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ABSTRACT

In this work, we revisit Perturbed Quantization steganography
with modern tools available to the steganographer today, including
near-optimal ternary coding and content-adaptive embedding with
side-information. In PQ, side-information in the form of rounding
errors is manufactured by recompressing a JPEG image with a ju-
diciously selected quality factor. This side-information, however,
cannot be used in the same fashion as in conventional side-informed
schemes nowadays as this leads to highly detectable embedding.
As a remedy, we utilize the steganographic Fisher information to
allocate the payload among DCT modes. In particular, we show
that the embedding should not be constrained to contributing coef-
ficients only as in the original PQ but should be expanded to the
so-called “contributing DCT modes.” This approach is extended to
color images by slightly modifying the SI-UNIWARD algorithm.
Using the best detectors currently available, it is shown that by
manufacturing side information with double compression, one can
embed the same amount of information into the doubly-compressed
cover image with a significantly better security than applying J-
UNIWARD directly in the single-compressed image. At the end of
the paper, we show that double compression with the same qual-
ity makes side-informed steganography extremely detectable and
should be avoided.
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1 INTRODUCTION

Side-informed steganographic schemes are among the most secure
steganographic schemes in existence today. The side-information
typically comes in the form of rounding errors after some informa-
tion-reducing processing applied to the (pre)cover image. One such
processing is JPEG compression, which is known to provide high
levels of security [6, 19, 22, 23, 25, 26, 29-32]. The biggest draw-
back is that the steganographer needs to have access to the un-
compressed image, considering that most imaging devices output
images that are already compressed. The embedding method known
as Perturbed Quantization (PQ) [23] manufactures side-information
by recompressing the JPEG cover image in a way that maximizes
the number of coefficients that fall in the middle of the quantiza-
tion intervals during the second compression, and which are used
for embedding. In this paper, we revisit this approach in light of
modern tools presently available to the steganographer, such as
content-adaptive embedding with costs modulated by the round-
ing errors [16, 27, 29] implemented using Syndrome Trellis Codes
(STCs) [21] rather than the suboptimal wet paper codes [24] used in
PQ. Additionally, due to the recent increased interest in embedding
into color [1, 2, 14, 16, 41, 44], we extend the embedding to color
JPEGs.

We do so while benchmarking the security with rich models [18,
28, 34, 40] and current state-of-the-art convolutional neural net-
works (CNNs) [5, 42, 43].

In Section 2, we introduce notation and describe the side-infor-
mation produced by double compression. Section 3 explains the
datasets and detectors used for evaluating the proposed method. In
Section 4, we derive a rule for selecting the second compression
quality that provides, in some sense, the best side-information
possible. The original PQ embedding is then modified to be able to
embed larger payloads in images compressed with high qualities as
well as in color images. Section 5 shows the experimental results on
grayscale and color images. In Section 6, we delve into why double
compression with the same quality should not be used as a source
of side-information. The paper is concluded in Section 7.

2 PRELIMINARIES AND NOTATION

Boldface symbols are reserved for matrices and vectors with ele-
mentwise multiplication and division denoted ® and @. Rounding
x to the closest integer is denoted [x]. The set of all integers will be
denoted Z. For better readability, we strictly use i, j to index pixels
and k, I DCT coefficients. Denoting by x;;,0 < i, j < 7, an 8x8 block
of pixels, they are transformed during JPEG compression to DCT co-
efficients dy; = DCTyj(x) £ ZZ,]‘:O f,ﬁfxz'j, 0 < k,I <7, and then
quantized cx; = [dr1/qril, ckr € {—1024,...,1023}, where g
are quantization steps in a luminance quantization matrix, and
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f]g = wiwj/4cosmk(2i + 1)/16 cos l(2j + 1)/16, wy = 1/V2,
wi = 1,0 < k < 7, are the discrete cosines.

During decompression, the above steps are reversed. For a block
of quantized DCTs cg, the corresponding block of non-rounded pix-
els after decompression is y;; = DCTi_j1 (coq) £ ZL’I:O fkl; qkiCki>
yij € R. To obtain the final decompressed image, y;; are rounded
to integers x;; = [yi;] and clipped to [0, 255].

For compression of color images, the RGB representation is typi-
cally changed to YC;,C, (luminance, and two chrominance signals)
with:

Y = 0.299R+0.587G + 0.114B
Cp, = 128—-0.169R—-0.331G + 0.5B
Cr = 128+ 0.5R—-0.419G - 0.081B (1)

The luminance channel Y is processed as described above, while the
chrominance signals are optionally subsampled, then transformed
using DCT, and finally quantized with chrominance quantization
matrices [39]. In this work we avoid subsampling of chrominance
signals because its effect on steganography has not been thoroughly
studied yet.

2.1 Double Compression and Side Information

This work deals with embedding in JPEG images recompressed with
a potentially different quality. The abbreviation SC will stand for
single compressed and DC for double compressed images. To distin-
guish between DCT blocks and pixels of SC and DC images, we will
use a superscript to keep track of the number of compressions. The
symbol ¢ represents the DCT block after the first compression,
while ¢ is the DCT block after the second compression. Similarly,
q(l) and q(z) stand for quantization matrices in the first and second
compression, respectively.

To obtain a DC image, a DCT block from the SC image, c(l),
is decompressed into y(!) = DCT(cV o q(l)), and rounded to in-
tegers x1) = [y(l)]. We then compress with the second quanti-
zation table to obtain the DCT coefficients before quantization
d® = DCT(x(V). The final DCT coefficients after quantization are
@ =[c@]1=[d@ o q(z)], where ¢@ are the quantized DCT coef-
ficients before rounding to integers. Finally, the side-information
created by recompression are the rounding errors during the last
quantization e = &@ — @,

To utilize these rounding errors for embedding, we follow the
idea in [19] where the (symmetric) embedding costs p; of changing
a DCT coeflicient cgczl) by +1 or —1 are modulated by the rounding
errors:

(1= 12ex)pk1
Pkl- (2)

pri(sign(egr))
pr1(—sign(ex;))

3 EXPERIMENTAL SETUP

This section describes the datasets as well as the detectors used for
evaluating security.

3.1 Datasets

We work with two datasets to cover both grayscale and color images.
The first dataset is a union of the popular BOSSbase 1.01 [3] and
BOWS2 [4], each containing 10, 000 grayscale images downsampled
to 256 X 256 using imresize with default parameters in Matlab. This
union was then randomly split into training, validation, and testing
sets with 14, 000, 1, 000, and 5, 000 images, respectively. This dataset
was JPEG compressed with Matlab’s imwrite with several quality
factors Q1. The second dataset is ALASKA 2 [15] consisting of three
qualities 75, 90, 95, each having 25, 000 color images of size 512x512.
This dataset was recently used in ALASKA II Kaggle competition.!

The compressed images represent the SC cover images (precov-
ers) in our experiments. To obtain the DC cover images, the SC
images are loaded into the RGB representation with Matlab’s im-
read, converted into the YC,C, space via (1) (grayscale images are
already loaded as Y channel), rounded to integers, and further com-
pressed with quality Q2 ‘manually’ using Matlab’s dct2. This was
done in order to obtain the rounding errors e for the subsequent
side-informed embedding. The resulting DCT coefficients were fi-
nally rounded to the nearest integers to obtain the DC cover images.
As mentioned previously, we never used chrominance subsampling
during compression of color images. This development pipeline is
visualized in Figure 1.

We use the steganographic algorithm J-UNIWARD [29] for SC
images as it is still one of the most secure algorithms for the JPEG do-
main in grayscale and color images when the development pipeline
is notavailable [12, 16, 45]. For DC images, we use the side-informed
version SI-TUNIWARD [19] with several modifications, specific to
DC images, as explained in the next section.

All experiments are set up in such a way that we always embed
the same absolute payload size (in bits) in the SC image as in the
DC image in order to answer the main question of this paper:
“Can we embed the same amount of information more securely by
recompressing the cover image?” The payload size will be expressed
in bits per non-zero AC DCT coefficients (bpnzac) of SC cover image.
All embedding algorithms are simulated on their corresponding
rate—distortion bound (e. g., assuming optimal coding).

3.2 Detectors

Inspired by the fact that the best detectors in the recent ALASKA
I Kaggle competition were mostly from the EfficientNet family,
we attempted to train EfficientNet-B0 and B2 [37] on color images.
However, these networks would not converge on the proposed DC
steganographic scheme even after trying several different training
schedules. Thus, in our experiments we used the SRNet [5] and rich
models.

Training the SRNet from scratch, however, was also impossible
on the payloads used in this paper. There are many possible ways
how to alleviate problems with convergence of a CNN detector.
One can for example train on larger payloads first and use transfer
learning on smaller payloads [7, 38, 47]. Alternatively, one can train
on an ’easier’ JPEG quality [8] or train on steganography in SC im-
ages first. To avoid confusion with so many different possibilities,
we selected JIN? pretraining [11], which consists of pretraining

Uhttps://www.kaggle.com/c/alaska2-image-steganalysis

2JIN stands for J-UNIWARD embedded ImageNet
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Figure 1: Double compression pipeline. We start with DCT coefficients of a single compressed (SC) image and end up with

DCTs of a double compressed (DC) image.

on the ImageNet database [20] embedded with J-UNIWARD with
uniform random payload between 0.4 and 0.6 bpnzac. This kind of
pretraining is suitable for detecting steganography across a variety
of embedding schemes embedding both in the JPEG and spatial
domain, and for side-informed schemes [11]. All networks used
for evaluation in this paper, for SC as well as DC images, were
pretrained in this way. Since JIN pretraining is executed on color
images, the networks pretrained in this way expect three-channel in-
puts. Thus, for grayscale images we simply replicated the grayscale
representation in all three RGB channels. The network detectors
were trained for 100 epochs in total on both datasets using mixed
precision training with 64 images in every mini-batch, AdaMax op-
timizer, and weight decay 2 x 10~%. We used OneCycle learning rate
(LR) scheduler with maximum LR 1073 at epoch 5, division factor
25 and final division factor 10. For easy implementation, PyTorch
Lightning® framework was used for training our model. For DC
images in BOSSbase+BOWS2 database embedded with 0.4 bpnzac,
the pair constraint (PC) - forcing cover and its stego version in the
same minibatch — was used for the first 50 epochs, otherwise the
network would not converge even with the JIN pretraining. For

3https://www.pytorchlightning ai/

every lower payload (in both datasets), transfer learning from 0.4
bpnzac was used without the PC for 50 epochs only.

For the rich models, we selected the ccJRM [33] and DCTR [28]
feature sets with the ensemble classifier [35]. In color images, we
use the JRM [34] instead of the cartesian-calibrated [33] ccJRM
in order to keep a “manageable dimensionality” — the concatena-
tion of extracted features from all three channels would triple the
dimensionality of every feature set.

4 PERTURBED QUANTIZATION

In this section, we review some concepts and basic facts from the
original PQ method, such as the notion of a “contributing mode”
and “contributing DCT coefficient”, and justify the selection of the
second quality factor for side-informed embedding in recompressed
images.

Because double compression can introduce strong artifacts into
the distribution of DCT coefficients [17, 46], it is important to avoid
such combinations in steganography because the embedding could
be very detectable using, e. g., the JPEG Rich Model (JRM). Figure 2
shows a few examples of artifacts due to double compression. In
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Figure 2: Histogram of a DCT mode compressed first with quantization step g, |
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= 3 and further compressed with quantization

equal to a) 3, b) 4, c) 5, d) 6. Top: before rounding of the DCT coeﬂic1ents, bottom: after rounding. The spikes in top

row are around multiples of q(l) / q(z) Only cases b) and d) correspond to contributing modes.

PQ [23], and in this paper as well, we wish to have after the sec-
ond compression as many DCT coefficients with rounding errors
lex;| ~ 1/2 as possible as the rounding of such coefficients can
be intuitively perturbed with little impact on detectability. Note
that this is in line with the modern understanding of side-informed
steganography [19].

When recompressing a JPEG image compressed with quantiza-
tion table q(l) with quantization table q(z), the DCTmode (k, 1), k,I =

0,...,7is called contributing if there exist m, n € Z such that
1 2 2
med) = n-q) + 54 )

These modes guarantee the existence of DCT coefficients with
the absolute value of the rounding error in the DCT domain close
to 1/2. As shown in [10], after recompression the DCT coefficients
before rounding to integers follow a Gaussian distribution

(1)
@ k1 1

@
~Nlc (4)
k1 kL@ BON
qy 12(qp;)*
where the mean can be written from (3) as
(1)
E[e?)] 9 K33
k1 @
qkl
, 1
= n+ > (5)

() and some n’ € Z play the role of m, n
in (3). With such a small variance (4), it follows that after rounding
to the nearest integers the rounding errors of these coefficients will
be clustered around +1/2.

In [23], the following useful theorem is proved.

where it was assumed that ¢

THEOREM 4.1. The mode (k 1) is contributing if and only ifqgczl)/g
(1)

is even, where g = ged(q, ;. q; )) is the greatest common divisor of

(1)
k1
expressed by the formula

and q(z) Furthermore, all contributing multiples m ofqgcll) are

q(Z)
(2n+1)— neZz. (6)
29
In PQ steganography, embedding is executed only in contributing

coefficients, which by Theorem 4.1, means in coefficients satisfying
(2)

=(2n+1) ’;’ for some n € Z. We wish to emphasize that not
all coefficients in contributing modes are contributing.

The motivation behind using only these coefficients is simple. It
was shown [10] that the rounding errors in the DCT domain after
the second compression eg; follow a Gaussian distribution folded
into the interval [—1/2,1/2]:

(1)
here th  this distribution is Eler = o) 9kl _ 1.0 91
where the mean of this distribution is E[eg;] = Ll (2) - i (2)].
It is then clear that for a contributing mode (k, )
(1) (1)
- <1>‘1ﬁ ) ki
Elex] = g [~y
kl qkl
(1) (1)
(l)qk /g [C(l)qk /g]
(2) (2)
119 119
- oH* nu
= gy ooy ®)

for some u,v € Z coprime because Theorem 4.1 states that the

denominators in (8) are even. Then in every case where v divides
(1 ) ¢ )
[

172,

-u and 2v does not divide cpp U we get the desirable |E[eg;]| =



Equipped with this knowledge, we would now like to maximize
the number of rounding errors that are close to 1/2 in absolute
value. Because the coefficients of the SC image CSI)
easiest way to ensure this for as many coefficients as possible is

to let v divide u. Since u, v are coprime, this means u = v = 1 and

thus qgczl) = 2‘1;11)’4 §<ll)

mode is contributing whenever it is odd.

Enforcing the constraint qgczl) = Zqill),
standard quantization tables, and thus potentially an easy artifact of
embedding. This is why in our work, we limit ourselves to standard
quantization tables. Recall that the luminance quantization table

for quality factor Q is defined as

are given, the

In this case, a coefficient ¢,/ from a contributing

however, would lead to non-

max {1, [2q(50) (1 - %)” Q> 50
min {255 X1, [q(SO)%] } , Q <50,

where the luminance quantization table for quality factor 50 is

qQ) = ©)

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

q(50) = (10)

For the chrominance quantization table qc(Q) at quality Q, the
same formula (9) applies with chrominance quantization table at
quality 50

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

qc(50) = (11)

For simplicity, let us now work only with luminance quantization
tables and Q > 50

Q
@) = 2q(50)(1- %) (12
Combining with our condition qgl) = ZqSI), we obtain a relation-

ship between the first and second quality factors Q; and Qs:

q(Q2) = 2q(Q1)
= 2 (2q(50) (1 - %))
= 2q(50) (1 - —2(Q10_0 50))

q(2(Q1 - 50))

4This relationship was derived in [23] only experimentally by virtue of Figure 3 in
Sec. 4.3.

0 (75,50)  (90,80) (95,90)

SIall - binary  0.0915 0.0222 0.0091
SIall - ternary  0.0957 0.0250 0.0155
J-UNIWARD  0.2777 0.3599 0.3932

Table 1: Pr with DCTR at 0.4 bpnzac of J-UNIWARD in sin-
gle compressed images, and SI-[UNIWARD in double com-
pressed images while embedding into all DCT modes, binary
and ternary version. BOSSbase+BOWS2 dataset.

or

Q2 = 2(Q1 - 50), (13)
as also reported in [23] based on experiments. In this work, we
will follow this recipe for the selection of Q, with one exception
for Q; = 100, because in this case we would declare Q; = 100 and
the embedding would be reliably detected using the Reverse JPEG
Compatibility Attack (RJCA) [9, 13]. For this reason, for Q; = 100,
we heuristically choose Qz = 98 as the largest quality not attackable
by the RJCA.

Additionally, the same relationship holds for the chrominance
quantization tables, which will help us extend this idea to color
images. To relax the notation, from now we denote Q = (Q1, Q2)
the pair of quality factors used for recompression with Q; used for
SC images.

4.1 Naive application of side-information

The most straightforward way to cast the idea behind the PQ
within the modern embedding paradigm is to use a modern content-
adaptive steganographic method, such as J-JUNIWARD, and apply
the standard way of incorporating side-information by modulating
the embedding costs by the rounding errors obtained during recom-
pression (2). Table 1 shows the comparison of such SI-UNIWARD
scheme in DC images with J-UNIWARD in SC images under the
assumption that the exact same absolute payload is embedded by
both schemes. The side-informed scheme is much more detectable
than non-informed J-UNIWARD in SC images. To make sure that
the high detectability is not introduced by ternary embedding, we
also include the results for the binary version of SI-lUNIWARD. Both
the binary and ternary versions, however, exhibit a similar level of
(in)security.

We now investigate where this high detectability comes from.
We will measure the impact of the embedding on the distribution of
DCT coefficients from every mode (k, [) using the steganographic
Fisher Information

) (m)

|(Z=0 ’ (14)

1
Iy = Z ©

meZPkl (m) da

where pgfl) is the cover probability mass function (pmf) of DCT

coeflicients in mode (k, I), p;:l) is the pmf of stego images in the
same mode, and « is the relative payload size. Since we cannot easily
model the stego pmf when using J-UNIWARD, we approximate the
Fisher information with real data as



N L (E e - )
T Z © ; (15)

mez h kI (m) @
where we use the actual histograms hg:l) and h(ks) of the cover and
the corresponding stego images embedded with relative payload
a. We average (15) over 100 randomly chosen images from the
BOSSbase dataset and show in Figure 3 the average FI per mode
together with the contributing modes for three different qualities Q.
We used payload @ = 1.1 bpnzac for the embedding of stego images
because for smaller payloads the approximation of the FI (15) does
not utilize many changes in histograms and thus does not provide
any useful feedback. We can clearly see a relationship between
the non-contributing modes and the modes with high I;.;, which
suggests that embedding in these modes is much more detectable.
The only notable exception to this is in high frequencies of the
lowest tested quality Q = (75, 50). In this case, almost all cover
coefficients are equal to zero due to the strong quantization, which
leads to inaccurate estimates of the Fisher Information. We further
report that the average FI across all non-contributing modes is
2-5 times larger than the average FI in the contributing modes.
Remembering that the FI is in the error exponent of the likelihood
ratio test, allowing embedding changes in non-contributing modes
will have a grave impact on security.

To further support that the embedding into non-contributing
modes is the culprit, we show in Figure 4 boxplots of the differences
between stego and cover histograms. The differences in histograms
exist because of the bias in the SI embedding towards coefficients
with large rounding errors due to the nature of the cost modula-
tion (2). For non-contributing modes, these coefficients are located
at the peaks of mode histograms (see Figure 2 c)), which after
embedding causes a very detectable distortion in the DCT mode
histogram because these peaks will get deformed. Contributing
modes do not suffer from this because they either have double
peaks in histograms, which will be preserved during embedding,
or no peaks (except at zero) (see Figure 2 b) and d)).

4.2 Restricting the embedding

The results from the previous section give a direction on how to
adjust the side-informed embedding in double compressed images
in order to avoid introducing changes into structures that exist in

the distribution of coefficients of DC images. Constraining the em-

(1)
. . kl .

PQ algorithm seems like the best option, however, this severely

limits the capacity of the embedding. Table 2 shows the detection
error with DCTR features across a wide range of payloads. Once
the payload reaches 0.4 bpnzac at Q = (95, 90), the detection error
drops drastically. We verified that these drops indeed correspond
to embedding messages that are simply too large to fit only into
contributing coefficients. Hence, the embedding algorithm starts
making changes in other coefficients, which happens without any
content-adaptivity because the embedding spills into forbidden
coefficients assigned with the same “wet cost”

Since we cannot embed into all modes securely and embedding
only into contributing coefficients seems very limiting in terms

bedding only to contributing multiples of g, ; (6) as in the original

lSU
0

Figure 3: Top: Q = (75,50), middle: Q = (90, 80), bottom:
Q = (95,90). Left: in black are contributing DCT modes, in
white are non-contributing modes. Right: approximation of
FI I;; per mode averaged over 100 images from BOSSbase
embedded with 1.1 bpnzac.

10-987-65-4-3-2-1012345678910 109-876-543-2-1012345678 0910

Figure 4: Boxplots showing the differences between the dis-
tribution of DCT coefficients from stego images embedded
with SI-UNIWARD (0.4 bpnzac) when embedding into all
modes and cover images across 100 randomly selected im-
ages from BOSSbase with double compression quality Q =
(90, 80). Left: non-contributing mode (2, 1) with quantization
steps 2 and 5, Right: contributing mode (1, 2) with quantiza-
tion steps 2 and 4.

of the maximal embeddable payload, we consider embedding into
all coefficients from contributing modes because of the smaller
impact of the embedding in terms of the FI (15) (see Figure 3 for an
example).

Figure 5 shows the embedding capacity as the number of “change-
able coefficients” per non-zero AC DCT coeflicients of the single



Payload 0.3 bpnzac

0.4 bpnzac
0 (75,50)  (90,80) (95,90) (75,50) (90,80)

0.5 bpnzac 0.6 bpnzac
(95,90) (75,50) (90,80) (95,90) (75,50) (90,80) (95,90)

Binary contr coefficients  0.4082 0.3871 0.4197 0.3424 0.3381
Binary, contr modes 0.4085 0.3895 0.4477 0.3441 0.3526
Ternary, contr modes 0.4034 0.3922 0.4536 0.3660 0.3587

0.0164 0.1990 0.0385 0.0017 0.0230 0.0026 0.0004
0.2940 0.2705 0.2813 0.0167 0.2118 0.1247 0.0002
0.3530  0.2909 0.3118 0.1929 0.2375 0.2170 0.0284

Table 2: Pz with DCTR of SI-UNIWARD in double compressed images. Comparison between embedding into contributing
coefficients and all coefficients in contributing modes. Binary and ternary embedding. BOSSbase+BOWS2 dataset.

250 180

200

150

100

Figure 5: Average number of changeable coefficients per
non-zero AC DCT coefficients over 500 randomly cho-
sen images compressed with quality factor 95. Top: BOSS-
base+BOWS2 (grayscale), bottom: ALASKA 2 (color), left:
embedding only into contributing coefficients, right: embed-
ding into all coefficients in contributing modes.

compressed image. Changeable coefficients are either only con-
tributing coefficients or all coefficients from all contributing modes.
It was verified for a range of qualities that for grayscale and color
images, using all coefficients in contributing modes increases the
average embedding capacity by approximately 50%.

For a larger embedding capacity, we therefore relax the embed-
ding restriction by allowing embedding into all coefficients inside
contributing modes, not only the contributing coefficients. The
results are shown in Table 2, where we can see that for payloads
as large as 0.6 bpnzac, the ternary embedding into all coefficients
inside contributing modes provides overall best security. Based on
this analysis, we will keep using this embedding strategy for the
rest of the paper.

4.2.1 High qualities. In the derivation of (13), we did not consider
the nonlinear dependence of quantization steps on the quality fac-
tor due to taking the maximum with one and rounding. While
the rounding operation introduces the same nonlinearity for ev-
ery quantization step regardless of the quality factor applied, the
maximum will only be applied for very high quality factors and
mainly for low frequency modes. Note that if Oz = 2(Q; — 50), then
qgl) = qizl) if and only if qgczl) = 1.This introduces an issue that needs
to be addressed, because when the maximum starts introducing

0.4

0.3 i allow  don’t
<ol | e

0.1

(97,94) (98, 96)

Q

(99,98) (100, 98)

Figure 6: Detection error P of SI-UNIWARD at 0.4 bpnzac in
DC images when modes with qgcll) = qgczl) are/are not allowed

for embedding. BOSSbase+BOWS2 dataset.

ones in the second quantization table (this occurs for Q2 > 93),
we would end up, with our definition of a contributing mode, with
very few contributing modes. This is because if a second quantiza-

tion step is equal to one, then qfl)/ gcd(qgcll), qfl)) = 1is not even,
which would effectively prevent us from embedding non-trivial

payloads. To this end, we decided to allow embedding into modes
(1) _ (2)
Kkl = k1
ding does not suffer from these modes since this combination of
quantization steps does not introduce easily exploitable artifacts
(the JRM performs very poorly in these cases [10]). Figure 2 a) also
suggests that the histogram of such modes does not start showing
any drastic artifacts. Even though the mean of the DCT error (8)
is zero in these cases, its variance (7) is equal to 1/12, which still
ensures quite a few of the DCT rounding errors to be close to +1/2.
The effect of allowing embedding in these modes can be seen in
Figure 6. We verified that the high detectability for the case where
we do not allow embedding into modes with qgl) = qgl) comes from
the payload being too large, a problem we have encountered in the
previous section too, while trying to embed only into contributing
coeflicients. Consequently, the embedding changes were made in
non-contributing modes without content-adaptivity.

with ¢ Such modes are not contributing, but the embed-

4.2.2 Color. Embedding in color images can spread the payload
across luminance and the two chrominance channels. Several dif-
ferent payload spreading strategies into the three YC;,C, channels
were recently proposed in [16, 41]. It was reported in [16] that
for J-UNIWARD, the CCM (Color Channels Merging), which dis-
tributes the payload by minimizing the additive distortion across all
three channels, and CCFR (Color Channels Fixed Repartition) with



repartition parameter y = 0.2, which puts a fraction of payload into
chrominance channels, provide almost the same level of security.
We wanted to verify whether this remains true for SIFUNIWARD in
DC images. After testing with DCTR on SI-UNIWARD with CCM
and CCFR(0.2), we found, to our surprise, that the CCM strategy
was much more detectable. We believe CCM should be the optimal
strategy for spreading the payload because it distributes the pay-
load automatically without forcing a fixed portion of the payload
into chrominance. It was identified that the poor performance of
CCM is caused by the discrepancy between the embedding costs in
luminance and chrominance channels, which forces a vast majority
of the payload into the luminance channel. After careful inspection
of the embedding algorithm for SI-UNIWARD, we realized that
the culprit was the stabilizing constant ¢ used in J-UNIWARD’s
distortion function [29]:

3 m n (K) ~ey — 47K
D(X,Y) — Z Z Z |Wuv (X) Wy (Y)l, (16)

k
k=lu=lv=1 O+ |W,Sv)(X)|

where X and Y represent the cover and stego images in the pixel
domain (in one channel), ny, ny are the number of DCT blocks

in the vertical and horizontal directions, and W,EI;)() the wavelet
transformation based on Daubechies 8-tap wavelet directional filter
bank. By default, o is set to 276 which would not be an issue if the
normalization factor in (16) was on a similar scale for luminance
and chrominance channels. While this is true for SC images, for
DC images it is not. In fact, |W15];)(X)|, k € {1, 2,3} in chrominance
channels can be by several orders of magnitude smaller than in the
luminance channel. We believe that this is due to much harsher
quantization in chrominance channels of DC images compared
to SC images (see the quantization tables (10) and (11)). Thus, we
claim that the stabilizing constant has to be smaller in chrominance
channels. Keeping the original luminance stabilizing constant oy =
27, in Figure 7 we show Py of DCTR on SI-UNIWARD with 0.4
bpnzac with the CCM spreading strategy across a range of values for
the stabilizing constant in chrominance channels oc. We see that
for qualities (90, 80) and (95, 90), o is reaching the best security
for oc = 271°. For the lowest quality (75, 50), the most secure o¢ is
at 2710 In order to have a unified setting, we declare o¢ = 2715 for
every quality combination, even at a loss for the low qualities. With
oc adjusted this way, we searched for optimal oy. Coincidentally,
the default value oy = 27° provides the best performance.

5 EVALUATION

To show the benefit of embedding in recompressed images, we
contrast the empirical security with embedding in the correspond-
ing single-compressed cover images. To summarize the embedding
algorithm, we use ternary embedding in all coefficients belonging
to contributing modes and modes with qgcll) = qfl). For color images,
we furthermore improved the security by changing the chromi-
nance stabilizing constant o¢ of J-UNIWARD's costs. The second
quality factor Qy used for recompression is selected by Eq. (13) with
one exception for Q1 = 100 where we set Q2 = 98.

0.2
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Figure 7: Pg with DCTR of CCM-SI-UNIWARD in DC im-
ages with different values of the stabilizing constant oc of
chrominance channels C, and Cj,, with the luminance con-
stant at the default oy = 27%. Three qualities (75, 50), (90, 80),
and (95, 90) are shown. ALASKA 2 dataset.
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Figure 8: Detection error P, of JJUNIWARD in SC images and
SI-UNIWARD in DC images at 0.4 bpnzac. Only the best de-
tector’s performance is shown. BOSSbase+BOWS2 dataset.

5.1 Grayscale

We test the proposed scheme on a range of qualities with the detec-
tors described in Section 3. We also tested GFR [40] and its selection
channel aware version, where we used J-UNIWARD for estimat-
ing the selection channel. Both of these feature sets, however, did
not bring any improvement over DCTR. For the highest qualities
(99, 98) and (100, 98), we also trained e-SRNet [9], SRNet trained
on rounding errors of pixel values after decompression, as it is the
best detector for the highest quality JPEGs. Only the best detector’s
detection error Pg on SI-UNIWARD in DC images and J-UNIWARD
in SC images with 0.4 bpnzac is shown in Figure 8. For ]-UNIWARD,
the best detector is always the SRNet, while for the two highest
qualities, it is e-SRNet (note the extremely low errors). The best
detector for SI-UNIWARD is also SRNet, with one exception at qual-
ity (90, 80), where DCTR provides a better detection. The e-SRNet
performed substantially worse than SRNet, confirming that the
RJCA is not applicable with the quality selection rule (13). Over-
all, the improvement of embedding in recompressed images when
compared to J-UNIWARD ranges between 5 — 25% in terms of Pg.



0.1 bpnzac 0.2 bpnzac 0.3 bpnzac 0.4 bpnzac

Q  Detector oG JUNT DCSI JUNI DC-SI JUNI DC-SI JUNI

ccJRM  0.4505 0.4850 0.4439 0.4552 0.4225 0.4078 0.4147 0.3631
(75,50)  DCTR  0.4484 0.4697 0.4397 0.4202 0.4034 0.3465 0.3660 0.2777
SRNet  0.5000 0.3094 0.5000 0.1764 0.3189 0.0961 0.2493 0.0573

ccJRM  0.4134  0.4900 0.4057 0.4767 0.4020 0.4588 0.3849 0.4144
(90,80) DCTR  0.4114 0.4860 0.4061 0.4546 0.3922 0.4185 0.3587 0.3599
SRNet  0.4469 0.3661 0.4461 0.2522 0.4390 0.1519 0.3834 0.0983

ccJRM  0.4876 0.4872 0.4881 0.4613 0.4736 0.4351 0.3771 0.3990
(95,900  DCTR  0.4823 0.4941 0.4839 0.4714 0.4536 0.4441 0.3530 0.3932
SRNet ~ 0.5000 0.4297 0.5000 0.3292 0.3686 0.2401 0.2169 0.1704

Table 3: Detection error Pg of SRNet, ccJRM, and DCTR
for various payloads (bpnzac) of J-UNIWARD in SC and SI-
UNIWARD in DC images. Boldface represents the best detec-
tor of the more secure algorithm at a fixed payload. BOSS-
base+BOWS2 dataset.

To obtain a better understanding of how the algorithms compare
for smaller payloads, we trained the SRNet, ccJRM, and DCTR at
qualities (75, 50), (90, 80), and (95, 90) for various payloads. The
results are shown in Table 3. We can see clear improvement over J-
UNIWARD at every payload. Surprisingly, in many cases (especially
for the lowest payloads), DCTR provides a better detection than
SRNet on SI-UNIWARD. This suggests that the SRNet is not able to
collect detection statistics from a somewhat detectable distortion
in the DCT domain.

5.2 Color

Setting the chrominance stabilizing constant oc = 271%, we first
reevaluate the spreading strategies CCFR and CCM [16]. Table 4
shows DCTR’s Pg on the CCFR strategy for several values of the
repartition parameter y. With increasing quality, the optimal pa-
rameter y also needs to grow as the best value of y for every quality
is different. Interestingly, CCFR strategy with y = 0.2 outperforms
CCM at quality (75, 50), but on the other two tested qualities, CCM
achieves a better security. In Table 5, we include a comparison be-
tween SI-UNIWARD in DC images with o¢ = 2715 and J-UNIWARD
in SC images across several payloads and several qualities, both
schemes using the CCM payload spreading strategy. Using side-
information provides an improvement in security up to 18% at qual-
ity (75, 50) and payload 0.2 bpnzac. Interestingly, the non-informed
J-UNIWARD is more secure in two tested scenarios: Q = (90, 80) at
0.1 bpnzac and Q = (95, 90) at 0.4 bpnzac. The latter is most likely
caused by the large embedding payload in DC images because, as
can be seen in Figure 5, the embedding capacity in color images
has thicker left tail than in grayscale images. This is in line with
the significant jumps in Pg of SI-UNIWARD for lower payloads at
0 = (95, 90).

6 DOUBLE COMPRESSION WITH THE SAME
QUALITY

In this section, we investigate the case of side-informed stegano-
graphy in images that were double compressed with the same
quantization table. We included this analysis because the option
Q1 = Q2 avoids introducing any histogram artifacts and it would
allow us to embed into every DCT mode, thus significantly increas-
ing the embedding capacity. Furthermore, and most importantly, it

Repartition parameter y
Q 0.1 0.2 0.3 0.4 0.5
(75,50) 0.1893 0.2008 0.1835 0.1517 0.1120
(90,80) 0.1105 0.1110 0.1265 0.1162 0.0772
(95,90) 0.0645 0.0837 0.1115 0.1247 0.0757

Table 4: Pr with DCTR of CCFR-SI-UNIWARD at 0.4 bpnzac
in DC images with chrominance stabilizing constant oc =
2715, ALASKA 2 dataset.

0.1 bpnzac 0.2 bpnzac 0.3 bpnzac 0.4 bpnzac

Q  Detector o JUNI DCSI JUNI DC-SI JUNI  DC-SI  JUNI

JRM 0.3362  0.4845 0.2957 0.4547 0.2120 0.4138 0.1210 0.3740
(75,500  DCTR  0.3708 0.4100 0.3478 0.2937 0.2735 0.1867 0.1758 0.1108
SRNet  0.4093 0.2516 0.3243 0.1119 0.2736 0.0607 0.2524 0.0327

JRM 0.2885 0.4750 0.2658 0.4477 0.2368 0.4025 0.1903 0.3653
(90,80) DCTR  0.3120 0.4473 0.2835 0.3652 0.2085 0.2740 0.1500 0.1947
SRNet  0.3978 0.3473 0.3933 0.2236 0.3353 0.1397 0.2394 0.0857

JRM 0.4300 0.4305 0.4083 0.3455 0.3310 0.2758 0.2208 0.2248
(95900 DCTR  0.4305 0.4542 0.4032 0.3800 0.2883 0.3163 0.1520 0.2223
SRNet  0.5000 0.4193 0.4268 0.3083 0.2604 0.2211 0.1372 0.1524

Table 5: P; of SI'[UNIWARD in DC images with oo = 271
and J-UNIWARD in SC images, both using CCM strategy.
ALASKA 2 dataset.

is not immediately obvious that side-informed embedding in this
setup is extremely detectable and exhibits some very unusual prop-
erties, such as higher statistical detectability of smaller payloads
than larger payloads. Recompression with the same quality was
previously studied for forensic purposes in [36].

As shown in [10], embedding in DC images with Q1 = Q2 can be
attacked with the RJCA. However, this work did not investigate the
case of side-informed embedding. Since everywhere in this section
it is assumed that Q; = Q2, we will again refer to the compression
quality simply as Q.

The performance of the e-SRNet as implemented in [10] can be
seen in Figure 9. Note that the detection errors are much lower than
for quality factor rule (13) in Table 3. Moreover, the most peculiar
behavior can be observed for Q < 93 when the detection of smaller
payloads is more reliable. We will now show that the rounding er-
rors e can actually be partly recovered from the double compressed
(and embedded) images with Q1 = Qa, which is responsible for this
peculiar behavior.

6.1 Estimating the side information

Let us call the changes in the DCT coefficients introduced dur-
ing the second compression as inconsistencies. In other words, the
compression produces an inconsistency at cfl) if CSI) * cfl). Fig-
ure 10 shows that for Q < 93 the second compression does not
introduce many inconsistencies mainly because there are no ones
in the quantization table. We hypothesize that for lower qualities
(where quantization tables do not contain any ones, i. e., Q < 93)
the following claim holds: the fewer inconsistencies the better the
estimate of the rounding error e can be obtained. Intuitively, this
makes sense because if the second compression does not change
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Figure 9: P;r with e-SRNet of SI-[UNIWARD in DC images at
0.1 and 0.4 bpnzac when Q1 = Q. BOSSbase+BOWS2 dataset.

3,000

2,500 |-

2,000

1,500

1,000

Number of inconsistencies

500 |-

| | |
90 91 92 93 94 95 9

|
6 97 98 99 100

Q

Figure 10: Average number of inconsistencies across 1000
randomly selected images from BOSSbase with Q; = Q3.

any coefficient in a given DCT block then also the third compres-
sion would not change any coefficients. Therefore, one can compute
the rounding errors e used during embedding (and thus nullify the
effect of side-information) by simply compressing the DC image
once more. Note that the embedding changes can also be considered
inconsistencies. If the claim holds, it would immediately mean that
we can get a better estimate of e with decreasing payload.

To estimate the DCT errors e, we decompress a given (double
compressed and possibly embedded) JPEG image to the spatial do-
main y(z) and round to integers x@ = [y®@]. We then compress x@
again with the same quality settings to obtain the DCT coefficients
after the third compression ¢ = pcTx®) 0 q, where q is the
quantization table used in all compression steps. A simple estimate
of the rounding error can be computed as & = ¢®) —[¢®)]. This esti-
mate € is strongly correlated with the original e. This is illustrated in

Q Detector DC-SI  JUNI
SRNet  0.0585 0.0573

7 e-SRNet  0.5000 0.5000
90 SRNet  0.0947 0.0983

e-SRNet  0.2041  0.5000
95 SRNet  0.1856 0.1704

e-SRNet  0.0000 0.5000

Table 6: Detection error Pr with SRNet and e-SRNet of J-
UNIWARD in SC images and SI-UNIWARD in DC images at
0.4 bpnzac and Q; = Q2. BOSSbase+BOWS2 dataset.

Figure 11, which displays the mean square error (MSE) between the
DCT rounding error and its estimate MSE(e, &) = % (e - ;).
The estimate is computed from cover images and SI-UNIWARD
images embedded with 0.1 and 0.4 bpnzac. With increasing payload
(increasing number of inconsistencies), the estimate of the errors is
getting worse across all qualities, which confirms our insight. For a
smaller payload, we have a better estimate of the side-information.
To verify that the estimate é can be used for estimating the selection
channel, we include in Figure 12 the correlation between é and the
difference f* — f~, where ¥, f~ are the probabilities of changing
the coefficients by +1 and —1, respectively.

This should be thought of more as a proof of concept because
the e-SRNet most likely does not compress the image for the third
time as it might compute the estimate of the rounding errors in
some other, perhaps better way. It turns out that a similar estimate
can be achieved by compressing the spatial rounding error u =
x@ - y(z), which is what the e-SRNet is trained on, and computing
the rounding error in the DCT domain.

Using Q1 = Qo for qualities below 93 will not be beneficial
because the rounding errors e follow the distribution (7), which for

Q1 = Q7 can be simplified as

1
ex; ~ NFr|0, oLl (17)
12(q;;;)?

It should be clear that for large quantization steps the errors
will be clustered very closely around zero, thus having a negligible
effect on the embedding. Moreover, as already mentioned above,
for lower qualities there are not many inconsistencies, which is also
due to (17). Therefore, the image is virtually identical to its single
compressed version and there is not much side-information avail-
able. All these observations would suggest that the steganographic
security would be very close to the non-informed J-UNIWARD
on SC images. This is indeed verified in Table 6 showing that the
SRNet on SI-UNIWARD in DC images with Q; = Q2 has almost
the same performance as on J-UNIWARD in SC images. The only
difference is for quality 95, where the side-informed version seems
to be slightly more secure thanks to the side-information generated
in modes with small quantization steps (17). However, at this high
quality the RJCA is already kicking in for the DC images, while
not yet for SC images [9, 13], making steganography in DC images
highly detectable.
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Figure 12: Correlation between é and f* — f~ across 300 ran-
domly selected images for SI-UNIWARD at 0.1 and 0.4 bpn-
zac with Q7 = Q2. BOSSbase+BOWS2 dataset.

7 CONCLUSIONS

In this paper, we pursued an idea of improving empirical stegano-
graphic security by embedding into a recompressed JPEG image
instead of the original single compressed image. This idea of gener-
ating steganographic side-information by recompressing the JPEG
cover image was first explored in the so-called Perturbed Quan-
tization steganography 17 years ago. Surprisingly, when simply
adopting modern coding coupled with cost modulation typically
used in side-informed embedding, the security of the resulting em-
bedding is extremely poor. This tells us that the side-information
generated by recompression needs to be treated differently.

By quantifying the effect of embedding on the distribution of
DCT coefficients from specific DCT modes using the steganographic
Fisher information, we learned that modes that do not contain any
contributing DCT coefficients (coefficients with rounding errors
close in absolute value to 1/2 during recompression) exhibit arti-
facts in their distribution after embedding, which brings the se-
curity down. This was remedied by constraining the embedding
only to contributing modes. Besides dramatically improving the
security, this choice also allowed embedding larger, and thus more
practical, payloads than embedding only into contributing DCT co-
efficients akin to the original PQ. To demonstrate the usefulness of
the proposed technique, the empirical security was compared with
embedding into the single compressed cover image while fixing the
absolute payload in bits.

The method was also adapted for color images with the CCM
payload-spreading strategy. To achieve a good security, however,
the stabilizing constant of the J-UNIWARD algorithm had to be
modified for the chrominance channels due to their different dy-
namic range.

Finally, we show that generating the side-information by recom-
pressing with the same quantization table makes the embedding
algorithm much more detectable because in such cases the side-
information can be reliably estimated. This also leads to a bizarre
situation for qualities below 93 when the detection power increases
with smaller payloads.
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