
SWARM: Adaptive Load Balancing in Distributed
Streaming Systems for Big Spatial Data

Anas Daghistani, Walid G. Aref, Arif Ghafoor, and Ahmed R. Mahmood
Purdue University, West Lafayette, IN

{anas, aref, ghafoor, amahmoo}@purdue.edu

Abstract

The proliferation of GPS-enabled devices has led to the development of numerous location-
based services. These services need to process massive amounts of spatial data in real-time.
The current scale of spatial data cannot be handled using centralized systems. This has led to
the development of distributed spatial streaming systems. Existing systems are using static
spatial partitioning to distribute the workload. In contrast, the real-time streamed spatial
data follows non-uniform spatial distributions that are continuously changing over time.
Distributed spatial streaming systems need to react to the changes in the distribution of
spatial data and queries. This paper introduces SWARM, a light-weight adaptivity protocol
that continuously monitors the data and query workloads across the distributed processes
of the spatial data streaming system, and redistribute and rebalance the workloads soon as
performance bottlenecks get detected. SWARM is able to handle multiple query-execution
and data-persistence models. A distributed streaming system can directly use SWARM to
adaptively rebalance the system’s workload among its machines with minimal changes to the
original code of the underlying spatial application. Extensive experimental evaluation using
real and synthetic datasets illustrate that, on average, SWARM achieves 200% improvement
over a static grid partitioning that is determined based on observing a limited history of
the data and query workloads. Moreover, SWARM reduces execution latency on average 4x
compared with the other technique.

1 Introduction

The recent growth in spatial data has been phenomenal due to the proliferation of GPS-enabled
devices, e.g., smartphones, smart watches, health monitors, and connected vehicles. Also, social
networks generate huge deluge of spatial data, e.g., 500 million tweets are created daily, and
they can be geotagged [5]. This growth leads to the development of location-based services, e.g.,
Internet search engines that return results based on user location, self-driving cars, video games
(e.g., Pokemon GO), and ride-sharing services. Five billion Google search queries are generated
every day [5]. Supporting these services place a huge demand on developing real-time, e�cient,
and scalable systems for processing location-based queries. Therefore, there is a growing demand
to develop new systems that are optimized to process big spatial data instead of using general-
purpose systems that are not tunable for the needs of spatial data [25].

Distributed data streaming systems have the potential to provide real-time scalable solutions.
There is an increasing number of spatial applications that are being implemented using these
systems. Examples include Storm [38], Twitter Heron [21], and SparkStreaming [44]. Spatial

1

ar
X

iv
:2

00
2.

11
86

2v
1

 [c
s.D

B
]

27
 F

eb
 2

02
0

6:00 am (New York) 6:00 pm (New York)

Figure 1: Heatmap of tweets during di↵erent times

applications require extending the capabilities of general distributed data streaming systems to
support spatial operations and spatial query processing. In particular, spatial partitioning and
indexing techniques are needed to support e�cient processing of spatial data [6, 15, 22, 35, 43, 40,
23, 24, 14].
Motivation A key challenge to improve the performance of a distributed system is to ensure
workload balancing across its machines. However, the workload can change rapidly in spatial data
applications. The challenge in load balancing stems from the fact that the spatial distributions of
data and queries are skewed, and this skewness changes with time and with users’ interests. For
example, di↵erent time-zones can lead to significant changes in the spatial distribution of the data
being generated throughout the day. In addition, a major event in a specific location can also lead
to the generation of new data and queries pertaining to that event. Figure 1 illustrates heatmaps of
tweets generated during one hour at various times of the day. Notice that at 6AM (EDT), Europe
and Asia are more active than the Americas. The opposite happens at 6PM (EDT). Moreover,
events related to sports, politics, natural disaster, etc., can cause a huge change in the distribution
of tweets and queries generated as a large number of users get interested in these events.
Di↵erence from Previous Work. Most of the existing cluster-based data streaming systems
use static data-partitioning schemes to distribute the workload among machines. For this purpose,
a limited history of the collected data is used. However, static data-partitioning schemes are not
e↵ective in spatial applications due to the rapid changes in spatial data and query distributions as
mentioned above. Existing systems, e.g., [9, 8] address this issue by using adaptive mechanisms
to update the data-partitioning plan as the workload changes. These systems use a centralized
approach to keep statistics and decisions about changing the plan. Deploying a new partitioning
plan requires temporary halting the query processor until repartitioning takes place. However, the
solutions in [9, 8] are not viable for distributed data streaming systems because data and statistics
are distributed on di↵erent machines. In addition, streams cannot be stopped until repartitioning
takes place, and processing should happen in real-time. Other existing adaptive data streaming
systems [24, 23, 14] are designed to work only with spatio-textual data streams and continuous
spatial-keyword filter queries. In addition, they only support spatio-textual publish/subscribe
applications that result in removing data points as soon as they are processed.
Our Goal. We propose SWARM, a Spatial Workload-aware Adaptive Routing Manager.
SWARM is a layer that can be integrated into any distributed data streaming system that processes
spatial data. SWARM adaptively load balances the workload among the available machines.
SWARM is generic and does not depend on a specific spatial application. It can be used directly
with minimal changes to the code of the spatial application. SWARM achieves high machine
utilization. This leads to high performance, low response time, and the handling of larger volumes
of spatial data and queries.

2

Challenges and Contributions. SWARM addresses the following challenges:
(1) Variability of optimal partitioning plan due to changes in workload distribution:
The rapid changes in the distribution of spatial data and queries directly a↵ect the optimality in
the way the data is partitioned. SWARM adaptively and incrementally alters the data partitions
according to the workload changes to achieve higher throughput. SWARM uses a cost model to
adaptively change the data partitions to achieve an optimized partitioning.
(2) Limited network bandwidth: High arrival rates of data and queries are expected in appli-
cations of distributed data streaming systems. Therefore, the underlying network of these systems
can easily become a bottleneck. To overcome this challenge, SWARM adopts a decentralized ap-
proach. In particular, SWARM minimizes the load-balancing communication among the machines
by maximizing local decision-making while using locally collected statistics.
(3) Absence of a global system workload state: It is infeasible to collect and exchange
statistics with a centralized unit because it introduces high network overhead. SWARM collects
and maintains statistics locally in each machine to reduce the communication overhead.
(4) Data Repartitioning Overhead: Data repartitioning can cause communication and com-
putational overhead especially if data is repartitioned unnecessarily. SWARM avoids unnecessary
repartitioning of the data by using a probabilistic cost model that predicts the workload of each
machine. Upon repartitioning, SWARM moves only the queries without moving the data to avoid
the communication overhead. SWARM keeps track of the old data location until the data expires.
SWARM avoids unnecessary computations by breaking the process of repartitioning into stages.
The amount of computation increases with each stage while the number of involved machines de-
creases significantly. The last stage involves only the highest overloaded machine that uses e�cient
heuristic algorithms to reduce its workload.
(5) Integrity of the system while avoiding halts during load balancing: Streams cannot
be stopped, and should be processed in real-time. SWARM uses an asynchronous approach for
data repartitioning that does not use barriers. SWARM updates its partitions and index using a
latch-free [20, 19, 18, 17] mechanism. SWARM does not stop receiving and processing new data
during the process of load balancing. SWARM’s mechanisms ensure that no results are lost nor
are they reported twice. In addition, SWARM knows the location of the data even if the partitions
are moved to other machines. If old data is needed to answer a query, SWARM consults the older
responsible machines to answer the query.
Our Approach. SWARM is a protocol for adaptive load balancing of the machines in a dis-
tributed data streaming system that process big spatial data. SWARM is composed of two layers:
1) the routing layer that consists of duplicate machines that receive new data points and queries
from stream sources, and route them to the appropriate executor machines, and 2) the execution
load-balancing layer that is composed of load-balancing units that are installed above the original
system’s executor machines. SWARM uses a probabilistic cost model that predicts the workload
of each machine based on changes of the workload’s spatial distribution. Therefore, workload
reduction is only considered for machines that have hotspots. A hotspot is a region with a large
amount of queries and high probability to receive a lot of new data and queries.

SWARM does not require prior knowledge about the distribution of data or the queries.
SWARM uses an e�cient way for locally maintaining statistics in each machine. This makes
it possible to decentralize load balancing, maximize local decision making, and reduce the commu-
nication overhead. Load balancing is achieved by lazy workload reduction, where only the machine
with the highest cost is considered for workload reduction in each round of load balancing. More-
over, the machine, say mH , with the highest cost is allowed to reduce its workload by moving part
of its query processing load only to the machine, say mL, with the lowest cost. The reduction

3

of mH ’s workload can happen by either 1) mH finding a subset of its partitions to move to mL,
or 2) mH splitting one of its partitions and moving one of the sub-partitions to mL. E�cient
algorithms for finding the best subset or split is presented and implemented in SWARM.

The rest of this paper proceeds as follows. Section 2 describes the supported data and query
models and the notations used in the paper. Section 3 presents a cost model for load balancing.
Section 4 explains SWARM, its indexes, its maintained statistics, and its adaptive load balanc-
ing process. Section 5 describes how SWARM preserves system integrity. Section 6 studies the
performance of SWARM. Section 7 discusses the related work. Section 8 concludes the paper.

2 Data and Query Models

SWARM works with any distributed streaming system that processes spatial data using a data
processing pipeline. SWARM is designed for tuple-at-a-time systems (e.g., Apache Storm [38])
that target milliseconds latency and not for micro-batched systems (e.g., Spark Streaming [44])
that target sub-second latency.The data and the query streams are redirected to SWARM first.
To stress the performance of the system, we assume that the maximum arrival rate of the data
stream is higher than the processing capability of the system. This means that the application is
trying to fully utilize its machines to process as much data as possible. The main requirement for
the data points is to have geo-locations, e.g., Twitter is a good source of geo-tagged tweets that are
generated every second. SWARM supports snapshot and continuous queries. A continuous query
progressively reports the query results, mainly the data points that satisfy the query’s spatial
range and its other predicates. Some applications are interested in the recent portion of the data,
e.g., the most recent hour. This interest can be expressed as a sliding or a tumbling window. Data
expires once it exits the window. SWARM will need to update its statistics accordingly.

As a proof-of-concept, we realize SWARM to adaptively load-balance a location-aware publish-
subscribe system. The input stream is geotagged tweets from Twitter, where users subscribe to
get tweets in a specific spatial range. A tweet is geo-tagged as a point, say d, in space, where
s qualifies for a user’s subscription, say Query q, if d lies inside q’s spatial range. Typically,
before SWARM, each query gets replicated into all executor machines, e.g., in an R*-Tree [12].
Each point is directed to only one executor machine, and is checked against all queries using the
replicated R*-Tree.

We use the term Hotspot to refer to a spatial region that receives a large amount of queries
and/or data points that is likely to persist for some duration of time. This definition of a hotspots
excludes spikes of heavy workloads that do not persist for a significant duration of time.

3 The Cost Model

SWARM distributes the system workload using a cost model that depends on the amount of data
points in each partition. The cost model gives higher weight to partitions having a high number
of queries. Moreover, the cost model predicts the future workload of each partition based on the
workload history. This prediction serves as a scale factor for the overall cost and workload of
each partition. Assume that we have a distributed streaming system, say S, that has a set M of
executor machines. Each machine m 2 M holds some partitions Pm, where |Pm| = nm, nm is the
number of partitions in Machine m. Each partition p 2 Pm, locally maintains some statistics. The

4

cost estimate C(p) of a partition p is as follows:

C(p) = N(p)⇥Q(p)⇥ Prob(p) (1)

N(p) is the number of points in Partition p, Q(p) is the number of queries that overlap p, and
Prob(p) is the probability that new data and queries land in p. Prob(p) depends on the arrival
of data and queries during the last round of repartitioning. Note that the workload history is
captured via N and Q while Prob is a weighting factor to the cost of this history. The e↵ect of
old data can fade with time as discussed in Section 4.2.2. Prob(p) is estimated as follow:

Prob(p) =
R(p)

R(S)
(2)

where R(p) and R(S) are the number of data points and queries received by p and all of S,
respectively, during the last round of repartitioning. R(S) is computed as follows.

R(m) =
P

nm

i=1 R(pi) (3)

R(S) =
P|M |

i=1 R(mi) (4)

By substituting Eqn. 2 into Eqn. 1, then:

C(p) =
N(p)Q(p)R(p)

R(S)
(5)

The workload of Machine m is computed by:

C(m) =
P

nm

i=1 C(pi) (6)

Using Eqn. 5,

C(m) =
N(p1)Q(p1)R(p1)

R(S)
+ · · ·+ N(pnm

)Q(pnm
)R(pnm

)

R(S)

C(m) =

P
nm

i=1{N(pi)Q(pi)R(pi)}
R(S)

=
Num(C(m))

R(S)
(7)

where Num(C(m)) is the numerator of Machine m’s cost formula. Num(C(m)) can be computed
locally. In contrast, computing R(S) requires information from all machines in S. R(S) is the
same for all machines, and hence is computed once using Eqn. 4 that requires only one number
(R(m)) from each executor machine. Thus, having Num(C(m)) for all machines is enough to
compare and rank the machines by cost.

4 SWARM Architecture

SWARM can work with any distributed streaming system that processes spatial data. It does
not require changing the original code of the system’s executor machines, e.g., their indexes,
their way of handling data or processing queries. Refer to Figure 2. SWARM is composed
of two layers, the routing layer and the execution load-balancing layer. SWARM replaces the
partitioning layer of spatial streaming applications (that have a partitioning layer). SWARM is
placed on top of the original executor machines m1, · · · ,mn and directly receives the incoming

5

m1

DataQuery

Final Output

SW
A

R
M Ro

ut
in

g
Ex

ec
ut

io
n

Partitions HashTable
Statistics Manager

Load Balancing
Manager

Partitions HashTable
Statistics Manager

Load Balancing
Manager

GlobalIndex GlobalIndex

mn

1 g
p4

p7

p8

p5 p6

Executor Machines
m5m4m3m1 m2

p4

p7

p8

p5 p6

Executor Machines
m5m4m3m1 m2

Figure 2: The architecture of SWARM

streamed data and queries. The routing layer accepts new data points and queries, and routes
them to appropriate executor machines. The routing layer has multiple GlobalIndex machines to
avoid bottlenecks. GlobalIndex machines can communicate with each other and with any executor
machine. Each GlobalIndex machine has a spatial grid index that divides the whole space into
rectangular partitions. Each executor machine is responsible for one or more partitions. Every
new data point, say x, or query is received by only one GlobalIndex machine that uses the index
to identify the partition, say px, that spatially contains x, then routes x to px’s executor machine.
One GlobalIndex machine, termed the Coordinator, has an additional role other than routing.
Section 4.1 explains that further. Having GlobalIndex machines reduce the processing overhead,
memory usage, and communication among executor machines. The reason is that data points
and queries of a partition will be localized in one executor machine. A query will not be sent to
all executor machines. Also, communication among executor machines to aggregate the results
is reduced. SWARM uses GlobalIndex machines to adaptively load-balance the workload among
executor machines, as in Section 4.3.

SWARM’s second layer contains load-balancing units above the system’s original executor
machines m1, · · · ,mn. Each unit has a load-balancing manager, a statistics manager, and a
HashTable to index the partitions. Each unit communicates with all other load-balancing and
GlobalIndex machines. The unit receives data points and queries only for the partitions that are
under its control. The unit’s statistic manager of updates its statistics given the new object, as in
Section 4.2. Moreover, the unit uses a HashTable to identify the partition(s), say p, that overlap
the received object, as in Section 4.1. Then, the original application code in the executor machine
processes this object on p. The load-balancing manager computes the cost of its executor machine
periodically using the cost model in Section 3 using local statistics. It shares this cost with one
GlobalIndex machine. Executor machines with the highest and lowest workloads, say mH and mL,
respectively, are identified. mH moves part of its workload to mL, as explained in Section 4.3.

6

p4

p4

p4

p4
p4

p4

C2

C1 (8 cells)

(b) (c)

p4

p7

p8

p5
p6

p
13

p
9

p7

p8

p5
p6

p
11

p
14

p4
p4

p4 p4

Executor ID: m2

Top: 7
Bottom: 4

Left: 4
Right: 7

(a)

Executor Machines
m5m4m3m1 m2

Figure 3: SWARM’s index for GlobalIndex machines

4.1 Indexing and Initialization

SWARM does not require prior knowledge about the distribution of the incoming data or queries.
Initially, SWARM divides the whole spatial area evenly among all executor machines. This section
introduces the global and local indexes used by SWARM.

4.1.1 The Global Index

SWARM uses a 2D spatial grid index in each GlobalIndex machine to divide the space into grid
cells of a predefined size C1 ⇥ C2 (refer to Figure 3). This global index replaces the partitioning
index of spatial applications that have a partitioning layer. As in Figure 3a, each cell points to a
partition that covers this cell. A partition has a unique ID, partition borders, and the ID of the
executor machine that handles the partition. Thus, it takes O(1) operations to route an object.
Figure 3b gives an example for initial configuration of the index in the GlobalIndex machines of a
system with 5 executor machines m1, · · · ,m5 and 5 partitions p1, · · · , p5. The patterns (colours)
of the partitions link them to the executor machines that control them.

This index routes the received queries and data points to the responsible executor machine(s).
However, one of the GlobalIndex machines, termed the Coordinator, has higher responsibilities
for load balancing alongside routing incoming objects. Initially, the whole space is contained in
one partition. The Coordinator creates the initial index by recursively splitting the partition with
the largest area into two equal sub-partitions, until each executor machine has one partition. The
splitting can be horizontal or vertical depending on which side length is longer. Every time a

7

partition is split, say p1, the sub-partitions are given new unique IDs, say p2 and p3. Splitting of a
partition stops if a resulting sub-partition is smaller than a cell. Then, the index is shared with all
the GlobalIndex machines. Moreover, the Coordinator sends the information about each partition
to the executor machine responsible for that partition. The Coordinator is also responsible for
identifying the two machines with highest and lowest workloads in each load-balancing round.
Every round, the Coordinator receives from each executor machine only two numbers that help
determine the cost of all executor machines according to Eqn. 7, as explained in Section 4.3.1.
If the Coordinator fails, another GlobalIndex machine takes over as the new Coordinator. This
prevents a single point of failure in the system. The decision of choosing a GlobalIndex machine
to be the new Coordinator is made by using the Byzantine agreement protocol among all executor
machines.

Figure 3c gives a possible configuration of the index when a hotspot appears in the top-right
corner of the space. Each load-balancing round, the Coordinator requests from the machine with
the highest cost to move some of its partitions’ responsibilities to the machine with the lowest
cost. As in Figure 3c, the hotspot leads to splitting some partitions and moving others to di↵erent
machines. An executor machine can be responsible for any number of partitions, e.g., m3 handles
3 partitions. p13 has a hotspot, but cannot be split because its size equals a cell’s size. Thus,
SWARM has an executor machine (m4) responsible for only p13. As the hotspot migrates, m4

might become responsible for other partitions.
Routing a data point is fast as it overlaps only one cell. However, a range query can overlap

multiple cells. A naive algorithm for finding which partitions overlap a query can be visiting all
cells that overlap this query. Algorithm 1 e�ciently determines which partitions overlap a query.
The algorithm uses SWARM’s index and partition structure.

Algorithm 1: queryOverlap(Query q)

1 Stack¡CellCoordinate¿ checkCell
2 List¡Partition¿ result
3 indexQuery iq = mapQueryToIndex(q)
4 checkCell.push(CellCoordinate(iq.left, iq.top))
5 while !checkCell.isEmpty do
6 CellCoordinate c = checkCell.pop
7 Partition p = gridIndex[c.x][c.y]
8 if (p not in result) && (c overlaps iq) then
9 checkCell.push(CellCoordinate(p.right+1, c.y))

10 checkCell.push(CellCoordinate(c.x, p.bottom-1))
11 result.add(p)
12 end
13 end
14 return result

Algorithm 1 can skip cells by using the partitions’ borders. It adds the coordinates of the cell
that overlaps the query’s top-left corner to the checkCell stack. If the cell’s coordinates (c) taken
from checkCell overlaps the query, the cell’s partition (p) is added to the result. Also, two cells
are added to checkCell: 1) the one after the right border of p on the same row as c, and 2) the
one below the bottom border of p and on the same column as c. The algorithm recursively takes
and adds cells to checkCell until the stack is empty.

8

m1

m5

Data

Query

HashMap

Data
Queries

Statistics

•

•

•

HashMap
PartitionID

Global
Index

m2

m4

Data Queries
Statistics
•

•
•

PartitionID
P5

P5

P11

P11

P8
Data Queries
Statistics
•

•
•

P8

m3

Figure 4: SWARM with the HashMap of m1 and m5

4.1.2 The Local Index

SWARM adds a local index in each executor machine. Notice that this local index is separate from
any other index used in the user’s application code. Also, SWARM does not interfere with the
application logic in any other way. For example, a user’s application for evaluating spatio-textual
queries might be using a grid index for maintaining data points or an R-Tree index for storing
continuous queries. In other words, user applications can be used as is in executor machines while
still using SWARM for load balancing. SWARM’s new local index in executor machines receives
data points and queries from the GlobalIndex machines. Then, it identifies the required partition
for processing the received data points or queries, and forwards them to the user’s application for
evaluation.

SWARM adds a HashMap index to each executor machine to easily find the required partition
when processing newly received data or queries. Each executor machine uses its HashMap to
index the partitions that are under its control. The HashMap key is PartitionID that is the
unique identifier of each partition.

Figure 4 illustrates the HashMap of the executor machines m1 and m5. The GlobalIndex
machines attach to every received data point or query the PartitionID of the partition that overlaps
it. This received data point or query is routed with the PartitionID to the executor machine that is
responsible for that partition. The HashMap of m5 contains partition p8 while m1 has partitions p5
and p11. The structure of a partition maintains its metadata (PartitionID, position in space, and
size), data points, queries, and statistics. The partition’s data points and queries are maintained
using the code of the original application.

4.2 Collecting and Maintaining Statistics

Collecting statistics in distributed streaming systems is challenging because the data arrives in
high continuous volumes. Moreover, most applications need real-time processing for each data
point with minimum latency. Thus, a feasible technique for collecting and maintaining Statistics
in distributed streaming systems should require minimum number of updates. Also, each parti-

9

N: 3
Q: 3 spanQ: 0
R: 2 preSpanQ′: 0

N: 10
Q: 7 spanQ: 1
R: 5 preSpanQ′: 0

p11
Statistics

N: 2
Q: 2 spanQ: 0
R: 1 preSpanQ′: 0
N: 4
Q: 4 spanQ: 1
R: 2 preSpanQ′: 1
N: 8
Q: 5 spanQ: 2
R: 4 preSpanQ′: 1
N: 10
Q: 7 spanQ: 1
R: 5 preSpanQ′: 0

N‘, Q‘, and
spanQ‘ are in
each row and
column, which

are used during
new rounds to

collect statistics

Figure 5: SWARM statistics for partition p11

tion should maintain its statistics locally without the need to communicate with other machines.
SWARM achieves this by maintaining minimum local statistics that are enough to make all load
balancing decisions locally. SWARM maintains the statistics in a simple multidimensional array
in memory, and takes advantage of cache prefetching as all the needed statistics to perform one
cost calculation are located next to each other in memory.

4.2.1 SWARM’s Statistics

SWARMmaintains the minimum statistics needed for using the cost model. Space is divided into a
grid of small cells that are aligned with the grid index of GlobalIndex machines. The arrangement
of cells that cover a partition are passed to the responsible executor machine with the partition’s
metadata. We use Partition p11 in Figures 3c and 4 to illustrate how SWARM maintains the
statistics.

Figure 5 gives the maintained statistics in p11 at the end of a load-balancing round. The dots
and rectangles represent the positions of the data points and the query ranges in p11, respectively.
The stars and the gray rectangles mark the data points and the queries received in the last round
of load balancing, respectively. p11 has a 4X2 cell matrix. SWARM maintains in each row and
column 5 statistics, 3 of which are cumulative. Row i’s (Column j’s) cumulative statistics represent
the total from the uppermost row (leftmost column) until Row i (Column j), respectively. The 5
maintained statistics in each row and column are: (1) N : the cumulative number of data points,
(2) Q: the cumulative number of queries, (3) R: the cumulative number of data points and queries
received during the last round of load balancing, (4) spanQ: the number of queries whose ranges
span from the previous row/column, and (5) preSpanQ0: the number of queries received during
the last load balancing round whose ranges span from the previous row/column. To illustrate,
refer to Row 3 of p11 in Figure 5. All cumulative statistics reflect the objects in the first three
rows. There are 8 data points (N) and 5 queries (Q). Two data points and two queries are
received during the last round, hence R = 4. Two queries span from the second row (spanQ = 2).
However, only one of them is received during last round (preSpanQ0 = 1).

SWARM uses these statistics for load-balancing purposes. The overall statistics of a partition p

(N(p), Q(p), and R(p)) are the ones in the last row/column. The statistics are only updated at the
end of a load-balancing round to avoid the overhead of updating almost all the statistics whenever

10

a new data point or query arrives. Additional three statistics, termed Statistics Collectors, for
each row and column are introduced, namely N

0, Q0, and spanQ
0. Statistics Collectors are used to

update the statistics at the end of a round. They reduce the number of updates per received data
point or query. The next section presents how these Statistic Collectors are updated and used for
maintaining the statistics.

4.2.2 Maintaining the Statistics

SWARM needs to have a small number of updates when receiving a data point or query. When a
new data point arrives, SWARM updates only two of a partition’s Statistics Collectors. However,
when a new query arrives, SWARM updates the Statistics Collectors of the rows and columns
that overlap the query. Having more statistics to update will not a↵ect the performance because
the arrival rate of data is much higher than that of queries.

Three Statistics Collectors, N 0, Q0, and spanQ
0, are used in each row/column to count di↵erent

types of received objects during the most recent round of load balancing. N 0 and Q
0 count the new

data points and queries, respectively. spanQ0 counts the number of queries that their ranges span
from the previous row/column. When a new data point arrives, SWARM increments N

0 of the
row and the column containing the data point. When a new query arrives, SWARM increments
both Q

0 of the row and the column that overlap the top-left corner of the query, and spanQ
0 of

the rows and the columns that overlap the query excluding the row and the column overlapping
the top-left corner of the query.

To conclude a load-balancing round, SWARM uses the Statistics Collectors to update all
remaining statistics as follows. Let i � 0 be a row/column index. Then, the statistics are updated
as follows:

N(i) = N(i) +
P

i

j=0 N
0(j) , Q(i) = Q(i) +

P
i

j=0 Q
0(j)

R(i) =
P

i

j=0 N
0(j) +

P
i

j=0 Q
0(j)

spanQ(i) = spanQ(i) + spanQ
0(i) , preSpanQ

0(i) = spanQ
0(i)

Algorithm 2: updateStat(PartitionID, rowOrColumn)

1 stat [][] = partitionsHashMap.get(PartitionID)
.statistics(rowOrColumn) . Multidimensional array

2 int sumN
0 = 0

3 int sumQ
0 = 0

4 for i = 0 to Num of rowOrColumn in PartitionID do
5 sumN

0 += stat [N 0][i]
6 sumQ

0 += stat [Q0][i]
7 stat [N 0][i] = 0 . Reset current N 0

8 stat [Q0][i] = 0 . Reset current Q0

9 stat [N][i] += sumN
0

10 stat [Q][i] += sumQ
0

11 stat [preSpanQ 0][i] =stat [spanQ0][i]
12 stat [spanQ][i] += stat [spanQ0][i]
13 stat [spanQ0][i] = 0 . Reset current spanQ0

14 stat [R][i] = sumN
0 + sumQ

0

15 end

11

N′ :1
Q′ :1
spanQ′ :0

N′ :1
Q′ :2
spanQ′ :0

p11
Statistics
Collectors
N′ :0
Q′ :1
spanQ′ :0
N′ :0
Q′ :1
spanQ′ :1
N′ :2
Q′ :0
spanQ′ :1
N′ :0
Q′ :1
spanQ′ :0

N:2
Q:2 spanQ:0
R:0 preSpanQ′:0

N:8
Q:4 spanQ:1
R:0 preSpanQ′:0

p11
Statistics

N:2
Q:1 spanQ:0
R:0 preSpanQ′:0
N:4
Q:2 spanQ:0
R:0 preSpanQ′:0
N:6
Q:3 spanQ:1
R:0 preSpanQ′:0
N:8
Q:4 spanQ:1
R:0 preSpanQ′:0

(a) At the beginning of the round (b) At the end of the round

DA

QA

QB

QC

DB

Figure 6: Updating partition p11’s Statistics Collectors

SWARM uses an e�cient algorithm that utilizes the fact that the summations in the equations
can be carried out from one row/column to another. There is no need to compute the summations
from scratch each time, i.e., O(n!). With only one addition, we produce the statistics of the next
row/column from these of the previous row/column. Algorithm 2 illustrates how to update the
statistics of a partition by passing once through the partition’s rows and columns, i.e., O(n). This
algorithm runs as a separate task in the background. Note that all Statistics Collectors are reset
to 0 to be ready for collecting the statistics of the next round of load balancing.

Figure 6 illustrates the statistics of Partition p11 while receiving new data points and queries.
Figure 6a illustrates the positions of the data points and the ranges of the queries in p11 at the
beginning of a new load balancing round. Also, it shows the current state of the maintained
statistics as discussed in Section 4.2.1. The Statistics Collectors are all set to 0 at the beginning
of the round. Figure 6b shows the Statistics Collectors at the end of the round after receiving
2 new data points and 3 new queries. During the load-balancing round, the two data points DA

and DB are received first. Both data points are in the third row (Row2), but one of them is in
the first column (Col0) while the other is in the second column (Col1). N 0(Row2) is incremented
twice while N

0(Col0) and N
0(Col1) are each incremented once. Then, Queries QA, QB, and QC

arrive into p11 in this order. The upper-left corner of QA is in the cell that overlaps Col0 and
Row1. Also, the range of QA is contained within one cell. Thus, only Q

0(Row1) and Q
0(Col0) are

incremented. QB starts in Row0 and spans through Row1 and Row2. Thus, spanQ0(Row1) and
spanQ

0(Row2) are incremented in addition to the increment of Q0(Row0) and Q
0(Col1). At the

end of the round, Statistics Collectors are used to update the statistics using Algorithm 2. The
results of the updated statistics are given in Figure 5.

Notice that the target of SWARM is not to count the actual number of data points but rather
to track the change in the spatial data workload. To diminish the e↵ect of old data gradually,
the number of data points N is divided by 2 before it is updated in each round of load balancing.
This is to reduce the e↵ect of old data points on the current spatial distribution. In distributed
streaming systems that support historical queries, SWARM needs to be informed about data
expiration to update N accordingly.

12

4.2.3 Correctness of the Statistics

In this section, we prove the correctness of the statistics that SWARM collects and maintains
about data points and queries. To show that, we need to prove that the maintained statistics
always represent the true number of data points and queries without any over- or under-counting.

First, we prove the correctness of the statistics for data points. Assume that we have a partition
that has k rows and only one column. This results in k cells in total as in Figure 7.

Cell1

Cellsp

Cellk

Cellsp+1
Split Point (SP)

Figure 7: Partition with k cells (rows)

Let i be the row number of a cell, where 1 i k, n(i) be the true number of data points
in celli, and N(i) be the cumulative number of data points that SWARM maintains in rowi. n(i)
can be obtained by simply counting the number of data points within celli. As mentioned before,
the cumulative number N(i) is computed from top to down for horizontal divisions. Therefore,
N(i) can be computed as follows:

N(i) =
P

i

j=1 n(j)

In the initial case where k = 1, there is only one cell with n(1) data points, hence N(1) = n(1). For
k = 2, N(2) = n(1)+n(2). We can derive the number of data points in cell2 as n(2) = N(2)�N(1).
In general, let us assume a partition as illustrated in Figure 7 that has a split point sp, where
1 <= sp <= k, that divides the partition into two partitions, say p1 and p2. n(pi) represents the
true number of data points in Partition pi. Therefore, the number of data points in each partition
can be computed as follows:

n(p1) = n(1) + n(2) + ...+ n(sp)

) n(p1) =
P

sp

j=1 n(j) = N(sp)

n(p2) = n(sp+ 1) + n(sp+ 2) + ...+ n(k) =
P

k

j=sp+1 n(j)

) n(p2) =
P

k

j=1 n(j)�
P

sp

z=1 n(z) = N(k)�N(sp)

Therefore, this shows that the computed statistics, i.e., N , is equal to the true number of data
points, i.e., n. An analogous proof can be used to show that N is also correct when dividing cells
vertically, and N is cumulatively computed from left to right.

Now, we prove the correctness of the maintained statistics about queries by using the same
setup of Figure 7. Given the input query boundaries, we can extract the exact count of all queries
in each grid celli by maintaining four variables, namely, qs, qe, qse and qo (s stands for start, e stands
for end, se stands for start and end, and o stands for overlap, as explained below). Let qs(i) be
the number of queries whose upper boundary intersects celli and whose lower boundary intersects
another cell. Furthermore, let qe(i) be the number of queries whose lower boundary intersects
celli and whose upper boundary intersects another cell. Let qse(i) be the number of queries whose
upper and lower boundaries intersect celli. Finally, let qo(i) be the number of queries whose upper
and lower boundaries do not intersect celli but their ranges overlap celli. Therefore, the true

13

number, q(i), of queries that intersect celli is the sum of these four variables, i.e.,

q(i) = qs(i) + qe(i) + qse(i) + qo(i) (8)

Now, we extend the formula above to compute the true number of queries that overlap a sub-
partition, i.e., one column of cells that starts from Row u and ends in Row l > u. Let that number
of q(u, l). We need to avoid double counting of a query that overlaps multiple cells. q(u, l) is equal
to the true number of queries in Row u and only queries that start in any row from row u+ 1 up
to row l, no matter where these queries end. For rows after u, only counting queries that start in
any cell will exclude recounting any query that span over multiple cells. Therefore, q(u, l) can be
computed using the four variables as follow:

q(u, l) = q(u) +
P

l

j=u+1(qs(j) + qse(j)) (9)

We need to demonstrate that the statistics gathered by SWARM when counting the number
of queries is equal to the true number, i.e., q(u, l). Refer to Figure 7 for illustration. As in the
figure, we have a partition that has k cells starting from Cell 1 at the top down to Cell k at the
bottom. To maintain query statistics, for each Row i, where 1 i k, of a partition, SWARM
maintains only two statistics per row, namely, Q(i) and Qspan(i). Q(i) is the cumulative number
of queries from the first row of the partition, i.e., Row 1, to Row i. Therefore, Q(i) directly
represents the number of queries that start at any row from the beginning of the partition until
Row i. Recounting of queries can happen by considering queries that only end or overlap any of
the cells as they are already counted where they started. Thus, they are excluded from Q(i) as
follows:

Q(i) =
P

i

j=1(qs(j) + qse(j)) (10)

Let Qspan(i) be the number of queries that extend (span) from an upper row, say Row (i� 1),
to Row i. Thus, Qspan(i) represents the number of queries that overlap or start without ending in
Row (i� 1). Note that Qspan(1) will always equal 0 because there are no queries that extend from
outside the partition to the first row. Thus, Qspan(i) can be formulated from the true numbers as
follows:

Qspan(i) =

(
0, if i = 1

qs(i� 1) + qo(i� 1), otherwise

Although Qspan(i) depends on the variables of the previous row (i�1) in SWARM, there is another
equivalent way of computing Qspan(i) with the variables from Row i that makes the proof easier
to follow. Note that any query that overlap Row (i� 1) or starts without ending in Row (i� 1)
definitely extends to Row i and this query’s range either ends at Row i or overlaps Row i and
continues to the next row below Row i. This can be reflected in the formula for calculating Qspan(i)
as follows:

* qs(i� 1) + qo(i� 1) = qe(i) + qo(i)

) Qspan(i) = qe(i) + qo(i) (11)

This equivalent equation for calculating Qspan(i) is correct also in the case when i = 1 because
both qe(1) and qo(1) are always equal 0.

In the initial case, i.e., when k = 1, and there is only one cell in the partition with q(1) queries,
Q(1) = qs(1) + qse(1) = q(1) and Qspan(1) = 0. This is correct because qs(1), qe(1) and qo(1) are

14

all equal 0 as cell1 covers the whole partition and every query definitely starts and ends in this
cell. For k = 2, using Eqns. 10 and 11, Q and Qspan for Rows 1 and 2 are computed as follows:

Q(1) = qs(1) + qse(1)

Q(2) = Q(1) + qs(2) + qse(2)

Qspan(1) = qe(1) + qo(1) = 0

Qspan(2) = qe(2) + qo(2)

Notice that when k = 2, there are only the following three possible sub-partitions: a partition
that has cell1 only, cell2 only, or cell1 and cell2. The computation of the true numbers can be
computed using Eqn. 9 as follows:

q(1, 1) = q(1) = qs(1) + qe(1) + qse(1) + qo(1)

) = qs(1) + 0 + qse(1) + 0 = Q(1)

q(1, 2) = q(1) + qs(2) + qse(2)

= qs(1) + qe(1) + qse(1) + qo(1) + qs(2) + qse(2)

= qs(1) + 0 + qse(1) + 0 + qs(2) + qse(2)

) = Q(1) + qs(2) + qse(2) = Q(2)

q(2, 2) = q(2) = qs(2) + qe(2) + qse(2) + qo(2)

) = Q(2)�Q(1) +Qspan(2)

Note that the maintained statistics are enough to compute the true number of queries in all
possible sub-partitions when k = 2. Refer to Figure 7 for illustration. For cases k > 2, assume
that a partition has a split point sp, where 1 <= sp <= k, that divides the partition into two
sub-partitions, say p1 and p2. SWARM’s query statistics can be computed using the Eqns. 10 and
11 as follows:

Q(sp) =
P

sp

j=1(qs(j) + qse(j))

Q(k) =
P

k

j=1(qs(j) + qse(j))

Qspan(sp+ 1) = qo(sp+ 1) + qe(sp+ 1)

The true number of queries in the partition p1 is computed using the Eqns. 9 and 8 as follow:

q(p1) = q(1, sp) = q(1) +
P

sp

j=2(qs(j) + qse(j))

= qo(1) + qe(1) + qse(1) + qs(1) +
P

sp

j=2(qs(j) + qse(j))

= qo(1) + qe(1) +
P

sp

j=1(qs(j) + qse(j))

) = 0 + 0 +
P

sp

j=1(qs(j) + qse(j)) = Q(sp)

Notice that the computed statistic Q(sp) is exactly equal the true number of queries in p1, i.e.,

15

q(p1). The true number of queries in the Partition p2 is computed as follows:

q(p2) = q(sp+ 1, k) = q(sp+ 1) +
P

k

j=sp+2(qs(j) + qse(j))

= qo(sp+ 1) + qe(sp+ 1) + qse(sp+ 1) + qs(sp+ 1)

+
P

k

j=sp+2(qs(j) + qse(j))

= qo(sp+ 1) + qe(sp+ 1) +
P

k

j=sp+1(qs(j) + qse(j))

) q(p2) = Qspan(sp+ 1) +
P

k

j=sp+1(qs(j) + qse(j))

= Qspan(sp+ 1) +
P

k

j=1(qs(j) + qse(j))

�
P

sp

j=1(qs(j) + qse(j))

) q(p2) = Qspan(sp+ 1) +Q(k)�Q(sp)

Therefore, SWARM’s statistics (Q and Qspan) are necessary and su�cient to compute the true
number of queries. The same proof can be used to show that SWARM’s statistics are correct by
using the computed cumulative number Q from left to right when dividing partitions vertically.

For SWARM’s Statistic R, notice that R represents the cumulative number of the newly
received data points and queries. Thus, the proof of correctness for R is that same as the ones
for the data points and the queries proofs explained above. However, in the proofs, QpreSpan is to
used instead of Qspan, where the former represents the span of only the new queries.

4.3 Adaptive Load Balancing

SWARM adopts a lazy repartitioning mechanism to balance the workload. It does not over-react
to transient changes in the workload so as not to overwhelm the system by excessive load balancing
activities. It rebalances the workload only if rebalancing will enhance the system’s throughput and
reduce its execution latency. Each round of load balancing, SWARM considers only the machine,
say mH , with the highest cost for workload reduction. Moreover, workload reduction can only
happen by moving some of the partitions’ responsibilities to the machine, say mL, with the lowest
cost.

4.3.1 Minimizing Communication by Maximizing Local Computations and Local
Decision Making

Most applications that use distributed streaming systems heavily depend on the network band-
width and connection availability between machines. One of the main objectives of SWARM is
to minimize communication. This objective is achieved by: 1) locally collecting and maintaining
statistics with minimum overhead as discussed in Section 4.2. 2) The cost model is designed to al-
low mostly local computations. 3) SWARM breaks the process of load balancing into stages of local
decision making. The amount of local computations increases with each stage while the number
of machines performing the computations decreases significantly. SWARM uses an asynchronous
approach for communicating and applying new partitioning plan among executor machines.

Figure 8 illustrates communications, local computations, and local decision-making between
one of the executor machines, saymi, and the Coordinator. Load balancing is triggered periodically
in all executor machines, e.g., every 15 seconds. At the beginning, each executor updates its
statistics since the last round of load balancing using Algorithm 2. Then, the numerator part of
the cost equation, i.e., Num(C(mi)), is calculated using local statistics. Num(C(mi)) is sent to

16

The Coordinator
GlobalIndex Machine

Predefined time for new
load balancing round

Calculate Num(C(mi))
Send Num(C(mi))

and R(mi)

Calculate R(S)

Receive Num(C(mi)) and R(mi)
from all Executor Machines

mi
Executor Machine

Decide if rebalancing needed

Figure 8: Workflow of load balancing decision

Flip Bad Start Good Great

Decision: Do Load Balancing
if same decision

taken ! times if (R(s) > preR(s)) TrueFalse

Decision

Figure 9: Decision mechanism for load balancing

the Coordinator along with R(mi). The Coordinator computes R(S) using Eqn. 4 after receiving
Num(C(mi)) and R(mi) from all executor machines. Then, the Coordinator decides the best load
balancing action.

Load balancing in SWARM is an iterative process. As in Figure 9, the decision mechanism has
five stages, and has a structure that points to the current stage, and that stores the decision made
in the previous round. In each round, the Coordinator makes one of two possible load-balancing
decisions, either to rebalance the workload, or to simply do nothing. The Coordinator applies the
previous load-balancing decision each round unless the Flip Decision (leftmost) stage is reached.
The leftmost stage flips the decision and resets the stage pointer to the Start stage. Initially, the
Start (middle) stage is selected, and the previous decision is set to ”Do Nothing”.

In every load balancing round, the Coordinator moves the pointer to the right if the throughput
has enhanced (R(S) > preR(S)). Otherwise, it moves the pointer to the left. Thus, moving to
the right indicates that the overall throughput is enhancing and the decision performed in the
previous round (iteration) has proven correct. This mechanism insures that the current decision
continues to be carried over into future rounds until it is ine↵ective, and in this case, it is flipped.
This avoids over-reacting to the system’s transient fluctuations in performance.

When the same decision was taken for � number of times (e.g., 20), the stage pointer is
forced to move to the Flip Decision stage. This is to avoid sticking with one decision for a long
time while this decision is making the system stay in a sub-optimal partitioning plan, e.g., if
the Coordinator decides to do nothing each round because the throughput keeps increasing in
one round and decreasing in the next. Forcing the system to try rebalancing may lead to better
throughput. Otherwise, the decision will be flipped again to do nothing after two rounds. In most
situations, SWARM will not stay in the same workload state for a long time because the workload

17

mH
Executor Machine

Search for subset
or split to move

Order to reduce workload
with C(mL), R(S), and

uniquePartitionID

mL
Executor Machine

Move partition’s
information & queries

Inform the changes to
update the index

Inform all other
GlobalIndex Machines

with the changes

The Coordinator
GlobalIndex Machine

Sort machines based on

cost & identify mH and mL

Figure 10: Workflow of rebalancing

is continuously changing. Hence, the value of � is not critical for the performance of SWARM.
Figure 10 shows the workflow when the Coordinator decides to rebalance. It sorts all executors

based on their costs, and identifies the machine with the highest and lowest costs, mH and mL,
respectively. The Coordinator requests from mH to reduce its workload by migrating portions of it
to mL. This message contains three numbers, the cost of mL (C(mL)), R(S), and a unique un-used
partition ID that mH can use to create new partitions, if needed. mH tries to move portions of its
partitions to mL, as discussed in Section 4.3.2. If mH finds partitions to move, a new background
task is created to send the partitions’ information and their continuous queries to mL. mL adds
these partitions and continuous queries to its workload. After the move, mH reports the changes to
the Coordinator that forwards the changes to all other GlobalIndex machines. They update their
indexes using a latch-free background task. The cells that point to the old partition will gradually
point to the new partitions that have new unique IDs. This allows the index to concurrently route
new data during the update. Section 5 discusses how the integrity of data and queries’ results is
preserved while migrating the workload between machines and while updating the index. If mH

cannot find a feasible workload reduction, it informs the Coordinator. The latter identifies the
next highest workload machine and treats it as mH , and repeats the process.

When the distribution of the workload changes, SWARM might move some old split partitions
to di↵erent machines. This may result in having an executor machine controlling partitions that are
adjacent, i.e., sharing a boundary. Hence, there is no benefit in keeping them separate. Moreover,
they increase the overhead of maintaining separate small partitions. Adjacent partitions are
combined using a background task that is triggered occasionally in all executor machines, e.g.,
every 5 hours. Every executor machine merges any of its partitions that form a connected rectangle.
When an executor machine finds a possible merge, it creates the larger partition using a unique
unused partition ID that it requests from the Coordinator. Then, the executor machine reports
the changes to the Coordinator that, in turn, forwards the changes to all the other GlobalIndex
machines.

18

4.3.2 Workload Reduction by Repartitioning

mH can reduce its workload in one of two ways, and applies them in this order: 1) move a subset
of its partitions to mL. 2) split one of its partitions into two, and moves one of them to mL. First,
mH tries to reduce its workload using the first technique because it requires less overall overhead.
If the first technique does not succeed, mH tries the second technique. The search for workload
reduction is performed as a background task.

Let PmH
be the set of partitions that mH controls. The numerator part of the partitions’ cost

(Num(C(pi))) is already computed, where pi 2 PmH
. From Section 4.3.1, C(mL), R(S), and a

new unique partition’s ID are made available to mH .
Searching for the Best Subset of Partitions to Move.
Finding the best subset of PmH

to move means that after moving this subset from mH to mL both
machines will have approximately equal costs and workloads. Let Cmax be the maximum cost of
partitions that mH can move to mL without overloading mL. Hence, Cmax = (C(mH)�C(mL))/2.
Cmax serves as a guide to ensure that the new workload plan will be better than the current one.
Finding a subset of the partitions that their total costs equals Cmax will result in equal workload
for mH and mL after moving the subset. mH searches for the subset that maximizes the total cost
of the partitions to be moved without exceeding Cmax. This is a direct application of the Subset-
Sum Problem (SSP), which is a special case of the 0-1 Knapsack Problem, where the value of each
item is equal to its weight [34]. In our case, the cost of each partition j is used as the weight of
each item j in SSP and Cmax is used as the capacity of the knapsack. Although SPP is NP-Hard,
there is an Approximate Greedy Algorithm that guarantees a worst-case performance ratio of 1

2
with a time complexity of O(n) [34]. SWARM applies the algorithm after sorting the partitions
in descending order of their costs. This increases the time complexity to O(klog(k)), where k is
the number of partitions in mH . However, sorting can result in better performance on average
without a↵ecting the worst-case performance. Moreover, this extra sorting step is necessary for
the splitting algorithm that might be applied if a subset is not found. Probing larger partitions
first minimizes the number of moved partitions, and hence, reducing the amount of information
to be sent through the network.

Algorithm 3: findSubset(CmL
, RS)

1 totalMoveCost = 0
2 moveSubset = empty list of partitions
3 Cmax = (CmH

� CmL
)/2

4 Sort controlledPartitionsList based on partitions’ cost from largest to lowest
5 for each partition ”p” in controlledPartitionsList do
6 if (Cp + totalMoveCost <= Cmax) then
7 totalMoveCost += Cp

8 moveSubset.add(p)
9 if (totalMoveCost == Cmax) then

10 break
11 end
12 end
13 end
14 return moveSubset

The procedure used by mH is presented in Algorithm 3, where CmL
and CmH

are the costs of

19

the machines with the lowest and the highest costs, respectively. mH calls this algorithm after
receiving a request from the Coordinator (with Parameters CmL

and RS) to reduce mH ’s workload.
CmH

, PmH
(controlledPartitionsList), and the cost of each partition p in mH (Cp) are available

for use in the function.
Searching for Best Split for a Partition to Move.
If mH fails to reduce its workload using the above technique, it tries to make mH and mL costs
approximately equal using the splitting technique. mH chooses a partition p 2 PmH

and splits it
into two sub-partitions p1 and p2. mH calculates the expected cost di↵erence (Cdi↵) between mH

and mL when p1 is moved and p2 is kept. mH tries to find the best split point for p that will make
Cdi↵ = 0. This is an NP-Hard problem. Thus, we use an approximate Greedy Algorithm.

SWARM considers the partition with largest cost (p) for splitting. If mH cannot split p because
it has reached the size of one cell, mH will try splitting the next largest partition in cost. The
list of partitions in mH can be directly used since it has been sorted during the subset technique.
mH searches for the best splitting point that results in the minimum absolute cost di↵erence Cdi↵

between mH and mL. Hence, mH considers all possible vertical and horizontal split lines in p.
The algorithm used in SWARM reduces the number of possible split lines by performing a binary
search on the rows and columns of the statistics covering p that contain all numbers needed to
calculate Cdi↵. Cdi↵ is computed as follows:

Cdi↵ = [(C(mH)� C(p)) + C(p2)]� [C(mL) + C(p1)]

Before the search, mH already has C(mH), C(mL), and C(p). This makes the search depends only
on C(p1) and C(p2). Let sp be the statistic’s row/column index of a split point on p. C(p1) and
C(p2) can be computed using Eqn. 5 and the maintained local statistics in p as follows:

C(p1) = N(sp)⇥Q(sp)⇥R(sp)/R(S)

Q(p2) = Q(p)�Q(sp) + spanQ(sp+ 1)

R(p2) = R(p)�R(sp) + preSpanQ’(sp+ 1)

C(p2) = [N(p)�N(sp)]⇥Q(p2)⇥R(p2)/R(S)

The search ends when the algorithm finds a split point that causes Cdi↵ = 0. Otherwise, the search
continues till the end and the split point that achieves minimum absolute value of Cdi↵ is used. In
the worst case, mH performs 4 binary searches: two searches on horizontal splitting points while
considering the moved partition p1 to be the upper or lower sub-partition, and two searches on
vertical splitting points while considering p1 to be the right or left sub-partition.

5 System Integrity

5.1 Correctness During Load Balancing

SWARM does not stop receiving and processing new data points and queries during the process
of load balancing. The critical point of losing a data point or processing a data point twice can
happen after identifying mH and mL. mH continues to receive and process new data points and
queries while searching for workload reduction. Moreover, if mH decides to split a partition, it
continues to use the old partition while creating the two new sub-partitions. After mH finds either
a subset of partitions or a good split, mH sends the metadata of the moved partition/s and their
continuous queries to mL. After the move, mH informs the Coordinator about the changes. Then,

20

the Coordinator informs the remaining GlobalIndex machines. Whenever a GlobalIndex machine
receives the new changes from mH , it runs a latch-free background task that updates the index
according to the changes while using the index for routing, as discussed in Section 4.3.1. During
the update of GlobalIndex machines, mH forwards new incoming objects that overlap the moved
partition/s to mL. mH keeps the metadata of the moved partition/s until their data are expired
and the next load balancing round starts. Starting a new load balancing round implies that all
GlobalIndex machines have finished updating their indexes, i.e., GlobalIndex machines route all
new objects that overlap the moved partition/s to mL. This mechanism ensures that no objects
get lost or processed twice during load balancing.

5.2 Correctness of Query Execution

Most applications of distributed streaming systems are focused either on the current state or some
limited extended state of the data. Limited extended state could be based on a time window
(e.g., sliding or tumbling window) or based on data item count (count window) or some storage
size (e.g., predefining the size of stored data in the window). Every distributed streaming system
has a specific form of data expiration policy. Because data will eventually expire, SWARM
reduces communication overhead by not moving data. SWARM needs to know whenever
data points are expired to stop tracking on which machine they are stored and to update the
statistics. SWARM moves the partitions with only their continuous queries. In applications that
support stateful operators (e.g., aggregate operators), the state is stored in the query not in the
partition. Hence, SWARM moves the queries and their states with the migrated partition to their
new executor before redirecting the stream.

As partitions are split and are moved to other machines, SWARM keeps a record in the
metadata of every sub-partition that links the sub-partition to its previous responsible machine
and its parent partition. Before moving a partition to mL, mH adds its machine ID as the previous
responsible machine and the previous PartitionID as the parent partition to the metadata of the
moved partition. mH continues to hold parent partitions and their data until all data become
expired. Splitting or moving a partition multiple times before the data expires might lead to
a chain of partitions, where each of them is linked to the previous one. Mostly, the chain of
partitions will remain short because In-memory systems tend to support short windows that make
data expire quickly.

A query may only need a subset of the chain of partitions to be involved in the final result.
When a partition, say p, is to answer a query q, the machine responsible for p will check if its parent
partition, say pp, exists and needs to be involved. If pp is found, its responsible machine is asked to
process q. All involved machines send their answers directly to the machine that has q, say mq. mq

waits for the next involved machine in the chain to send the results of q. Every involved machine
consults the next involved machine in the chain to answer q. Depending on whether an involved
partition is expired or not, there are two ways to respond: 1) If the partition is expired, its machine
acknowledges mq and the previous involved machine in the chain that the partition is expired.
Hence, the previous involved machine in the chain breaks the chain by cleaning the record of the
previous responsible machine in the metadata of the partition and becoming the last machine in
the chain. 2) If the partition is not expired, q’s results are sent to mq. Every involved machine
sends an acknowledgement message to mq after it is done sending q results. Acknowledgement
messages contain the number of result messages that were sent and the next involved machine
ID in the chain. mq keeps track of all involved machine IDs and the status of their results. mq

produces the final output after receiving all result messages and acknowledgement messages from

21

every involved machine. To produce the final output, mq combines all received answers with the
answers from its partition that overlaps q.

For example, assume that a partition p1 in executor machine m1 is split into p2 and p3. m1 adds
to the metadata of both p2 and p3 the previous responsible machine m1 and the parent partition
p1. m1 keeps p2 and moves p3 to m2. Now, assume that m2 receives a query q related to p3, and
it needs old data. m2 finds that the previous responsible machine in the metadata of p3 is m1.
Therefore, m2 sends q to m1 with p1’s ID as the target parent partition. If p1 is not expired, m1

applies q on p1, and sends the results to m2 and an acknowledgement message. Otherwise, m2

acknowledges that p1 is expired to break the chain of partitions associated with p3. After receiving
the acknowledgement, m2 produces the final results by combining p3’s results with any received
results.

6 Experiments

We realize SWARM in Apache Storm [38]. However, SWARM can be used with any other dis-
tributed streaming systems that process spatial data streams in tuple-at-a-time manner. As dis-
cussed in Section 2, we use a location-aware publish-subscribe application to compare SWARM
against 3 other approaches: 1) Replicated : New queries are replicated into all executor machines,
each covering the whole space. In contrast, a new data point is sent to only one executor machine
in round-robin fashion. 2) Static Uniform Grid : The whole space is evenly partitioned among
all executor machines. 3) Static Grid Based on History : The partitioning of the whole space is
determined based on observing a limited history of the data and query workloads. The whole
space of Static Grid Based on History is partitioned o✏ine based on 400K data points and 200K
queries taken from the dataset. SWARM’s cost model is used in the third approach with the
limited history to partition the workload. Hence, the costs of all executor machines are almost
equal.

Experiments are performed using 6 Amazon EC2 instances. Apache Storm 1.0.0 runs in each
instance over Ubuntu 18.04.2. Five instances are of type m5.2xlarge, where each instance has 8
vCPU and 32 GB of memory. Each of the five instances is divided into 8 virtual machines each
having one vCPU and 4 GB of memory. This results in a total of 40 virtual machines. The last
instance is of type m5.xlarge with 4 vCPU and 16 GB of memory for the Nimbus of Storm and a
Zookeeper server [4]. The network bandwidth is up to 10 Gbps.

Experiments are performed using a real dataset from Twitter and a synthetic query workload.
The used dataset is composed of 1 Billion geotagged tweets of size 140 GB in the US. The tweets
are collected from January 2014 to March 2015. The spatial data stream is made continuous and
infinite by streaming the 1 Billion tweets repeatedly from the beginning each time they finish.
The query workload is composed of continuous range queries. The focal points of the queries are
determined using the locations of the real tweets.

All the experiments are performed from a cold start. The used approaches store continuous
queries in an R*-Tree index [12]. The grid index that divides the whole space is of size 1000⇥1000.
This size allows small cities in the US to be covered by multiple cells. There are one million
queries that are pre-loaded to every system. The spatial side lengths of queries are 0.16% of
the side length of the whole space (about the size of a university campus). As mentioned, our
cluster is composed of 40 virtual machines. 10 virtual machines are Storm spouts that produce
the tweets stream and the queries. The remaining 30 virtual machines are executor machines in
the Replicated approach. In SWARM and the other two static grid approaches, the 30 virtual

22

0

1000

2000

3000

4000

5000

0 10 20 30 40 50

Ex
ec
ut
io
n	
La
te
nc
y	
(µ

	s
ec
)

Number	of	Queries	(Millions)

Static	Grid	Based	on	History Replicated

(b)

1
0E+00

3E+11

5E+11

8E+11

1E+12

1E+12

2E+12

2E+12

0 10 20 30 40 50

0

Number	of	Queries	(Millions)

SWARM Static	Uniform	Grid

(a)

1

1.9E12

1.6E12

1.4E12

1.1E12

8.1E11

5.4E11

2.7E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Figure 11: Capability and execution latency

machines are divided as 8 routing machines (GlobalIndex in SWARM) and 22 Executor machines.
The machines’ ratio is chosen after conducting an empirical study. We find that a good starting
ratio is 1:3 (GlobalIndexes:Executors). SWARM starts a new load balancing round every 15
seconds.

6.1 Capability and Execution Latency

One performance measure that we use is the Units of Work measure, which is the number of
tuple checks per second against queries. Units of Work is calculated by multiplying the number
of queries in the system by the number of processed tuples per second. We use Units of Work
in place of the throughput of the system as the former provides a fairer comparison because it
reflects the overall amount of checks (work) that is conducted by the system regardless of the
selectivities of the queries. Figure 11a gives the average Units of Work after running the system
for an hour. SWARM outperforms the other approaches while varying the number of continuous
queries in the system. On average, SWARM achieves 200% improvement over Static Grid Based
on History. SWARM performance saturates after 32 million queries as the system reaches its peak
capacity for the used tweets distribution. The Replicated achieves better performance than both
static grid approaches between 8 and 16 million queries because of better workload distribution
among the system’s machines. However, Replicated fails to support more than 16 million queries
due to high memory overhead as all queries and indexes are replicated on all machines.

Figure 11b shows the average execution latency in microseconds while varying the number
of queries after running the system for an hour. SWARM achieves the lowest average execution
latency compared to other approaches. Replicated achieves lower average execution latency than
both static grid approaches. However, it fails to support more than 16 million queries. The
incremental rate of SWARM’s average execution latency is very small compared to the other
approaches. SWARM reduces execution latency on average 4x compared to Static Grid Based on
History.

23

0E+00

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

0 10 20 30 40 50

0

Time	(Min)

SWARM Replicated Static	Uniform	Grid Static	Grid	Based	on	History

Data	Intensity
of	Hotspot
Max	40%

1M	

2M	Queries

1M	

3.0E12

2.5E12

2.0E12

1.5E12

1.0E12

5.0E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Figure 12: Uniform distribution hotspot with normal distribution data intensity

6.2 Reaction to Hotspots

Twitter real dataset contains thousands of hotspots, where lots of tweets overlap in location and in
time. We are interested in observing how SWARM reacts to various types of hotspots in contrast
to the approaches. Hence, several scenarios of hotspots are created by synthetically redirecting a
percentage of the data spouts to a specific location in the US. The normal Twitter dataset with
its hotspots is used at the beginning and at the end of the experiments’ time line. By default, the
locations of the data points and queries that compose a hotspot’s are generated inside a square
range with a spatial side length of 15% of the whole space using a uniform distribution. All queries
in a hotspot are instantiated during one minute of the hotspot’s start time. This is to test how
fast SWARM reacts to extreme hotspot situations.

Every Figure from 12 to 16 shows a timeline for the average Units of Work per minute. The
axis scale of the Units of Work is the same across all experiments. The dashed line represents
the number of queries in the system. Figure 12 compares the performance of all approaches with
the appearance of one hotspot. The data intensity of the hotspot follows a normal distribution
(the shaded area in the figure). The hotspot is created by redirecting up to 40% of the data
spouts to the lowerleft corner of the US. As the figure indicates, SWARM outperforms all other
approaches. SWARM achieves higher performance during the hotspot than before and after the
hotspot. SWARM’s higher performance is due to having a better chance to redistribute the
uniformly distributed hotspot. Both of the static grid approaches su↵er during the hotspot because
only a small set of their executor machines become overloaded with the hotspot. During the
regular Twitter hotspots, Static Grid Based on History achieves better performance than both
Static Uniform Grid and Replicated. During the synthetic hotspot, it has the worst performance
because its partitions are pre-determined using a limited history of Twitter’s normal dataset. The
sudden increase and drop in processing performance is due to the back-pressure of the spouts
that periodically makes the spouts try to increase the data injection rate. The performance of all
approaches return to normal after the disappearance of the hotspot.

Figure 13 gives the performance when the hotspot’s data points are generated using normal
distribution inside the hotspot’s region instead of using a uniform distribution. The normal distri-
bution’s variance is 20% of the hotspot’s spatial side length. SWARM outperforms all the other

24

0E+00

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

0 10 20 30 40 50

0

Time	(Min)

SWARM Replicated Static	Uniform	Grid Static	Grid	Based	on	History

Data	Intensity
of	Hotspot
Max	40%

1M	

2M	Queries

1M	

3.0E12

2.5E12

2.0E12

1.5E12

1.0E12

5.0E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Figure 13: Normal distribution hotspot with normal distribution data intensity

0E+00

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

0 5 10 15 20 25

0

Time	(Min)

SWARM Replicated
Static	Uniform	Grid Static	Grid	Based	on	History

Data	Intensity
of	Hotspot
Max	40%

2M	Queries

1M	

3.0E12

2.5E12

2.0E12

1.5E12

1.0E12

5.0E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Figure 14: Uniform distribution hotspot with step data intensity

approaches. SWARM has lower performance in the case of the normal-distribution hotspot in
contrast to the uniform-distribution hotspot. The reason is that there are higher levels of spatial
overlap among the data points and the queries inside the normal distribution hotspot that makes
it harder for SWARM to find a new partitioning that distributes the workload evenly.

Figure 14 gives the performance when a uniform distribution hotspot appears directly with
maximum data intensity. The data intensity of the hotspot follows a step function. Although this
type of hotspots is uncommon, SWARM manages to overcome the drop in performance. SWARM
experiences a sudden drop in performance immediately after the hotspot starts because SWARM
does not complete redistributing the partitions while some of the machines become overloaded,
and this triggers a backpressure from the Storm spouts to reduce their data injection rates. Once
SWARM completes the redistribution of the partitions, the spouts’ backpressure re-increases the
data injection rate slowly.

25

0E+00

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

0 10 20 30 40 50

0

Time	(Min)

SWARM Replicated Static	Uniform	Grid Static	Grid	Based	on	History

Data	Intensit
of Hotspots

Max	20%	Each

1M	

2M	Queries

1M	

3.0E12

2.5E12

2.0E12

1.5E12

1.0E12

5.0E11

0.0E00	

Un
its
	o
f	W

or
k	(
Q
ue

rie
s	X

	Tu
pl
es
\S
ec
)

Figure 15: Two overlapping hotspots (H1 and H2) in di↵erent locations

0E+00

5E+11

1E+12

2E+12

2E+12

3E+12

3E+12

0 10 20 30 40 50 60 70

0

Time	(Min)

SWARM Replicated Static	Uniform	Grid Static	Grid	Based	on	History

Data	Intensity
of Hotspot		H1

Max	20%	

Data	Intensity
of Hotspot	H2
Max	20%	

1M	

1.5M	Queries1.5M	Queries

1M	

3.0E12

2.5E12

2.0E12

1.5E12

1.0E12

5.0E11

0.0E00	

U
ni
ts
	o
f	W

or
k	
(Q
ue

rie
s	X

	T
up

le
s\
Se
c)

Figure 16: Two consecutive hotspots (H1 and H2) in di↵erent locations

Figures 15 and 16 give the results when having two concurrent hotspots in two di↵erent lo-
cations. Hotspots H1 and H2 are located in the lowerleft and upperright corners of the US,
respectively. Each hotspot is created by redirecting up to 20% of the data spouts, i.e., each
hotspot has half the data intinsity of the hotspots in the previous expermints. Figure 15 gives the
performance results when the two hotspots (H1 and H2) overlapping in time. SWARM achieves
similar performance to that in Figure 12. Thus, SWARM is not a↵ected by the number of simul-
taneous hotspots or their spatial locations. The intensity and distribution of the hotspots are the
main factors that a↵ect SWARM’s rebalancing performance.

Figure 16 gives the performance when Hotspot H2 appears directly after Hotspot H1 disap-
pears. This experiment illustrates that SWARM can quickly react to the changes in workload
distribution. However, the performance of SWARM slightly drops at the start of H2 because
SWARM needs to register the new hotspot queries as well as move some of them to other machines
to rebalance the system. This slows down the processing of the new incoming data during that
time. After applying the new partitioning plan, SWARM achieves similar performance as the
performance during Hotspot H1.

26

0

15

30

45

60

75

90

0 5 10 15 20 25 30 35

CP
U	
Ut
ili
za
tio

n	
(%

)

Time	(Min)

SWARM Static	Grid	Based	on	History

(a)

0

15

30

45

60

75

90

0 5 10 15 20 25 30 35

N
et
w
or
k-
In
	(%

)

Time	(Min)

(b)

AVG
MAX

MIN

Figure 17: CPU and network utilization

4

94

2
44

0

100

200

300

400

(1)	Route	new	
object	to	its	
executor

(2)	Update	global	
index	after	
rebalancing

(3)	Update	the	
cost	of	a	machine

(4)	Rebalancing	
decision	making		
and	calculations	

0

400

300

200

100

0

Av
er
ag
e	
O
pe

ra
tio

n	
Ti
m
e	
(!

se
c)

Figure 18: Overhead of SWARM operations in GlobalIndex machines

Figure 17 gives the CPU and network utilization averages over 5 minutes for the cluster’s
virtual machines. Also, the minimum and the maximum utilization average achieved by a machine
is presented. The utilization is measured during the run of the experiment presented in Figure 12.
The drop in CPU and network utilization after 10 minutes of running the experiment happens
because the hotspot starts at that moment. Figure 17a illustrates that SWARM’s average CPU
utilization is improved and the gap between the minimum and maximum utilized machines gets
smaller as SWARM redistributes the hotspot workload among the other underloaded machines.
For Static Grid Based on History, the overloaded machines a↵ect the performance of the whole
system because the backpressure of the spouts makes them reduce the injection rate to match
the processing rate of the slowest machine. Before running the experiment, we test the network
utilization to estimate the network’s achievable maximum bandwidth, which is found to be 80% of
the maximum advertised network bandwidth. Figure 17b illustrates that SWARM almost reaches
the highest achievable network utilization. This highlights that the bottleneck in SWARM is
moved from being in the processing power to being in the network bandwidth.

Figures 18 and 19 illustrate the overhead of SWARM operations by showing the average time
each operation takes in microseconds after running the system for an hour. Figure 18 presents the
operations of the GlobalIndex machines, while Figure 19 presents the operations of the executor

27

0.41
61

374

35

0

100

200

300

400

(1)	Identify	p	of	
new	object	and	
collect	statistics

(2)	Update	
statistics	and	
send	cost

(3)	Find	subset	or	
split	to	move	and	
update	its	stat.

(4)	Update	index	
according	to	
moved	p

400

300

200

100

0

Av
er
ag
e	
O
pe

ra
tio

n	
Ti
m
e	
(!

se
c	
)

Figure 19: Overhead of SWARM operations in executor machines

1
10
100
1000
10000
100000
1000000
10000000
100000000

10 20 40 80 160

0

Number	of	Executor	Machines	

SWARM Centralized	

Co
m
m
.	O

ve
rh
ea
d	
of
	St
at
ist
ics

	(B
yt
es
)

Figure 20: Network overhead of statistics

machines. Note that as we go from operation (1) to (4) in both figures, the frequency of performing
the operation and the number of machines performing it are significantly decreased. Figure 18-(1)
gives the time it takes for the GlobalIndex machines to find the responsible executor machine for
a newly received object and route this object. Figure 18-(2) shows the required time to update
the index of a GlobalIndex machine according to a moved subset or split. Figure 18-(3) and 18-(4)
shows the operations that get executed only in the Coordinator to receive the executors’ cost,
finding if rebalancing is needed, and identifying mH and mL.

Figure 19-(1) gives the time added (overhead) to the processing of a new object to identify its
partition and collect its statistics. This shows the success of SWARM in minimizing the added
overhead to the processing of each new object. At the end of every load-balancing round, the time
of Figure 19-(2) is needed to update the statistics, compute the cost, and send the cost to the
Coordinator. Figure 19-(3) gives the required time for mH to find a workload reduction, update
the statistics, and move the partition(s) to mL. Figure 19-(4) gives the required time for mL to
receive a moved partition and update mL’s index accordingly.

Figure 20 gives the network overhead of SWARM’s decentralized statistics compared to a
centralized approach. The centralized approach is following AQWA’s centralized statistic tech-
nique [9], where one number per cell is needed to count the data points, and four numbers to count
the queries. The four numbers in each cell are required to use Euler Histogram [10, 13, 36] to count

28

queries in a partition without re-counting queries that overlap multiple cells. Figure 20 compares
the two approaches by measuring the number of bytes needed to be send to the Coordinator to find
and apply a new partitioning plan. SWARM’s decentralized approach outperforms the central-
ized approach because SWARM requires sending only two statistics. In contrast, the centralized
approach requires sending five statistics per cell in the system, i.e., five million statistics for the
1000 ⇥ 1000 grid index. SWARM will always outperform the centralized approach because each
machine can hold at least one cell sized partition, i.e., SWARM’s machines will send 2 statistics
per machine while the centralized machines will send 5. However, having every machine hold only
one partition with one cell is not practical. Hence, the grid size will be increased and that will
increase the amount of statistics that the centralized approach have to send.

7 Related Work

In this section, we present the work related to adaptive big spatial streaming systems. We classify
the work related into the following categories: (1) centralized spatial streaming systems, (2) Gen-
eral purpose big data streaming systems, and (3) Big spatial processing systems.

Centralized spatial data streaming systems have been developed to answer spatial queries
over spatial streams, e.g., PLACE [28], SINA [27], SEA-CNN [42], and Gpac [26]. However, these
systems are not scalable and cannot handle the current scale of streamed spatial data.

General-purpose big data systems provide an infrastructure to scale up the batch and real-
time processing. General-purpose big data systems are either batch-oriented or stream-oriented.
Examples of batch-oriented include Hadoop [1] and Spark [3]. Batch-oriented systems require
minutes or even hours to process data and are not suited for real-time processing. Yahoo S4 [31],
Apache Samza [2], Apache Storm [38], Twitter Heron [21], and Spark Streaming [44] are examples
of stream-oriented systems that can process data in real-time with latencies ranging between mil-
liseconds up to few seconds. However, these systems are not optimized for spatial data processing
and are not adaptive.

To enable the scalable processing of big spatial data, several general-purpose big data systems
have been extended with spatial indexing and querying techniques. HadoopGIS [7], SATO [39], and
SpatialHadoop [16] are big spatial processing systems on top of Hadoop. LocationSpark [37],
Cruncher [6], Simba [41], SparkGIS [11] are spatial extensions to Spark. All these systems do
not o↵er real-time big spatial data processing. Most of the existing big spatial data streaming
systems use static data partitioning schemes to distribute the workload among machines. Zhang et
al. [45] extends Storm with static spatial partitioning to enable real-time spatial data processing.
However, these techniques are not e↵ective in spatial applications due to the rapid changes in
data and query distributions. SWARM enables adaptive spatial processing over any distributed
streaming system that works in a pipeline fashion including Storm.

Several adaptive batch and streaming management systems have recently been pro-
posed to handle any variabilities in the underlying workload.PKG2 and PKG5 [29, 30] are stream
partitioning schemes that evenly distribute the received workload for each key among a limited
number of the system’s machines. PKG is not built for spatial applications. Therefore, SWARM
has the leverage to change the spatial boundaries of partitions to distribute the workload of a
hotspot. Moreover, SWARM is not forced to distribute the workload of a hotspot over a specific
number of machines. SWARM can distribute the workload among all executor machines, if neces-
sary. Amoeba [33, 32] is an adaptive data partitioning scheme in relational systems. Amoeba does
not consider real-time stream processing. AQWA [9] is an adaptive spatial processing system on

29

top of Hadoop. AQWA distributes new batches of data into HDFS files o✏ine before starting to
process the queries. Its distribution is based on the collected statistics in one master node. This
cannot work for processing spatial streams in real-time. Cruncher [6] is a proposal for adaptive
spatial stream processing on top of Spark. However, Cruncher works only on micro-batch stream
processing that has relatively high latency, i.e., seconds. However, SWARM is able to adaptively
process spatial data in real-time with minimal latency. Tornado [24, 23] and PS2Stream [14] are
adaptive spatio-textual streaming systems that are based on the Storm streaming system. These
systems handle spatio-textual data while SWARM focuses on spatial processing.

8 Conclusions

This paper introduces SWARM, a light-weight adaptivity protocol that continuously monitors the
workload across the distributed machines of spatial data streaming systems. SWARM adjusts
the workload distribution as soon as performance bottlenecks get detected. SWARM is able to
handle multiple query-execution and data-persistence models. SWARM requires minimal changes
to the original code of applications. A probabilistic cost model is introduced to help find the best
partitioning plan. SWARM introduces a new statistics structure that requires minimal overhead.
Greedy algorithms are presented to e�ciently find the best subset or split of partition/s. SWARM
preserves the system integrity while repartitioning without halting the system. SWARM is tested
and is compared against other static approaches using an application that processes a real dataset
from Twitter. On average, SWARM achieves 200% improvement over a static grid approach that
is partitioned based on a limited history of the workload. Moreover, SWARM reduces execution
latency on average 4x compared with the other approaches.

Acknowledgements

Walid G. Aref acknowledges the support of the National Science Foundation under Grant Numbers:
IIS-1910216 and III-1815796.

References

[1] Apatche Hadoop. http://hadoop.apache.org/, 2020.

[2] Apatche Samza. http://samza.apache.org/, 2020.

[3] Apatche Sark. http://spark.apache.org/, 2020.

[4] Apatche Zookeeper. https://zookeeper.apache.org, 2020.

[5] Internet live stats. https://internetlivestats.com/, 2020.

[6] Ahmed S Abdelhamid, Mingjie Tang, Ahmed M Aly, Ahmed R Mahmood, Thamir Qadah,
Walid G Aref, and Saleh Basalamah. Cruncher: Distributed in-memory processing for
location-based services. In Data Engineering (ICDE), 2016 IEEE 32nd International Con-
ference on, pages 1406–1409. IEEE, 2016.

30

http://hadoop.apache.org/
http://samza.apache.org/
http://spark.apache.org/
https://zookeeper.apache.org
https://internetlivestats.com/

[7] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, and Joel
Saltz. Hadoop gis: a high performance spatial data warehousing system over mapreduce.
Proceedings of the VLDB Endowment, 6(11):1009–1020, 2013.

[8] Ahmed M. Aly, Hazem Elmeleegy, Yan Qi, and Walid Aref. Kangaroo: Workload-aware
processing of range data and range queries in hadoop. In Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining, WSDM ’16, pages 397–406, New
York, NY, USA, 2016. ACM.

[9] Ahmed M. Aly, Ahmed R. Mahmood, Mohamed S. Hassan, Walid G. Aref, Mourad Ouzzani,
Hazem Elmeleegy, and Thamir Qadah. Aqwa: Adaptive query workload aware partitioning
of big spatial data. Proc. VLDB Endow., 8(13):2062–2073, September 2015.

[10] Ning An, Zhen-Yu Yang, and Anand Sivasubramaniam. Selectivity estimation for spatial
joins. In Proceedings 17th International Conference on Data Engineering, pages 368–375.
IEEE, 2001.

[11] Furqan Baig, Hoang Vo, Tahsin Kurc, Joel Saltz, and Fusheng Wang. Sparkgis: Resource
aware e�cient in-memory spatial query processing. In Proceedings of the 25th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, page 28.
ACM, 2017.

[12] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The r*-tree:
An e�cient and robust access method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, SIGMOD ’90, pages 322–
331, New York, NY, USA, 1990. ACM.

[13] Richard Beigel and Egemen Tanin. The geometry of browsing. In Latin American Symposium
on Theoretical Informatics, pages 331–340. Springer, 1998.

[14] Zhida Chen, Gao Cong, Zhenjie Zhang, Tom ZJ Fuz, and Lisi Chen. Distributed pub-
lish/subscribe query processing on the spatio-textual data stream. In Data Engineering
(ICDE), 2017 IEEE 33rd International Conference on, pages 1095–1106. IEEE, 2017.

[15] Dojin Choi, Seokil Song, Bosung Kim, and Insu Bae. Processing moving objects and tra�c
events based on spark streaming. In Disaster Recovery and Business Continuity (DRBC),
2015 8th International Conference on, pages 4–7. IEEE, 2015.

[16] Ahmed Eldawy and Mohamed F Mokbel. Spatialhadoop: A mapreduce framework for spatial
data. In Data Engineering (ICDE), 2015 IEEE 31st International Conference on, pages 1352–
1363. IEEE, 2015.

[17] Maurice Herlihy. A methodology for implementing highly concurrent data structures. In
ACM SIGPLAN Notices, volume 25, pages 197–206. ACM, 1990.

[18] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(1):124–149, 1991.

[19] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization:
Double-ended queues as an example. In 23rd International Conference on Distributed Com-
puting Systems, 2003. Proceedings., pages 522–529. IEEE, 2003.

31

[20] Takashi Horikawa. Latch-free data structures for dbms: design, implementation, and evalu-
ation. In Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, pages 409–420. ACM, 2013.

[21] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,
Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter heron:
Stream processing at scale. In Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pages 239–250. ACM, 2015.

[22] Yunsou Lee and Seokil Song. Distributed indexing methods for moving objects based on
spark stream. International Journal of Contents, 11(1):69–72, 2015.

[23] Ahmed R Mahmood, Ahmed M Aly, Thamir Qadah, El Kindi Rezig, Anas Daghistani, Amgad
Madkour, Ahmed S Abdelhamid, Mohamed S Hassan, Walid G Aref, and Saleh Basalamah.
Tornado: A distributed spatio-textual stream processing system. PVLDB, 8(12):2020–2023,
2015.

[24] Ahmed R Mahmood, Anas Daghistani, Ahmed M Aly, Mingjie Tang, Saleh Basalamah, Sunil
Prabhakar, and Walid G Aref. Adaptive processing of spatial-keyword data over a distributed
streaming cluster. In Proceedings of the 26th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pages 219–228. ACM, 2018.

[25] Mohamed F Mokbel. Thinking spatial, ACM SIGMOD Blog. http://wp.sigmod.org/?p=
2012, 2016.

[26] Mohamed F Mokbel and Walid G Aref. Gpac: generic and progressive processing of mobile
queries over mobile data. In Proceedings of the 6th international conference on Mobile data
management, pages 155–163. ACM, 2005.

[27] Mohamed F Mokbel, Xiaopeing Xiong, and Walid G Aref. Sina: Scalable incremental pro-
cessing of continuous queries in spatio-temporal databases. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, pages 623–634. ACM, 2004.

[28] Mohamed F Mokbel, Xiaopeng Xiong, Walid G Aref, Susanne E Hambrusch, Sunil Prabhakar,
and Moustafa A Hammad. Place: a query processor for handling real-time spatio-temporal
data streams. In Proceedings of the Thirtieth international conference on Very large data
bases-Volume 30, pages 1377–1380. VLDB Endowment, 2004.

[29] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, David Garcia-Soriano, Nico-
las Kourtellis, and Marco Serafini. The power of both choices: Practical load balancing for
distributed stream processing engines. In 2015 IEEE 31st International Conference on Data
Engineering, pages 137–148. IEEE, 2015.

[30] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, Nicolas Kourtellis, and
Marco Serafini. When two choices are not enough: Balancing at scale in distributed stream
processing. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages
589–600. IEEE, 2016.

[31] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Distributed stream
computing platform. In Data Mining Workshops (ICDMW), 2010 IEEE International Con-
ference on, pages 170–177. IEEE, 2010.

32

http://wp.sigmod.org/?p=2012
http://wp.sigmod.org/?p=2012

[32] Anil Shanbhag, Alekh Jindal, Yi Lu, and Samuel Madden. A moeba: a shape changing
storage system for big data. Proceedings of the VLDB Endowment, 9(13):1569–1572, 2016.

[33] Anil Shanbhag, Alekh Jindal, Samuel Madden, Jorge Quiane, and Aaron J Elmore. A robust
partitioning scheme for ad-hoc query workloads. In Proceedings of the 2017 Symposium on
Cloud Computing, pages 229–241. ACM, 2017.

[34] Martello Silvano and Toth Paolo. Knapsack problems: algorithms and computer implemen-
tations, 1990.

[35] Ge Song. Parallel and continuous join processing for data stream. PhD thesis, Université
Paris-Saclay, 2016.

[36] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. Selectivity estimation for spatial joins
with geometric selections. In International Conference on Extending Database Technology,
pages 609–626. Springer, 2002.

[37] Mingjie Tang, Yongyang Yu, Qutaibah M Malluhi, Mourad Ouzzani, and Walid G Aref. Loca-
tionspark: a distributed in-memory data management system for big spatial data. Proceedings
of the VLDB Endowment, 9(13):1565–1568, 2016.

[38] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M Patel, San-
jeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al. Storm@
twitter. In Proceedings of the 2014 ACM SIGMOD international conference on Management
of data, pages 147–156. ACM, 2014.

[39] Hoang Vo, Ablimit Aji, and Fusheng Wang. Sato: a spatial data partitioning framework
for scalable query processing. In Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 545–548. ACM, 2014.

[40] Sai Wu, Vibhore Kumar, Kun-Lung Wu, and Beng Chin Ooi. Parallelizing stateful operators
in a distributed stream processing system: how, should you and how much? In Proceedings of
the 6th ACM International Conference on Distributed Event-Based Systems, pages 278–289.
ACM, 2012.

[41] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. Simba: E�cient in-
memory spatial analytics. In Proceedings of the 2016 International Conference on Manage-
ment of Data, pages 1071–1085. ACM, 2016.

[42] Xiaopeng Xiong, Mohamed F Mokbel, and Walid G Aref. Sea-cnn: Scalable processing
of continuous k-nearest neighbor queries in spatio-temporal databases. In Data Engineering,
2005. ICDE 2005. Proceedings. 21st International Conference on, pages 643–654. IEEE, 2005.

[43] Ziqiang Yu, Yang Liu, Xiaohui Yu, and Ken Q Pu. Scalable distributed processing of k
nearest neighbor queries over moving objects. IEEE Transactions on Knowledge and Data
Engineering, 27(5):1383–1396, 2015.

[44] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Discretized
streams: An e�cient and fault-tolerant model for stream processing on large clusters. Hot-
Cloud, 12:10–10, 2012.

33

[45] Feng Zhang, Ye Zheng, Dengping Xu, Zhenhong Du, Yingzhi Wang, Renyi Liu, and Xinyue
Ye. Real-time spatial queries for moving objects using storm topology. ISPRS International
Journal of Geo-Information, 5(10):178, 2016.

34

	1 Introduction
	2 Data and Query Models
	3 The Cost Model
	4 SWARM Architecture
	4.1 Indexing and Initialization
	4.1.1 The Global Index
	4.1.2 The Local Index

	4.2 Collecting and Maintaining Statistics
	4.2.1 SWARM's Statistics
	4.2.2 Maintaining the Statistics
	4.2.3 Correctness of the Statistics

	4.3 Adaptive Load Balancing
	4.3.1 Minimizing Communication by Maximizing Local Computations and Local Decision Making
	4.3.2 Workload Reduction by Repartitioning

	5 System Integrity
	5.1 Correctness During Load Balancing
	5.2 Correctness of Query Execution

	6 Experiments
	6.1 Capability and Execution Latency
	6.2 Reaction to Hotspots

	7 Related Work
	8 Conclusions

