
UniHeap: Managing Persistent Objects Across
Managed Runtimes for Non-Volatile Memory

Daixuan Li
UIUC

daixuan2@illinois.edu

Benjamin Reidys
UIUC

breidys2@illinois.edu

Jinghan Sun
UIUC

js39@illinois.edu

Thomas Shull
UIUC

shull1@illinois.edu

Josep Torrellas
UIUC

torrella@illinois.edu

Jian Huang
UIUC

jianh@illinois.edu

ABSTRACT

Byte-addressable, non-volatile memory (NVM) is emerging
as a promising technology. To facilitate its wide adoption, em-
ploying NVM in managed runtimes like JVM has proven to
be an effective approach (i.e., managed NVM). However, such
an approach is runtime specific, it lacks a generic abstrac-
tion across different managed languages. Similar to the well-
known filesystem primitives that allow diverse programs
to access the same file via the block I/O interface, managed
NVM deserves the same system-wide property for persistent
objects across managed runtimes with low overhead.

In this paper, we present UniHeap, a newNVM framework
for managing persistent objects. It proposes a unified persis-
tent object model that supports various managed languages,
and manages NVM within a shared heap that enables cross-
language persistent object sharing. UniHeap reduces the
object persistence overhead by managing the shared heap
in a log-structured manner and coalescing object updates
during the garbage collection. We implement UniHeap as a
generic framework and extend it to different managed run-
times that include HotSpot JVM, cPython, and JavaScript en-
gine SpiderMonkey. We evaluate UniHeap with a variety of
applications, such as key-value store and transactional data-
base. Our evaluation shows that UniHeap significantly out-
performs state-of-the-art object sharing approaches, while
introducing negligible overhead to the managed runtimes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’21, June 14–16, 2021, Haifa, Israel
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8398-1/21/06. . . $15.00
https://doi.org/10.1145/3456727.3463775

CCS CONCEPTS

• Hardware → Memory and dense storage; • Software

and its engineering→ Object oriented architectures.

KEYWORDS

Non-volatile Memory, Managed Runtime, Memory Persis-
tency, Persistent Objects

1 INTRODUCTION

Non-volatile memory (NVM), such as phase-change memory
(PCM) [49], resistive RAM (ReRAM) [11], NVDIMM [4], and
Intel DC persistent memory [27], has become a promising
technology that offers near-DRAM speed, scalable storage
capacity, and data durability. To facilitate its wide adoption in
practice, its management and use in software systems have
attracted much attention recently [20, 25, 33, 35, 36, 40, 48].
Specifically, many NVM frameworks and libraries have

been developed [14, 17, 19, 24, 42], such as Mnemosyne [56],
NVHeaps [15], and Intel PMDK [9]. However, most of them
require developers to explicitly specify the persistent data
structures in their programs, which significantly increases
the development burden. To address this issue, recent re-
searches proposed to integrate NVM into managed runtimes
like JVM [12, 52, 57, 60], in which they leverage the runtime
system to transparently manage objects in NVM. As the man-
aged languages, such as Java, Python, and JavaScript, have
become the most popular programming languages [10, 55],
such an approach is becoming pervasive [38]. We define this
approach as managed NVM in this paper.
Although utilizing managed runtimes to use NVM has

proven to be an effective approach to simplify the NVM
programming [51–53, 60], state-of-the-art approaches are
runtime specific, and lacking an important system-wide prop-
erty – persistent object management across managed runtimes.
It is not easy for a Python program to directly access an
object persisted by a Java program, as their runtime-specific
object format and layout are different.

https://doi.org/10.1145/3456727.3463775

SYSTOR ’21, June 14–16, 2021, Haifa, Israel D. Li, B. Reidys, J. Sun, T. Shull, J. Torrellas, and J. Huang

As system-wide shared resource, managed NVM deserves
data sharing, and it provides non-volatility as shared persis-
tent storage does. Similar to the file systems developed for
persistent storage [20, 33, 61], which manages data in the
format of files, and allow different programs to access shared
files with block I/O interface, it is highly desirable to enable
diverse managed languages to access shared persistent ob-
jects efficiently, which could pave the way for developing
managed NVM into a generic approach.

Asmore applications are developed based onmanaged run-
times today, they usually use different runtime instance for
each individual component. And platform operators also pre-
fer to deploymultiple runtime instances on the samemachine
to best utilize the compute andmemory resources [23, 43, 58].
Take the web service for example, its frontend uses JavaSript
runtime while its backend adopts JVM [59].

To achieve persistent object sharing, a straightforward ap-
proach is to leverage the persistence layer available in man-
aged runtimes to persist objects to file systems or database.
Typical examples include Java Persistence API (JPA) [30] and
Java Data Objects (JDO) [29]. However, they cause significant
performance overhead [30, 60]. Wegiel et al. [59] proposed
to exploit the shared memory to enable the cross-language
cross-runtime communication, unfortunately, it does not
support NVM. The industry has developed Thrift [39] and
Protocol Buffers [6] to facilitate the interoperation across
multiple languages, however, they suffer from significant
marshalling and unmarshalling overheads [2].

In this paper, we develop a lightweight NVM framework,
named UniHeap, for persistent object management across a
diversity of managed runtimes. It has a unified persistence
layer located between the upper-level runtimes and the un-
derlying managed NVM heap (see Figure 1). This layer has a
unified object model that can be extended for various man-
aged languages. It also optimizes the object layout to reduce
the persistency overhead, when persisting objects into NVM.
UniHeap manages NVM using shared heaps that store

all the persistent objects across the registered managed run-
times. UniHeap organizes the shared heap in a log-structured
manner and supports both atomic in-place update and out-
of-place update to reduce the persistence overhead. It utilizes
a lightweight locking mechanism to manage the concurrent
accesses to shared objects. UniHeap conducts coordinated
garbage collection (GC) with managed runtimes to ensure
the correctness of object cleanups in the shared NVM heap.
Overall, we make the following contributions in this paper.

• We propose a generic NVM framework that provides a
unified object model to enable efficient persistent object
sharing cross diverse managed runtimes within NVM.

• We present a shared NVM heap for managing persistent
objects. It manages objects in a log-structured manner and

Java Python JavaScript

Unified Persistence Layer
Shared NVM Heap

Figure 1: Overview of UniHeap

supports both in-place and out-of-place updates to reduce
data persistence overhead, while ensuring the crash-safety.

• We develop an efficient GC scheme by decoupling the
metadata and data of persistent objects in the NVM heap,
and coordinate GC operations with managed runtimes to
ensure the correctness of object cleanups.

• We enable UniHeap to support three popular managed
runtimes, including HotSpot JVM, cPython, and JavaScript.
To evaluate the efficiency of UniHeap, we run a vari-

ety of data-intensive applications and typical benchmarks
for different managed runtimes, including Yahoo Cloud Ser-
vice Benchmarks (YCSB) [18] for Java, Python Performance
Benchmark Suite [54] for Python, and JetStream2 [31] for
JavaScript. Our evaluation demonstrates that UniHeap in-
troduces negligible performance overhead to the runtime
systems, compared with state-of-the-art runtime-specific
NVM frameworks and persistent object sharing approaches.

2 BACKGROUND AND MOTIVATION

2.1 Byte-Addressable NVM

Compared with conventional DRAM, NVM provides much
higher density, allowing it to have larger storage capacity.
NVM provides data durability, which allows it to be used as
persistent storage. However, it requires memory persistency
to ensure the crash consistency [42, 46, 56].
Ensuring memory persistency is challenging with mod-

ern memory hierarchy, as many levels of volatile cache (e.g.,
volatile processor cache and DRAM) exist between the pro-
cessor and NVM. With commodity out-of-order processors,
the order in which stores are made persistent depends on
the order they are evicted from the cache. Therefore, explicit
instructions have to be used. For instance, x86-64 processors
have the clwb instruction [1] to write back a cache line from
the processor cache to NVM, and storage fence instruction
(sfence) to guarantee that a clwb instruction completes. How-
ever, this will inevitably increase the burden of software
development and the complexity of NVM management.

2.2 NVMManagement and Programming

To facilitate the use of NVM, both industry and academic
community have developed high-level libraries and system

UniHeap: Managing Persistent Objects Across Managed Runtimes for Non-Volatile Memory SYSTOR ’21, June 14–16, 2021, Haifa, Israel

frameworks. They enable programmers to develop durable
applications on top of NVM, without dealing with the low-
level primitives [9, 14, 15, 17, 19, 24, 42, 48, 56, 61]. Their
abstraction for developers is similar, which requires develop-
ers to specify the durable data structures and failure-atomic
regions for ensuring the crash-safety.
Recently researchers proposed to leverage managed run-

times like JVM to manage NVM [12, 52, 57, 60]. Such an
approach is promising to simplify the NVM programming.
For instance, AutoPersist [52] only requires developers to
explicitly specify the durable root objects, the managed run-
time will automatically persist the reachable objects based
on the reachability analysis in JVM. As a majority of applica-
tions today are developed with managed languages such as
Java and Python [10, 55], these prior studies make us believe
the runtime-based approach is becoming a pervasive and
practical solution for managing NVM.

2.3 Object Management Across Runtimes

The current approach of managing NVM is runtime specific.
It lacks an important property: persistent object manage-
ment across managed runtimes. Similar to the system-wide
shared persistent storage whose management software –
file systems – enable the data sharing across different pro-
grams with the file abstraction, the runtime-managed NVM
framework is desirable to enable the data sharing with the
persistent object abstraction, such that the objects created by
one managed runtime can be easily accessed by another one.
This property will benefit many real-world application

cases, such as web services [23, 58] and data analytics [26,
43, 62]. In these applications, multiple runtime instances
access shared data source for further analytics, and different
instance may fulfill different functions [7]. For example, (1)
a Java program persists its objects in NVM and allows other
programs written in a different language such as Python to
access them directly (e.g., web services); (2) a Java program
and Python program concurrently access shared persistent
objects (e.g., shared libraries); or (3) multiple Java programs
concurrently access a persistent object (e.g., data analytics).

To achieve the same property, existing managed runtimes
persist objects to file systems or database in NVM. How-
ever, they suffer from significant software overheads [60].
Typical examples include Java Persistence API (JPA) that
uses transactional APIs to persist data [30], and Persistent
Collection for Java (PCJ) [5] that manages Java objects in
NVM. Both methods have the data transformation procedure,
which introduces dramatic performance overhead.

3 UNIHEAP DESIGN

In this paper, we develop a NVM framework, named Uni-
Heap. It enables object persistent and sharing across various

Table 1: The mapping of language types in UniHeap.

Java boolean,
byte

char int long float double reference,
array

Python - - int long float - list, dict,
tuple

JavaScript boolean - num num num num array
UniHeap char short int long float double reference

managed runtimes in an efficient manner, while preserving
the programmability of managed languages for NVM.

3.1 Design Principles

UniHeap follows three design principles: (1) it should man-
age runtime objects in NVM efficiently, while ensuring the
crash safety for object operations with low data persistence
overhead; (2) it should enable data sharing of these persis-
tent objects cross different managed languages without much
data transformation overhead; (3) it should provide a sim-
ple and unified object model that can easily support a new
runtime, which will pave the way for its generic use.

UniHeap provides a unified persistence layer as presented
in Figure 1. It has a unified object model (§3.2) that can be
mapped to different managed languages. UniHeap stores per-
sistent objects within shared NVM heaps in a log-structured
manner for efficiency (§3.3). It enables managed runtimes
to directly access the shared NVM heap with simple inter-
faces (§3.4), while enabling concurrent object accesses cross
managed runtimes (§3.5). UniHeap also has efficient GC
mechanisms for managing persistent objects in a space effi-
cient manner (§3.6). We discuss each of them as follows.

3.2 Unified Persistence Layer

We design a unified persistence layer (UPL) in UniHeap
for two purposes. First, UPL has a language-neutral object
model, such that it can be extended to support new managed
languages. Second, UPL should facilitate object persistence
for managed runtimes to achieve low persistency overhead.

Unified object model and its type system. Unlike re-
cently proposed PCJ for NVM [5], UniHeap does not in-
troduce new type system. UniHeap provides two built-in
types: numeral type and reference type. It does not provide
container types, such as list, dict, and tuple in Python, as
developer can implement their own container type based
on these built-in types. As shown in Table 1, the numeral
type includes char, short, int, long, float, and double. For the
reference type, the object field stores the pointer to other
persistent objects. It is worth noting that array is also treated
as an object in UniHeap. Thus, its object field can store a
pointer to an array. As we provide a transparent type system
for managed runtimes, different managed language needs to
map their type into the type system of UniHeap. We show
the mapping of the popular managed languages that include
Java, Python, and JavaScript in Table 1.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel D. Li, B. Reidys, J. Sun, T. Shull, J. Torrellas, and J. Huang

Table 2: UniHeap API for object persistence.

API Description

set_root declare a durable root in a managed runtime.
get_root retrieve a durable root in a managed runtime.
atomic_begin declare the beginning of a persistent region.
atomic_end commit a persistent region in a managed runtime.

Object persistence. To be compatible with the data per-
sistence approaches in the existingNVM frameworks [52, 60],
UniHeap allows developers to label failure-atomic regions as
well as enables automatic object persistence with specified
root objects (see Table 2). Programmers can use the APIs
atomic_begin and atomic_end to specify a failure-atomic re-
gion that provides an all-or-nothing visibility to program-
mers, as shown in Figure 2 (a). With automatic object per-
sistence enabled by setting the durable root, as presented in
Figure 2 (b), all the updates to the objects reachable from a
durable root will be persisted in a crash consistency manner.
Note that both approaches do not require modifications to
the class in the managed languages.

To reduce the object persistence overhead, UniHeap lever-
ages both atomic update and out-of-place update. For small
updates, such as those written to a single data field, UniHeap
simply uses atomic instruction and memory fence. UniHeap
will capture this type of updates by checking the associated
byte code (e.g., putfield in JVM).

For updates to a failure-atomic region, UniHeap uses out-
of-place update and writes the updates in a log-structured
manner. Specifically, UniHeap wraps object updates to the
failure-atomic region within a transaction. Instead of using
the conventional undo or redo logging approaches that re-
quire double writes (i.e., one write for the persistent object
update, one write for the undo/redo log) [13, 28, 44, 45], out-
of-place update only requires one write to the NVM on the
critical path. This is because the old data copies already exist
in the NVM and the logging is not required. As we persist the
update in a new location, it does not affect the old version,
and thus, it inherently supports the atomic data durability.
We discuss how these persistent objects are managed and
persisted in UniHeap as follows.

3.3 Shared NVM Heap

UniHeap stores persistent objects in shared NVM heaps. It
organizes the shared NVM heap into five regions as shown in
Figure 3: heap header, plass region, root table region, object
region, and log region. The heap header stores the metadata
for the corresponding heap, including the heap name (32
bytes) and heap size (8 bytes). The plass region stores all
the class descriptors for UniHeap objects. The root table
stores all the durable root objects. Each root is a key-value
pair with the format of <root_name, root_addr>. The object
region contains an object valid bitmap, which is used by the
GC for reclaiming persistent objects in UniHeap (§3.6). Its

1 uniheap.atomic_begin(); // Start an atomic region.
2 Car redcar = new Car (...);

4 uniheap.atomic_end(); // Commit a persistent region.
3 uniheap.persist(redcar);

(a) An example of using atomic region in UniHeap.

1 Car redcar = new Car (...);
2 uniheap.set_root (redcar); // set durable root.

(b) An example of using durable root in UniHeap.

Figure 2: Examples of object persistence in UniHeap.

Heap Header Plass Region Root Table Log Region
Valid

Bitmap Object Region

NVM

Log RegionlogTx3 log log log

logTx1 log logTx2 log log

DRAMfid1 fid2 fid3 fidn...

Object Field Index Table

Figure 3: The sharedNVMheap structure inUniHeap.

remaining part is organized into numerous fixed-size (16
bytes) chunks, each of which stores an object header. The log
region stores the object updates in a log-structured manner.

Out-of-place update to reduce persistency overhead.

To facilitate out-of-place update, we decouple the object
header from its data (i.e., fields), based on the insight that
object header is not frequently updated in a transaction.
We store the object header in the object region, and object
data in the log region. Once a managed runtime allocates an
object from the shared NVM heap (with the APIs discussed
in Table 3), UniHeap will bump the pointer in the object
region to allocate an object header.
UniHeap uses transactions to ensure data persistence

of object updates. UniHeap uses a slab allocator to allo-
cate memory space for corresponding transaction logs. Each
durable transaction has a transaction header, which consists
of the transaction id (t_id), and its next transaction address
(t_next). Multiple transactions are organized into a linked list.
Each transaction can have multiple logs to stores the out-of-
place updated data. Each log has a log header, which stores
the object id (l_oid), object field id (l_fid), a valid/invalid bit,
and its next log address (l_next), as shown in Figure 3.

The out-of-place update approach can reduce write traffic
to NVM, however, it requires address remapping to retrieve
the latest data for read operation. To address this challenge,
UniHeap employs a per-object mapping table for address
translation. Since each object field has a fixed index value
during the object lifetime, UniHeap use the field index to
store the address of the latest updates in the log region. The
address translation procedure is efficient (O(1)). In addition,
UniHeap caches the object field index table in the fast DRAM
for further performance improvement (see Figure 3).

Garbage collection for the log region. To reduce the
storage overhead of the log region, UniHeap garbage collects

UniHeap: Managing Persistent Objects Across Managed Runtimes for Non-Volatile Memory SYSTOR ’21, June 14–16, 2021, Haifa, Israel

Table 3: Data structures andAPIs used in UniHeap for

interacting with different managed runtimes.

Name Description

D
at
a
St
ru
c. heap_info NVM heap descriptor

plass_info object class descriptor
root_info root object descriptor
object_info object descriptor

In
te
rfa

ce

heap operations load_heap, close_heap
plass operations alloc_plass, init_plass, exists_plass
root operations set_root, get_root, exists_root
object
operations

alloc_object, init_object, load_field,
store_field, set_index

transaction
operations

dtx_begin, dtx_commit, stm_begin,
stm_commit, stm_abort, stm_store, stm_load

stale logs with two strategies: fast GC and full GC. For fast
GC, UniHeap periodically scans all the committed transac-
tions and checks whether their logs are valid or not. UniHeap
compares the log address with the latest address stored in
the object index table. If they do not match with each other,
it means the log is invalid. If all logs in one transaction are
invalid, UniHeap will free them, and update the next pointer
(t_next) of the committed transaction.

As for the full GC, it happens when the free space is below
a threshold (10% of the entire log region by default). UniHeap
accelerates the full GC procedure with thread parallelism. It
first identifies the first and last committed transactions, and
create multiple GC workers. Each GC worker is assigned
with a certain number of transactions. The GC worker scans
their assigned transactions. For each committed transaction,
it copies all valid logs into a volatile buffer. After finishing
scanning all the committed transactions, worker threads use
new durable transactions to commit these valid logs. After
that, UniHeap will reclaim the log space.

3.4 Persistent Object Sharing

It is challenging to have a unified framework for diversified
runtimes, as different runtimes have different properties. To
overcome this, UniHeap abstracts the shared heaps with a
set of generic interfaces and data structures (see Table 3).

Data structures for persistent object sharing. Uni-
Heap abstracts the shared heap with four core data struc-
tures: heap_info, plass_info, object_info, and root_info. The
heap_info data structure that stores NVM heap descriptors
(e.g., the heap name and size) is placed in the heap header
region (see Figure 3). The plass_info is a class descriptor in
UniHeap, which is similar to the klass in Hotspot JVM. It is
stored in the plass region. The root_info stores the durable
roots specified in managed runtimes, it is placed in the root
region of UniHeap. The data structure object_info stores the
meatadata information of each persistent object (see §3.3).

Interface for accessing shared persistent objects.

UniHeap provides a set of interfaces (see Table 3) for man-
aged runtimes to access the shared NVM heap. We classify

these interfaces into two categories: language-neutral and
language-related. The language-neutral interfaces do not
need support from managed runtimes. For example, Uni-
Heap implements the alloc_obj interface with its own object
allocation policy, which is independent from the managed
runtime. For those language-related interfaces that include
only init_plass and exists_plass, they require runtimes to have
their own implementations. For instance, when UniHeap
initializes a class with init_plass, UniHeap requires runtime
support to fill up the plass structure, since the class metadata
is stored in the language source file (e.g., .cls in JVM),

Runtime support for shared NVM heap. To facilitate
the interactions with shared NVM heap, UniHeap has a
module for each (new) managed runtime. This module is
used to support type mapping, object operation, and GC in
UniHeap. Each UniHeap module will provide a mapping set
to track the object references and durable root objects from
the managed runtime, UniHeap will use this information to
ensure the GC correctness. We show the development effort
required for each managed runtime in §4.
To support object persistence, UniHeap provides a set

of APIs (see Table 2) to managed runtimes. Similar to Au-
toPersist [52], UniHeap provides set_root and get_root to
allow developers to specify the durable roots. UniHeap also
provides atomic_begin and atomic_end to enable developers
to specify persistent regions in their programs, in which the
atomic durability is guaranteed for object updates.

3.5 Concurrent Access to Objects

As persistent objects could be concurrently updated by differ-
ent runtimes, it is important to ensure mutual exclusion for
concurrent accesses. To achieve this, UniHeap utilizes soft-
ware transaction memory (STM) [41]. Therefore, programs
in different runtime instance can declare their persistent
regions with atomic_begin and atomic_end. Inside the persis-
tent region, UniHeap combines the STM and durable trans-
action (DTx) to achieve both mutual exclusion and atomic
durability for concurrent object accesses.

UniHeap has an interpreter-level implementation of STM.
Specifically, UniHeap module will capture the load/store op-
erations against the object fields via hooking the associated
bytecode (e.g., putfield/getfield in JVM). We adopt an eager
policy (i.e., encounter-time locking) to resolve the conflict of
data accesses. STM maintains a global lock array, and each
entry owns a lock in the lock array. Each runtime needs to
acquire the lock before performing the store operation to an
object field. And each runtime will validate the lock during
load operation to avoid conflict of data accesses.
The STM in UniHeap is a time-based transaction imple-

mentation. UniHeap maintains a global time counter which
monotonically increases when a transaction is committed

SYSTOR ’21, June 14–16, 2021, Haifa, Israel D. Li, B. Reidys, J. Sun, T. Shull, J. Torrellas, and J. Huang

Root Table

HotSpot JVM

Mapping Set

Mapping

CPython

Mapping Set

Mapping

Spidermonkey

Mapping Set

Mapping

vroot

droot

UniHeap

Figure 4: The mapping of durable roots in UniHeap.

successfully. Once the runtime commits the transaction, it
persists the execution result by leveraging the durable trans-
action (DTx). The runtime starts a new durable transaction
with the generated global timestamp, allocates logs to persist
the execution results, and commits the durable transaction.

If a transaction fails, UniHeap will roll back it to the initial
state to restart the execution. Since we build the transaction
at the interpreter level, UniHeap needs to roll back the in-
terpreter state in order to re-execute the bytecodes inside
the persistent region. Preserving the interpreter state re-
quires the module support in UniHeap, since the interpreter
state is language specific. For instance, UniHeap module in
JVM stores the runtime thread stack pointer (sp), bytecode
pointer (pc), and local variables (locals) at the beginning of
the transaction. If STM execution fails, it will restore the
saved environment to roll back the interpreter state. And the
interpreter will re-execute the bytecode.

3.6 Coordinated GC for Persistent Objects

In §3.3, we discuss the GC for the log region in the shared
NVM heap. It is noted that the GC for persistent objects is
different, it requires the interaction with managed runtimes
to ensure the correctness of object cleanups (see §3.4).

Mark-and-Compact GC in UniHeap. UniHeap uses
the mark-and-compact GC to reclaim persistent objects. We
have to overcome three challenges. First, as each runtime can
have its own reference to a persistent object, UniHeap should
be able to track these references efficiently. Second, UniHeap
needs to coordinate withmultiple runtimes to reach a system-
wide safety point, and then stop the world to perform the
GC. Third, we should also ensure crash safety at GC.
As managed runtimes use UniHeap to store their persis-

tent objects, UniHeap will track their references and reacha-
bility from runtimes. We call these references as vroot, with
the corresponding of the durable roots (droots), as shown in
Figure 4. Therefore, UniHeap maintains a mapping set for
each runtime to store their vroots. As each runtime has dif-
ferent heap layout and object management, the mapping set
is tailored for each runtime. Take HotSpot JVM for example,
the heap of Hotspot JVM is partitioned in two generations:
young region and tenured region. As the object stored in
the young region has a shorter lifetime than tenured region,

UniHeap uses two hash tables to store the object references
for the young and tenured objects, respectively.

As many managed runtimes adopt tracing-based GC, Uni-
Heap reuses their safe point and stop-the-world mechanism.
After collecting these vroots, UniHeap creates multiple GC
worker threads to perform the object reachability analysis.
Each thread is assigned with several droots and mark lived
objects. For any object that is reachable from a durable root,
it will be treated as lived object and maintained in the persis-
tent heap. For an object which is no longer reachable from a
durable root and it has no reference from any runtime, it will
be reclaimed. Therefore, if a user wants to maintain an object
in the persistent heap for future use in another runtime, this
object should be reachable from a durable root or has a ref-
erence from at least one runtime. For these objects hosted in
the managed runtime but not reachable from durable roots,
they would not be persisted to the unified heap and would be
garbage collected by the corresponding managed runtime.

Crash safety in the GC of UniHeap. UniHeap needs
to ensure crash-safety during GC. To achieve this, UniHeap
will guarantee each step in the GC is idempotent. The GC of
UniHeap consists of four phases: (1) marking phase, (2) relo-
cation phase, (3) compaction phase, and (4) clean-up phase.
In the marking phase, UniHeap sets the corresponding bit
in the valid bitmap to indicate whether the object is live or
not. The heap space and layout are not changed. During the
relocation phase, UniHeap will conduct a statistical analysis
of the shared NVM heap space, allocate a new object region
based on the calculation, and use a hash table to store the
new addresses of all live objects. After this phase, the new ad-
dress of each object is determined. During compaction phase,
the live objects will be moved to their new addresses. To
accelerate the GC procedure, UniHeap uses multiple threads
to migrate live objects. At the clean-up phase, old objects
will be reclaimed. Note that UniHeap uses obj_info as an
indirection layer that stores the pointer to the real persistent
object. Therefore, during the clean-up phase, UniHeap does
not need to modify all reference pointers in all runtimes.
The GC of UniHeap is crash safe by ensuring each GC

phase is idempotent. The marking phase is naturally idem-
potent, since this phase does not change the heap states. As
for the compaction phase, we maintain the old object region
until the clean-up phase. Therefore, upon a crash or failure,
UniHeap can redo the GC during the system recovery.

3.7 NVM Heap Management

In UniHeap, we have a server proxy managing all NVM
heaps. Each UniHeap module for each managed runtime has
a thread to communicate with the server proxy via UNIX do-
main socket. UniHeapminimizes the inter-process communi-
cation during the runtime execution. In particular, UniHeap

UniHeap: Managing Persistent Objects Across Managed Runtimes for Non-Volatile Memory SYSTOR ’21, June 14–16, 2021, Haifa, Israel

module only communicates with UniHeap server proxy at
the runtime initialization and GC procedure. For the run-
time initialization, UniHeapmodule interacts with the server
proxy to allocate shared memory, load the shared NVM heap,
and initialize other system states. Once UniHeap starts GC,
all runtimes need to report their vroots to the UniHeap server
proxy. UniHeap also coordinates with runtimes to stop the
world through this communication channel.

4 UNIHEAP IMPLEMENTATION

In this section, we describe the UniHeap implementation
details. We will first discuss the implementation of the main
framework. And then, we will present the module imple-
mentation for each individual managed runtime, including
HotSpot JVM, cPython, and SpiderMonkey.
Main Framework Implementation. We implement Uni-
Heap system prototype with 9,163 lines of C programming
code. The UniHeap framework is implemented as a shared li-
brary, including UniHeap interface and GC for the log region.
As for the shared NVM heap, UniHeap uses the memory-
mapped interface with Direct Access (DAX) [61] enabled for
fast access to the NVM device. Each runtime module will
dynamically load this shared library at the runtime initializa-
tion. The UniHeap server proxy implementation has 5,732
lines of C code, including process communication and GC.
Hotspot JVM Implementation. We modify a few
OpenJDK8u212-b03-0 components to support UniHeap. We
modify the Hotspot template interpreter to implement our
transaction mechanism. We add hook functions in the byte-
codes for object field accesses (i.e., putfield and getfield), and
array element access (e.g., arrayload and arraystore). We also
modify the parallel scavenge GC to support our GC for per-
sistent objects. Specifically, we add the remembered sets [8]
support in the GC procedure. After the GC copies all ob-
jects to the from region, the runtime module reports all the
remaining live objects as vroots to UniHeap.
cPython Implementation For the Python runtime, we
use the open-source cPython 2.7.15. We add the hook
functions in the corresponding bytecodes for object ac-
cesses, such as LIST_APPEND, LOAD_LOCALS, LOAD_ATTR,
STORE_LOCAL, and STORE_GLOBAL. Since cPython uses
a reference counter-based GC rather than a tracing-based
one, special effort is required to obtain the object references.
In cPython, a module is used to implement a generational
GC on top of the reference counter based GC, in which ob-
ject deallocation happens when its reference count drops to
zero. Therefore, we can obtain vroots by tracking the object
references from their allocation to deallocation.
JavaScript Implementation. Similar to HotSpot and
cPython, UniHeap adds hook functions to the relevant
bytecodes for object accesses in SpiderMonkey with ver-
sion 52. They include JSOP_GETLOCAL, JSOP_SETLOCAL,

JSOP_GETNAME, JSOP_SETNAME, and others. The GC of
SpiderMonkey is similar to that of HotSpot JVM. Their major
difference is that the marking phase in SpiderMonkey occurs
incrementally. But the way of tracking vroots in SpierMon-
key is similar to that of HotSpot JVM. The SpiderMonkey
runtime module reports its vroots when copying them to a
new heap during the GC.

5 EVALUATION

Our evaluation shows that (1) UniHeap performs better than
state-of-art approaches of persistent object sharing (§5.2); (2)
It can scale the persistent object sharing as we increase the
number of managed runtimes (§5.3). (3) UniHeap enables
persistent object sharing across different runtimes without
introducing much performance overhead (§5.4 and §5.5);

5.1 Experimental Setup

We conduct our evaluation on an Intel machine configured
with real NVM devices. It has two Intel Xeon processors,
and each processor has 24 cores. It has eight Intel Optane
DC persistent memory modules with a total capacity of 1TB
(8 × 128GB), and 384GB of DDR4 DRAM. The server runs
Fedora 27 with the Linux kernel version 4.15. We modify the
OpenJDK8u212-b03-0, CPython2.7.15, and SpiderMonkey-52
runtimes, respectively (see § 4), and use UniHeap to man-
age shared persistent objects. We use libpmem [9] to create
shared NVM heaps and utilize DAX technique to enable
direct memory access to NVM DIMMs. The shared heap
is configured as 20GB by default. We compare UniHeap
with two state-of-the-art data persistence approaches used
in managed runtime systems.

• ManualPersist: It requires developers to manually iden-
tify the objects that should be allocated in NVM [60].When
persisting objects to NVM, clwb and mfence instructions
are called to enforce the memory persistency.

• AutoPersist: It requires developers to only specify the
durable root objects, the runtime will automatically persist
the objects reachable from the durable roots [52].

We follow the automatic object persistence technique in
AutoPersist, and enable it in cPython and SpiderMonkey
runtimes for fair comparison. Although ManualPersist and
AutoPersist approaches were developed for supporting NVM
in managed runtimes, they do not have the feature of sharing
persistent objects across managed runtimes. Therefore, we
also compare UniHeap with state-of-the-art object sharing
approaches: Thrift [39] and shared memory [59].

• Thrift: It is a scalable cross-language RPC protocol devel-
oped by Facebook [39]. Similar to other cross-language

SYSTOR ’21, June 14–16, 2021, Haifa, Israel D. Li, B. Reidys, J. Sun, T. Shull, J. Torrellas, and J. Huang

Table 4: Benchmarks used in our evaluation.

Runtime Benchmark Description

Java

YCSB A Recent actions in a user session
YCSB B Photo tagging application
YCSB C User profile cache
YCSB D User status updates
YCSB F Read-modify-update in user database

Python

bm_nqueens N Queens solver
bm_nbody N body benchmark
bm_chameleon Template rendering
bm_chaos Chaos game like fractals
bm_logging Benchmarks on the logging module

JavaScript
gcc_loop GCC and LLVM vectorization tuning
float_mm Floating point matrix multiplication
quicksort Quicksort
hashset Hash table operations

protocols, such as ProtoBuf [6], Thrift requires serializa-
tion/deserialization when it generates template codes. Re-
cent studies [2, 59] show that Thrift performs much better
than other similar techniques.

• SharedMem: It enables object sharing across Java and
Python runtimes through shared memory [59]. To enable
the NVM support in SharedMem, we use the libpmem [9],
such that the objects stored in the shared memory space
will be persisted in NVM.
We evaluate UniHeap against the aforementioned base-

lines with a variety of synthetic workloads and benchmarks.
For different managed runtimes, we use different dedicated
benchmarks that were developed for testing each individual
runtime. We describe them as follows.
• Java Benchmarks: We use the key-value store Quick-
Cached [47] and transactional database H2 [3]. Quick-
Cached is a pure Java implementation of Memcached that
uses persistent data structures to store key-value pairs.
H2 is a popular transactional database written in Java
language. For both QuickCached and H2, we use Yahoo
Cloud Services Benchmark (YCSB) [18] to populate the
backend storage and generate cloud workloads with dif-
ferent read/write ratio following the Zipfian distribution.

• Python Benchmarks: We use Python Performance
Benchmark Suite [54], which is a performance benchmark
suite developed for emulating real-world workloads. It has
a variety of benchmarks that include Chaos games, tem-
plate rendering, and event logging, as shown in Table 4.

• JavaScript Benchmarks: For JavaScript runtime, we use
JetStream2 [31], a JavaScript benchmark suite for web
applications. It covers a variety of common operations
executed in JavaScrpt-based applications, such as matrix
multiplication, quicksort, and hash table operations.

5.2 Performance of Shared Object Accesses

We first examine the performance benefit of UniHeap on
persistent object sharing. We compare UniHeap with state-
of-the-art object sharing approaches Thrift and SharedMem,
as described in § 5.1. We first run microbenchmarks. We

128 B 256 B 512 B 1 KB
0
1
2
3
4
5

N
or

m
al

iz
ed

 S
pe

ed
up

Thrift SharedMem UniHeap

Figure 5: Performance comparison of different persis-

tent object sharing approaches.

A B C D F
0
1
2
3
4
5

N
or

m
al

iz
ed

 T
PS 1 Runtime

2 Runtimes
4 Runtimes
6 Runtimes

8 Runtimes

Figure 6: Scalability of UniHeap.

run one HotSpot JVM and one SpiderMonkey runtime on
UniHeap concurrently. Within the HotSpot JVM, we run the
microbenchmark to generate 10K persistent objects sequen-
tially. We vary the object size from 128 bytes to 1KB. For
each persistent object, we share it with the SpiderMonkey
runtime with different approaches. As shown in Figure 5,
both UniHeap and SharedMem perform 2.3-3.4× faster than
Thrift. This is because Thrift has to conduct the serialization
and deserialization operations, while former ones use shared
memory techniques to achieve object sharing. As we increase
the object size, Thrift improves its efficiency, however, it still
performs much worse than the shared memory approach.
We now use a real-world benchmark to demonstrate the

interoperability across different managed runtimes through
UniHeap. We run the YCSB in the HotSpot JVM against a
QuickCached service. We first populate the key-value store
with 1 million key-value pairs, such that these key-value
pairs will be stored in the shared NVM heap in UniHeap.
And then, we run another YCSB client in the SpiderMon-
key runtime. We use the YCSB workload C (read-only) to
issue query requests against the key-value store. We com-
pare UniHeap with the SharedMem solution, and find that
UniHeap performs 21.7% better than SharedMem. This is
because SharedMem does not support NVM, but its shared
memory space can be mapped to the NVM through libpmem.
However, it still performs worse than UniHeap, due to the
lack of data persistence optimizations.

5.3 Scalability Benefit of UniHeap

We now evaluate the scalability of UniHeap. To facilitate our
evaluation, we use the H2 database as the back-end persistent
storage service. We first run the YCSB client in one HotSpot
JVM runtime, and load 1 million key-value pairs. After that,
we increase the number of YCSB clients, and each YCSB client
will run in an individual HotSpot JVM. As shown in Figure 6,
for all the YCSBworkloads we evaluate, their throughput will
increase as we increase the number of JVM runtimes. This
demonstrates that the mechanisms designed for concurrent

UniHeap: Managing Persistent Objects Across Managed Runtimes for Non-Volatile Memory SYSTOR ’21, June 14–16, 2021, Haifa, Israel

128B 256B 512B 1024B
0

0.5
1.0
1.5
2.0
2.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t ManualPersist

AutoPersist
UniHeap

(a) Sequential Write

128B 256B 512B 1024B
0

0.5

1.0

1.5

2.0

(b) RandomWrite

128B 256B 512B 1024B
0

0.25
0.50
0.75
1.00
1.25

(c) Sequential Read

128B 256B 512B 1024B
0

0.25
0.50
0.75
1.00
1.25

(d) Random Read

Figure 7: Performance of supporting HotSpot JVM in UniHeap.

SeqWrite RanWrite SeqRead RanRead
0

0.3
0.6
0.9
1.2
1.5

N
or

m
al

iz
ed

 T
PS AutoPersist (Python) UniHeap

Figure 8: Performance of cPython in UniHeap.

SeqWrite RanWrite SeqRead RanRead
0

0.5
1.0
1.5

N
or

m
al

iz
ed

 T
PS AutoPersist (JavaScript) UniHeap

Figure 9: Performance of SpiderMonkey in UniHeap.

data accesses to persistent objects in UniHeap can scale to
support multiple managed runtimes.

5.4 Synthetic Workloads

We now compare UniHeap with each individual (native)
managed runtime that does not provide the function of persis-
tent object sharing. In the experiment, we generate 1 million
objects within the managed runtime. After that, we perform
sequential/random read and update operations against these
objects. We vary the object size from 128 bytes to 1 KB.

In UniHeap, we wrap the load and store operation against
the object fields with a durable transaction. In ManualPersit,
we use clwb and mfence instructions after each object field
update to ensure the data persistence. In AutoPersist, we use
its failure-atomic region to wrap each object update and use
the undo logging by default to guarantee the crash safety.

UniHeap does not introduce additional performance over-
head, as shown in Figure 7. For writes, UniHeap outperforms
ManualPersist and AutoPersist by 10.2% and 13.4% on av-
erage, respectively. For reads, UniHeap does not introduce
much performance overhead, although it has to check an
indirection layer for the log-structured memory design.
AutoPersist outperforms ManualPersist, because it has

less cacheline flushes and memory fence operations. Since
AutoPersist relies on the runtime system to persist objects, it
has the knowledge of the runtime system (e.g., object layout
and reachability). UniHeap follows the design principle of
AutoPersist, which manages the memory persistency at run-
time. However, UniHeap enables persistent object sharing.

Both AutoPersist and ManualPersist employ logging to en-
sure crash safety, which causes duplicate writes to NVM for
each persistent write. UniHeap develops the log-structured

A B C D F
0
1
2
3
4

N
or

m
al

iz
ed

 T
PS ManualPersist

AutoPersist
UniHeap

Figure 10: Performance of running HotSpot JVM with

UniHeap, when using QuickCached+YCSB.

memory to achieve both strong data persistence and low
write traffic. This is especially helpful for random writes,
since the log-structured memory design will turn the ran-
dom data accesses into sequential pattern by appending each
update into the log (see Figure 3).
We also run the synthetic workloads with cPython and

SpiderMonkey runtimes. For these runtimes, we have our
own implementation of AutoPersist [52]. As shown in Fig-
ure 8 and Figure 9, we set the object size to 1KB, UniHeap
provides the similar performance behavior as HotSpot JVM.
This demonstrates that UniHeap does not introduce much
performance overhead to each individual managed runtime.

5.5 Real-World Applications

In this section, we use real applications to evaluate UniHeap.
Comparison with HotSpot JVM.We first evaluate Uni-

Heap against the HotSpot JVM with ManualPersist and Au-
toPersist enabled, respectively. As described in §5.1, We run
QuickCached as the back-end storage service and store its
persistent data structures in NVM.We run YCSB as the client
and issue put/get requests against the QuickCached service.

We show the experimental results in Figure 10. UniHeap
outperforms AutoPersist by up to 26.3% for the workloads
with intensive writes, such as workload A, D, and F. This is
because UniHeap utilizes the log-structured memory design
and stores the object updates in the log. This can signifi-
cantly reduce the number of memory fence operations, as
we ensure the memory persistency for object updates. As
for the comparison between AutoPersist and ManualPersist,
we obtain the similar conclusion as discussed in [52]. AutoP-
ersist leverages the runtime profiling and optimization to
reduce the data persistence overhead. However, AutoPersist
uses undo log for ensuring the data durability and atomic-
ity. UniHeap further improves this mechanism by using the
out-of-place update in the log region (see Figure 3).
To further understand the performance benefit of Uni-

Heap, we sample the number of mfence operations incurred

SYSTOR ’21, June 14–16, 2021, Haifa, Israel D. Li, B. Reidys, J. Sun, T. Shull, J. Torrellas, and J. Huang

nqueens nbody chameleon chaos logging
0

0.5

1.0

1.5

N
or

m
al

iz
ed

 S
pe

ed
up

AutoPersist (Python) UniHeap

Figure 11: Performance of running cPython on Uni-

Heap with Python Performance Benchmark Suite.

gcc_loop float_mm quicksort hashset
0

0.5
1.0
1.5

N
or

m
al

iz
ed

 S
pe

ed
up

AutoPersist (JavaScript) UniHeap

Figure 12: Performance of running SpiderMonkey on

UniHeap with JetStrem2 benchmarks.

at runtime, when we issue 1K requests against the key-value
store. As shown in Table 5, UniHeap significantly reduces the
number of mfence operations. Since the runtime will incur
extra operations on persistent objects, AutoPersist requires
more mfence to ensure the data persistence.

Comparison with cPython.We now evaluate UniHeap
against the cPython with AutoPersist enabled. We use
the Python Performance Benchmark Suite to run various
Python benchmarks within the managed runtime. As shown
in Figure 11, UniHeap does not introduce extra perfor-
mance overhead for all the benchmarks. It outperforms the
cPython runtime by 24.1%, when running the write-intensive
bm_logging benchmark. As for the benchmarks bm_nqueens
and bm_chameleon, UniHeap performs slightly better than
cPython, as they generate mixed read/write operations.

Comparison with SpiderMonkey. For the comparison
with SpiderMonkey, we run JetStream2 benchmarks that
were designed specifically to evaluate the JavaScript runtime
engine.We demonstrate the experimental results in Figure 12.
UniHeap introduces trivial extra performance overhead. For
the workloads gcc_loop and float_mm that are less memory
intensive, the performance of UniHeap is similar to that
of running SpiderMonkey independently. For the workload
quicksort that generates intensive writes, UniHeap performs
better because of the reduced data persistence overhead.
Overall, as we run each managed runtime on UniHeap,

its performance is better than that of running each man-
aged runtime individually. This shows the low performance
overhead of UniHeap as a generic NVM runtime framework.

6 RELATEDWORK

Programming Frameworks for NVM. To facilitate the
use of NVM, many NVM frameworks have been proposed [9,
14–17, 19, 24, 34, 42, 56, 60]. All of these works require the
programmer to explicitly specify the data structures that
should reside in NVM. This limitation requires significant ef-
fort from programmers, potentially causing correctness and

Table 5: Number of incurredmfence operations.
Benchmarks AutoPersist UniHeap

Workload A 1798 18
Workload B 398 4
Workload C 0 0
Workload D 331 6
Workload F 1898 22

performance bugs in NVM programs. Recent studies such
as AutoPersist [52] and Espresso [60] proposed to exploit
the managed runtime to manage NVM, which simplifies the
NVMprogramming. However, these runtime-based solutions
are mainly developed based on JVM, which cannot work as
a generic programming framework. Our work UniHeap ex-
tends this thread of research to other managed languages
such as Python and JavaScript, while enabling efficient per-
sistent object sharing across different runtimes.
Reduce Memory Persistency Overhead. NVM requires
memory persistency operations to ensure crash consis-
tency [42, 46, 56]. However, ensuring memory persistency
with modern memory hierarchies is challenging. To allevi-
ate memory persistency overhead, prior studies proposed
both software [22, 25, 37, 56] and hardware [21, 32, 50] tech-
niques to reduce the overhead of logging in atomic regions
and transactions. UniHeap manages persistent objects in
a log-structured manner, which avoids double writes and
significantly reduce the logging overhead.
Persistent Object Sharing. As system-wide shared re-
sources like persistent storage, NVM deserves efficient data
sharing across different managed runtimes. JVM has devel-
oped persistence layers to persist objects to file systems or
database, including Java Persistence API (JPA) [30] and Java
Data Objects (JDO) [29]. However, they still suffer from sig-
nificant object serialization/deserialization overhead. The
most efficient approach for enabling cross-language commu-
nication is the shared memory [59]. However, the existing
study did not support NVM and data persistence. To the best
of our knowledge, UniHeap is the first work that enables
persistent object sharing across various managed runtimes.

7 CONCLUSION

We present UniHeap, a unified persistent object manage-
ment for different managed runtimes. UniHeap is driven
by the trend that managed runtime would be the new ab-
straction to manage NVM. UniHeap provides a more generic
NVM programming framework by enabling persistent object
sharing across various managed runtimes.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and shep-
herd Jonathan Balkind for their helpful comments and feed-
back. This work was partially supported by the NSF grant
CNS-1850317, CCF-1919044, and CNS-1763658.

UniHeap: Managing Persistent Objects Across Managed Runtimes for Non-Volatile Memory SYSTOR ’21, June 14–16, 2021, Haifa, Israel

REFERENCES

[1] 2015. Intel 64 and IA-32 Architectures Software Developer’s Manual.
https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-\instruction-
set-reference-manual-325383.pdf.

[2] 2019. Apache Thrift vs Protocol Buffers vs Fast Buffers.
https://www.eprosima.com/index.php/resources-all/performance/
apache-thrift-vs-protocol-buffers-vs-fast-buffers.

[3] 2019. H2 Database Engine. https://www.h2database.com
[4] 2019. NVDIMM.

https://en.wikipedia.org/wiki/NVDIMM.
[5] 2019. PCJ. https://github.com/pmem/pcj.
[6] 2019. Protocol buffers are a language-neutral, platform-neutral exten-

sible mechanism for serializing structured data.
https://developers.google.com/protocol-buffers/.

[7] 2019. Why are multiple programming languages used in the
development of one product or piece of software.
https://softwareengineering.stackexchange.com/questions/
370135/why-are-multiple-programming-languages-used-in-
the-development-of-one-product-or.

[8] 2021. 10 Garbage-First Garbage Collector Tuning.
https://stackoverflow.com/questions/61936621/what-is-remembered-
set-in-g1-algorithms-used-for.

[9] 2021. Persistent Memory Development Kit. http://pmem.io/pmdk/
[10] 5 Popular Programming Languages and Their Uses. 2017.

https://medium.com/@CarolPelu/5-popular-programming-
languages-and-their-\uses-22af241de35b.

[11] H. Akinaga and H. Shima. 2010. Resistive Random Access Memory
(ReRAM) Based on Metal Oxides. Proc. IEEE 98, 12 (Dec 2010), 2237–
2251. https://doi.org/10.1109/JPROC.2010.2070830

[12] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven
Eeckhout. 2018. Write-Rationing Garbage Collection for Hybrid Mem-
ories. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18). Philadelphia, PA.

[13] Miao Cai, Chance Coats, and Jian Huang. 2020. Hoop: Efficient
Hardware-Assisted Out-of-Place Update for Non-Volatile Memory.
In Proceedings of the 47th International Symposium on Computer Archi-
tecture (ISCA’20). Virtual Event.

[14] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.
Atlas: Leveraging Locks for Non-volatile Memory Consistency. In
Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (Portland, Oregon,
USA) (OOPSLA ’14). ACM, New York, NY, USA, 433–452. https://doi.
org/10.1145/2660193.2660224

[15] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Mak-
ing Persistent Objects Fast and Safe with Next-generation, Non-volatile
Memories. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (Newport Beach, California, USA) (ASPLOS XVI). ACM, New York,
NY, USA, 105–118. https://doi.org/10.1145/1950365.1950380

[16] Nachshon Cohen, David T. Aksun, and James R. Larus. 2018. Object-
oriented recovery for non-volatile memory. Proceedings of the ACM on
Programming Languages, Vol. 2, OOPSLA (2018), 153:1–153:22. https:
//doi.org/10.1145/3276523

[17] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Bet-
ter I/O Through Byte-addressable, Persistent Memory. In Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP’09). Big Sky, Montana, USA.

[18] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. [n.d.]. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing.

[19] Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. 2016. NVL-C:
Static Analysis Techniques for Efficient, Correct Programming of Non-
Volatile Main Memory Systems. In Proceedings of the 25th ACM In-
ternational Symposium on High-Performance Parallel and Distributed
Computing (Kyoto, Japan) (HPDC ’16). ACM, New York, NY, USA, 125–
136. https://doi.org/10.1145/2907294.2907303

[20] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. 2019.
Performance and Protection in the ZoFS User-Space NVM File Sys-
tem. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP’19) (Huntsville, Ontario, Canada).

[21] K. Doshi, E. Giles, and P. Varman. 2016. Atomic persistence for SCM
with a non-intrusive backend controller. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 77–89.
https://doi.org/10.1109/HPCA.2016.7446055

[22] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish
Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018.
Persistency for Synchronization-free Regions. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Philadelphia, PA, USA) (PLDI 2018). ACM, New York,
NY, USA, 46–61. https://doi.org/10.1145/3192366.3192367

[23] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger,
and Hanspeter Mössenböck. 2015. High-Performance Cross-Language
Interoperability in a Multi-Language Runtime. In Proceedings of the
11th Symposium on Dynamic Languages (DLS’15). Pittsburgh, PA, USA.

[24] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-
ton, and Patrick Eugster. 2017. NVthreads: Practical Persistence for
Multi-threaded Applications. In Proceedings of the Twelfth European
Conference on Computer Systems (Belgrade, Serbia) (EuroSys ’17). ACM,
New York, NY, USA, 468–482. https://doi.org/10.1145/3064176.3064204

[25] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. 2015.
NVRAM-Aware Logging in Transaction Systems. In Proceedings of
the VLDB Endowment (VLDB’15). Kohala Coast, Hawaii.

[26] Jian Huang, Xuechen Zhang, and Karsten Schwan. 2015. Understand-
ing Issue Correlations: A Case Study of the Hadoop System. In Pro-
ceedings of the Sixth ACM Symposium on Cloud Computing (SoCC’15).
Kohala Coast, Hawaii.

[27] Intel. 2018. 3D XPoint: A Breakthrough in Non-Volatile Memory
Technology.
https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-micron-3d-xpoint-webcast.html.

[28] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-
Atomic Persistent Memory Updates via JUSTDO Logging. In Proceed-
ings of 21th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’16). Atlanta,
GA.

[29] Java Data Objects. 2006.
https://en.wikipedia.org/wiki/Java_Data_Objects.

[30] Java Persistence API. 2013.
https://en.wikipedia.org/wiki/Java_Persistence_API.

[31] JetStream2. 2019.
https://browserbench.org/JetStream/.

[32] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra. 2017. ATOM: Atomic
Durability in Non-volatile Memory through Hardware Logging. In
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 361–372. https://doi.org/10.1109/HPCA.2017.50

[33] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing
Software Overhead in File Systems for Persistent Memory. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-\instruction-set-reference-manual-325383.pdf
https://www.eprosima.com/index.php/resources-all/performance/apache-thrift-vs-protocol-buffers-vs-fast-buffers
https://www.eprosima.com/index.php/resources-all/performance/apache-thrift-vs-protocol-buffers-vs-fast-buffers
https://www.h2database.com
https://en.wikipedia.org/wiki/NVDIMM
https://github.com/pmem/pcj
https://developers.google.com/protocol-buffers/
https://softwareengineering.stackexchange.com/questions/370135/why-are-multiple-programming-languages-used-in-the-development-of-one-product-or
https://softwareengineering.stackexchange.com/questions/370135/why-are-multiple-programming-languages-used-in-the-development-of-one-product-or
https://softwareengineering.stackexchange.com/questions/370135/why-are-multiple-programming-languages-used-in-the-development-of-one-product-or
https://stackoverflow.com/questions/61936621/what-is-remembered-set-in-g1-algorithms-used-for
https://stackoverflow.com/questions/61936621/what-is-remembered-set-in-g1-algorithms-used-for
http://pmem.io/pmdk/
https://medium.com/@CarolPelu/5-popular-programming-languages-and-their-\uses-22af241de35b
https://medium.com/@CarolPelu/5-popular-programming-languages-and-their-\uses-22af241de35b
https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/3276523
https://doi.org/10.1145/3276523
https://doi.org/10.1145/2907294.2907303
https://doi.org/10.1109/HPCA.2016.7446055
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1145/3064176.3064204
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://en.wikipedia.org/wiki/Java_Data_Objects
https://en.wikipedia.org/wiki/Java_Persistence_API
https://browserbench.org/JetStream/
https://doi.org/10.1109/HPCA.2017.50

SYSTOR ’21, June 14–16, 2021, Haifa, Israel D. Li, B. Reidys, J. Sun, T. Shull, J. Torrellas, and J. Huang

(SOSP’19) (Huntsville, Ontario, Canada).
[34] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, StephanDiestelhorst, PeterM.

Chen, Satish Narayanasamy, and Thomas F. Wenisch. 2017. Language-
level Persistency. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM,
NewYork, NY, USA, 481–493. https://doi.org/10.1145/3079856.3080229

[35] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. 2019. Recipe: Converting Concurrent DRAM
Indexes to Persistent-Memory Indexes. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP’19) (Huntsville, On-
tario, Canada).

[36] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.
2019. KVell: The Design and Implementation of a Fast Persistent Key-
Value Store. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP’19) (Huntsville, Ontario, Canada).

[37] Virendra Marathe, Achin Mishra, Amee Trivedi, Yihe Huang, Faisal
Zaghloul, Sanidhya Kashyap, Margo Seltzer, Tim Harris, Steve Byan,
Bill Bridge, and Dave Dice. 2018. Persistent Memory Transactions.
arXiv:cs.DC/1804.00701

[38] Mario Wolczko, Non-Volatile Memory and Java. 2019. https://medium.
com/@mwolczko/non-volatile-memory-and-java-7ba80f1e730c.

[39] Mark Slee and Aditya Agarwal and Marc Kwiatkowski. 2007. Thrift:
Scalable Cross-Language Services Implementation. White Paper
(2007).

[40] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson.
2020. Pronto: Easy and Fast Persistence for Volatile Data Structures.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS’20). Lausanne, Switzerland.

[41] Software Transactional Memory. 2019. https://en.wikipedia.org/wiki/
Software_transactional_memory.

[42] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris
Volos, and Kimberly Keeton. 2017. An Analysis of Persistent Memory
Use with WHISPER. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (Xi’an, China) (ASPLOS ’17). ACM, New York, NY,
USA, 135–148. https://doi.org/10.1145/3037697.3037730

[43] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Dem-
sky, and Shan Lu. 2018. Skyway: Connecting Managed Heaps in Dis-
tributed Big Data Systems. In Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’18). Williamsburg, VA, USA.

[44] Tri M. Nguyen and David Wentzlaff. 2018. PiCL: a software-
transparent, persistent cache log for nonvolatile main memory. In
Proceedings of the 51th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’18). Fukuoka, Japan, 178–190.

[45] Yuanjiang Ni, Jishen Zhao, Heiner Litz, Daniel Bittman, and Ethan L.
Miller. 2019. SSP: Eliminating Redundant Writes in Failure-Atomic
NVMRAMs via Shadow Sub-Paging. In Proceedings of 52st International
Symposium on Microarchitecture (MICRO’19). Columbus, OH.

[46] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory
Persistency. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (ISCA’14). Minneapolis, Minnesota, USA.

[47] QuickCached. 2019.
https://github.com/QuickServerLab/QuickCached.

[48] Dulloor Subramanya Rao, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
software for persistent memory. In Ninth Eurosys Conference 2014,
EuroSys 2014, Amsterdam, The Netherlands, April 13-16, 2014. 15:1–
15:15.

[49] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam.

2008. Phase-change random access memory: A scalable technology.
IBM Journal of Research and Development 52, 4.5 (July 2008), 465–479.
https://doi.org/10.1147/rd.524.0465

[50] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan
Solihin. 2017. Proteus: A Flexible and Fast Software Supported Hard-
ware Logging Approach for NVM. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (Cambridge,
Massachusetts) (MICRO-50 ’17). ACM, New York, NY, USA, 178–190.
https://doi.org/10.1145/3123939.3124539

[51] Thomas Shull, Jian Huang, and Josep Torrellas. 2018. Defining a High-
level Programming Model for Emerging NVRAM Technologies. In
Proceedings of the 15th International Conference on Managed Languages
& Runtimes (Linz, Austria) (ManLang ’18). ACM, New York, NY, USA,
Article 11, 7 pages. https://doi.org/10.1145/3237009.3237027

[52] Thomas Shull, Jian Huang, and Josep Torrellas. 2019. AutoPersist: an
easy-to-use Java NVM framework based on reachability. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’19). Phoenix, AZ.

[53] Thomas Shull, Jian Huang, and Josep Torrellas. 2019. QuickCheck:
Using Speculation to Reduce the Overhead of Checks in NVM Frame-
works. In Proceedings of the 15th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE’19). Providence,
Rhode Island.

[54] The Python Performance Benchmark Suite. 2017.
https://pyperformance.readthedocs.io/.

[55] Top 10 Programming Languages of the World - 2019 to Begin
with. 2019. https://www.geeksforgeeks.org/top-10-programming-
languages-\of-the-world-2019-to-begin-with/.

[56] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of the
Sixteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’11) (Newport Beach,
California, USA).

[57] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur
Multu, Fang Lv, Xiaobing Feng, and Guoqing Harry Xu. 2019. Panthera:
Holistic Memory Management for Big Data Processing over Hybrid
Memories. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’19). Phoenix,
AZ.

[58] Michael Wegiel and Chandra Krintz. 2008. XMem: Type-Safe, Trans-
parent, Shared Memory for Cross-Runtime Communication and Coor-
dination. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’08). Tucson, AZ.

[59] Michal Wegiel and Chandra Krintz. 2010. Cross-language, type-safe,
and transparent object sharing for co-located managed runtimes. In
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’10). Reno/Tahoe, Nevada.

[60] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu
Zang, and Haibing Guan. 2018. Espresso: Brewing Java For More Non-
Volatility with Non-volatile Memory. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’18). Williamsburg, VA, USA.

[61] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX
Conference on File and Storage Technologies, FAST 2016, Santa Clara,
CA, USA, February 22-25, 2016. 323–338.

[62] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-
ing Sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing (HotCloud’10). Boston, MA.

https://doi.org/10.1145/3079856.3080229
https://arxiv.org/abs/cs.DC/1804.00701
https://medium.com/@mwolczko/non-volatile-memory-and-java-7ba80f1e730c
https://medium.com/@mwolczko/non-volatile-memory-and-java-7ba80f1e730c
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Software_transactional_memory
https://doi.org/10.1145/3037697.3037730
https://github.com/QuickServerLab/QuickCached
https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1145/3123939.3124539
https://doi.org/10.1145/3237009.3237027
https://pyperformance.readthedocs.io/
https://www.geeksforgeeks.org/top-10-programming-languages-\of-the-world-2019-to-begin-with/
https://www.geeksforgeeks.org/top-10-programming-languages-\of-the-world-2019-to-begin-with/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Byte-Addressable NVM
	2.2 NVM Management and Programming
	2.3 Object Management Across Runtimes

	3 UniHeap Design
	3.1 Design Principles
	3.2 Unified Persistence Layer
	3.3 Shared NVM Heap
	3.4 Persistent Object Sharing
	3.5 Concurrent Access to Objects
	3.6 Coordinated GC for Persistent Objects
	3.7 NVM Heap Management

	4 UniHeap Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance of Shared Object Accesses
	5.3 Scalability Benefit of UniHeap
	5.4 Synthetic Workloads
	5.5 Real-World Applications

	6 Related Work
	7 Conclusion
	References

