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Abstract—This paper proposes an approach to control
fractional-order semilinear systems which are subject to linear
constraints. The design procedure consists of two stages. First,
a linear state-feedback control law is proposed to prestabilize
the system in the absence of constraints. The stability and
convergence properties are proved using Lyapunov theory.
Then, a constraint-handling unit is utilized to enforce the
constraints at all times. In particular, we use the Explicit
Reference Governor (ERG) scheme. The core idea behind ERG
is, first, to translate the linear constraints into a constraint on
the value of the Lyapunov function, and then to manipulate
the auxiliary reference such that the Lyapunov function is
smaller than a threshold value at all times. The proposed
method is applied in a drug delivery system to control the
drug concentration, and its performance is assessed through
extensive simulation results.

I. INTRODUCTION

Fractional-order systems are the generalization of the tra-
ditional integer-order systems. Fractional-order systems have
been used in control theory and applications thanks to their
capabilities in accurate modeling of dynamical systems, the
bigger stability regions, and the achievement of more control
requirements [1]. During the last years, numerous control
schemes have been developed for fractional-order systems,
e.g., fractional PID controller [2], fractional CRONE con-
troller [3], and fractional lead-lag controller [4]. Similarly, in
order to improve the control performance of nonlinear sys-
tems, quite a few number of control methods are developed
based on fractional calculus, such as sliding mode control [5],
model reference adaptive control [6], backstepping control
[7], and fuzzy control [8].

Similar to integer-order systems, fractional-order systems
can be subject to operational constraints, which need to
be satisfied. Feasibility of controlling the fractional-order
systems in the presence of such constraints are studied
widely (see [9], [10] and references within for more de-
tails). Also, some schemes are presented in the literature
to address the constrained control problem of fractional-
order systems. These schemes are mostly developed based on
Model Predictive Control (MPC) framework [11]-[13]. It is
well-known that MPC usually leads to a good performance,
as it solves an optimization problem at each time instant
to obtain the control action. However, this increases the
computational cost, which might be impractical/unrealistic
in many applications.
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This paper mainly focuses on constrained control of a class
of fractional-order systems, called semilinear fractional-order
systems. A semilinear system can be seen as a combination
of a linear system and a nonlinear system. Examples of such
systems are: DC motor [14], heat equation [15], electric
circuit [16], duffing system [17], and Lorenz attractor [18].
The proposed control scheme consists of two parts. The first
part stabilizes the system in the absence of constraints, by
proposing a linear state-feedback control law. Second part
enforces the constraints satisfaction at all times. In this paper,
we will use the recently introduced Explicit Reference Gov-
ernor (ERG) framework [19], [20] to ensure that constraints
are never violated. The main idea behind the ERG framework
is to determine an invariant set that would contain the state
trajectory if the currently auxiliary reference were to remain
constant. If the distance between this invariant set and the
boundary of the constraints is strictly positive, it follows from
the continuity that the derivative of the auxiliary reference
can be nonzero without leading to constraint violations. If
this distance is zero, the satisfaction of the constraints is
ensured by maintaining the current reference constant. One
of the main strengths of the ERG is that it requires very
limited computational capabilities, since it does not make
use of any online optimization.

In order to verify the effectiveness of the proposed con-
strained scheme, we will study its performance in a drug
delivery system. In particular, we will use the proposed
scheme to control the concentration of propofol, a hypnotic
drug used in general anesthesia. First, we will discuss that the
so-called Pharmacokinetic (PK) model, which described the
relationship between the administrated drug and the plasma
concentration, can be expressed as a smilinear fractional-
order system. We will then formulate the overdosing pre-
vention as a constraint on the states of the system that must
be satisfied at all times. Finally, simulation results will be
carried out on 44 patients with real clinical data.

The rest of this paper is organized as follows: In Section
II, basic definition of fractional-order derivative is presented,
and Lyapunov stability of the fractional-order systems is
discussed. The problem is stated in Section III. Section IV
explains the design procedure: Subsection IV-A proposes a
linear state-feedback control law to prestabilize the system
in the absence of constraints, and Subsection IV-B briefly
summarizes the ERG framework, and provides a guideline to
apply it to semilinear fractional-order systems. In Section V
the proposed constrained control scheme is applied to a drug
delivery system and simulation results are reported. Finally,
Section VI concludes the main results of the paper.



II. PRELIMINARY CONCEPTS

Since the time Leibniz introduced non-integer order
derivatives, several definitions have been generated by sev-
eral mathematicians. In this section, preliminary materials
used in this paper are briefly explained.

Definition 1: The Caputo fractional derivative of order o
is defined as follows

£ (r)
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where T'(-) is the gamma function, and f(*)(¢) is the deriva-
tive of order k£ [21]. In the rest of this paper, for the sake of
brevity, we will use D{* to represent the operator § D{*.
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Theorem 1: (Fractional-order extension of Lyapunov di-
rect method) [22] Using the Caputo derivative, a fractional-
order nonlinear system can be represented by:

Dix = f(t,x), 2

Let x = 0 be an equilibrium point for fractional-order system
(2). Let V(t,x(t)) be a continuously differentiable function
as a Lyapunov function candidate, and ~;(i = 1,2,3) be
class-K functions such that

n(llz)<V(E, () <y (llz]),
DV (t,(t)< —vs(l=]]),

3)
“)
where « € (0,1). Then, system (2) is asymptotically stable.

Lemma 1: Let x(t) € R™ be a vector of continuously
differentiable functions. Then, the following inequality holds
true V¢ > 0 and Vo € (0,1):

D (" Pz) < (D¢z)" Px+ 2" PD{, (5)

where P € R™*™ is a symmetric positive definite matrix
[23].

III. PROBLEM STATEMENT

Consider the following commensurate fractional-order
semi-linear system:

Dy x(t) = Ax(t) + g(x) + Bu(t) (6)

where « represents the order of fractional derivatives of the
system and belongs to interval (0,1); € R™ is the system
state vector; g(-) is a nonlinear function; A € R™*" and
B € R™*? are known matrices; and u(t) € RP? is the input of
the system. It is assumed that g(-) is e-Lipschitz continuous,
ie, ||lg(z1) — g(z2)| < e(||x1 — x2]|), where 21,22 € R,
and € > 0. The control problem is to track a desired reference
r e R™.

Assume that system (6) is subject to linear constraints at
all times. This condition can be expressed by the following
inequality:

Bra+pBlr < h. (7)

where 8, € R"*" 3. € R™*" and h € R"°, with n, as
the number of the constraints.
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At this stage, we define the following problem.

Problem 1: Consider system (6) which is subject to con-
straint (7). Find an auxiliary reference v(¢) such that for a
given desired reference r(t), the constraints are satisfied at
all times, and the auxiliary reference converges to the desired
one.

In this paper, we will use the ERG framework to solve
Problem 1. As shown in [20], the ERG can solve the
mentioned problem in two stages. First, the system should
be prestabilized in the absence of the constraints. Then, the
ERG unit will be added on top to enforce the constraints.
Next section will detail these two stages separately.

IV. PROPOSED CONTROL SCHEME

In this section, the prestabilization and constraints enforce-
ment will be studied.

A. Prestabilization

This subsection will study the prestabilization of system
(6). By prestabilization, we mean that the system can con-
verge to the desired reference, r, in the absence of the
constraints. In this paper, we will propose a linear state-
feedback controller to prestabilize system (6), as it is easy
to determine the Lyapunov function that proves the stability
(see Subsection IV-B). The following theorem addresses this
issue.

Theorem 2: Let r be the desired reference signal. Con-
sider the following control input:

u(t) = —Kz(t) + Gr, (8)

where K € RPX™ and G € RP*™ are design gains.
Then, if Re{A\(A — BK)} < 0, and if there are
P=PT>0 (P € R™) and 8 >0 (§ € R) such that
P(A—BK)+ (A—BK)T'P=—0I and 0 —2¢||P| > 0,
the equilibrium point Z, is globally asymptotically stable.
Note that Re{-} represents the real part of a complex number,
and A(-) is the eigenvalue of a matrix.

Proof: By substituting control input (8) into system (6),
it implies that

Dyx(t) = (A— BK)x(t) + g(x) + BGr. )
Consider the following Lyapunov function
V=(x—1,)" Pz —Z), (10)

where according to Lemma 1, its time derivative satisfies the
following inequality

DV <(x —z,)' P(D%x — D%,)

+((D¢x — DYz ) Pl —z,). (11
Since the equilibrium point Z, satisfies
Dz, = (A— BK)Z, + g(Z,) + BGr =0, (12)



it follows from (9) and (11) that
DOV <(z — 7,)TP [(A — BK)x + g(z) + BGr

— (A - BK)Z, — g(%,) — BGT}

+ [(A — BK)z + g(z) + BGr

— (A - BK)Z, — g(%,) — BGT} "Pla—z)

<(z —z,)T[P(A - BK) + (A — BK)"P|(z — &,)
+2(x — 2,)TP(g(x) — g(z,)). (13)
Now, by using the Lipschitz continuity of function g(-),
one can obtain:
DV <(x — z,)T[P(A - BK) + (A — BK)"P|(z — &)
+2|lz — [ [Pl el — z|

_ 2 -2
<=0llz = 2.[I" + 2¢|| P |z — 2.
~ 2
<= (0 —=2¢||Pl) [l= — |17,
(14)
which completes the proof, as § — 2¢ || P|| > 0.
|

B. Constraints Enforcement

As mentioned before, we will use the ERG framework
to enforce the constraints at all times. The ERG does so
by modifying the auxiliary reference through the following
differential equation:

v==r-A(z,v) ply,r), (15)

where x > 0 is a tuning parameter, and A(+) and p(-) are two
fundamental components of the ERG, called Dynamic Safety
Margin (DSM) and Navigation Function (NF), respectively.

The NF represents the direction along a feasible path that
leads from the current auxiliary reference v to the desired
reference r. As discussed in [20], the problem of finding
a suitable NF is equivalent to the path planning problem.
This component will not be studied in this paper, as it is the
subject of an intensive literature.

The DSM represents a “distance” between the constraints
and the system trajectory that would emanate from the
state x(t) for a constant reference v. As shown in [19], a
systematic way to build a DSM is using the Lyapunov theory.
More precisely, given a Lyapunov function V (x(t), v) which
proves the stability of z,, if there exists a threshold value
I'(v) continuous in v such that V(z(t),v) < T'(v) implies
that ¢(z(t),v) >0, Vt > to, then a possible DSM can be
defined as A(z,v) =T(v) — V(z(t),v).

In general, the optimal choice of T'(v) for the i-th
constraint can be computed via the following optimization
problem:

Fi(y) - { S.t.

min V(z,v)

1€41,2,---,n
glz—kﬁ?l?“ZhZ ) {7 ’ ) 6}7

(16)
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Fig. 1.

Three-compartment pharmacokinetic model.

where (3, ; is the i-th column of 3., 3, ; is the i-th column
of ., and h; is the i-th element of h. As shown in [19],
(16) provides a closed-form solution in the following form:

( ii:il, + ﬁz:ir — hy)?

Ti(v) = : (17

’ Bzgjipilﬂz,i

and the final DSM can be computed as
F'v)= min ;). (18)

i€{1,2, ,nc}

V. SIMULATION STUDY: CONTROL OF DRUG
CONCENTRATION

In this section, the effectiveness of the proposed scheme
will be demonstrated through intensive simulation studies
carried out to control the drug concentration.

The relationship between the administrated dose of a
drug and its concentration can be expressed through the so-
called pharmacokinetic model [24]. This model is developed
considering three-compartments and is depicted in Fig. 1
[25], [26]. We use V; to denote the volume of the plasma
compartment (visceral group), V5 to denote the volume of
the shallow peripheral compartment (lean group), and V3
to denote the volume of the deep peripheral compartment
(vessel-poor group). Moreover, we use C;(t), Ca(t), and
C3(t) to denote the propofol concentration in the plasma,
fast peripheral, and slow peripheral compartments, respec-
tively. As shown in [27], fractional calculus describes drug
absorption and disposition processes accurately. In particular,
the state-space representation of the PK model is [28]

Dz = Az + BI.

]T

19)

where z = [C1 Cy Cs
matrices A and B are

, I is the infusion rate, and

— (k1o + k12 + k13) k12 k13

A= ko1 —ko1 0 , (20)
k31 0 —k31

B=[L 0 0", @1

with the distribution rates k1o, k12, k21, k13, and k31 defined
as

Cly Cly Cly
0= ke = pns k=

CLs Cls
fio = —2 oy = —2 22
13 TR TA (22)



in which parameter C!; is the elimination clearance, and Cl,
and Cl3 are the inter-compartmental clearances.

In general, matrix A given in (20) is uncertain, as pa-
rameters Cly, Cly, Cls, Vo and V3 depend on the patient’s
characteristics (i.e., age, weight, height, etc) which differ
from one to another. Thus, for each patient, the matrix A can
be expressed in the form A = A + AA, where A represents
the nominal matrix calculated with nominal values, and AA
represents the uncertainty. Hence, (19) can be rewritten as

D¢x = Az + BI + g(x), (23)

where g(z) = AAx. It is easy to show that g(x) is ||AA]-
Lipschitz continuous.

In this paper, we assume that the understudy drug is
propofol, which is a well-known hypnotic drug. Moreover,
we will use the dataset presented in [29] which includes real
clinical data of 44 patients. Parameters Cl; and V;, i =1,2,3
can be calculated using the relations presented in [24]. As a
result, we have

~1.0450  0.3950  0.1960
A= 0.0667 —0.0667 0 N )
0.0035 0 —0.0035
[AA]l <0.2057. (25)

As shown in [30], [31], propofol concentration in the
central compartment should not exceed 10 [pg/ml], as it
increases the risk of overdosing. Hence, in order to prevent
overdosing in patients, it is recommended to constrain the
concentration to be less than 10, i.e., Cy(¢) < 10 [32].

In order to prestabilize system (23), we use the linear
state-feedback control scheme presented in Theorem 2. The
obtained feedback gain is K = [-3.18 1.53 32.54]T.
Simulation results are shown in Fig. 2, where the order of
the system is a = 0.9. As seen in this figure, the system
is stable and the concentration in the central compartment
converges to the desired value. However, the safety constraint
is violated in all patients, meaning that the patients are in the
danger of overdosing.

Now, we use the ERG scheme discussed in Subsection I'V-
B to prevent overdosing. The DSM can be computed through
(16) with V(-) as in (10). For what concerns NF, we use the
most intuitive one [33]:

r—v

plv,r) = (26)

max{|r — v[,n}’
where 77 > 0 is a smoothing factor.

Using £ =0.001 and 7 =0.01 simulation results are
shown in Fig. 3 for two values of o (0.8 and 0.9, as discussed
in [34]), and simulation results for a 1 are presented
for comparison purposes. These results demonstrate the
effectiveness of the proposed method in tracking the desired
reference, while the safety constraint is satisfied at all times,
ie., Cy(t) <10, Vt > 0.

Note that the distribution rates are expressed in [1/s%],
which means that high values of « lead to fast changes in
the concentration. This fact can be seen in Fig. 3, where the
dynamic behavior for o = 0.8 is slower than that of a = 0.9.
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Fig. 2. Closed-loop response of all 44 patients using the linear state-

feedback control law, without enforcing safety.

VI. CONCLUSION

This paper proposed a control scheme for fractional-
order semilinear systems subject to linear constraints. The
design procedure has two stages: (i) prestabilization, and
(ii) constraint enforcement. Regarding the prestabilization
stage, we proposed a linear state-feedback control law, where
stability and convergence properties are proved analytically.
For what concerns the second stage, we used the so-called
explicit reference governor scheme. This control scheme
is an add-on unit that modifies the time derivative of the
auxiliary reference, whenever needed, such that constraints
satisfaction is guaranteed at all times. The effectiveness
of the proposed constrained control scheme was studied
in drug delivery systems, where drug concentration needs
to be bounded to ensure overdosing prevention. Simulation
results showed that the proposed method effectively ensures
patient’s safety, though it increases the time to converge to
the desired reference.
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