
stego image embedded with different stego keys.

Interestingly, the idea to use symmetries of natural images
to robustify the detector is already present in rich models [8],
[9]. Their “features” are formed by co-occurrences of ad-
jacent quantized and truncated noise residuals obtained via
pixel predictors. These features are typically “symmetrized”
or robustified by leveraging directional and sign symmetries
of natural images. In particular, co-occurrences computed
from the original image as well as their versions rotated
by integer multiples of 90 degrees and their mirrored forms
were typically added to one, better populated co-occurrence
matrix (feature). Because noise residuals exhibit symmetrical
marginals centered around zero, additional co-occurrences can
be added by flipping the signs of the noise residuals, a process
that required some caution when applied to the so-called “min”
and “max” non-linear residuals in the Spatial Rich Model
(SRM) [8].

In Section II, we describe the setup of all our experiments,



the datasets, and performance measures to evaluate the effec-
tiveness of various augmentations. All tested augmentations
are explained in Section III. Section IV-A shows all experi-
mental results in a graphic form together with a discussion.
Finally, the paper is closed in Section V.

II. EXPERIMENTAL SETTING
A. Datasets

We use the ALASKA II 256 x 256 dataset [10] which con-
tains 75,000 different cover images compressed with quality
factors 75 and 95. The covers were randomly divided into
three sets with 66,000, 3,000, and 6,000 images, for training,
validation, and testing, respectively. The images were embed-
ded using J-UNIWARD [11], J-MiPOD [12], and F5 [13] with
payloads 0.5, 0.4, 0.3, 0.2, and 0.1 bpnzac. For J-UNIWARD,
the payload was spread into the chrominance channels using
Color Channels Merging (CCM), which concatenates the color
cost maps before minimizing the additive distortion. For J-
MiPOD and F5, we only embedded the payload in the lumi-
nance channel.

B. Detectors

We use the EfficientNet B3 [14] pre-trained on Ima-
geNet [15] and refined for JPEG domain steganalysis [16],
[17] with the training hyper-parameters described in Section
4.2 in [17]. No modifications were done to the architecture
besides changing the Fully Connected (FC) layer.

We use the following three performance measures to com-
pare detectors: Pr = min(Pp(Pra) + Pra), WAUC [10],
MD5 = PMD(PFA = 005), and FA80 = PFA(PMD = 08)

III. AUGMENTATIONS

In this section, we describe all augmentation techniques
surveyed in this paper.

A. Dropout augmentations

Dropout style augmentations simulate occlusions.

a) CoarseDropout: CoarseDropout is a dropout augmen-
tation that randomly zeros out rectangular regions of the
image. It evolved from the cutout augmentation [18], which
drops a single square region. The location of the dropped
regions (holes) is randomized, while their size is set to 8 x 8
and their number to 32 holes. Figure 1 shows an example of
a CoarseDropout augmented image. Note that the holes can
overlap as well as not completely fit in the image. They also
do not respect the 8 x 8 grid of JPEG blocks.

b) GridDropout: GridDropout [19] is another dropout
augmentation that drops out rectangular regions of an image
in a grid fashion. The grid shape is a hyper-parameter of the
augmentation. We set the grid to correspond to JPEG 8 x 8
squares, and vary the dropout ratio parameter which controls
the number of dropped blocks, the number of dropped blocks
was set to 36. Figure 2 shows an example of a GridDropout
augmented image.

Figure 1. Image ‘06285jpg‘ from ALASKA II augmented using Coarse-
Dropout with 32 holes of 8 x 8 pixels.

Figure 2. Image ‘06285.jpg‘ from ALASKA II augmented using GridDropout
with 36 dropped holes in a grid.

¢) RandomGridDropout: This augmentation combines
the GridDropout and CoarseDropout. It drops a number of non
overlapping 8 x 8 squares while respecting the 8 x 8 JPEG
grid; the number of holes was also set to 32. Figure 3 shows
an example of a RandomGridDropout augmented image.

B. Channel augmentations

This section describes augmentations operating on the chan-
nel dimension of the input image. Such augmentations are only
useful for color steganography.

a) ChannelShuffle: This is a channel-style augmentation
that randomizes the order of channels in a color image. For
example, an RGB image could become a GBR image. Note
that this augmentation is only used when training on RGB in-



Figure 3. Image ‘06285.jpg* from ALASKA II augmented using Random-
GridDropout with 32 dropped holes.

puts since swapping the channels in the YC,C, representation
is detrimental because of the heterogeneity of these channels.

b) ToGray: ToGray converts the sampled image to
grayscale. This augmentation does not completely destroy the
stego signal since a vast majority of the payload is typically
in the luminance channel. This augmentation was also used
with networks trained with RGB inputs.

C. Mixing augmentations

Next, we describe augmentations which mix two images, a
cover image C and a stego image S, to create an augmented
image X. Such augmentations evolved from the Mixup aug-
mentation [20], which saw a great success in computer vision
applications. These augmentations often require changing the
label vector to reflect the amount of mixing between the
classes. The loss used is the cross-entropy with soft targets.

a) BitMix: BitMix [5] takes a cover image and replaces a
randomly sampled patch with the stego image and vice versa.
This patch is chosen by randomly sampling a rectangular area
whose maximum size is determined by a maximum mix ratio
parameter. The patch is represented using a binary mask M.
For simplicity, we assume the mask is applied to a cover image
C but in practice it is applied to cover and stego images. The
label vector y is changed using the system of Equations 1-3:

X = MoC+(1-M)oS (1)
IMoC - Mo S|,

A = 2
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Figure 4 shows an example of a BitMix augmented image
as well as its corresponding soft label.

Figure 4. Image ‘06285.jpg‘ from ALASKA II augmented using BitMix. For
visualization, the cover region is overlayed with red coloring while the rest
is a stego region embedded with J-UNIWARD 0.4 bpnzac. The augmented
image has a label y = (0.1451,0.8549).

b) ConvexMix: This augmentation forms a convex com-
bination of a cover-stego image pair by sampling the mixing
parameter A ~ U(0,1):

X = AC+(1-NS )
yx = (A1-)). ®)

D. Sampling augmentations

a) StegoSampling: This augmentation is special to the
steganalysis task. In fact, each stego image S is a random
sample from the steganographic simulator, which simulates
embedding changes operating on the rate—distortion bound.
This enables sampling different stego images from the same
cover and with the same payload while getting different stego
samples at each iteration. In practice, we use the change rates
BT, 3~ and the cover image to sample a stego image on the fly
while training the network. This augmentation will be called
StegoSampling.

IV. RESULTS
A. Successful augmentations

Figure 5 shows the results for all tested augmentations, three
embedding algorithms, two payloads, and two quality factors.
The baseline detectors were trained with the standard D4 aug-
mentation. For J-UNIWARD, every tested augmentation was
successful in improving on the baseline. For larger payloads,
the StegoSampling and dropout augmentations performed very
well. This is clear for QF75 and even more so for QF95. For
smaller payloads, StegoSampling and dropout augmentations
are still very capable but this changes for the larger quality
95. Despite the drop in performance from QF75, there are
still meaningful improvements for small payloads at QF95.
The results suggest that detection of steganography in images



Table 1
BASELINE PERFORMANCE AND COARSEDROPOUT FOR EFFICIENTNET B3
TRAINED ON 10,000 PAIRS OF COVER AND J-UNIWARD IMAGES, QF75
AT 0.4 BPNZAC.

Data Augmentation Accuracy ~ MD5 FA80  wAUC
QF75 J-UNIWARD 0.4 bpnzac

Baseline 0.8881 0.1701  0.0335  0.9797

CoarseDropout, 16 blocks 0.9029 0.1488  0.0293 0.9812

with low QFs will benefit from the assistance of augmenta-
tions the most, whereas there is a limit on how helpful the
augmentations can be for higher QFs images as the payload
size decreases.

For J-MiPOD, the additional tested augmentations were less
impactful. The one that stood out was ConvexMix, which
helped detection of J-MiPOD much more than J-UNIWARD.
Furthermore, at QF75 the RandGridDropout and GridDropout
augmentations actually hurt the testing accuracy. Even when
the augmentations provide improvements, the effectiveness of
additional augmentations falls of much more quickly in com-
parison to J-UNIWARD. As the payload size decreases and
the QF increases, the benefits of augmentations in detecting
images embedded with J-MiPOD become less pronounced.

For the F5 algorithm, the 0.1 bpnzac payload was differ-
ent compared to the lowest payloads for J-MiPOD and J-
UNIWARD. Every augmentation except for the RandGrid-
Dropout augmentation resulted in worse accuracies for both
QFs. For the 0.3 bpnzac payload, every augmentation was able
to provide a slight improvement upon the baseline. Moving
from QF75 to QF95 seemed to produce nearly equivalent
results. For F5, the payload influenced the amount of improve-
ment the most.

B. Low data regime

Another experiment that we ran was taking an augmentation
and testing it against a smaller dataset. This was done using the
CoarseDropout augmentation with the results shown in Table I.
The settings were identical to those described in Section II
except for the training data set size, which was reduced from
66,000 to 10,000. The original number of 32 dropout blocks
used for CoarseDropout as described in Section III-A did not
work with this smaller dataset. However, when the number
of blocks was halved there was a substantial gain in accuracy
and MDS5. This suggests that smaller datasets are more delicate
but still benefit from toned down version of the augmentations
used in our experiments.

C. Unsuccessful augmentations

Here, we report on the augmentations that failed to improve
upon the baseline. The channel augmentations for color images
(ChannelShuffle and ToGray) failed to give better results than
the baseline as shown in Table II.

Additionally, we tried to combine all augmentations that
produced a gain to see if their combined effect would provide
further benefit. Surprisingly, this was not the case as shown in
Table III. The augmentations were combined using a “OneOf”

Table 11
CHANNELSHUFFLE AND TOGRAY PERFORMANCE FOR J-UNIWARD
QF75 AND 95 AT 0.4 BPNZAC.

Data Augmentation ~ Accuracy ~ MDS5 FA80  wAUC
QF75 J-UNIWARD 0.4 bpnzac

Baseline 0.9571 0.0308  0.0012  0.9961

ChannelShuffle 0.9509 0.0297  0.0018  0.9961

ToGray 0.9515 0.0272  0.0015  0.9962
QF95 J-UNIWARD 0.4 bpnzac

Baseline 0.8308 0.3264  0.1300  0.9498

ChannelShuffle 0.8194 0.3571  0.1538  0.9459

ToGray 0.8292 0.3212  0.1366  0.9491

Table 11T

BASELINE, BEST SINGLE AUGMENTATION, AND ALL AUGMENTATIONS
PERFORMANCE FOR J-UNIWARD AND J-MIPOD AT QF75 AND 95.

Data Augmentation ~ Accuracy ~ MDS5 FA80  wAUC
QF75 J-UNIWARD 0.4 bpnzac
Baseline 0.9571 0.0308  0.0012  0.9961
GridDropout 0.9669 0.0173  0.0012  0.9974
All 0.9603 0.0155 0.0020  0.9973
QF95 J-UNIWARD 0.4 bpnzac
Baseline 0.8309 0.3264  0.1300  0.9498
GridDropout 0.8490 0.2935 0.1044  0.9562
All 0.8398 0.3128  0.1200  0.9531
QF75 J-MiPOD 0.5 bpnzac
Baseline 0.9128 0.1243  0.0166  0.9854
ConvexMix 0.9180 0.1215 0.0178  0.9853
All 0.9193 0.1156  0.0173  0.9863
QF95 J-MiPOD 0.5 bpnzac
Baseline 0.7132 0.5946  0.3706  0.8662
CoarseDropout 0.7186 0.5879  0.3724  0.8679
All 0.7164 0.5917  0.3641  0.8680

strategy: for each sample, a randomly sampled augmentation
technique was applied.

V. CONCLUSIONS AND FUTURE WORK

Our study of augmentations shows that there are ways to
successfully augment data for steganographic deep learning
applications beyond the standard D4 augmentations. With
some care, the correct selection of additional augmentations
can result in a substantial boost in performance (up to 3%
in accuracy and 5% in MDS5). We observed that smaller data
sets are more likely to benefit from using the proposed data
augmentations than large datasets because the augmentations
effectively increase the size of the training set and make deep
learning models more robust.

For possible future directions, we recommend further inves-
tigation of the effect of the cover or stego source on the gains
of each augmentation. For example, one could study a more
diverse stego source comprised of different stego schemes with
different payloads. Additionally, it is probably worth looking at
how much the augmentations boost deeper CNN architectures,
such as the EfficientNet B7.
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