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Abstract—The JPEG compatibility attack is a ste-
ganalysis method for detecting messages embedded in
the spatial representation of images under the assump-
tion that the cover is a decompressed JPEG. This
paper focuses on improving the detection accuracy for
the difficult case of high JPEG qualities and content-
adaptive stego algorithms. Close attention is paid to the
robustness of the detection with respect to the JPEG
compressor and DCT coefficient quantizer. A likelihood
ratio detector derived from a model of quantization
errors of DCT coefficients in the recompressed image
is used to explain the main mechanism responsible for
detection and to understand the results of experiments.
The most accurate detector is an SRNet trained on a
two-channel input consisting of the image and its SQ
error. The detection performance is contrasted with
state of the art on four content-adaptive stego methods,
wide range of payloads and quality factors.

Index Terms—Steganography, steganalysis, JPEG,
compatibility, robustness, rounding errors, deep learn-
ing, wrapped distributions

I. Introduction
The JPEG Compatibility Attack (JCA) is a specialized

image steganalysis method that can reliably detect mes-
sages embedded with spatial-domain steganography under
the assumption that the cover image is a decompressed
JPEG. The compression imposes strict constraints on the
spatial domain representation, which allows very accurate
detection of pixel modifications even for small payloads.
The assumption that the cover was originally stored as
JPEG is feasible as the vast majority of images are stored
in the JPEG format. Steganographers might hide data in
the spatial domain because it offers a larger embedding ca-
pacity or simply because the data hiding program cannot
handle the JPEG format.

The attack was originally conceived in [11] based on the
idea that one could prove that a given image contains
blocks of 8 × 8 pixels that could not be obtained by
decompressing any combination of 64 quantized Discrete
Cosine Transform (DCT) coefficients. A brute force search
in the form of a tree-pruning algorithm was proposed to
obtain such proof. For larger quality factors (smaller JPEG
quantization steps), the complexity of this search increases
rapidly, which makes this attack impractical to use at
scale. Moreover, since the original JPEG compressor is not
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available to the steganalyst, in practice the incompatibility
of a block would also need to be verified w.r.t. all JPEG
decompressors, which further increases the complexity and
may not even be feasible.
A quantitative version of this attack that estimates the

change rate introduced by Least Significant Bit (LSB) re-
placement was proposed in [4], [5], where a recompressed-
decompressed version of the image was used as a pixel
predictor in the weighted Stego-Image (WS) attack [20].
The detection accuracy of this attack is fairly robust
w.r.t. errors in the estimated quantization table as well as
different JPEG compressors. This approach is, however,
fundamentally limited to LSB replacement and cannot
detect embedding that uses LSB matching, which is the
case of all modern content-adaptive stego algorithms. The
same recompression predictor was also used in [27], where
the number of pixels by which the stego image and its
recompressed version differed was used as the detection
statistic. The departure from the WS detector allowed
detection of embedding operations other than LSB re-
placement.
An improved localized version of this attack was de-

scribed in [22] by counting the number of different pixels
between the image and the recompressed-decompressed
version in each 8 × 8 block. A 65-dimensional histogram
of these counts, which we call the recompression residual
histogram (RRH), served as a feature vector for training
a classifier. The authors reported a markedly improved
detection accuracy especially for larger quality factors and
small payloads.
In general, all forms of the JCA become less accurate

for high qualities because the process of recompression-
decompression, which is used as a powerful reference, is
more affected by rounding in the spatial domain when
decompressing the original cover image. The stego changes
thus become harder to distinguish from recompression
artifacts, which decreases the detection accuracy especially
for content-adaptive steganography as the recompression
artifacts and stego changes often occur in approximately
the same areas of the image. Addressing these deficiencies
is one of the main goals of this paper.
In the next section, we introduce the notation used

throughout the paper and briefly discuss relevant back-
ground material from the field of directional statistics. Sec-
tion III describes the processing pipeline considered in this
paper, which involves the initial JPEG compression of the
cover image, decompression, embedding, and subsequent
recompression and decompression used by the steganalyst.
This pipeline is analyzed in Section IV by modeling the
quantization errors during the initial compression, which
allows us to obtain a detector of steganography as a
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likelihood ratio test (LRT) in Section V. 1 The LRT is used
to obtain insight into the inner workings of the JCA and
also explain the trends in detection accuracy observed for
detectors in the form of a Convolutional Neural Network
(CNN) considered in Section VI. Section VII contains the
results of the LRT and CNNs — contrasted with the
performance of the previous art (RRH) — for a wide
range of JPEG quality factors, payloads, and embedding
schemes. Section VIII is devoted to an important practical
aspect of the JCA, which is its robustness to various JPEG
compressors and DCT quantizers, including the “trunc”
quantizer in common use today [1], [9]. Since the JCA
needs to estimate the quantization table of the original
JPEG compression, in Section IX we demonstrate that the
table can be accurately estimated from the decompressed
cover / stego image while pointing out an important
fact that, for the purpose of the JCA, only divisors of
quantization steps (the so-called sufficient steps) need to
be estimated. The paper is concluded in Section X.

II. Preliminaries
A. Notation

The operation of rounding x ∈ R to the nearest multiple
of a positive integer q is denoted by [x]q , q · [x/q], where
the square bracket is the operation of integer rounding
[x]1 = [x]. The quantization (rounding) error is defined as
errq(x) , x− [x]q. Rounding x “towards zero” is denoted
as trunc(x) and is defined as trunc(x) = bxc for x ≥ 0 and
trunc(x) = dxe for x < 0, where bxc and dxe represent
flooring and ceiling. Clipping x to a finite dynamic range
[0, 255] is denoted clip(x) with clip(x) = x for x ∈ [0, 255],
clip(x) = 0 for x < 0 and clip(x) = 255 for x > 255. The
symbol , is used whenever a new concept is defined. The
uniform distribution on the interval [a, b] will be denoted
U [a, b] while N (µ, σ2) is used for the Gaussian distribution
with mean µ and variance σ2. If X is a random variable,
then fX , E[X], and Var[X] denote the probability density
(PDF), expectation, and variance of X, respectively.
Boldface symbols are reserved for matrices and vectors.

The symbols ′�′ and ′�′ denote element-wise product
and division between vectors / matrices of the same
dimensions. For readability, we slightly abuse notion when
referring to the (element-wise) matrix extensions of the
above operations. For example, rounding x ∈ Rm×n w.r.t.
a matrix q is defined by [x]q , q�[x�q] where [·] denotes
element-wise integer rounding in this context. Similarly,
we define errq(x) , x− [x]q.

B. Directional statistics
Here, we recall some results from directional statistics

needed for the JCA in this paper. For any real-valued
random variable X and positive integer q, the distribution
of the quantization error errq(X) is obtained by wrapping
the distribution of X onto a circle with circumference q.

1Research on quantization noise during recompression with high
quality factors is potentially relevant to the forensics community [26],
[30].

In other words, errq(X) has a wrapped PDF of the form∑
n∈Z fX(x + qn) with a support confined to the half-

open interval [−q/2, q/2). In the case X ∼ N (µ, σ2), the
quantization error errq(X) follows a wrapped Gaussian
distribution NW(µ, σ2, q) whose PDF is given by

g(x;µ, σ2, q) , 1√
2πσ2

∑
n∈Z

exp
(
− (x− µ+ qn)2

2σ2

)
, (1)

when −q/2 ≤ x < q/2 and g(x;µ, σ2, q) = 0 otherwise.
We note that the wrapped Gaussian is equivalent to what
was called a folded Gaussian in [8] and [10]. However, since
the class of wrapped distributions is well studied and is the
standard nomenclature in directional statistics [28], we use
the term wrapped hereafter.
The wrapped Gaussian is adequately approximated by

the truncated sum over the 2N + 1 terms for which n ∈
{0,±1, . . . ,±N}; the choice of N depends on µ, σ2, q and
the desired precision [28]. For example, g(x; 0, 1/12, q) is
well-approximated by one term (n = 0) for q ≥ 2 and
three terms (n = −1, 0, 1) for q = 1. General bounds for
the approximation error are found in [8], [23], [28].
Finally, we recall a fundamental asymptotic result

known as Poincaré’s Limit Theorem (PLT) [28]. If X is
an absolutely continuous random variable and q is fixed,
then the distribution of errq(cX) tends to the uniform
distribution U [−q/2, q/2) as c → ∞. The following ex-
tension of the PLT is developed in [18] for wrapping a
joint distribution onto a torus. Let M be a n-torus, that
is the set

∏n
i=1[−qi/2, qi/2) where

∏
denotes the cartesian

product and q ∈ Rn. We can wrap Rn ontoM via the map
errq. If X is an absolutely continuous random vector on
Rn, then the distribution of errq(cX) tends to the uniform
distribution on M as c→∞.

III. Pipeline
In this section, we introduce the pipeline through which

an originally uncompressed (raw) image is JPEG com-
pressed and then decompressed for spatial domain em-
bedding, and possibly embedded with a secret message.
For clarity, all objects included in this initial compression-
decompression will be denoted with a superscript ′(0)′.
JPEG compression proceeds by dividing the image into
8 × 8 blocks, applying the DCT to each block, dividing
the DCT coefficients by quantization steps, and rounding
to integers. The coefficients are then arranged in a zig-
zag fashion and losslessly compressed to be written as
a bitstream into the JPEG file together with a header.
In this paper, we constrain ourselves to grayscale images.
More details about the JPEG format can be found in [31].
The original uncompressed 8-bit grayscale image with

N1 × N2 pixels is an element of {0, 1, . . . , 255}N1×N2 .
Throughout this paper, x(0) = (x(0)

ij ) denotes one specific
8× 8 block of uncompressed pixels where 0 ≤ i, j ≤ 7. For
clarity, we strictly use i, j to index pixels and k, l to index
DCT coefficients.
During JPEG compression, the block of DCT coef-

ficients before quantization, y(0) ∈ R8×8, is obtained



3

using the formula y
(0)
kl = DCTkl(x(0)) ,

∑7
i,j=0 f

ij
klx

(0)
ij ,

0 ≤ k, l ≤ 7, where

f ij
kl = wkwl

4 cos πk(2i+ 1)
16 cos πl(2j + 1)

16 , (2)

are the discrete cosines and w0 = 1/
√

2, wk = 1 for 0 <
k ≤ 7. The pair (k, l) is called the klth DCT mode. Before
applying the DCT, each pixel is adjusted by subtracting
128 from it during JPEG compression, a step we omit here
since it has no effect on our analysis. For brevity, we will
also use matrix notation and denote the DCT of a block u
as v = Du where vkl = DCTkl(u) for all k, l. Here, D is a
64× 64 matrix of discrete cosines and u, v are the blocks
rearranged as column vectors. Note that D> = D−1 due
to orthonormality.

The block of quantized DCTs is c(0) = [y(0) � q],
c

(0)
kl ∈ {−1024, . . . , 1023} where q = (qkl) is a luminance
quantization matrix of quantization steps qkl supplied in
the header of the JPEG file. For a JPEG compressor that
uses truncation instead of rounding, c(0) = trunc(y(0)�q).
During decompression, the above steps are reversed.

First, dequantizing c(0) yields ỹ(0) = q � c(0). Applying
the inverse DCT, the block x̃(0) of non-rounded pixels
after decompression is obtained by x̃(0)

ij = DCT−1
ij (ỹ(0)) ,∑7

k,l=0 f
ij
kl ỹ

(0)
kl , where x̃

(0)
ij ∈ R, or in the matrix form

x̃(0) = D>ỹ(0). The pair (i, j) used to index x̃(0)
ij is called

the ijth JPEG phase [14]. Finally, rounding x̃(0) to integers
and clipping to a finite dynamic range [0, 255] produces the
fully decompressed block x = (xij).
At this point, the steganographer may embed the cover

image x with a secret message by introducing embedding
changes η to produce the stego image x(s) = x +η. In the
JCA, the (cover or stego) image is again JPEG compressed
and decompressed to obtain a reference image. Since q
is not available in a decompressed JPEG’s file format,
recompression is performed using a quantization matrix,
q̂, estimated directly from x or x(s).
Figure 1 visually conveys the JCA pipeline considered in

this paper. As shown, the recompressed blocks y, ỹ, x̃ are
all defined by repeating the compression process. We omit
c(0) and c from Figure 1 since the operation [·]q combines
quantizing and dequantizing into one step. All stego ver-
sions of the objects considered in the recompression will
be denoted with a superscript ′(s)′ — the cover versions
do not have a superscript.

Moreover, we denote the initial quantization error by
ε(0) , y(0) − ỹ(0), the decompression (rounding) error in
the spatial domain by δ , x̃(0)−x, and the recompression
quantization error by ε , y − ỹ. For brevity, we often
refer to ε as the Q error and D−1ε as the spatial domain
Q error, or SQ error. We refer to clip([x̃]) − x as the
recompression residual which was the object of focus in
the previous art [22]. Ignoring clipping, the (negative) SQ
error can be seen as the unrounded recompression residual
since x is a block of integers:

[−D−1ε] = [x̃− x] = [x̃]− x. (3)

x(0)

y(0) ỹ(0)

x̃(0) x

y ỹ

x̃

ε(0) = y(0) − ỹ(0)

δ = x̃(0) − x

ε = y− ỹ

D

[·]q

D−1

[·]

D

[·]q̂

D−1

Figure 1. JPEG compression - decompression - recompression
pipeline. Adjusting pixels to [−128, 127] and clipping to [0, 255] are
ignored.

IV. Pipeline analysis

Equipped with the tools introduced in Section II-B, we
can now study the objects in Figure 1. We start by model-
ing the initial quantization error, ε(0), as a random vector.
We then derive the distributions of subsequent objects,
ultimately formulating how a steganographic embedding
impacts the distribution of the Q errors ε. In summary,
the analysis in this section will leverage these facts:

1) The (cover or stego) image is stored using integers
which allows us to analytically isolate the rounding
errors in each domain.

2) The dimensionality of the blocks is high enough to
use the Central Limit Theorem (CLT) to approxi-
mate the marginals using Gaussians when switching
between domains.

3) Poincaré’s theorem tells us the distribution of δ
tends to a uniform distribution with jointly indepen-
dent components as quality factor decreases.

A. Rounding errors in the spatial domain
By the linearity of the DCT, we can express the non-

rounded block of pixels x̃(0) as

x̃(0) = D−1ỹ(0)

= D−1y(0) −D−1ε(0)

= x(0) −D−1ε(0). (4)

Consider the case of the round quantizer; the values of ε(0)
kl

are contained within [−qkl/2, qkl/2).

Assumption 1. For all modes (k, l), the DCT quantiza-
tion errors ε(0)

kl are jointly independent and satisfy

ε
(0)
kl ∼ U [−qkl/2, qkl/2). (5)

Assumption 1 has been studied in [34], used in [8],
[10], [30], and can be justified directly by the Poincaré
Theorem for small quantization steps qkl. By the joint
independence of ε(0)

kl and the fact that E[ε(0)
kl ] = 0 and

Var[ε(0)
kl ] = q2

kl/12, Lindeberg’s extension of the CLT
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implies that the marginals of x̃(0) approximately follow
the Gaussian distribution

x̃
(0)
ij ∼ N (x(0)

ij , s
(0)
ij ), (6)

with variance

s
(0)
ij = 1

12

7∑
k,l=0

(f ij
kl )

2q2
kl. (7)

The rounding error in the spatial domain has the form

δ = x̃(0) − [x̃(0)] = err1(−D−1ε(0)), (8)

because x(0) is a block of integers. We conclude that the
marginals of δ are approximately distributed by δij ∼
NW(0, s(0)

ij , 1) for all JPEG phases.
We note that when quantization steps are large or when

an alternate quantizer such as trunc is used, Assumption 1
may no longer hold. Nonetheless, the PLT still allows us to
say something about the joint distribution of the rounding
errors δ. Looking at Eq. (7), notice that the probability
mass of ε(0) spreads out as the entries of q increase. Thus,
the distribution of δ is well-approximated by the joint
uniform distribution on [−1/2, 1/2)64 for sufficiently low
enough quality factors. We experimentally observed that
the marginals δij are uniform for QFs 98 and below, and
thus, we infer that the PLT has applied for these qualities.

Note that if the quantizer is trunc, the variance Var[ε(0)
kl ]

is larger compared to round regardless of the distribution
of uncompressed DCT coefficients y(0). Hence, we also
conclude that the PLT has applied for QFs 98 and below
in the case of trunc.

B. Cover images
By reasoning similar to that of Eq. (4), the linearity of

the DCT implies

y = ỹ(0) −Dδ. (9)

Assumption 2. The cover block x = [x̃(0)] has rounded to
pixels all within the dynamic range [0, 255]. The rounding
errors δ are jointly independent for all JPEG qualities.

If x̃(0)
ij is outside the dynamic range, δij will belong to

an interval potentially much larger than [−1/2, 1/2) with
bounds dependent on image content. Using Assumption 2,
we may ignore the effects of clipping and approximate the
marginals of y using the CLT:

ykl ∼ N (ỹ(0)
kl , skl), (10)

skl =
7∑

i,j=0
(f ij

kl )
2Var[δij ]. (11)

Note that for QFs 98 and below, the approximate unifor-
mity of δ implies Var[δij ] ≈ 1/12, which yields skl ≈ 1/12
by the orthonormality of the DCT. The Q error computed
via the true quantization matrix q can be expressed as

ε = y− [y]q = errq(−Dδ), (12)

since ỹ(0)
kl is an integer multiple of qkl for all (k, l). Thus,

we conclude that εkl ∼ NW(0, skl, qkl).

C. Stego images
We model the embedding changes ηij as content-

adaptive ±1 noise in the spatial domain; we have x(s) =
x + η. Specifically, we treat ηij as a random variable
supported on {−1, 0, 1} with PMF P(ηij = 1) = P(ηij =
−1) = βij , where βij are known as the change rates (or
selection channel) determined by the stego scheme. Under
this framework, the non-rounded recompressed DCTs have
the form

y(s) = ỹ(0) −Dδ + Dη. (13)

Assumption 3. The embedding changes ηij are jointly
independent and independent of the rounding errors δij.

This is a reasonable assumption for steganography that
minimizes an additive distortion and does not use the
rounding errors as side-information for embedding. Ap-
plying the CLT again, we have

y
(s)
kl ∼ N (ỹ(0)

kl , skl + rkl), (14)

rkl =
7∑

i,j=0
(f ij

kl )
2Var[ηij ]. (15)

Thus, the Q error for a stego block can be written as

ε(s) = errq(−Dδ + Dη), (16)

since ỹ(0)
kl is an integer multiple of qkl for all modes. Hence,

ε
(s)
kl ∼ NW(0, skl + rkl, qkl) which means the embedding
increases the variance of the wrapped Gaussian.

V. Statistical Hypothesis Detector

The analysis carried out in the previous section allows
us to formulate a statistical hypothesis test about the Q
errors for detecting steganography. Then, we introduce
rules for eliminating blocks from the test for a tighter fit
of modeling assumptions in practice, which improves the
detection accuracy. Afterwards, we briefly discuss other
considerations for modeling assumptions. The analysis of
this section is useful to obtain insight into why and how
the JCA works and to explain trends observed for other
types of detectors studied in Section VI.

All experiments in this section, and in this paper in gen-
eral, were conducted on the union of the BOSSbase 1.01 [2]
and BOWS2 [3] datasets, each with 10,000 grayscale im-
ages resized to 256× 256 pixels with imresize in Matlab
using default parameters. We refer to the union as BOSS-
BOWS2. This dataset is a popular choice for designing
detectors with deep learning because small images are
more suitable for training deep architectures [6], [36]–[39],
[41]. The training set (TRN) contained all 10,000 BOWS2
images along with 4,000 randomly selected images from
BOSSbase. The remaining images from BOSSbase were
randomly partitioned to create the validation set (VAL)
and the testing set (TST) containing 1,000 and 5,000
images, respectively.
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A. Likelihood ratio test
Given a collection B of 8 × 8 blocks from an N1 × N2

decompressed image, the steganalyst is faced with the
following hypothesis test for all 0 ≤ k, l ≤ 7 across all
blocks x ∈ B:

H0 : εkl ∼ NW(0, skl, qkl) (17)
H1 : εkl ∼ NW(0, skl + rkl, qkl), rkl > 0. (18)

Assumption 4. The Q errors εkl are jointly independent
within and between blocks.

This assumption allows us to construct a detector from
the marginals; working with a joint density leads to similar
computational complexity issues encountered in [10], [11].
Thus, the log-likelihood ratio test for an image is

L(B) =
∑
x∈B

7∑
k,l=0

Lkl(x) (19)

=
∑
x∈B

7∑
k,l=0

log g(εkl; 0, skl + rkl, q̂kl)
g(εkl; 0, skl, q̂kl)

H1
≷
H0

γ. (20)

Assuming the change rates (and thus rkl) are known,
the steganalyst is faced with a simple hypothesis, for which
the LRT is uniformly most powerful in the clairvoyant case
according to the NP-lemma [19]. As a remark, we remind
the reader that the quantization matrix must be estimated
from the image first — a preanalytical step discussed in
Section IX. Until then, we assume the true quantization
matrix is known, i.e. q̂ = q.
Moreover, the LRT is composite if rkl is unknown, which

would be the case when detecting multiple steganographic
methods, an unknown payload size, or a steganographic
method with unknown or partially known selection chan-
nel, e.g. side-informed steganography [12], [15], [17] or
methods with synchronized embedding changes [7], [16],
[25]. On the other hand, for detecting a known steganog-
raphy and a known payload size, the selection channel is
approximately available — the change rates βij can be
computed from the analyzed stego image — which means
that rkl can also be approximately computed. By the
Lindeberg’s extension of the CLT, the normalized LRT

Λ(B) = L(B)− EH0 [L(B)]√
VarH0 [L(B)]

(21)

follows the distribution N (0, 1) under H0, which allows
setting a decision threshold for the normalized LRT that
achieves the largest detection power for a fixed false-alarm
probability. Figure 2 shows the distribution of Λ(B) under
H0 across images from the training and validation sets
when εkl are sampled from their distributions (17).

B. Block elimination
In practice, blocks should be eliminated from hypothesis

testing if they do not adhere to at least one of the assump-
tions above; there is no guarantee that the conclusions
apply to such blocks. To this end, we formulate rules for

Figure 2. Distribution of LRT Λ(B) under H0 for Monte-Carlo
sampled εkl with skl and rkl computed from images in the union
of TRN and VAL. One sample of εkl was taken per DCT mode per
block.

rejecting a block x from B based on the following common
phenomena.

1) Block saturation: A block x with pixel values xij

is saturated if there exists a phase (i, j) such that
xij = 0, 1, 254, or 255.

2) Block sparsity: A block x is sparse if the number of
zero DCT coefficients in y is larger than or equal to
8. To account for floating-point error in the DCT, a
coefficient ykl is considered “zero” if |ykl| < 10−5.

Saturated blocks potentially violate Assumption 2 due to
clipping. We include pixel values 1 and 254 to account for
the possibility of embedding into pixels at the boundary
of the dynamic range. As for sparse blocks, having 8 or
more zero DCTs concentrate around zero is highly unlikely
since the ykl are Gaussian random variables.2 Hence, we
conclude that the CLT fails for sparse blocks. Therefore, if
a block is deemed saturated or sparse (or both), then the
block is rejected. Throughout the paper, all experiments
with block elimination abide by this criteria.
We note that content-adaptive schemes tend to embed

in non-saturated and non-sparse blocks. Thus, block elimi-
nation may artificially increase the image’s overall change-
rate which is to the steganalyst’s benefit. On the other
hand, we do not foresee steganographers intentionally em-
bedding in rejected blocks since doing so would be highly
detectable by methods outside the JCA and methods we
introduce later in Section VI.
The BOSSBOWS2 dataset contains a small number of

images (depending on JPEG quality) whose blocks were
all eliminated due to lack of content. In our experiments,
we eliminated these singular images entirely since they are
known to be bad covers.

2The authors observed that zero DCTs typically occur in entire
rows or columns of modes which is why the sparse block threshold
was chosen to be 8.
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C. Other considerations
We also experimented with modeling the marginals of

the uncompressed DCT coefficients y(0) as generalized
Gaussian [29] random variables. It follows that the quanti-
zation error ε(0) would be wrapped generalized Gaussian
(WGG) distributed, and the phase-dependent variances,
skl, would be computed by numerically integrating the
WGG. In practice, though, the shape and width pa-
rameters would need to be estimated from y / y(s),
the unrounded DCTs of the cover / stego image, which
complicates matters. However, even when estimating the
parameters directly from the uncompressed image, we did
not see the LRT benefit. Also, we noticed that the num-
ber of terms needed to approximate the WGG becomes
unwieldy if the shape and width parameters are too small.

VI. Machine Learning Detectors
The LRT detector discussed above was derived in the

DCT domain under the assumption that the distributions
of different 8× 8 blocks are independent. The embedding
changes are, however, performed in the spatial domain,
and the steganalyst can and should make use of depen-
dencies between pixels across the block boundaries, which
is ignored by the LRT test. Moreover, the heuristic block
rejection rules were adopted based on experiments and
are likely an additional source of suboptimality as the
modeling assumptions, such as the validity of the CLT,
will generally depend on the block content as well as
the quality factor. Thus, the authors anticipate Convo-
lutional Neural Network (CNN) detectors will provide
better detection performance especially when supplying
the image under investigation as one of the channels on top
of the Q / SQ error during training. Such detectors could
also potentially be more robust to differences between
JPEG compressors simply by enlarging the training set.
They can also more easily be made universal in the sense
of covering both round and trunc DCT quantizers and
possibly trained for unknown payloads.

These advantages motivated the authors to study deep
learning based detectors. All previous art made use of the
recompression residual clip([x̃]) − x as a reference signal,
because recompressing the image and then decompressing
to the spatial domain essentially erases the embedding
changes for lower quality factors. For detecting content-
adaptive stego schemes, however, the original image should
be used as input so the network can properly learn the
selection channel and form better detection statistics from
dependencies between neighboring pixels.

Section VI-A and Section VI-B introduce the experi-
mental setup for SRNet and the prior art, respectively.

A. SRNet
In this paper, we report the results for three flavors of

SRNet [6]: an SRNet trained only on Q errors (Q-SRNet),
on SQ errors (SQ-SRNet), and on two channels (SQY-
SRNet) — the normalized image x/255 (Y channel) and
the SQ error — which provided by far the best overall

performance especially for high quality factors. We also
investigated an SRNet trained on both the image and its
recompression residual but found that it performed worse
than the LRT for high QFs. We hypothesize the recom-
pression residual loses information about the embedding
after rounding / clipping in the spatial domain.
Training was done for 50 epochs using mini-batches of

size 64, the adamax optimizer [21], the one-cycle learning-
rate (LR) scheduler with maximum LR 1× 10−3 [33], and
the cross-entropy loss function. All classifiers were trained
using a pair-constraint, requiring batches to contain cover-
stego pairs.
To augment the training data, a random dihedral group

(D4) operation was applied to each cover-stego pair in the
batch before extracting Q / SQ errors. Observe that the
quantization table must be transposed when images are
rotated by 90 or 270 degrees.
In experiments with multiple payloads, we trained net-

works from scratch on the largest payload with maximum
LR 1×10−3. The checkpoint with minimal validation loss
was then used as a starting seed for training on smaller
payloads with maximum LR 3×10−4. Curriculum training
in this manner significantly helped facilitate convergence.

B. RRH
For comparison against the prior art, we also imple-

mented the RRH method [22] (see Section I) trained on the
union of the TRN and VAL. The recompression residual
was computed using Matlab’s imwrite and imread to
match the initial (de)compressor implementation.

VII. Experiments

In this section, our goal is to determine the best detector
from Section V and VI. First, we compare the performance
of the LRT and the three SRNets w.r.t. JPEG quality for
a fixed stego scheme and payload. The best detector of
these four will then be rigorously tested against the prior
art, RRH, for a variety of stego schemes and payloads.
Throughout the section, we present the results through
the lens of our analysis in Section IV.

A. Methodology
As in Section V, we used the same split 14,000 / 1,000

/ 5,000 for TRN / VAL / TST. Images were initially
compressed and decompressed using Matlab’s imwrite
and imread. In order to compare the LRT to the machine
learning detectors, we first choose the decision threshold
that minimized PE on the union of TRN and VAL. The
measurement PE is the probability of error under equal
priors defined by PE = (PMD + PFA)/2, where PMD and
PFA are the probabilities of missed detection and false
alarm. The test accuracy of the LRT is then computed
on TST using this fixed threshold. Cover-stego pairs were
generated using the MiPOD [32] simulator at 0.01 bits per
pixel (bpp).
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B. Performance w.r.t quality
In Figure 3, the left plot visualizes the trends for

the LRT and all versions of SRNet. Since SQY-SRNet
outperformed the other detectors especially for high qual-
ities, we continued by testing SQY-SRNet and the prior
art on the following four content-adaptive steganographic
schemes: S-UNIWARD [15], HILL [24], MiPOD [32], and
WOW [13]. These schemes were tested on the following
range of payloads: 0.02, 0.01, 0.005, and 0.002 bpp. We
refer the reader to Tables VI and VII in the appendix for
the full results for SQY-SRNet and the prior art. A subset
of these results are shown in the right plot of Figure 3. The
SQY-SRNet significantly outperforms the RRH especially
for small payloads for QFs above 93.

Note that the model-based MiPOD is consistently more
secure that the other three cost-based stego algorithms.
The difference is most pronounced for the smallest pay-
loads and largest qualities. We were able to trace the
reason for this to the average number of modified pixels
by these four schemes. For QF100 and payload 0.002 bpp,
the average number of changed pixels for MiPOD, S-
UNIWARD, WOW, and HILL are 9.7, 12.2, 13.8, and 14.1,
which matches the trend in increased detectability with
SQY-SRNet: 0.689, 0.811, 0.863, and 0.872.

We note that the performance of the LRT matches
the performance of Q-SRNet except for QFs 99–100. We
interpret this overlap as an indication that our modelling
assumptions take into account all relevant information
contained in the Q error representation of the image
(besides inter-block dependencies). We hypothesize that
the deviation for QFs 99–100 occurs due to δ not being
jointly independent since the PLT does not apply for
these qualities as per Section IV-A. This implies the
CLT may not apply to the marginals of y, hence the
εkl is not guaranteed to follow the wrapped Gaussian in
Section IV-B.

We note that SRNet generally has trouble forming inter-
block statistics in DCT domain representations [40] which
is likely why we see a jump in performance when the SQ
error is used instead.

In [11], QF100 is deemed the hardest quality for the
JCA due to search complexity. This hints at the existence
of suboptimality in the prior art for which QF97 is empir-
ically the hardest quality. Note that SQY-SRNet closely
matches the monotonic behavior we intuitively expect.

VIII. Robustness to JPEG Compressors
There exist many variants of JPEG compressors, which

can differ in the implementation of the DCT, the quan-
tizer, and the internal number representation. If two com-
pressors differ, they may produce different JPEG images
from the same raw image. Similarly, if two decompressors
differ, they may produce different decompressed images
from the same JPEG file. As a result, a cover image
can potentially originate from a vast number of JPEG
compressor-decompressor combinations. In addition, the
steganalyst must use a JPEG variant for recompression

and decompression to compute, e.g. the SQ errors. Any
mismatch of JPEG combination may complicate the dis-
tribution of rounding errors and potentially dramatically
decrease the performance of the JCA. Also, machine-
learning detectors may perform poorly on a variant not
seen during training. In this section, we pinpoint the JPEG
compressor variant that should be used for training in
order to maximize the robustness of SQY-SRNet.
Since the recompression method for the JCA is the

steganalyst’s choice, we are free to select the one that
works the best overall. Since rounding errors are not
easily attainable using off-the-shelf JPEG compressors, we
manually recompress via SciPy’s dct to compute Q / SQ
errors for all experiments. To simplify matters, we exlu-
sively use Matlab’s imwrite to compute the recompression
residual for the prior art [22] since this variant was used
for benchmarking in Section VI.
On the other hand, the steganalyst does not know

the compressor-decompressor pair used to obtain the
spatial representation of the cover image. The following
(de)compressor implementations were considered: Mat-
lab’s imwrite/imread, Python3 library PIL (PIL), Im-
ageMagick’s Convert (Convert), Int and Float DCT com-
pressors in libjpeg (version 6b).3 Fast DCT compression in
libjpeg has not been included in our tests because it is not
recommended for QFs larger than 97 since the compression
is then slower and more lossy than on smaller QFs.4
For experimental feasibility, we reduced the number of

compressor-decompressor pairs tested by restricting our
attention purely to differences between quantizers used
for the initial compression. We specifically use Matlab’s
imwrite for its round quantizer and a manually imple-
mented trunc compressor in Python3 using SciPy’s dct.

A. Mismatching the decompressor

First, we try to determine the best JPEG decompressor
for the steganalyst under the assumption 1) that the
original JPEG cover was obtained using a round quan-
tizer for the DCTs and 2) the steganographer was free
to choose any of the decompressors. Table I shows the
testing accuracies for SQY-SRNet trained and tested on
mismatched decompressors for QFs 95, 99, 100. While a
loss can indeed be observed especially in the case when the
detector was built with images generated by ’Float’ and
’Convert’, the detector trained on images from Python’s
PIL and Matlab’s imread generalized overall very well
when evaluated on images from all five compressors.
We also studied the prior art’s robustness to decom-

pressor since no benchmarking exists in [22]. The testing
accuracies for the RRH are shown in Table II. We observed
that QF99 and 100 had the same pattern in the results
(with accuracies in the range [.7486, .7616] for QF100), so
we report the results for QFs 90, 95, 99.

3http://libjpeg.sourceforge.net/
4Taken from libjpeg documentation https://manpages.ubuntu.

com/manpages/artful/man1/cjpeg.1.html.
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Figure 3. Left: Testing accuracy as a function of JPEG quality for LRT (21) and all flavors of SRNet. Embedded using MiPOD at 0.01
bpp. Right: Testing accuracy as a function of JPEG quality for SQY-SRNet (purple) and RRH (green). Embedded using MiPOD (solid)
and HILL (dashed) at 0.005 bpp.

Table I
Testing accuracy for SQY-SRNet trained and tested on

combinations of decompressors. Each row / column
corresponds to the decompressor used for training /

testing, respectively. Initially compressed with Matlab’s
imwrite. Embedded using MiPOD at 0.01 bpp.

QF TRN TST decompressor
decomp. imread float int convert PIL

100

imread .9721 .9556 .9716 .9568 .9729
float .9500 .9742 .9491 .9739 .9491
int .9695 .9587 .9682 .9570 .9685

convert .9461 .9732 .9455 .9742 .9456
PIL .9721 .9633 .9706 .9635 .9708

99

imread .9856 .9846 .9870 .9849 .9859
float .9781 .9875 .9784 .9899 .9777
int .9845 .9833 .9856 .9832 .9838

convert .9760 .9878 .9770 .9885 .9771
PIL .9843 .9864 .9849 .9860 .9844

95

imread .9996 .9997 .9993 .9994 .9996
float .9991 .9992 .9991 .9992 .9992
int .9996 .9996 .9993 .9992 .9995

convert .9996 .9994 .9993 .9993 .9996
PIL .9994 .9995 .9994 .9992 .9995

The recompression residual will typically contain blocks
with no pixel changes or blocks with large patterns of
changes; residual blocks will rarely contain single pixel
changes especially for QFs with no 1’s in the quantization
table [22]. Thus, for QF92 and below, embedding is highly
detectable since single pixel changes will appear in the
recompression residual. We observed, however, that having
mismatched JPEG variants in the JCA pipeline commonly
creates salt-and-pepper noise artifacts in the recompres-
sion residual, which the RRH misinterprets as steganogra-
phy. For example, the accuracy of RRH for QF90 trained
and tested on the float decompressor only has an accuracy
of .6349 because the compressor is Matlab’s imwrite. For
QFs above 92, mismatching is less problematic since the
RRH classifier gets trained on covers that more commonly
produce salt-and-pepper noise.

Table II
Testing accuracy for RRH trained and tested on

combinations of decompressors. Matlab’s imwrite is used for
the initial compressor and used to compute the

recompression residual. Embedded using MiPOD at 0.01 bpp.

QF TRN TST decompressor
decomp. imread float int convert PIL

99

imread .7538 .7315 .7523 .7341 .7522
float .7481 .7453 .7451 .7485 .7437
int .7552 .7323 .7518 .7342 .7512

convert .7486 .7446 .7460 .7480 .7448
PIL .7540 .7339 .7518 .7363 .7517

95

imread .9042 .5000 .9031 .5000 .9041
float .5288 .6813 .5281 .6828 .5281
int .9035 .5000 .9032 .5000 .9041

convert .5166 .6834 .5159 .6834 .5172
PIL .9022 .5000 .9019 .5000 .9029

90

imread .9993 .5000 .9993 .5000 .9993
float .4819 .6349 .4816 .6359 .4817
int .9993 .5000 .9992 .5000 .9993

convert .4831 .6350 .4828 .6350 .4823
PIL .9993 .5000 .9994 .5000 .9993

B. Mismatching the quantizer
Having seen that training on MATLAB’s imread or PIL

generalize the best for decompressor robustness, we turn
to investigating robustness to a compressor’s quantizer.
Table III shows that training on either the imread or
PIL decompressor gives similar accuracies when images are
initially compressed with a trunc quantizer. Overall, the
accuracies are somewhat lower compared to when quan-
tized with round (see Table I) with the largest difference
for QF100. This is related to the differences between both
quantizers, namely the way they affect the distribution
of δij . Except for QFs 99–100, δ is well-approximated
by the uniform distribution for both quantizers (see Sec-
tion IV-A). Therefore, the SQ errors for both quantizers
approximately follow the same distribution under assump-
tions of Section IV which explains the matching accuracies
for QF95. For QFs 99–100, however, the DCT quantization
errors for the trunc quantizer ε(0)

kl ∈ [0, qkl) for positive
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Table III
Testing accuracy for SQY-SRNet trained and tested on
the trunc quantizer and combinations of decompressors.

Embedded using MiPOD at 0.01 bpp.

QF TRN TST decompressor
decomp. imread float int convert PIL

100 imread .8894 .8641 .8918 .8664 .8897
PIL .8906 .8608 .8940 .8642 .8923

99 imread .9830 .9775 .9830 .9770 .9834
PIL .9842 .9777 .9824 .9767 .9833

95 imread .9993 .9993 .9992 .9993 .9996
PIL .9994 .9994 .9996 .9994 .9996

DCTs and ε
(0)
kl ∈ (−qkl, 0] for negative DCTs. Thus, any

asymmetry in the distribution of the DCT coefficients in
the cover image transfers to an asymmetry of the quantiza-
tion errors, giving them a non-zero mean. In contrast, the
distribution of quantization errors for the round quantizer
is much less affected by such asymmetries.5 Consequently,
the rounding errors δij in the spatial domain for the trunc
quantizer are wrapped Gaussians with non-zero means,
which has an effect on the accuracy of the LRT (not shown
in this paper) and, apparently, also on the CNN detectors.

Next, we investigate what happens when there is a mis-
match between the quantizer used to obtain the original
cover JPEG and the quantizer used by the steganalyst
for training their detectors. In Table IV, SQY-SRNet
exhibits no loss of accuracy for mismatched quantizers
at QF95, a noticeable loss for QF99, and a catastrophic
loss for QF100. As explained in the paragraph above, this
demonstrates the utilility of the PLT when steganalyzing
(lower quality) images compressed with quantizers not
seen during training. For QFs 99–100, however, the dis-
tribution of δ is quantizer-dependent, which implies the
SQ errors are quantizer-dependent.

Since the JPEG quantizers can be distinguished quite
accurately with machine-learning tools, we decided to
address the performance loss simply by training on images
obtained using both quantizers. As Table V portrays,
training in this fashion resolves the problem with an un-
known quantizer; the detection accuracies are now compa-
rable to those of the detectors trained and tested on images
obtained with matching quantizers (as shown in Tables I
and III). Overall, training on the imread decompressor
generalizes slightly better than training on PIL.

IX. Estimating the Quantization Table
As mentioned earlier, the steganalyst must estimate

the true quantization table q directly from the image
under investigation since it is not provided in the decom-
pressed JPEG. Ideally, and for the most general case, each
quantization step should be estimated separately for each
DCT mode k, l since JPEG images can have non-standard
quantization tables. This problem belongs to the field of
image forensics and is well studied [11], [35]. However, the

5Also note that this effect of non-zero mean for ε
(0)
kl is mitigated

for lower qualities – the increased variance of ε
(0)
kl makes the wrapped

Gaussian uniform.

exact quantization steps are not needed to apply the JCA
because estimating the Q errors is an easier task compared
to estimating the exact quantization steps. Instead, we
need only find a table q̂ such that the estimated Q errors
ε̂ , errq̂(y) are close in distribution to the true Q errors ε.
In particular, it is enough to estimate a divisor of the true
quantization step — the so-called “sufficient” steps defined
in Appendix A. Additionally, indeterminable steps [35]
that may occur for high frequencies k, l do not pose a
problem for the JCA either. Both cases are explained and
discussed in more detail in Appendix A.
A comprehensive study of the effects of incorrectly

estimated quantization steps on the accuracy of machine
learning based JCAs is well beyond the scope of this
paper mostly due to the enormous diversity of custom
quantization tables in use today. Due to space limitations
in this paper, we postpone such study to future work and
limit ourselves to standard tables so we may estimate the
QF instead of individual quantization steps. We propose
a simple maximum likelihood estimator (MLE) and show
that its estimation accuracy is high enough so the effects
of estimating incorrect tables / steps on steganalysis can
be ignored. The reader is referred to [11], [35] for further
discussion on incorrectly estimated steps and for estima-
tion techniques more powerful than the MLE proposed.
Given a collection of observed blocks B (after block

elimination), we can estimate the standard quantization
table by maximizing the log-likelihood over all qualities
QF ∈ {1, . . . , 100}:

q̂ = argmax
QF

∑
x∈B

7∑
k,l=0

log fykl
((Dx)kl) , (22)

where (Dx)kl = ykl denotes the klth non-rounded recom-
pressed DCT coefficient for a block. From Eq. (10), the
PDF of ykl can be expressed as

fykl
(u) =

∑
n∈Z

P(ỹ(0)
kl = nqkl)√

2πskl
exp

(
− (u− nqkl)2

2skl

)
, (23)

where P(ỹ(0)
kl = nqkl) is the prior probability that y(0)

kl had
quantized to nqkl. Each step qkl is computed as per the
JPEG standard for every quality factor. In practice, for
each mode (k, l) we must estimate P(ỹ(0)

kl = nqkl) using a
quantity P̂kl(nqkl) derived from the decompressed JPEG
itself. For simplicity, if |nqkl| ≤Mkl, we set

P̂kl(nqkl) = 1/(2Mkl + 1) (24)

and P̂kl(nqkl) = 0 otherwise where Mkl = maxx∈B |ỹkl| is
the maximum realization of |ỹkl| attained across all blocks.
Figure 4 shows the accuracy of estimating the correct QF
from cover (solid line) and stego (dashed line) images. The
authors deem this accuracy to be high enough to have a
minimal effect on steganography detection in practice.

X. Conclusions
This paper revisits the JPEG Compatibility Attack in

light of the most recent advancements in steganalysis
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Table IV
Testing accuracy for SQY-SRNet trained and tested on mismatched quantizers and combinations of decompressors.

Embedded using MiPOD at 0.01 bpp.

Train quantizer: round Train quantizer: trunc
Test quantizer: trunc Test quantizer: round

QF Train Test decompressor Test decompressor
decomp. imread float int convert PIL imread float int convert PIL

100 imread .5004 .5007 .5004 .5007 .5004 .5049 .5040 .5049 .5045 .5047
PIL .5004 .5005 .5004 .5005 .5004 .5050 .5044 .5049 .5052 .5052

99 imread .8095 .8969 .8093 .8962 .8098 .9335 .9141 .9362 .9133 .9351
PIL .7595 .8546 .7591 .8541 .7586 .9204 .8979 .9247 .8984 .9245

95 imread .9992 .9995 .9995 .9993 .9995 .9993 .9991 .9993 .9993 .9994
PIL .9991 .9993 .9994 .9994 .9995 .9996 .9996 .9993 .9994 .9994

Table V
Testing accuracy for SQY-SRNet trained on both round

and trunc at QF 100. SQY-SRNet is tested on two sets: TST
only quantized with round and TST only quantized with

trunc.

Test Train Test set decompressor
quant. decomp. imread float int convert PIL

round imread .9719 .9545 .9690 .9548 .9735
PIL .9676 .9487 .9674 .9503 .9695

trunc imread .8829 .8590 .8857 .8634 .8818
PIL .8738 .8452 .8762 .8478 .8705

Figure 4. The ratio of images in BOSSBOWS2 whose quality factors
were correctly estimated from covers (solid) and stegos (dashed)
embedded using MiPOD at 0.01 bpp.

as well as steganography. The focus is on detection of
modern content-adaptive embedding schemes and high
quality factors when previous state-of-the-art methods
experience computational complexity issues and loss of
accuracy. Close attention is paid to the robustness of
the proposed detectors to JPEG compressors and DCT
coefficient quantizers. To better understand the observed
trends in accuracy of various implementations of the JCA
w.r.t. the quality factor and the effects of different JPEG
quantizers, the authors derived a likelihood ratio test
under mild modeling assumptions.

To summarize, the best detector was a SQY-SRNet, a
two-channel SRNet trained on the image and its SQ error.
It exhibited a markedly better accuracy than previous art
especially for high JPEG qualities and small payloads.
Since the DCT quantizer used for the cover JPEG image
and the decompressor are not available to the stegana-
lyst to build the training datasets, this paper includes a
comprehensive study of the robustness of the SQY-SRNet
w.r.t. these unknowns. We found that training SQY-

SRNet on images obtained using both DCT quantizers and
using Matlab’s imread for decompression gave the best
generalized results. This detector enjoys a similiar level
of accuracy as the clairvoyant detectors informed by and
trained on the right combination of cover JPEG quantizer
and decompressor.
Our future effort will be directed towards extending the

JCA to color images and to make it robust to errors when
estimating custom quantization tables.
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Appendix

In this appendix, we explain why the steganalyst only
needs to estimate sufficient steps for the JCA to apply as
they provide approximately the same Q errors. We also
touch upon indeterminable steps.
Suppose qkl is the true quantization step, and let fε̂kl

and fεkl
denote the PDFs of the estimated Q error ε̂kl

and true Q error εkl, respectively. We say an estimated
quantization step q̂kl is sufficient if 1) q̂kl = qkl, or 2)
qkl > q̂kl ≥ 2 and q̂kl divides qkl.

Proposition 5. If q̂kl is sufficient, then |fε̂kl
(u) −

fεkl
(u)| ≤ C .= 3.43× 10−3 for all u ∈ R.

Informally, Proposition 5 gives a sufficient condition
under which fε̂kl

(u) ≈ fεkl
(u) (meaning “approximately

equal”) within some negligibly small uniform error C. The
proposition is trivial to prove under the condition q̂kl =
qkl, so we turn to the case qkl > q̂kl ≥ 2 and q̂kl divides qkl.
The density fε̂kl

is obtained by wrapping fykl
(23) onto a

circle of circumference q̂kl: fε̂kl
(u) =

∑
m∈Z fykl

(u+mq̂kl)
for u ∈ [−q̂kl/2, q̂kl/2) and fε̂kl

(u) = 0 otherwise.
When |u| ≥ q̂kl/2, observe that fεkl

(u) ≈ 0 = fε̂kl
(u).6

In particular, |fε̂kl
(u) − fεkl

(u)| = fεkl
(u) ≤ C by direct

evaluation of the maximum.7

6This is due to the fact that skl ≤ 1/12 and qkl > q̂kl ≥ 2.
7fεkl (u) is maximized when |u| = 1, q̂kl = 2, qkl = 4, skl = 1/12.
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Table VI
Testing accuracy for SQY-SRNet. (De)compressed with Matlab’s imwrite.

Payload QF
(bpp) 90 91 92 93 94 95 96 97 98 99 100

M
iP
O
D 0.02 .9996 .9996 .9996 .9995 .9994 .9996 .9997 .9996 .9999 .9924 .9899

0.01 .9992 .9997 .9994 .9993 .9994 .9996 .9995 .9994 .9994 .9856 .9721
0.005 .9988 .9983 .9983 .9984 .9983 .9986 .9975 .9960 .9903 .9094 .8634
0.002 .9918 .9905 .9916 .9874 .9856 .9791 .9747 .9587 .9231 .7512 .6891

H
IL
L

0.02 .9998 .9997 .9997 .9997 .9996 .9997 .9998 .9998 .9998 .9981 .9982
0.01 .9994 .9993 .9995 .9994 .9995 .9996 .9996 .9997 .9996 .9964 .9950
0.005 .9975 .9981 .9990 .9981 .9986 .9983 .9989 .9985 .9968 .9783 .9698
0.002 .9926 .9948 .9926 .9927 .9906 .9885 .9885 .9841 .9683 .8958 .8717

S-
U
N
I 0.02 .9995 .9995 .9997 .9996 .9996 .9997 .9998 .9999 .9999 .9970 .9959

0.01 .9994 .9995 .9997 .9994 .9996 .9997 .9990 .9997 .9996 .9934 .9918
0.005 .9991 .9988 .9985 .9985 .9989 .9994 .9983 .9976 .9968 .9650 .9498
0.002 .9934 .9923 .9910 .9921 .9908 .9895 .9831 .9721 .9603 .8511 .8109

W
O
W

0.02 .9997 .9997 .9997 .9998 .9997 .9996 .9998 .9995 .9998 .9990 .9981
0.01 .9996 .9996 .9996 .9996 .9997 .9991 .9999 .9993 .9995 .9965 .9959
0.005 .9987 .9991 .9985 .9988 .9983 .9990 .9986 .9987 .9972 .9804 .9725
0.002 .9920 .9942 .9917 .9929 .9912 .9888 .9872 .9813 .9726 .8978 .8630

Table VII
Testing accuracy for RRH. (De)compressed with Matlab’s imwrite.

Payload QF
(bpp) 90 91 92 93 94 95 96 97 98 99 100

M
iP
O
D 0.02 .9995 .9994 .9987 .9970 .9924 .9778 .9189 .8722 .9052 .9239 .9290

0.01 .9993 .9998 .9991 .9984 .9826 .9035 .7778 .7114 .7172 .7543 .7577
0.005 .9994 .9996 .9996 .9983 .9147 .7610 .6497 .6016 .5999 .6175 .6257
0.002 .9939 .9942 .9982 .9519 .7247 .6157 .5597 .5370 .5342 .5390 .5438

H
IL
L

0.02 .9906 .9903 .9891 .9763 .9440 .9087 .8974 .9242 .9676 .9796 .9651
0.01 .9926 .9902 .9881 .9807 .9044 .8165 .7613 .7551 .8745 .8736 .8312
0.005 .9898 .9881 .9886 .9725 .8263 .7052 .6508 .6301 .7240 .7341 .6874
0.002 .9817 .9830 .9837 .9219 .6971 .5987 .5623 .5505 .5721 .5872 .5705

S-
U
N
I 0.02 .9980 .9982 .9977 .9924 .9819 .9562 .9078 .8816 .9368 .9536 .9501

0.01 .9984 .9979 .9961 .9939 .9598 .8744 .7776 .7303 .7930 .8142 .7964
0.005 .9978 .9974 .9967 .9939 .8884 .7503 .6497 .6216 .6363 .6649 .6572
0.002 .9930 .9931 .9965 .9540 .7306 .6137 .5680 .5472 .5488 .5614 .5575

W
O
W

0.02 .9932 .9929 .9911 .9754 .9448 .9127 .8919 .9210 .9665 .9787 .9677
0.01 .9931 .9911 .9893 .9766 .9136 .8248 .7709 .7547 .8608 .8756 .8353
0.005 .9905 .9898 .9899 .9766 .8440 .7208 .6526 .6268 .7070 .7260 .6873
0.002 .9840 .9881 .9868 .9354 .7112 .6104 .5668 .5511 .5621 .5852 .5699

For u ∈ [−q̂kl/2, q̂kl/2), observe that the Gaussian terms
in fε̂kl

are offset by integer multiples of q̂kl because

mq̂kl − nqk` = mq̂kl − njq̂kl = (m− nj)q̂kl, (25)

for some j ∈ Z>0. By swapping the sums in fε̂kl
, we can

re-index the sum over m according to Eq. (25) to produce

fε̂kl
(u) =

∑
n∈Z

P(ỹ(0)
kl = nqkl)√

2πskl

∑
m∈Z

exp
(
− (u+mq̂kl)2

2skl

)
= 1√

2πskl

∑
m∈Z

exp
(
− (u+mq̂kl)2

2skl

)
, (26)

for u ∈ [−q̂kl/2, q̂kl/2). The last line in Eq. (26) follows
from

∑
n∈Z P(ỹ(0)

kl = nqkl) = 1. Observe that |fε̂kl
(u) −

fεkl
(u)| is upper bounded by g(u; 0, skl, q̂kl) without the

n = 0 term which has a maximum of C when u ∈
[−q̂kl/2, q̂kl/2). Thus, we get fε̂kl

(u) ≈ fεkl
(u), proving

Proposition 5 as desired.8
In practice, there is another (content-dependent) suffi-

cient condition that commonly holds for lower qualities:
8g(u; 0, skl, q̂kl) without the n = 0 term is maximized at |u| = 1,

q̂kl = 2, skl = 1/12.

q̂kl, qkl ≥ 2 and the DCTs ykl are contained within the
interval [−1, 1) across all sampled blocks. This condition
is known as the “indeterminable” case in [35] and is a
point of failure for many quantization step estimation
methods. However, this case benefits the steganalyst since
errq̂kl

(ykl) = ykl = errqkl
(ykl) for any chosen step q̂kl ≥ 2.

Observe that Proposition 5 holds when either the round
or the trunc quantizer is used for the initial JPEG com-
pression; the differences in quantization bins only affect
the values of P(ỹ(0)

kl = nqkl) and skl. Also note that the
proposition considered only cover images. When estimat-
ing the steps from stego images, the variance skl is replaced
with skl +rkl, which has a negligible effect on the accuracy
of the Q error for the most relevant case of small payloads
rkl � 1. Finally, quantization step estimation methods
such as the one proposed in [35] will often select a divisor
of the true step when wrong, which tells us that steps are
commonly sufficient in practice.


