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Abstract

In the past few years, approximate Bayesian Neural Networks (BNNs) have demonstrated the ability to produce
statistically consistent posteriors on a wide range of inference problems at unprecedented speed and scale.
However, any disconnect between training sets and the distribution of real-world objects can introduce bias
when BNNs are applied to data. This is a common challenge in astrophysics and cosmology, where the unknown
distribution of objects in our universe is often the science goal. In this work, we incorporate BNNs with flexible
posterior parameterizations into a hierarchical inference framework that allows for the reconstruction of
population hyperparameters and removes the bias introduced by the training distribution. We focus on the
challenge of producing posterior PDFs for strong gravitational lens mass model parameters given Hubble Space
Telescope–quality single-filter, lens-subtracted, synthetic imaging data. We show that the posterior PDFs are
sufficiently accurate (statistically consistent with the truth) across a wide variety of power-law elliptical lens
mass distributions. We then apply our approach to test data sets whose lens parameters are drawn from
distributions that are drastically different from the training set. We show that our hierarchical inference
framework mitigates the bias introduced by an unrepresentative training set’s interim prior. Simultaneously,
we can precisely reconstruct the population hyperparameters governing our test distributions. Our full pipeline,
from training to hierarchical inference on thousands of lenses, can be run in a day. The framework presented here
will allow us to efficiently exploit the full constraining power of future ground- and space-based surveys
(https://github.com/swagnercarena/ovejero).

Unified Astronomy Thesaurus concepts: Strong gravitational lensing (1643); Cosmology (343); Computational
methods (1965); Convolutional neural networks (1938); Hierarchical models (1925)

1. Introduction

As light from a distant source passes by a sufficiently
massive foreground lens, multiple rays of light can be
refocused onto the same observer in an effect known as strong
gravitational lensing. As an astrophysical probe, strong lenses
are directly sensitive to the gravitational potential of the lens (or
deflector), the large-scale structure along the line of sight, and
the metric of the universe. These are the very regimes where
some of the most interesting questions about the nature of dark
matter and the geometry of our universe can be probed. Over
the past three decades, the number of observed strong
gravitational lenses has increased by well over an order of
magnitude (Blandford & Narayan 1992; Sonnenfeld et al.
2013), to roughly 1000 currently known systems. The next
generation of wide-field optical imaging surveys, particularly
the Vera C. Rubin Observatory Legacy Survey of Space and
Time (LSST)3 and the surveys carried out by ESA’s Euclid
mission4 and NASA’s Nancy Grace Roman Space Telescope,5

will push the number of measured strong lenses into the tens of
thousands (Collett 2015). Even imposing stringent sample
selection criteria, for example focusing on quadruply imaged
quasars with well-measured time delays, will leave us with
hundreds of viable lenses to analyze (Oguri & Marshall 2010).

The combination of an order-of-magnitude increase in the
quantity of the data and a high sensitivity to the salient physics
gives strong-lensing science enormous discovery potential.
Perhaps the most pressing application of strong-lensing

science today is in constraining the expansion of our universe.
The recent tension between early-universe probes like the
Planck cosmic microwave background (CMB) measurements
(Planck Collaboration 2020) and late-universe probes like the
Type Ia supernovae measurements by the SH0ES team (Riess
et al. 2019) has placed increased attention on tests of the
Hubble constant (H0). Further complicating our understanding,
alternative late-universe measurements by the Carnegie Chi-
cago Hubble Program (CCHP; Freedman et al. 2019, 2020) do
not find the same discrepancy, despite sharing physical
uncertainties with the SH0ES measurement. In the “late”
universe, strong gravitational lens time delays offer an essential
complementary probe. The rays of each lensed image of the
source take different paths with different physical distances,
producing a “time delay” between the source images. By
connecting this time delay to a “time-delay distance,” we can
construct a probe that is sensitive to the mass distribution of the
lens, the mass distribution along the line of sight, and H0.
Because the physical uncertainties associated with strong-
lensing measurements are independent of those in the SH0ES,
Planck, and CCHP data, time-delay cosmography is uniquely
suited to help constrain systematics and new physical models
(Verde et al. 2019).
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The work by the H0LiCOW collaboration (Wong et al.
2019) measured a value of the Hubble constant at
2.4% precision from six lenses. Work by Shajib et al. (2018)
forecasts that improving these constraints to below the 1% level
will require a joint analysis of at least 40 lenses. However, both
these analyses utilize independent priors on a lens-by-lens basis
and do not consider significant covariance in the systematics of
the modeling. More recent work by the TDCOSMO collabora-
tion (Birrer et al. 2020) has shown that relaxing radial mass
profile assumptions and conducting hierarchical inferences of
the lenses results in an 8% measurement from the sample of
seven TDCOSMO time-delay lenses alone. When combined
with 23 lenses with kinematics information from the SLACS
sample, the uncertainty reduces to 5%. Using a hierarchical
approach, Birrer & Treu (2020) forecast that even with
drastically relaxed assumptions on the radial mass profile, a
sample of 50 time-delay lenses together with 200 non-time-
delay lenses can reach 1% level precision constraints on the
Hubble constant.6

Strong lensing has also been instrumental in developing our
understanding of dark matter at both galactic and subgalactic
scales. Work on early-type galaxies combining strong-lensing
measurements with constraints from stellar kinematics has been
able to experimentally verify the presence of dark matter halos,
probe deviations from an isothermal mass profile, and quantify
the redshift evolution of the mass-to-light ratio (Treu &
Koopmans 2004; Koopmans et al. 2006; Bolton et al. 2008).
Sonnenfeld et al. (2015) apply a fully hierarchical ensemble
analysis to a set of ∼80 lenses from the Strong Lensing Legacy
Survey and the Sloan ACS Lens Survey (Bolton et al. 2006).
Their work simultaneously models the stellar initial mass
function (IMF) and the dark matter halo while accounting for
strong-lensing selection effects. The analysis produces con-
straints on the density and slope of dark matter in the inner halo
and demonstrates the value of a joint analysis even on a smaller
sample of lenses. As with the time-delay measurements,
reproducing this work on thousands of lenses will require
new modeling frameworks. A large-scale analysis also holds a
great deal of promise for measurements of cosmic shear.
Projections with an LSST-sized data set suggest that strong
lensing can offer shear constraints competitive with current
weak lensing surveys (Birrer et al. 2018).

While these examples of strong-lensing science are only a
subset of the work that has been done in the field,7 they already
suggest the need for a new modeling methodology that is
capable of producing consistent and accurate predictions on
thousands of lenses. One potential tool is a class of models
known as Bayesian Neural Networks (BNNs). Unlike conven-
tional neural networks, BNNs seek to go beyond accurate
parameter predictions by producing a full posterior of the
output parameters that includes modeling uncertainty. Gal &
Ghahramani (2016) demonstrate that using Monte Carlo
dropout during training and testing yields an approximate
BNN8 that is computationally tractable and more robust than
traditional neural networks. Kendall & Gal (2017) extend this
work to imaging data and show that BNN-predicted posteriors
are statistically sound and precise. Since then, BNNs have been

used with success in data problems ranging from semantic
image segmentation (Kampffmeyer et al. 2016), to disease
detection (Leibig et al. 2017), to active learning (Gal et al.
2017b). For a more detailed review of BNNs in the
astrophysical literature, see Charnock et al. (2020).
Within the field of strong gravitational lensing, Perreault

Levasseur et al. (2017) have applied BNNs to lenses drawn
from a singular isothermal ellipsoid (SIE) profile and produced
well-calibrated one-dimensional marginal posteriors of the lens
parameters. Their work demonstrates that the BNN approach
can return accurate, fully automated predictions several orders-
of-magnitude faster than more traditional modeling. More
recently, Schuldt et al. (2021) have also successfully applied
neural networks to estimate the maximum likelihood para-
meters of simulated Hyper Suprime-Cam strong lenses.
However, there are a few notable limitations that must be
addressed before these types of results can be used to model the
mass profiles of real lenses. The SIE profile assumption used
for both training and testing in Perreault Levasseur et al. (2017)
and Schuldt et al. (2021) is equivalent to assuming a power-law
elliptical mass distribution (PEMD) with a fixed value of slope
γ= 2.0. Traditionally, the slope is allowed to vary (Wong et al.
2019; Shajib et al. 2020), and its uncertainty is a dominant
contribution to the uncertainty in the inference of cosmological
and astrophysical parameters like H0 (Suyu et al. 2013).
Additionally, extending the single Gaussian marginal posteriors
used in Perreault Levasseur et al. (2017) to a full posterior
would be overly simplistic; there are known covariances
between the mass profile parameters. Finally, it is not sufficient
to evaluate the calibration of our BNN modeling on test
examples drawn from the same lens parameter hyperdistribu-
tions as our training set. This final point touches on a limitation
of BNNs more broadly: the training distribution becomes an
interim prior for our BNN’s posteriors. Because we cannot train
our networks on examples drawn from the same underlying
physical distribution that governs the objects in the sky, this
interim prior can bias our inference.
BNNs are not the only modeling technique that has been

proposed as an alternative to traditional forward modeling on
strong lenses. Work by Chianese et al. (2020) has also shown
that using Variational Autoencoders for source generation can
improve the flexibility of strong-lensing parameter estimation,
albeit with only a small improvement in computational time.
Brehmer et al. (2019) use simulation-based inference to
circumvent an intractable likelihood function and infer the
posteriors on population hyperparameters of lensing substruc-
ture. Similarly, neural-network-based approaches have been
proposed as a method for detecting the presence of individual
substructure in strong-lensing images (Diaz Rivero & Dvorkin
2020; Ostdiek et al. 2020a, 2020b). There has also been work
toward automated modeling of strong-lensing quads (Shajib
et al. 2019), although this approach still takes 50–500 CPU hr
and 3 hr of expert time per lens.
In this paper, we are interested in answering the following

questions:

1. Can BNN predictions be made robust to the distribution
used to generate a test set without retraining the BNN to
that specific distribution?

2. Relatedly, can a BNN be used to reconstruct the
population hyperparameters that govern the distribution
of objects in our universe?

6 If spatially resolved kinematics can be obtained for the 50 time-delay lenses,
modeling the 200 non-time-delay lenses is not required.
7 For a more in-depth review, see Treu (2010).
8 For consistency with the literature, we will use the acronym BNN for our
approximate BNNs.
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3. For the case of strong lensing, are BNNs capable of
producing posteriors on PEMD parameters that are
statistically consistent with the truth? How do these
posteriors compare to those generated by a traditional
forward-modeling approach?

4. How flexible do the posteriors predicted by our BNN
need to be to perform well on our simulated strong
lenses? Under what conditions do the assumptions that go
into BNN-based inference begin to break down?

5. Is it possible to construct an inference pipeline using
BNNs that can extract accurate constraints from an
LSST-sized data set on short (hours or days) timescales?

This work demonstrates that, given reasonable requirements
on the training set, all five of these challenges can be robustly
addressed. We present a BNN-based modeling framework that
is fast, automated, and capable of returning unbiased
representative posteriors. We start from a training set with a
broad sampling of lenses drawn from PEMDs; our models then
build on the work in Perreault Levasseur et al. (2017) by
extending the inferred posterior to include potential covariances
and bimodalities. Through a set of validation metrics, we find
that both a multivariate Gaussian and a mixture of Gaussians
are capable of capturing the complexity in the strong-lensing
posterior. To our knowledge, our work is the first to
demonstrate that BNNs can return statistically consistent full
posteriors on strong lenses. We then continue to extend our
models by deploying them on test distributions that are
statistically distinct from our training distribution (while still
employing the same lens model family in both the training and
test sets). While a simplistic application of our models returns a
biased parameter inference, we develop and test a hierarchical
framework that removes this bias. Our final ensemble approach
not only returns accurate constraints on the true underlying
distribution of our sky, but is capable of returning corrected
posteriors on subsecond timescales. The BNN approach
requires less expert intervention than traditional forward
modeling, and this several orders-of-magnitude improvement
in computational time allows for faster model iteration and
drastically reduces computational costs.

The paper is organized as follows. In Section 2, we offer a
summary of the approximate BNN framework and a detailed
description of our hierarchical modeling framework. Section 3
includes a description of our BNN implementation and the
pipeline we used to generate our simulated lenses. We then
train a set of models with different posterior parameterizations
and modeling priors to compare their performance in
Section 4.1. To probe the bias induced by our training
distribution, in Section 4.2 we introduce a group of “true
sky” test sets and apply our hierarchical framework to infer
population hyperparameters. Finally, in Section 5, we discuss
possible further directions and the implications of our results
for future BNN modeling in the strong-lensing literature.

As part of this publication, we are releasing our strong-
lensing analysis package OVEJERO. The package includes all of
the code and dependencies necessary to reproduce the results in
this paper along with a set of comprehensive JUPYTER
notebooks that are meant to help familiarize users with the
code. The source code, documentation, demo notebooks, and
plotting code used for the graphics in this publication can be
found at https://github.com/swagnercarena/ovejero.

2. Hierarchical Bayesian Computations with BNNs

2.1. Approximate BNNs

BNNs offer a framework to generate parameter posteriors
that incorporate both the uncertainty inherent to the data
(aleatoric uncertainty) and the uncertainty in the modeling
(epistemic uncertainty). Written in more concrete terms, BNNs
seek to predict the posterior on one object’s parameters ξå

given its corresponding data då and the training set of
parameter-image pairs {Ξ, D}:

òx xX = X   p d D p d W p W D dW, , , , . 1( ∣ ) ( ∣ ) ( ∣ ) ( )

Here, W are the weights of the BNN. For our work, då will be
the strong-lens image and ξå will be the PEMD parameters.
However, the derivations in this section are general to any set
of objects with an underlying hyperdistribution. The aleatoric
uncertainty is captured in the distribution p(ξå|då, W) and
expresses the fact that even if we knew the weights for our
model perfectly, there would still be a limit to the constraining
power from one image. The epistemic uncertainty is repre-
sented by the distribution p(W|Ξ, D) and captures the fact that,
without infinite training data, there will exist some uncertainty
on the functional form of our network. In this framework, the
aleatoric uncertainty is parameterized as a function of the BNN
outputs. For example, in the case of a mixture of Gaussians,
this would be

åx x m= S    p d W n d W d W d W, , , , , ,

2
i

i i i( ∣ ) ( ) ( ∣ ( ) ( ))

( )

where the variables ni, μi, and Σi are written as functions of the
input image då and the model weights W because they are the
final outputs of our BNN. Here, 0� ni� 1 is the weight of
the ith Gaussian, μi is the mean of the ith Gaussian, and Σi is
the covariance of the ith Gaussian. The second term in
Equation (1) is intractable. Gal & Ghahramani (2016) suggest
approximating p(W|Ξ, D) using a variational distribution
q(W|Ωint), where Ωint is the interim distribution from which
the training data {Ξ, D} is drawn. The introduction of this
approximation is what distinguishes the Gal & Ghahramani
(2016) approximate BNN from a true BNN. Note that we
introduce a conditional on Ωint to emphasize that the results of
our training are dependent on the training set distribution; this
will be an important consideration when we discuss our
hierarchical formalism in Section 2.2. Gal & Ghahramani
(2016) propose the distribution:

W = Wq W q W 3
k

kint int( ∣ ) ( ∣ ) ( )

 s s= - + p M I p I1 , 0, , 4
k

k k k
2 2( ) ( ) ( ) ( )

where k indexes the layers of our BNN. Both the matrix Mk and
the constant pk are free parameters of our variational
distribution. Mk is equivalent to the weights of layer k of a
traditional neural network, and pk is equivalent to the dropout
probability of a layer. This specific variational formulation is
appealing because it is computationally easy to sample from;
for σ→ 0, it is equivalent to applying a Bernoulli mask on the
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weights Mk, an operation known as dropout. The parameters in
the variational distribution are then optimized by minimizing
the Kullback–Leibler (KL) divergence between q(W|Ωint) and p
(W|Ξ, D). This is equivalent to minimizing the negative log
Evidence Lower Bound (ELBO) loss :

ò=- W X

+ W

 q W p D W dW

q W p W

log ,

KL 5

int

int

( ∣ ) ( ∣ )

( ( ∣ )∣∣ ( )) ( )

ò x=- W

+ W
Î X

q W p d W dW

q W p W

log ,

KL , 6
j D

j j
,

int

int

( ∣ ) ( ∣ )

( ( ∣ )∣∣ ( )) ( )
{ }

where p(W) is a prior on our weights and ∏jä{Ξ,D} is a product
over the examples in our training set. The first term can be
minimized in an unbiased manner by sampling over q(W|Ωint)
and then updating Mi using stochastic gradient descent. The
remaining KL term cannot be analytically evaluated, but Gal &
Ghahramani (2016) show that, in the case of a discrete
quantized Gaussian prior on each Wi with mean 0 and
covariance s W , it can be approximated by

W µ -
-

q W p W
l p

N
MKL

1

2
, 7i i

i
iint

2
2( ( ∣ )∣∣ ( ))

( )
∣∣ ∣∣ ( )

where µ
s

l 1

W
is the length scale of the weight prior and N is the

number of parameter-image pairs in the training set. With this
simplification, we can then also take gradients over the second
KL term in Equation (6) and optimize our weights.

Running a BNN is therefore a two-step process. During the
training phase, we minimize the loss in Equation (6) to fit a
variational distribution q(W|Ωint) that matches p(W|Ξ, D).
Then, conducting inference on a new example is just a matter
of sampling from q(W|Ωint):

òx xX = W   p d D p d W q W dW, , , . 8int( ∣ ) ( ∣ ) ( ∣ ) ( )

åx xW »
~ W

   p d
N

p d w,
1

, , 9
w q W

int

int

( ∣ ) ( ∣ ) ( )
( ∣ )

where in the last line we have replaced p(ξå|då, Ξ, D) with
p(ξå|då, Ωint) to highlight the component of the conditioning on
{Ξ, D} that will become important in our hierarchical
modeling.

2.2. Hierarchical Inference

While no explicit prior term is imposed on the distribution of
the lens parameters during the BNN’s training, the distribution
used to generate the training set becomes an implicit, “interim”

prior, Ωint, in the model’s inference. Any discrepancy between
this interim prior and the true distribution generating the lenses
in the sky can become a source of bias. Even if our model is
perfectly calibrated to the training distribution, rather than
giving p({ξ}|{d}), it will output p({ξ}|{d}, Ωint), where {ξ} is
the set of inferred parameters and {d} is the set of images in our
true sky or test set. As we demonstrate in our experiments in
Section 4.2, realistic distributions for a test set can lead to
substantial bias. However, given sufficient lenses, knowledge
of the interim prior Ωint, and the ability to sample from p({ξ}|
{d}, Ωint), a hierarchical inference framework can be used to
extract an unbiased sampling of the lens parameters. In the

process, we also reconstruct the hyperparameters that define the
test set lens distribution Ω. We start by considering the
probability of a specific test set distribution given the set of test
images {d}, for which the full derivation can be found in
Appendix C:



 å
x
x

W = W ´
W

´
W
Wx x

W

~ W

p d p
p d

p d

N

p

p

1
. 10

k

k

k p d

k

k

prior

int

normalizing factor

imp , int

MCMC with re weighting

k k k int

( ∣{ }) ( ) ( ∣ )
({ })

( ∣ )
( ∣ )

( )
( ∣ )

‐


  

  

Here, k is an index over all lenses in the test set, ξk and dk
represent the parameters and data of each individual lens,
respectively, and Nimp is the number of samples drawn from
p(ξk|dk, Ωint). Our BNN allows us to efficiently sample from
p(ξk|dk, Ωint), so the third term in Equation (10) can be
calculated given an analytic expression for p(ξk|Ω)—the
likelihood of a lens parameter ξk for a fixed test distribution
Ω. The type of reweighting being done in Equation (10) is also
known as importance sampling. There are a few properties
worth noting about this equation. The MCMC reweighting term
provides the needed division by the interim prior; this operation
is ill defined in regions where p(ξk|Ωint) is zero. This limits our
model to inferring distributions contained within the interim
prior Ωint, motivating our choice of broad training priors. This
same

x Wp

1

k int( ∣ )
term will also assign a large weight to examples

that are underrepresented by our training distribution; this will
allow our hierarchical model to remove bias introduced by
offsets between our interim prior and the test (or true sky)
distribution. Finally, because the MCMC reweighting term is a
sum rather than a product over BNN samples, distributions Ω
that assign little to no probabilistic weight to a sample are not
excluded. This will become important when we wish to infer a
distribution Ω that is narrower than the uncertainty of our BNN.
For previous examples of the use of importance sampling in the
literature, see Foreman-Mackey et al. (2014) or Hogg et al.
(2010). As mentioned in both of these works, Equation (10) is
not guaranteed to be an unbiased estimator in the limit of finite
samples. In this work, we have been conservative in our
number of BNN samples and checked for the convergence of
our hierarchical results.
The next step is to calculate the unbiased posterior of a

single lens given the full data set, p(ξk|{d}). The full derivation
can be found in Appendix C; here we quote the final result:

åx x
x
x

µ W
W
WW~ W

p d p d
N

p

p
,

1
. 11k k k

p d

k

k
int

int
( ∣{ }) ( ∣ )

( ∣ )
( ∣ )

( )
( ∣{ })

N is the number of samples being drawn from p(Ω|{d}). As
with Equation (10), Equation (11) uses a reweighting term
equivalent to importance sampling, although now the summa-
tion is over the space of possible test distributions. Note that
given the distribution p(Ω|{d}), Equation (11) depends only on
the lens k. Therefore, calculating p(ξk|{d}) can be broken up
into two parts:
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1. Calculate p(Ω|{d}) using Equation (10). This only needs
to be done once per data set.

2. Draw samples from p(Ω|{d}) to reweight the posterior
p(ξk|dk, Ωint) given by our BNN using Equation (11).

With this, we have the numerical framework necessary to turn
our BNN samples p({ξ}|{d}, Ωint) into samples from the
training independent distribution p({ξ}|{d}).

3. Methods

3.1. BNN Implementation

All of the BNNs we present in this work are modifications of
the original ALEXNET model (Krizhevsky et al. 2012)
implemented using the TENSORFLOW (Abadi et al. 2016)
module in Python. The exact network architecture is outlined in
Table 1. In line with the BNN approach introduced in Gal &
Ghahramani (2015, 2016), the input to each convolutional and
fully connected layer is first passed through a dropout layer. All
of the dropout layers in our model share a single dropout rate
pdrop, and dropout is applied both at training and test time. It is
also possible to formulate the BNN to have a trainable dropout
parameter (Gal et al. 2017a); however, our models with
trainable dropout suffered from issues with training conv-
ergence that led to extremely poor performance. We have
therefore excluded them from our analysis.

The shape of the final output of our model is dependent on
the aleatoric posterior parameterization. We use three para-
meterizations in this work: a diagonal Gaussian (16 degrees of
freedom), a full covariance Gaussian (44 degrees of freedom),
and a mixture of two Gaussians (89 degrees of freedom). The
precise breakdown of the output parameters is described in
Table 2. Note that we do not directly map our BNN outputs,
which are allowed to range from (−∞ , ∞), to the free
parameters of our posterior. Instead, for each posterior, we have
selected a mapping that is bijective—every possible BNN
output maps to a valid configuration of the posterior, and each
possible configuration of the posterior is mapped to by one, and
only one, BNN output. A bijective mapping between the BNN
outputs and the free parameters of each posterior stabilizes

learning and prevents the BNN from proposing invalid
posteriors (i.e., a covariance matrix that is not positive
semidefinite) that will break training and inference. At the
same time, because these mappings are complicated and
nonlinear, the Gaussian prior imposed on the weight matrices
can have complicated implications for the free parameter
configurations that are favored. However, as we will demon-
strate through our calibration metric in Section 4, we find that
even with these nonlinear mappings, the posteriors returned by
our BNNs are statistically sound. It is also worth noting that
some recent work has added a normalizing flow to the final
layer of a BNN to give the posterior more flexibility (Hortúa
et al. 2020a; Hortúa et al. 2020b). While it is not yet clear how
to incorporate this normalizing flow into the Bayesian frame-
work, this is an interesting potential avenue for future work.

3.2. Simulated Data Set

The simulated data set consists of 400,000 PEMD lenses
with external shear. The PEMD profile (Kormann et al. 1994;
Barkana 1998) is given by
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where qlens is the axis ratio of the lens, θE is the Einstein radius,
and γlens is the logarithmic slope. In this profile definition, x
and y are defined in a coordinate system aligned with the major
and minor axes of the lens. This requires three additional
parameters, a rotation angle flens and the lens center position
(xlens, ylens). The external shear is characterized by an
orientation angle fext and modulus γext. Using an angle to
parameterize the profile creates a cyclic parameter. In order to
avoid dealing with the complications introduced by a cyclic
boundary condition, we will often work in the eccentricity/
Cartesian coordinates for our ellipticity/shear:
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Each image contains the lensed light from a source with a
Sérsic light profile. This profile is defined by
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where Reff is the effective half-light radius, Ieff is the amplitude
at Reff, ns is the Sérsic index, and qs is the source axis ratio. The
parameter b is set such that half of the luminosity is contained
within Reff. Here (x, y) are defined on the coordinate system set
by the source’s major and minor axis. This gives us our final
three parameters: the rotation angle fs and the source center
coordinates (xsrc, ysrc). Note that we do not draw values of Ieff
but rather draw the source magnitude msrc and set Ieff

Table 1
Configuration of the BNN Used for All of the Results Presented in This Paper

Layer Type Input Shape Output Shape

2D Convolutional (Nbatch, 64,64,1) (Nbatch, 30,30,64)
Max Pooling (Nbatch, 30,30,64) (Nbatch, 15,15,64)
2D Convolutional (Nbatch, 15,15,64) (Nbatch, 15,15,192)
Max Pooling (Nbatch, 15,15,192) (Nbatch, 8,8,192)
2D Convolutional (Nbatch, 8,8,192) (Nbatch, 8,8,384)
2D Convolutional (Nbatch, 8,8,384) (Nbatch, 8,8,384)
2D Convolutional (Nbatch, 8,8,384) (Nbatch, 8,8,256)
Max Pooling (Nbatch, 8,8,256) (Nbatch, 4,4,256)
Reshape (Nbatch, 4,4,256) (Nbatch, 4096)
Fully Connected (Nbatch, 4096) (Nbatch, 4096)
Fully Connected (Nbatch, 4096) (Nbatch, 4096)
Fully Connected (Nbatch, 4096) (Nbatch, Noutputs)

Note. The configuration we use is a modification of the ALEXNET model
(Krizhevsky et al. 2012). All convolutional and fully connected layers have
dropout performed on their input with a single dropout rate pdrop for the entire
network. The dropout rate used in our models is discussed in Section 3.3. The
number of outputs depends on what parameterization of the posterior is used.
The optimal batch size is dependent on the memory available to the GPU.
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accordingly. There is no light attributed to the lens galaxy (i.e.,
the lens is perfectly subtracted from the image).

Our images are simulated to match the quality of the Hubble
Space Telescope (HST) Wide Field Camera 3 (WFC3) IR
channel with the F160W filter. We use AB magnitudes with a
zero point of 25.9463. Our point-spread function (PSF) is set to
the drizzled PSF map used by Rung 1 of the Time Delay Lens
Modeling Challenge (Ding et al. 2018), which itself was
designed to model the WFC3/F160W PSF. We assume the
images are 64× 64 postage stamps with a pixel size of 0 08.
The distributions for each of the lens and source parameters can
be found in Table 3. The large-scale training and test set
generation was done using the package BAOBAB9 (Park et al.
2020), which extends the lens modeling package LENSTRON-
OMY10 (Birrer & Amara 2018).

Noise for our images was added on the fly during training in
order to augment the quality of our data set. We utilized the
noise functionality of the BAOBAB package. The sky brightness
was set to 22 -mag arcsec 2 based on the estimates
from Giavalisco et al. (2002). We selected an exposure time
of 5400 s to correspond to one HST orbit. Using the mean
reported instrument statistics for WFC3/F160W (Dressel
2019), we set the CCD gain to 2.5 -e ADU/ and the read
noise to 4e−. The BAOBAB configuration files to recreate our
training data set can be found in the OVEJERO module files.

In addition to our training set, we also generated a 512 image
validation set and a 512 image test set. Together, these two sets
are used to select between BNN hyperparameters and evaluate
the performance of our network. The validation set and test set
were both drawn from the same interim prior described in
Table 3 and with the same detector properties as the
training set.

3.3. Training Procedure

All the models presented in this work were trained on an
NVIDIA Tesla P100 GPU for 400 epochs (i.e., 400 passes over
the training data) with a batch size of 512. The TENSORFLOW
implementation of the ADAM optimizer was used with the
learning rate set to 1× 10−5 and the ADAM parameters kept at
their default values of β1= 0.9, β2= 0.999, and ò= 1× 10−7.

While the training was allowed to continue for the full 400
epochs for all models, only the model weights that achieved the
lowest validation loss during the training run were kept. After
400 epochs, the validation loss on all nine models presented in
this work had plateaued. The total training time per model was
around 16–24 hr.
In order to improve the stability of training, two types of

normalizations were conducted on the training data. Each input
image was normalized to have a standard deviation of 1, and
the target lens parameters were normalized such that they had
mean 0 and standard deviation 1 over the training set. The

Table 2
Mapping Between BNN Outputs and Degrees of Freedom of Posterior Parameterizations

Posterior NOutputs Mapping Details

Diagonal Gaussian 16 8 outputs mapped to the mean of the Gaussian
8 outputs mapped to the log of the diagonal entries of the covariance matrix

Full Gaussian 44 8 outputs mapped to the mean of the Gaussian
8 outputs mapped to the log of the diagonal entries of the lower triangular matrix
28 outputs mapped to off-diagonal entries of the lower triangular matrix
Note: the lower triangular matrix specifies the precision matrix of the Gaussian using a log-Cholesky parameterization

GMM 89 16 outputs mapped to the means of two Gaussian (8 each)
16 outputs mapped to the log of the diagonal entries of the lower triangular matrices (8 each)
56 outputs mapped to off-diagonal entries of the lower triangular matrices (28 each)
1 output mapped to the weight on the first Gaussian, w1, by w1 = 1 + σ(output)/2, where σ is the sigmoid function.
Note: lower triangular matrix used as before. The weight on the second Gaussian, w2, is specified by w2 = 1 − w1.

Note. All of the mapping selected here are bijective between the BNN outputs and the space of possible posterior configurations. This means both that each unique
BNN output maps to a unique posterior configuration and that all possible posterior configurations are mapped to.

Table 3
The Interim Prior Ωint

Component Distribution

Lens: PEMD
x-coordinate lens center (″) m s~ x : 0, : 0.102lens ( )
y-coordinate lens center (″) m s~ y : 0, : 0.102lens ( )
Einstein radius (″) q m s~  : 0.0, : 0.1E log( )
Power-law slope g m s~  : 0.7, : 0.1lens log( )
x-direction ellipticity eccentricity m s~ e : 0, : 0.21 ( )
xy-direction ellipticity eccentricity m s~ e : 0, : 0.22 ( )

External shear
Shear modulus g m s~ - : 2.73, : 1.05ext log( )
Orientation angle f ~ -p pUnif ,ext 2 2

( )

Source: elliptical Sérsic light
Source magnitude msrc ∼ Unif( − 25, − 22)
Half-light radius (″) m s~ -R N : 0.7, : 0.4eff, src log ( )
Sérsic index m s~n N : 0.7, : 0.4src log ( )
x-coordinate src center (″) m a b~ x : 0.0, : 0.4, : 10.0src gen( )
y-coordinate src center (″) m a b~ y : 0.0, : 0.4, : 10.0src gen( )
x-direction ellipticity eccentricity m s~ e : 0, : 0.21 ( )
xy-direction ellipticity eccentricity m s~ e : 0, : 0.22 ( )

Note.  is the normal distribution, log is the log-normal distribution, and
gen is the generalized normal distribution. The mean of a log-normal

distribution is set by m + sexp
2

2
( ), meaning that the mean value of the Einstein

radius is 1 01, the power-law slope is 2.02, and the shear modulus is 0.11. For
a discussion of parameter definitions, see Section 3.2. All of the distributions
used here are intentionally much broader than our expectations from empirical
evidence.

9 https://github.com/jiwoncpark/baobab
10 https://github.com/sibirrer/lenstronomy
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constants used for this normalization were saved so that the
normalization could be undone for the purposes of inference.
Additionally, to help extend the robustness of the training set, a
new noise realization was drawn on the fly each time an image
was passed to the BNN.

4. Results

In this section, we present the full results of our combined
BNN and hierarchical inference methodology. First, we
compare the performance of different modeling choices on
the validation and test sets, and show that both a multivariate
Gaussian posterior and a Gaussian mixture model posterior
with a 0.1% dropout rate produce the best combination of
calibration, precision, and agreement with traditional forward
modeling (Section 4.1). We then introduce a new set of test sets
whose distributions mimic important biases and covariances we
expect to find in an LSST-sized data set (Section 4.2). Using
these test sets, we demonstrate the ability of our hierarchical
inference framework to extend our BNN models beyond the
training distribution and recover the population hyperpara-
meters, with special attention given to those of the power-law
slope γlens.

4.1. Training and Validation

As discussed in Section 3.2, our BNNs are trained on
400,000 synthetic images of PEMD model lenses with external
shear drawn from the distributions specified in Table 3. Here
we will explore the effects of changing the form of our
predicted posterior (which controls the aleatoric uncertainty)
and tuning the dropout rate used (which controls the epistemic
uncertainty). We focus on three posterior parameterizations:

1. Diagonal Gaussian (Diagonal): the predicted posterior is
a multidimensional Gaussian with a diagonal covariance
matrix. This resembles the choice made by Perreault
Levasseur et al. (2017).

2. Full Gaussian (Full): the predicted posterior is a multi-
dimensional Gaussian with all off-diagonal elements of
the covariance matrix included. For details on how the
covariance matrix is parameterized, see Section 3.1

3. Gaussian Mixture Model (GMM): the predicted posterior
is a weighted sum of two multidimensional Gaussians
with a full covariance matrix.

For each of the different posterior parameterizations, we
present three dropout rates for a total of nine models. For the
GMM and full posterior models, we also present the results
with no dropout. The dropout rates presented here were
experimentally chosen to span a range of calibrations—from
overconfident to underconfident. Along with the dropout rate
and the posterior parameterization, the BNN formalism allows
for freedom in the length scale used to set the prior on the
model weights. From our own tests, we found the inference
results to be fairly insensitive to the value of the length scale.
We have therefore used one fixed length scale value for all the
models in this paper, which is equivalent to keeping the weight
prior fixed. The precise parameters for each model are given in
Table 4.

To assess the relative quality of our models, we conduct
three tests:

1. The calibration of the model—if a posterior contour
contains x% of the probability volume, the truth should
fall within that volume x% of the time (Section 4.1.1).

2. The median absolute error (MAE) between the posterior
mean and the true value (Section 4.1.2).

3. A spot check comparison to results from the forward-
modeling approach (Section 4.1.3).

All of the evaluations presented in this subsection are done
on the validation set.

4.1.1. Model Calibration

Our main concern with our BNN models is that the
posteriors be well calibrated. A well-calibrated posterior is
representative of the truth—x% of the probability volume
contains the true value x% of the time. Our performance on this
calibration metric is our principal cut. A model that is accurate
in its mean but proportionally overconfident in its uncertainties
cannot be used for scientific constraints; if the truth falls well
outside the predicted posterior, we would expect catastrophic
errors in inference. We will demonstrate the validity of this
intuition when we attempt to reconstruct the population
hyperparameters of a test set in Section 4.2.
However, measuring the calibration of a BNN in a high-

dimensional posterior space is a nontrivial task. While we have
a parameterized form for the aleatoric uncertainty, the
epistemic uncertainty can only be sampled from. Therefore,
we cannot use a calibration metric that requires evaluating the
cumulative distribution function of our posterior. Another issue
is that, while we can sample from the predicted posterior as
much as we would like, we only have one sample from the true
posterior—the “true” parameter value used to generate the
image. It is not statistically meaningful to ask how well our
posterior represents a single point; therefore, we must use a
metric that can be averaged over all the lenses in our
training set.
One option, as was done by Perreault Levasseur et al.

(2017), is to simplify the calibration problem to the one-
dimensional marginal posteriors. If we then approximate the

Table 4
The Parameters for Each BNN

BNN Parameters

Model Dropout Rate pdrop Length Scale l

Diagonal 5% 0.05 1
Diagonal 10% 0.1 1
Diagonal 30% 0.3 1

Full 0% 0 1
Full 0.1% 0.001 1
Full 0.5% 0.005 1
Full 1% 0.01 1

GMM 0% 0 1
GMM 0.1% 0.001 1
GMM 0.5% 0.005 1
GMM 1% 0.01 1

Note. In the training loss, the length scale l appears in a weight regularization

term λW||W||2 with l =W
l p

N2

2
drop (see Section 2.1 for details).
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one-dimensional posteriors as Gaussians, we can define 68%,
95%, and 99.7% of the probability volume as being one, two,
and three standard deviations from the mean. However, this
approach is insensitive to higher-order statistics like parameter
covariances. Instead, we employ a calibration metric on the full
posterior that builds on the one-dimensional approach. For each
lens i, we take Nsamps samples from its posterior. We then
define a distance metric for a posterior sample x as

m m= - S -x xd x , 18i i i
T

data( ) ( ) · · ( ) ( )

where μi is the mean of lens iʼs posterior and Σdata is the
empirical covariance matrix for the 400,000 training set
samples. This distance metric defines concentric ellipses, and
we can get the probability volume contained within an ellipse
associated to distance delip by probing the number of posterior
samples with d(x)i< delip:

D =
<

V
N

N
. 19

d d
prob

samps

elip ( )

This gives us the first piece of our calibration metric: a region
with x% of the probability volume. The second piece comes
from calculating the same distance metric on the true sample
value. We then know, for a specific lens i, how much
probability value we need before we have encompassed the
true value. By averaging over all the lenses in the validation
set, we can test if x% of the probability volume contains the
true value x% of the time.

The distance metric we use in Equation (18) is not unique
because there are infinitely many choices of volume that
contain x% of the probability mass for any posterior. A model
can even fulfill our metric of calibration without proposing a
posterior that is identical to the true posterior.11 Unfortunately,
this is a limitation of only having one sample from the true
posterior. However, our calibration metric is particularly
sensitive to both multimodal distributions and covariances;
this makes it a good choice for the posteriors we expect based
on the forward modeling of individual lenses.

The quantile–quantile plot results for our 11 models on the
validation set can be found in Figure 1. For each of our three
aleatoric parameterizations, we show a comparison between the
three dropout rates explored in this work. For the full and
GMM parameterizations, we also show the no-dropout case.
The simplest of the three aleatoric models—the diagonal
posterior—requires a large amount of dropout before it begins
to return results that perform well on our calibration metric. At
30% dropout, the model becomes underconfident in the inner
regions of the posterior, but only just returns a good calibration
for the outer 20% of the probability volume. Underconfidence
like that exhibited by the 30% dropout model can lead to poorer
constraints, but the overconfidence shown by the 10% and 5%
dropout models is much more concerning. For example, 97%
of the probability volume for the 10% dropout model contains
just over 80% of the true values. If we were to use the 10%
model for inference, we could expect to be catastrophically
biased on nearly a fifth of our lenses. For that reason, only the
30% dropout model passes the initial calibration cut.

The full posterior model requires nearly no dropout and
achieves a better calibration than the diagonal posterior model.
The 1% dropout and 0.5% dropout models are slightly

underconfident, while the 0.1% dropout model returns a nearly
perfect calibration. For the full posterior model, we also plot
the no-dropout case and find that it returns performance in line
with 0.1% dropout. To better understand why the full posterior
model prefers small to no dropout, we can compare the median
aleatoric and total12 covariance predicted by the diagonal and
full posterior models. In Figure 2, we present the comparison,
narrowing our discussion to the 0.1% dropout full posterior
model and the 30% dropout diagonal posterior model. The
median aleatoric uncertainties are fairly mundane: the diagonal
posterior has a diagonal aleatoric covariance matrix, while the
full posterior has a covariance matrix with meaningful
correlations between ellipticity and shear. What is surprising
is that the median total covariance matrix, which includes the
epistemic uncertainty, has essentially the same form for both
models. The weight marginalization being learned by the
diagonal posterior model appears to be capturing the same
covariances that are explicitly parameterized in the full
posterior model. The fact that the diagonal posterior needs
such large dropout rates seems to be a direct consequence of
the fact that the aleatoric parameterization being used is not
sufficiently flexible. The real total uncertainty of the model is
fixed, and because our choice of posterior has imposed an
artificial constraint on what the aleatoric uncertainty can
account for, the epistemic uncertainty has to fill the gap.
This conclusion is further supported by the quantile–quantile

plots of the GMM posterior model. Much like the full posterior
model, it appears to prefer little to no dropout. Surprisingly, the
performance of the full and GMMmodels is almost identical on
our calibration metric. Figure 1 also includes a comparison of
all three models with their “optimal” dropout value on the test
set. The full and GMM posteriors clearly outperform the
diagonal posterior, although all three posteriors avoid cata-
strophic overconfidence in their predictions. Up to the limited
sensitivity of our calibration metric, the full and GMM
posteriors with 0.1% dropout appear to have near-perfect
calibration.

4.1.2. Prediction Accuracy

The cuts we impose in Section 4.1.1 narrow down our
models to those that are well calibrated, but they do not tell us
how constraining the posteriors are. A well-calibrated model is
not necessarily informative. For example, if the BNN returned
the interim prior for every lens in our validation set, we would
report a perfect calibration; by construction, x% of the true
values fall within x% of the interim prior’s probability volume.
As a measure of the information content of our posteriors, we
use the MAE between the mean value of the posterior samples
and the true value for each lens. The MAE per parameter for
each one of our eleven models can be found in Table 5. For
each posterior type (diagonal, full, and GMM), we bold the row
that corresponds to the well-calibrated model.
With the exclusion of the no-dropout models, all of the full

and GMM posterior models have lower MAE values than the
diagonal models. Within the diagonal models, increasing the
dropout to achieve better calibration appears to also increase
the MAE in the parameter predictions. The opposite trend
seemed to hold for the full and GMM models: going from 1%
to 0.1% dropout appears to slightly increase the MAE, but the

11 See Appendix A for a more detailed discussion of this issue.

12 Because the epistemic uncertainty does not have a parameterized form, the
total covariance must be empirically measured by drawing samples.
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jump between 0.1% dropout and no dropout has a significant
impact on the MAE. These two diverging trends are likely
caused by the order-of-magnitude difference in the dropout
being applied to both model types. In the large dropout regime,
the dropout rate significantly impacts the variance of our
models’ predictions, therefore giving a larger MAE for larger

dropout. In the small dropout regime, we have shown in
Section 4.1 that the dropout has a much smaller effect on the
variance. Instead, it is likely that its main impact on MAE
performance comes from its ability to mitigate overfitting. In
the machine-learning literature, a small dropout rate is often
used as a regularizer to help reduce the gap in performance

Figure 1. The calibration plots (also known as quantile–quantile plots) for (a) the diagonal posterior models, (b) the full posterior models, (c) the GMM posterior
models, and (d) all three posterior models using the best dropout rate for each. The comparison between BNN hyperparameters in (a)–(c) is done on the validation set,
while the final comparison of the three models in (d) is carried out on the test set. The shaded region around each calibration line represents the 1σ uncertainty obtained
from jackknife resampling. As we go from the most restrictive (diagonal) posterior to the most flexible (GMM) posterior, the models require less dropout to achieve a
good calibration and return better overall calibration. The final comparison of the three models in (d) shows that the GMM and full posterior models can return near-
ideal calibration and that all three posteriors, given sufficient dropout, can avoid overconfidence.
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between training and validation. Even with our large training
set, the efforts made to add noise on the fly, and our validation
loss criteria for halting training, a small amount of dropout still
appears to be beneficial.

Overall, it is clear that the improved calibration of the GMM
and full models over the diagonal models does not come at the
cost of prediction accuracy. However, while the 0% and 0.1%
dropout models perform equivalently on our calibration metric,

Figure 2. A comparison of the median covariances for (a) the diagonal posterior model with 30% dropout and (b) the full posterior model with 0.1% dropout. As
expected, the diagonal posterior has a diagonal aleatoric covariance matrix while the full posterior has a covariance matrix with sizable correlations. However, the total
covariance matrix has nearly the same form for both models. The weight marginalization being learned by the diagonal posterior model appears to be capturing the
same covariances that are explicitly parameterized in the full posterior model.

Table 5
Median Absolute Error on Parameter for All Nine Models

Model γ1 γ2 xlens ylens e1 e2 γlens θE

Diagonal 5% 0.009 0.008 0.005 0.005 0.014 0.013 0.030 0.005
Diagonal 10% 0.009 0.009 0.005 0.006 0.016 0.015 0.034 0.006
Diagonal 30% 0.012 0.013 0.007 0.007 0.021 0.021 0.039 0.007

Full 0% 0.011 0.010 0.007 0.006 0.019 0.018 0.036 0.006
Full 0.1% 0.009 0.009 0.006 0.006 0.015 0.017 0.029 0.005
Full 0.5% 0.008 0.008 0.005 0.005 0.014 0.013 0.026 0.005
Full 1% 0.008 0.008 0.006 0.006 0.014 0.013 0.027 0.005

GMM 0% 0.010 0.011 0.007 0.007 0.018 0.018 0.036 0.006
GMM 0.1% 0.009 0.010 0.005 0.006 0.015 0.017 0.028 0.006
GMM 0.5% 0.007 0.008 0.005 0.005 0.014 0.013 0.026 0.005
GMM 1% 0.008 0.008 0.004 0.005 0.013 0.011 0.028 0.005

Note. All MAE calculations were done on the validation set. The model rows that are bolded correspond to the models that passed that calibration cut from
Section 4.1.1. For definitions of the parameter, see Section 3.2.
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their MAE performance is substantially different. Therefore,
throughout the remainder of this work, we will focus our
attention on the full 0.1% model and the GMM 0.1% model
rather than their no-dropout counterparts.

4.1.3. Comparison to Forward Modeling

Although the calibration metric and MAE metric are useful
population statistics, it is also interesting to better understand
the performance of our different models on a lens-by-lens basis.
To do this, we compare the output of the three models that pass
our calibration cut to the posterior produced by forward
modeling. The likelihoods in our forward-modeling posterior

are calculated with the LENSTRONOMY package, and the
sampling is conducted using the EMCEE package.13 While our
BNN posteriors are only required to predict the lens and shear
parameters, the source parameters of images in our training set
vary. Therefore, we are training our BNN to predict posteriors
that are marginalized over possible source parameter configura-
tions. To place the comparison on equal footing, the forward-
modeling approach also marginalizes over the source parameters.
In Figure 3, we show the two-dimensional corner plots of the

GMM 0.1% dropout posterior, the full 0.1% dropout posterior, and

Figure 3. A comparison of the 0.1% dropout full BNN posterior (orange), 0.1% dropout GMM BNN posterior (purple), and forward-model posterior (black) for the
lens image shown in the figure. The darker and lighter contours correspond to the 68% and 95% confidence interval, respectively. All three posteriors are statistically
consistent with each other and the truth. The forward model, which uses the same model to predict the data likelihood as was used to generate the image, has the
smallest uncertainties. However, both the full and GMM posteriors capture the same parameter covariances as the forward model.

13 https://emcee.readthedocs.io/en/stable/
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the forward-modeling posterior for a specific lens. To avoid any
bias, the lens was selected at random from the test set. From a
visual comparison, we can see that the three distributions are all
statistically consistent with each other. No distribution exhibits any
obvious bias from the true value, and the covariances between
parameters in the GMM, full, and forward-modeling case match
closely. Both BNN posteriors give larger uncertainties across the
board, but this is to be expected: the forward-modeling approach
samples the true likelihood of the data using the same model that
generated the data. It therefore has access to the maximum
information and generates contours that represent the limits on the
constraining power of the lens image. The forward-modeling
uncertainty represents the theoretical minimum on the uncertainty
our BNN could achieve. In Appendix B, we produce the same
plots for the diagonal model. As we would expect from the results
of our previous sections, all three posteriors appear to be unbiased.
But as we move from our diagonal posterior to the full and GMM
posterior, the BNN predictions tighten and exhibit covariances that
more closely correspond to those of the forward model.

4.2. Tests on “True” Sky Distributions

So far, we have established that the full and GMM BNN
models produce well-calibrated posteriors, capture the desired
covariances, and are accurate and precise. However, we also
want to demonstrate the value and limitations of our networks
in producing scientific constraints. We will focus on the ability
of our BNN to infer the population hyperparameters used to
generate a set of “true” sky test sets. Using these test sets
highlights one potential limitation of BNNs. If the training
samples are drawn from a different distribution than the test sky
—as is almost guaranteed to be the case for real-world
applications—then the interim prior will produce biased
posteriors. In Section 2.2, we introduce a hierarchical inference
framework that achieves two goals: first, it allows us to
reconstruct the population-level distributions of the lens
parameters; second, it allows us to reweight our inference
and correct for the assumption of the interim prior. To test the
viability of this framework, we introduce three “true” skies that

exhibit some of the systematic biases we would expect between
our training set and a sample of real data:

1. Centered Narrow Distribution: the distributions used to
draw the “true” sky lens parameters have the same means
as the training set but are much narrower.

2. Shifted Narrow Distribution: the distributions used to
draw the “true” sky lens parameters are much narrower
than the training set and have their means shifted by
±σtrain—the standard deviation of the training set
distributions. Note that, because each parameter is shifted
by ±σtrain, the shift in the full eight-dimensional space is
much larger.

3. Empirical Distribution: the distributions used to draw the
“true” sky lens parameters are narrower than the training
set and include covariances between the parameters γlens,
θE, and qlens. The correlation coefficients have been
matched to empirical estimates from the Strong Lensing
Legacy Survey (SL2S) and the Sloan ACS Lens Survey
(SLACS; Sonnenfeld et al. 2013, 2015). The means of the
parameters γlens and qlens are also set to agree with the
SL2S and SLACS lens samples.

The specific parameters of each of these three distributions can
be found in Table 6. For all three of our test distributions, we
have drawn 1024 lens samples obeying the same instrumental
and noise specifications used on our training set (see
Section 3.2 for more details). We do not specify the source
parameters because they follow the same distribution as the
training set. Because our BNN does not predict posteriors on
the source parameters, we felt varying the source distribution
could be better explored in future work.
Each of the three distributions introduces an additional

element of complexity that increases both the realism of the
lens sample and the potential bias introduced by the interim
prior. The centered narrow distribution addresses our frame-
work’s ability to reconstruct tight distributions. As we discuss
in Section 2.2, our hierarchical inference framework imposes
the explicit requirement that our training distribution be broader

Table 6
True/Test Sky Distributions

True/Test Sky Distributions

Component Centered Narrow Shifted Narrow Empirical

Number of training points in the
test set

577 of 400,000—0.144% 22 of 400,000—0.006% 73,088 of 400,000—18.272%

Lens: PEMD
x-coordinate lens center (″) m s~ x : 0, : 0.05lens ( ) m s~ x : 0.102, : 0.05lens ( ) m s~ x : 0, : 0.05lens ( )
y-coordinate lens center (″) m s~ y : 0, : 0.05lens ( ) m s~ -y : 0.102, : 0.05lens ( ) m s~ y : 0, : 0.05lens ( )
Einstein radius (″) q m s~  : 0.0, : 0.01E log( ) q m s~  : 0.1, : 0.01E log( ) q

g
~ -

- -
-
-

q
0.24
0.41

0.70
,

0.01 0.01 0.004
0.01 0.13 0.01

0.004 0.01 0.004

E

lens

lens

log

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎛

⎝
⎜⎜
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞

⎠
⎟⎟

Power-law slope g m s~  : 0.7, : 0.01lens log( ) g m s~  : 0.8, : 0.01lens log( )
x-direction ellipticity eccentricity m s~ e : 0, : 0.031 ( ) m s~ e : 0.2, : 0.031 ( )
xy-direction ellipticity eccentricity m s~ e : 0, : 0.032 ( ) m s~ -e : 0.2, : 0.032 ( ) f ~ -p pUnif ,lens 2 2

( )

External shear
Shear modulus g m s~ - : 2.73, : 0.1ext log( ) g m s~ - : 1.3, : 0.1ext log( ) g m s~ - : 2.73, : 0.1ext log( )
Orientation angle f ~ -p pUnif ,ext 2 2( ) f ~ -p pUnif ,ext 2 2( ) f ~ -p pUnif ,ext 2 2( )
Note.  is the normal distribution and log is the log-normal distribution. The source parameters are not specified because they are identical to those presented in
Table 3. Note that, for the empirical distribution, we draw from the axis ratio qlens and the angle flens as specified in Section 3.2.
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Figure 4. A set of figures demonstrating the performance of our three types of BNNs on the centered narrow test set. In (a), we plot a comparison of the training set
distribution, the centered test set samples, and the parameter distributions inferred by our three BNNs after hierarchical inference. Overall, all three BNNs reconstruct
the population distribution of the centered test set with a high level of precision. The only exception is the BNN reconstruction of the γlens and γext distributions where
the diagonal BNN appears to show some bias. The posterior on the population hyperparameters for γlens and γext are shown in (b) and (c), respectively.
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than our expected test distribution, so this type of bias is almost
guaranteed. The shifted narrow distribution adds a 1σ shift in
the mean of each individual parameter, testing the framework’s
ability to reweight correctly in an asymmetric and heavily
undersampled region of the interim prior. Finally, the empirical
distribution introduces means and covariances that better agree
with our current lens sample. The addition of population-level
covariances is important not only because it introduces a
significant bias between the training and test set but also
because these covariances probe loosely understood properties
of galaxy formation.

Our goal is to sample the posterior given by Equation (10),
reproduced below:



 å
x
x

W = W ´
W

´
W
Wx x

W

~ W

p d p
p d

p d

N

p

p

1
. 20

k

k

k p d

k

k

prior

int

normalizing factor

, int

MC with re weighting

k k k int

( ∣{ }) ( ) ( ∣ )
({ })

( ∣ )
( ∣ )

( )
( ∣ )

‐


  

  

As a reminder, k is a product over our 1024 lenses, ξk∼ p(ξk|dk,
Ωint) are draws from our BNN posterior, and Ωint is our interim
prior. We sample 1000 points from our BNN posterior for each
lens. To construct our posterior, we use an ensemble sampler
with affine invariance (Goodman & Weare 2010) implemented
using the EMCEE package14 (Foreman-Mackey et al. 2013).
The distributions Ω we are sampling over are restricted to
having the same functional form as the distributions used to
generate the true/test skies. We use broad uniform priors p(Ω)
for all our hyperparameters.15

4.2.1. Centered Narrow Distribution

In Figure 4(a), we show a comparison of the training set,
centered narrow test set, and the inferred population distribu-
tion for each of our three BNN models. For the GMM and full
posterior models, the inferred distributions match the test
distribution well across all the parameters. The diagonal model
also does a good job of matching the distributions with the
notable exception of γlens and γext, where it displays some bias
in the width and mean. γlens and γext are two of the most
important parameters for population studies of strong lenses
because they connect directly to the large- and small-scale
distribution of dark matter. In Figures 4(b) and (c), we show the
inferred population parameter for γlens and γext, respectively.
The bias of the diagonal distribution is most pronounced in γext,
where the range of inferred means is substantially offset from
the true value. The GMM model returns posteriors for the
population hyperparameters that are both tightly constrained
and consistent with the truth. The full posterior also offers tight,
unbiased constraints with the exception of the mean in the
shear. There, the constraints exhibit a slight downward bias of
approximately 0.5% in the mean.
We can also return the calibration metric we introduced in

Section 4.1 to understand how our hierarchical inference affects
the calibration of our posteriors. In Figure 5, we show the
quantile–quantile plot for our three BNN models before and
after the hierarchical reweighting. If we do no reweighting, and
therefore assume the interim prior, all three models return
posteriors that are underconfident compared to what we had
gotten on the validation set. This follows our intuition of what
should happen on a centered narrow test set: the narrower
distribution of lenses should allow for tighter constraints than
the interim prior, while the shared means should allow us to
assume the interim prior without introducing bias. When we
use Equation (11) to factor in the hierarchical weights we find
that the full and GMM models once again return a near-perfect
calibration. The diagonal model is still underconfident,
although this is consistent with its original performance in
Section 4.1.

4.2.2. Shifted Narrow Distribution

In Figure 6(a), we show a comparison of the training set,
shifted narrow test set, and the inferred population distribution
for each of our three BNN models. Unlike the centered narrow
distribution, all three BNN models show bias toward the
training set in the inferred population hyperparameters. For
the full and GMM models, the only pronounced shift is in the
distribution of γlens; the hierarchical inference on both models
returns a distribution that is slightly too broad and shifted
toward smaller values of γlens. The diagonal model shows a
similar bias across multiple parameters, including γlens and γext.
Figures 6(b) and (c) show the posteriors for the population
hyperparameters of γlens and γext. None of the three models
contain the truth within their 95% confidence interval, although
the full and GMM models are much closer than the diagonal
model. For the full and GMM models, the error in the means
for γlens is roughly 8% of the shift from the training distribution
whereas for γext it is around 2%.
The calibration results in Figure 7 show that all three models

are overconfident in their predictions when the interim prior is
assumed. The hierarchical reweighting helps correct for this
overconfidence, but both the full and GMM models still do not

Figure 5. The quantile–quantile plot for the BNN posteriors before and after
hierarchical reweighting on the centered narrow test set. The underconfidence
introduced by transitioning to the centered narrow test set is effectively
mitigated by the use of our hierarchical inference framework.

14 https://emcee.readthedocs.io
15 For conciseness, we do not reproduce the exact bounds of all our priors
here, but they can be found in the repo (https://github.com/swagnercarena/
ovejero/tree/master/configs/baobab_configs).
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Figure 6. A set of figures demonstrating the performance of our three types of BNNs on the shifted narrow test set. In (a), we plot a comparison of the training set
distribution, the shifted test set samples, and the inferred parameter distributions by our three BNNs after hierarchical inference. Unlike the centered narrow test set, the
BNNs have mixed success reconstructing the population hyperparameters. This is especially true for the diagonal BNN, which shows a consistent bias toward
the training set in its inferred distribution. The posteriors on the population hyperparameters for γlens and γext are shown in (b) and (c), respectively. While the bias in
the means for the GMM and full model is small (on the order of 1%–2%), none of the BNNs return constraints statistically consistent with the truth.
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return the near-perfect calibration they achieved on the centered
narrow test set. This is most prominent in the tails of the
posteriors. Given the bias in the inferred population hyperpara-
meters, it is not surprising that the reweighted posteriors still
exhibit overconfidence. The calibration metric on the
reweighted posteriors of the diagonal model does not
demonstrate overconfidence, but it does show a significant
underconfidence. While far from optimal, this is in line with the
diagonal model’s performance in Figure 1.

The shifted narrow test set performance demonstrates that if
the training set is sufficiently offset from the test distribution
(or true sky), the hierarchical inference procedure will show
bias. A 1σ shift in each of our eight parameters means that only
0.006% of the training examples fall within the test distribu-
tion. However, even in this undersampled space, the full and
GMM models still return inferred distributions that largely
overlap with the test set distribution. If these inferred
distributions were returned on a real strong-lensing data set,
it would strongly indicate the need for some form of
retraining.16

4.2.3. Empirical Distribution

Figure 8 shows a comparison of the training set, empirical
test set, and the inferred population distribution for each of our
three BNN models. Recall that, unlike the centered narrow and
shifted narrow test distributions, the empirical distribution has a
different functional form than the training distribution. All
three models capture the correct population-level covariance
between θE and γlens, but struggle on the covariance matrix
parameters tied to qlens. In particular, the inferred distributions
for our diagonal, full, and GMM models all underrepresent

values of qlens near 1. This bias seems to stem from the
limitations of the training set: there are very few training
examples with qlens> 0.9. This is a natural consequence of
defining our training distribution in terms of Gaussian samples
of the ellipticities e1 and e2 instead of the axis ratio qlens. A
Gaussian sample of axis ratio values corresponds to an
exponentially peaked sample of ellipticities. In Figures 9(a)
and (b), we show the posteriors on the population hyperpara-
meters for the multivariate Gaussian component of the
empirical distribution. The full and GMM models capture
the truth for all parameters that do not involve qlens. For qlens,
the estimate of the mean and variance is biased low. There is
also some bias in the covariance parameters associated with
qlens, but the bias can be fully explained by the underestimate of
the variance in qlens. While the diagonal model infers a
distribution close to that of the full and GMM models, it also
shows bias for the γlens population hyperparameters.
The diagonal model’s biggest failure is on the population

hyperparameters for γext. In Figure 8, we can see that the
inferred distribution for the diagonal model significantly
underestimates the scatter and the mean. The calibration results
presented in Figure 10 suggest that part of the cause may be the
diagonal model’s significant underconfidence. An overestimate
of the observational uncertainties could lead to the significant
underestimate of the intrinsic scatter seen here. We will explore
this possibility further in Section 4.2.5.
Figure 10 also shows that the full and GMM models already

return well-calibrated posteriors without hierarchical reweighting.
Including the hierarchical reweighting improves the posterior
calibration for both models, but does not quite reach the same
performance seen in Figure 1. Both results agree with the intuition
we have built thus far: the BNNs return good calibration results
without reweighting because the overlap between the empirical
distribution and training distribution is substantial. Similarly, the
weights should not fully correct the underconfidence in the
posterior because the inferred distributions have some bias.
The empirical test set serves both as a good demonstration of

the strengths and limitations of our combined BNN and
hierarchical inference approach. Although our training set is
drawn from a distribution with no population-level covariance
between parameters, our method is capable of accurately
reconstructing the covariances present in the test set. At the
same time, as we saw with the shifted narrow test distribution,
our hierarchical pipeline returns poorer results when our
inference is pushed to the tails of our training set.

4.2.4. Varying the Number of Lenses

So far, all of our inference has used the full 1024 lenses in
each test distribution. In Figure 11, we show how the posteriors
on the population hyperparameters for γlens and γext change as
we reduce the number of lenses. We focus on the centered
narrow distribution. The scaling between our constraining
power and the number of lenses seems to roughly follow a

Nlenses relation. As we go from 64 to 1024 lenses, the
posteriors remain statistically consistent with one another.

4.2.5. Varying the BNN Dropout Rate

In Section 4.1, we argued for the importance of well-
calibrated posteriors. Here, we seek to demonstrate how errors
in the calibration can affect our ability to constrain the
population hyperparameters. We focus on our 0.1%, 0.5%, and

Figure 7. The quantile–quantile plot for the BNN posteriors before and after
hierarchical reweighting on the shifted narrow test set. The overconfidence
introduced by transitioning to the shifted narrow test set is partially but not
fully corrected by the hierarchical weights. This is consistent with the bias in
the estimate of the population hyperparameters shown in Figure 6.

16 In this regime, one could turn to the extensive work on iterative retraining in
machine learning. For an example of the recent advances in this field, see
Greenberg et al. (2019).
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1% GMM models and apply them to hierarchical inference on
the centered narrow data set. As we show in Figure 1, going
from 0.1% to 1% dropout introduces progressively more
underconfidence into our posteriors. Figure 12(a) compares the
posteriors on the hyperparameters for γlens and γext. The
increasing underconfidence of the models appears to map
perfectly to a smaller inferred variance. Recast into more
traditional astrophysics language, Figure 12 shows that over-
estimates of the observational uncertainties lead to under-
estimates of the intrinsic scatter.

Table 5 shows that the 0.5% and 1% GMM models are
marginally more accurate in their parameter estimates than the
0.1% GMM model. Despite this, only the 0.1% model returns
unbiased posteriors for all four hyperparameters shown here.
The volume of the contours also seems unaffected by the
difference in MAE between the three GMM models. This
reinforces our assertion that calibration is a more important
metric for assessing model performance than raw prediction
accuracy.

5. Conclusion

We have presented a combined BNN and hierarchical
modeling framework that is capable of producing rapid,
unbiased samples of lens parameter posteriors. Utilizing our
publicly available package OVEJERO, we have extended a
previous implementation of BNNs in the strong-lensing
literature (Perreault Levasseur et al. 2017) to include more
flexible posteriors and calibration metrics on the eight-
dimensional parameter space of a PEMD model with external
shear. We show that a mixture of two Gaussians is capable of
returning posteriors that are both precise and statistically
consistent. When applied to “true” skies drawn from different
distributions than the training set, our models begin to show
systematic biases associated with the interim prior learned in
training. To address this shortcoming, we have developed a
hierarchical analysis framework for our lenses that allows us to
deconvolve the interim prior in the posteriors of individual
lenses. Our final ensemble approach produces unbiased
posterior samples and gives us access to the underlying

Figure 8. A comparison of the training set distribution, the empirical test set samples, and the inferred parameter distributions by our three BNNs after hierarchical
inference. All three models appear to pick up on the covariances in the test set. The inferred distribution from the full and GMM models matches the empirical
distribution closely, with the only exception being a bias against values of qlens near 1. The inferred distribution of γext by the diagonal BNN model also shows
significant bias.
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distribution of lenses in the sky. Notably, nothing in the
approach we outline here is limited to strong-lensing science.
Our framework offers a general methodology for mitigating
training set bias in BNN inference.
Returning to the questions we introduced at the beginning of

this work, we conclude with the following thoughts:

1. By default, BNN predictions are not robust to test sets
drawn from distributions different from the training set.
However, so long as the test set is well contained within
the training distribution, adding a hierarchical inference
framework allows for statistically accurate posteriors on
lens populations that do not match the training distribu-
tion. This is true even if the population hyperparameters
include higher-order statistics (i.e., covariances) not
present in the training set.

2. The same hierarchical inference methodology that
extends the BNN to new test distributions can also return
posteriors on the population hyperparameters themselves.
As with the posterior calibration results, the best
performance is achieved when the test distribution is
well encompassed by the training set. However, even
when the test distribution is on the edges of the training
distribution, the bias in the inferred population hyper-
parameters is small. Reconstructing population hyper-
parameters also requires BNN models that are very well

Figure 9. The posteriors on the population hyperparameters for θE, qext, and γlens on the empirical test set. Because these three lens parameters are governed by a
multivariate Gaussian distribution, we group the hyperparameters by the mean (a) and the covariance matrix (b). The posteriors for the full and GMM models capture
the truth for the population mean and covariances governing γlens and θE. However, there is a clear bias for the mean and covariance values associated with qlens. The
diagonal model posteriors exhibit this same bias along with a bias on the γlens parameters.

Figure 10. The quantile–quantile plot for the BNN posteriors before and after
hierarchical reweighting on the empirical test set. The underconfidence
introduced on the empirical test set is small and mitigated by the hierarchical
reweighting. However, only the GMM model approaches the near-perfect
calibration from Figure 1.
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calibrated. Models that are precise in their mean
parameter estimates but misquantify their uncertainties
will give biased hyperparameters. Notably, being “con-
servative” by overestimating uncertainties can lead to
disastrous underestimates in the intrinsic population
scatter.

3. BNNs are capable of returning posteriors on PEMD
parameters that are statistically consistent and constrain-
ing. When compared directly to forward modeling, the

BNN results are consistent and capture the same under-
lying parameter covariances. However, the overall
constraining power of the forward-modeling approach is
higher than any of the BNNs we explore here.

4. For simulated PEMD lenses, it is sufficient for our BNN
to predict a single multivariate Gaussian with full
flexibility in its covariance matrix. For models without
this flexibility, the dropout rate can be tuned to capture
some of the missing covariances. However, these large

Figure 11. The posterior on the population hyperparameters for γlens—(a) and γext—(b) as a function of the number of lenses drawn from the centered narrow
distribution. The constraining power scales roughly as Nlenses .

Figure 12. The posterior on the population hyperparameters for γlens (a) and γext (b) on the centered test set as a function of BNN dropout. As seen in Figure 1, larger
dropouts correspond to increasingly underconfident posteriors for the GMM model. This underconfidence (which can also be thought of as an overestimate of the
observational uncertainty) maps directly to an underestimate of the intrinsic scatter in the population.
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dropout models do not perform well when reconstructing
the population hyperparameters.

5. The pipeline we present here trains a BNN, predicts
parameter values for lenses, and conducts hierarchical
reweighting on a 1000 lens data set in a day.

The industrial-sized samples produced by upcoming surveys
will pose a host of new challenges for astronomers. We are
confident that the analysis techniques and insights presented
here provide the tools necessary to extract the full scientific
constraining power these data sets will offer.
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Appendix A
Calibration Toy Models

In Figures 13 and 14, we present a few toy true and inferred
posteriors to better build intuition for the quantile–quantile plot.
Figure 13 focuses on univariate comparisons and shows that
the quantile–quantile plot reflects our intuition of what it means
for a model to be under- or overconfident. When the inferred
distribution is offset and does not properly account for that
offset with the size of its uncertainties, it gives a strong signal
of overconfidence. On the opposite end, when the inferred
posterior is well calibrated but involves large uncertainties, the
quantile–quantile plot gives a strong underconfidence signal.
The final example in Figure 14 shows a more realistic scenario:
here the inferred posterior is univariate but the true posterior is
bivariate. Unlike our more simplistic toy models, the calibra-
tion error is neither consistently under- nor overconfident.
Instead, in the interior region of our inferred posterior, we find
more true posterior samples than we would expect. This is
because our single inferred posterior is stretched to try and
assign some probability weight to the second mode of the true
posterior. This lack of true posterior samples comes through as
an underconfidence signal. In the tails of our inferred posterior,
we find fewer true posterior samples than we expect because
most of the inferred posterior weight is being wasted on the
space between the two modes of our true posterior. In our
quantile–quantile plot this comes through as an overconfidence
signal for x-axis values above 0.8.
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Figure 13. A visualization of the quantile–quantile plot for two toy scenarios. In (a) the inferred posterior has the correct spread but is offset from the correct mean,
leading to significant overconfidence. In (b), the inferred posterior is correctly centered but has too large a spread, leading to significant underconfidence.
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Appendix B
Forward-modeling Comparison for Diagonal GMM

In Figure 15, we show a comparison of the forward-
modeling posterior to the posterior for the diagonal BNN
model on a specific lensing image. As we expect from the
results in Section 4, the diagonal BNN gives much larger
uncertainties across the board than those seen in Figure 3.
Unlike the GMM or full BNN models, the diagonal model

does not qualitatively display all of the covariances shown in
the forward-model posterior. However, it does include a
number of parameter covariances that cannot be explained by
the diagonal aleatoric uncertainty. As we discuss in the paper,
the preference for a large epistemic uncertainty appears to be
partially caused by the epistemic uncertainty’s ability to
provide posterior flexibility not inherent in the aleatoric
model.

Figure 14. A visualization of the quantile–quantile plot for a toy model where the inferred posterior is univariate but the true posterior is bivariate. Note that the signal
falls neither cleanly in the over- or underconfident regions, but rather crosses from one to the other.
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Appendix C
Hierarchical Inference Derivation

Here we derive the equations given in Section 2.2. We start
by calculating the probability of a specific test set distribution
given the test images {d}:

ò x xW = Wp d d p d, C1( ∣{ }) { } ( { }∣{ }) ( )

ò x
x x
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W W
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p d p
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So far we have only exploited Bayes’ theorem. We assume that
each lens is an independent draw from the true distribution Ω.
Therefore, given Ω, the parameters of each lens, ξk, should be
conditionally independent of the other lens parameters.
Similarly, given ξk, the data generated by that lens should be

Figure 15. A comparison of the 30% dropout diagonal BNN posterior (green) and forward-model posterior (black) for the lens image shown in the figure. The darker
and lighter contours correspond to the 68% and 95% confidence intervals, respectively. Both posteriors are statistically consistent with each other and the truth. The
forward model, which uses the same model to predict the data likelihood as was used to generate the image, has much smaller uncertainties than the diagonal
covariance model. The diagonal BNN does capture some of the parameter covariances exhibited by the forward model, reinforcing the conclusion that the large
epistemic uncertainty is being used to supplement the lack of flexibility in the aleatoric model.
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conditionally independent both from Ω (since ξk is fixed) and
from the data for the other lenses. This allows us to simplify the
previous equation to
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As we discussed in Section 2.1, the distribution we have access
to after training on lenses drawn from the interim prior is
p(ξk|dk, Ωint), so we will manipulate our expression to give us
this term:
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Our BNN allows us to efficiently sample from p(ξk|dk, Ωint), so
we can compute our integral through importance sampling:
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where Nimp is the number of samples drawn from p(ξk|dk, Ωint).
For a detailed discussion of Equation (C6), see Section 2.2. We
can now turn our attention to our final goal: calculating the
unbiased posterior of a single lens given the full data set,
p(ξk|{d}):
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With the hopes of extracting terms similar to what we find in
Equation (C6), we can introduce an integral over the full set of
lens parameters {ξ}:
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As with our previous calculation, {d} is independent of Ω

given the lens parameters {ξ}. Similarly, we can take advantage
of the conditional independence of di on dj for i≠ j given ξi.
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In the last step, we have taken advantage of the fact that p(ξj|ξk,
Ω) for j= k is just a delta function. Now we can introduce our
interim prior back into our equation:
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We can once again introduce the sampling distribution for our
BNN p(ξj|dj, Ωint):
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The term in the product is identical to Equation (C6), except we
are not including the lens k in our product. In the limit of many
lenses, we can assume that the additional information from one
lens to p(Ω|{d}) is negligible and rewrite this as17
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We can do one final reintroduction of Ωint:
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where in the final step we have drawn samples over p(Ω|{d}) N
times and dropped the normalizing constant p(dk|Ωint).
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