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Abstract

Gravitationally lensed curved arcs provide a wealth of information about the underlying lensing distortions.
Extracting precise lensing information from extended sources is a key component in many studies aiming to
answer fundamental questions about the universe. To maintain accuracy with increased precision, it is of vital
importance to characterize and understand the impact of degeneracies inherent in lensing observables. In this work,
we present a formalism to describe the gravitational lensing distortion effects resulting in curved extended arcs
based on the eigenvectors and eigenvalues of the local lensing Jacobian and their directional differentials. We
identify a nonlocal and nonlinear extended deflector basis that inherits these local properties. Our parameterization
is tightly linked to observable features in extended sources and allows one to accurately extract the lensing
information of extended images without imposing an explicit global deflector model. We quantify what
degeneracies can be broken based on specific assumptions about the local lensing nature and assumed intrinsic
source shape. Our formalism is applicable from the weak linear regime to the semi-linear regime and all the way up
to the highly nonlinear regime of highly magnified arcs of multiple images. The methodology and implementation
presented in this work provides a framework to assessing systematics, to guide inference efforts in the right choices
in complexity based on the data at hand, and to quantify the lensing information extracted in a model-independent
way (https://github.com/sibirrer/curved_arcs).

Unified Astronomy Thesaurus concepts: Gravitational lensing (670); Strong gravitational lensing (1643); Weak
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gravitational lensing (1797)

1. Introduction

Gravitational lensing displaces the observed position and
distorts the shape of apparent objects on the sky due to
intervening inhomogeneous matter along the line of sight. In the
cosmological context, the lensing effect can mostly be well
approximated with first-order displacements and second-order
perturbations on the shape of the lensed source (see, e.g.,
Blandford & Narayan 1992; Kaiser & Squires 1993; Kaiser et al.
1995; Mellier 1999; Bartelmann & Schneider 2001). The
displacement effect is not an observable, as the intrinsic position
of the objects cannot be determined. The distortion of the shapes
of extended objects does contain statistical signal due to the
correlation of the apparent shapes of different objects along
similar lines of sights, known as cosmic shear.

In the very close vicinity of massive overdensities, such as
galaxies or galaxy clusters, the lensing effect can lead to highly
distorted images and even the appearance of multiple images of
the same source. In these regimes, the second-order perturba-
tions do not accurately describe the observed distortions of
extended lensed sources anymore.

One way to bridge the gap between the linear and nonlinear
lensing distortion regimes is with third-order polynomial
perturbations on the lensing potential (flexion) as an octopole
signal in the measured shape (e.g., Goldberg & Natarajan 2002;
Goldberg & Bacon 2005; Irwin & Shmakova 2005, 2006; Bacon
et al. 2006). The flexion measurement has been employed, for
example, in the Hubble Ultra Deep Field (Irwin et al. 2007), and
in combination with shear and strong lensing conjugate points in
cluster models, both in parametric and nonparametric form
(e.g., Leonard et al. 2007). A Taylor expansion determination
of lensing quantities to fourth order has been investigated by

Wagner & Bartelmann (2016), and a generalized weak lensing
effect by Fleury et al. (2019). Overall, there has been only
moderate success and applicability of flexion corrections in
providing model-independent local lensing constraints.

In certain regimes, a fourth-order approximation with a
carefully chosen coordinate system can match some further
positional and local constraints in quadruply imaged lenses
(Wagner 2019), but it still does not allow one to describe
extended arcs accurately. The reason for the limits in polynomial
extensions is the nonperturbative nature beyond the second order
(shear and convergence) of the matter distribution in the universe
per se, leading to nonlinear lensing effects deviating from a
Taylor expansion (e.g., Schneider & Er 2008). The most
prominent and abundant signature of nonlinear lensing effects
beyond shear and convergence are curved arc distortions.
Although in the infinitesimally small sources, the alignment of
quadrupole and octopole moments induce curvature locally (e.g.,
Irwin & Shmakova 2005), more extended observed effects
cannot be described by third-order flexion terms (or even higher-
order ones) and require a nonperturbative treatment of the
lensing effect.

In the absence of a clean data-driven approach in the nonlinear
regime, the use of explicit deflector mass models to provide the
link between the observables and the lensing deflection field
became the standard in many analyses involving strong
gravitational lensing. One example of a lens model family widely
employed is the singular power-law mass density (PEMD) profile.
For the spherical case, there are theoretical studies quantifying and
discussing how well observables are able to constrain the global
mass profile slope of the imposed power-law profile (e.g., Suyu
2012; O’Riordan et al. 2019).
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The constraints derived from parameterized models may not
in all circumstances reflect the observational information on the
deflection field. When employing a specific parameterized
model, constraints can be derived within the specific lens
model family parameters only. In the case of the constant
power-law slope mass profile, the constraints on the logarith-
mic slope from extended imaging observables are only possible
due to the demanding constraints of the global deflector model.
Neither the local slope nor the average of the slope within a
certain range are observables themselves per se.

On one hand, specific functional forms may only probe a subset
of possible lensing configurations allowed by the data, leading to
overconstrained deflector inferences. For instance, an imposed
functional form on the deflector profile can artificially break the
mass-sheet degeneracy (MST, Falco et al. 1985; Gorenstein et al.
1988) and potentially bias the inference of the Hubble constant,
H,, from time-delay cosmography measurements (e.g., Schneider
& Sluse 2013; Birrer et al. 2016, 2020; Sonnenfeld 2018;
Kochanek 2020). We refer to Birrer et al. (2020) for the latest
constraints on Hy by the TDCOSMO collaboration when only
using MST-invariant imaging observables by effectively allowing
an additional MST degree of freedom in the mass profiles and
anchoring the radial density profiles by stellar kinematics
measurements.

On the other hand, a certain model may be insufficient to
describe the wealth of data available. This can particularly be
the case in the galaxy cluster regime where parameterized
models are currently limited to match conjugate points within
the astrometric measurement uncertainty and are incapable of
describing the relative distortions observed in extended sources
to the noise level of high resolution data (Dai et al. 2020;
Yang et al. 2020). Another example is the interpretation of
anomalous quadruply lensed quasar flux ratios. In some cases,
observed flux ratios may not exclusively be due to dark matter
substructure but instead might have contributions from larger
scale baryonic components in the lensing galaxy that a
simplified lens model may have neglected (see, e.g., Hsueh
et al. 2016, 2018; Gilman et al. 2017). Similar effects can
be observed when quantifying distortions in extended arcs, e.g.,
in Birrer et al. (2017a), larger scale potential corrections had to
be applied before substructure investigations could proceed.

The key to extract maximal precision while maintaining
accuracy in the nonlinear regime of gravitational lensing is to
allow for freedom in the lensing description where data are able
to constrain it and to have transparent priors in regimes where
the data do not provide information to the problem at hand. The
aim of this paper is to provide a theoretical formalism that
allows one to quantify the invariant observables in gravitational
lensing and a practical implementation to extract this informa-
tion from extended lensed images.

We introduce a formalism to describe the distortion effects of
curved extended arcs based on the eigenvectors and eigenvalues
of the local lensing Jacobian and their directional differentials. The
eigenvectors and their differentials are describing particular
aspects of observational lensing features. We identify specific
bases for a nonlocal, nonlinear extension of the local properties to
accurately predict and describe the detailed shape of extended
sources at and around the location of interest without the need of a
globally defined deflector model.

Degeneracies inherent in lensing, such as the MST and its
generalization, the Source Position Transform (SPT; Schneider &
Sluse 2014; Unruh et al. 2017; Wertz et al. 2018), pose limits on
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the extractable lensing information. In the most general form, the
SPT is not restricted to curl-free deflector fields. The arc basis
introduced in this work is a suitable approach to explore the curl-
free components of the SPT with some minimal but well-
motivated broad assumptions about the local lensing distortions.
The method presented in this work effectively allows one to
extract lensing information from extended sources while mitigat-
ing degeneracies inherent in lensing.

Our formalism is applicable in all cosmological regimes of
gravitational lensing, from the weak linear regime to the semi-
linear regime and up to the fully nonlinear regime of highly
magnified arcs and Einstein rings of multiple images.

The paper is organized as follows: in Section 2 we
introduce the formalism of radial and tangential distortions
in the eigenvector basis of the lensing Jacobian and their
differentials. We then discuss local lensing invariances and
degeneracies in the context of the curved arc basis in
Section 3. In Section 4 we discuss the observables in curved
arcs that allow us to constrain radial and tangential aspects of
global mass distributions and demonstrate how our formalism
is able to extract all relevant information without being over
constraining. In Section 5 we elaborate applications of the
methodology that can benefit from the approach we introduce
in this work, its limitations, and provide a specific example.
We conclude in Section 6.

All figures and inferences can be reproduced using code
available at this repository.® All numerical computations are
performed with LENSTRONOMY" (Birrer & Amara 2018; Birrer
et al. 2021) version 1.8.2.

2. Lensing Formalism for Curved Arcs

In this section, we first review the lensing formalism in
general terms, in particular the polynomial Cartesian expansion
in second- and third-order differentials of the lensing potential
(Section 2.1). We then introduce the formalism of the
differentials in the eigenvector basis (Section 2.2). We identify
the local differentials in eigenvector space attributed to curved
arcs that provide a continuous mapping from the weak lensing
to the strong lensing regime (Section 2.3). We use the
eigenvector basis to define a minimal local lens model able
to describe extended curved arcs while preserving the key
differential quantities over an extended area around the
localized position (Section 2.4).

2.1. Lensing Formalism Basics
2.1.1. Lens Equation

The lens equation, which describes the mapping from the
source plane 3 to the image plane 0, is given by

B=6—a@), ey

where « is the angular deflection as seen on the sky between
the original unlensed and the lensed observed position of an
object.

> hups: //github.com/sibirrer/curved_arcs
4 https://github.com/sibirrer /lenstronomy
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2.1.2. First- and Second-order Cartesian Differentials

The differential of the lens equation between the source
position and its lensed appearance, the Jacobian, is
A = 86, o 804,-

"= 90, " 00

@)

The Jacobian describes the local linear distortions of a small
extended source or likewise the magnification of an unresolved
small source. The magnification  is the change in differential
area from the source to the image position and can be expressed
as the determinant of the inverse Jacobian

u = det(A)". 3)
The components of the Jacobian can be decomposed into the
convergence
1 80zx aay
k=——+ —1 4
(55 @
the shear components
1 aOéx 8ay
= — - —, 5
" 2(69)( aay) ©
1 aOZX aav
= —\\ — + - ) 6
" z(aoy aex) ©
and the curl component
Oay
curl—| 2% _ 9% ) %)
00, 00

The next-to-leading order polynomial expansion of the lens
equation is known as a flexion (Goldberg & Natarajan 2002;
Goldberg & Bacon 2005; Bacon et al. 2006) and describes the
gradients of the Jacobian
0A;j
90,
The lens equation (Equation (1)) to second polynomial order in
6 =0,+ A0 is given by

Dy = ®)

1
ﬂi ~ 9,' - Oé,'(go) + AUAQJ + EDijkAejAelo (9)

To this stage, no symmetry on the form of the lens equation
(Equation (1)) or the Jacobian (Equation (2)) has been invoked.

In the case of a single lensing plane, the source term of the
gravitational deflection field is the convergence field, x(8), with
zero curl, and there exists a scalar lensing potential, ¢, given by

W) = L [a0s@)mie - 01, (10)
™

such that
a(0) = Viy(0). (11)

The Jacobian (Equation (2)) is symmetric, without any curl
component, and can be decomposed into a trace (convergence
k) and trace-free (shear v, 7,) term as

o) _[1—%—% —

- -7 I —sx+m|

A,“ = (Sl“ — =
T 96,00

12)
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The magnification x (Equation (3)) can be written as
1
(1=K =91 =73

The flexion terms can be compactly written as (see, e.g.,
Kaiser 1998)

=271,1 — Y22 —721
Dy = 1= T2 T 14
o [ —72.1 —22 (14

p= 13)

—Y2.1 —"2.2 ] (15)

Dy =
v [—72,2 22 = M2

2.2. Differentials in Eigenvector Space Notation
2.2.1. Jacobian in Eigenvector Space

We describe the Jacobian A (Equation (2)) in terms of its two
eigenvectors e; with corresponding eigenvalues \;

A - e — )\iei. (16)

In the case of a symmetric Jacobian, the eigenvectors are
orthogonal and the eigenvalues are real. The magnification p
(Equation (3)) can be written as

=111/ (17

In the weak lensing regime, the two eigenvectors and the
direction provide a complete and equivalent description to
shear and convergence and we can state the properties by
referring to the major and minor eigenvectors.

In the vicinity of a collapsed overdense structure, such as a
galaxy or a galaxy cluster, the two eigenvectors are to a good
approximation radial and tangential to the center of the
structure. We can associate the eigenvalues as the inverse
radial and tangential stretch of an image exhibited by the
massive structure

—1
A - €rad = /\raderad

-1
A ey = /\um €tan,

where we noted e,q to be the radial component and e, to be
the tangential component of the Jacobian A with their
corresponding eigenvalues A} and Agl. In this form, A.q
corresponds to the stretch factor of the source in radial direction
and Ay, in tangential direction, corresponding to

00, 06,
s )\lu.n = ’
efeh B

where 00, (03;) corresponds to the directional differentials
in the source plane corresponding to the reflected radial
(tangential) direction in the image plane. The magnification is
the product of the orthogonal stretches

H = Arad Atan- (19)

We define the scalar angle ¢, (¢raq) as the angle between
the eigenvector e, (e,,q) and a specific polar coordinate system
of choice (e.g., centered at the massive structure for
convenience) such that

)\rad = (18)

€08 (Pran) = €tan - €0, (20)
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in which e is the unit vector in the direction of the coordinate
center. A convenient coordinate center is the center of a mass
distribution.

In general terms, we can associate the tangential direction to
be along the major shear direction and the radial component
orthogonal to it. The directions of the eigenvectors themselves
are independent of the coordinate center.

2.2.2. Third-order Differentials in Eigenvector Space

Analogous to using the polynomial flexion to describe the
differentials of the Jacobian in Cartesian directions, we can
introduce differentials along the eigenvectors of the tangential
and radial eigenvalues as well as the differentials of the
direction of the eigenvectors themselves.

The differential of the eigenvector direction along its own
direction provides a measure of curvature. We define the
tangential curvature, Sep, as

a(btan

Stan = 1)
Oeun
and the curvature in the radial direction, s.,4, as
0.,
Srad = —14, (22)
8erad

The curvature terms Swp, and s.q are coordinate system
independent. We note that the directional differentials in the
two directions e, and e,,q are the same when the eigenvectors
are orthogonal.

For the differentials of the eigenvalues we introduce the
following notations. The gradient of the tangential magnifica-
tion in tangential direction is

Dhgn = L 23)
Oein
and in radial direction
Oy Man = % 24)
aerad

The gradient of the radial magnification in the radial direction
is

Oy Ay = Lot 25)
8erad
and in the tangential direction is
a>\ral
OAaa = —2, (26)
Oean

2.3. Tangential Arcs and Their Eigenvector Components

In the following we focus on a single, and considered most
prominent, third-order eigenvector differential, the curvature in the
direction of the tangential direction s, (Equation (26)). We can
describe in a minimal form a tangential arc by considering the
radial and tangential stretch, \,q and Ay, the radial direction, ¢q,
and the curvature in the tangential direction, Sy, (Equation (26)).
Figure 1 provides an example of an arc fully described by these
four components. The eigenvalues remain constant along a circle
defined by the inverse curvature r = s

Figure 2 illustrates tangential arcs as a function of the
tangential-to-radial stretch ratio, A,/ Arag, and curvature. Any
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Figure 1. Illustration of eigenvectors and curvature along the tangential
direction for a single arc feature. The directional differential along the
tangential direction sy, marks a radius with radius r = s[;nl on which the
tangential and radial eigenvalues, Ay, and A4, are constant and pointing either
in the direction of or orthogonal to the center (https://github.com/sibirrer/
curved_arcs /blob/main/Notebooks /curved_arc_illustration.ipynb).

other differential or higher order is set to zero in this
illustration. The linear regime is fully described by three
parameters in this notation, namely the radial and tangential
stretches, and the orientation of one of the eigenvectors, while
the curvature is zero (S, = 0). The highly nonlinear regime
requires only the addition of one parameter, namely the
curvature along the larger eigenvector (now called tangential
stretch). Even a completely round Einstein ring can be fully
described in this notation by setting Ay, = 0o with sy, > 0.
The expression of tangential arcs does allow one to locally
describe the lensing phenomenology from the weak lensing to
the strong lensing regime.

2.4. A Lens Model Basis for Extended Tangential Arcs

To this point in the manuscript, the discussion about
tangential arcs has been made at the infinitesimal differential
limit. Applications to describe extended arcs require a nonlocal
expression covering the extents of individual arcs or images
observed. We demand the following conditions to be satisfied
by the local deflector model around a pre-specified location 6y,
such as the center of an arc:

1. The differentials at 6, result in A.q, Awn, Swan, and

direction ¢,,,, as specified.

2. The curvature sy, is constant along the tangential
direction, effectively letting the path integral along the
tangential eigenvector direction go around in a circle. We
denote the radius of this circle as the curvature radius.

. Constant tangential stretch A, on the curvature radius.

. Constant radial stretch on the curvature radius.

. No curl component on the deflection field.

. Zero deflection shift at the location 8y, c(8,) = 0.

NN AW

We identify the following deflector model that uniquely
satisfies the criteria mentioned above, of which the deflection
angle is given by

a(g) _ st;nl )\tan - )\rad 0 — 90 _ 00 - oc
)\rad /\tan |0 - Ocl |0() - ecl

+ (1 — A0 (6 — 6p), 27)
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Figure 2. [llustration of tangential arcs as a function of tangential-to-radial eigenvector stretch ratio A, /g and tangential curvature si,,. The description of curved
arcs in the eigenvector components allows us to describe distortions of a lensed object from the weak lensing regime continuously to the highly magnified and
distorted strong lensing regime (https://github.com/sibirrer/curved_arcs/blob/main/Notebooks/curved_arc_illustration.ipynb).

with 6. as the centroid position of the curvature radius
~1
96 = 00 — Stan €rad- (28)

Equivalently, the deflector model above can be expressed as
a singular isothermal sphere (SIS) model in combination with
an MST as

a(0) = Astlasis(0) — asis(0p)] + (1 — Avst) (0 — 6p),

(29)

with )‘MST = )\;ié and

0—0,
ogis(0) = 0p ——=, 30
sis(0) E|0*0c| (30)
with Einstein radius
0 = st;,}(1 - M) (31)
)\lan

The centroid matches the curvature radius, the Einstein radius
is adjusted to match the ratio of tangential-to-radial stretch
ratio, Awan/Arad, and the MST term matches the inverse of the
radial stretch A\q.

We emphasize that this expression is only valid locally, such
as around an image of an arc, and is not meant to cover an
entire deflection field with multiple images. We refer to
Section 5 where we use a local tangential arc parameterization
basis separately on multiple images to constrain more complex
global deflector models.

3. Observational Invariances

Having introduced the formalism of tangentially curved
deflectors in describing curved arcs, it is essential to understand
and characterize lensing invariances and assumptions for
extracting general lensing constraints. We thus dedicate this
section to lensing degeneracies and their invariances in the
characterization of curved arcs within the locally tangential
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curved deflector model. In Section 3.1 we formulate the general
class of lensing invariances in an operator notation. We then
discuss the specific class of the MST in Section 3.2 and how
this degeneracy translates to constraints on curved arcs. In
Section 3.3 we discuss shape noise degeneracies in the regime
of curved arcs.

3.1. Operator Notation of General Lensing Invariances

To characterize general lensing degeneracies inherent in
gravitational lensing, we define the following notation: L is the
lensing operator distorting the source, which effectively maps
the lensed coordinates, 6, to the coordinates prior to lensing, 3.
In general terms, L describes a coordinate mapping. The lens
equation (Equation (1)) can be written in this notation as
L(0) =0 — a(6). Given an intrinsic source morphology S,
such that S(3) describes the intrinsic surface brightness at
position 3, the distorted image, D(8), can be written as

D(0) = S(L(0)). (32)

In terms of the operator notation, L is acting on S resulting in
D, stated as

D=LoS. (33)

With this notation, we can describe the general invariance
between lensing operator L and source morphology S resulting
in the same image D with one single additional mapping
operator J by expanding expression (33) with the unity
operator (now written as J J) as

D=LoS=LolloS=Lo(J ' J)oS
=L oJHo(JoS)=LoS. (34)

In the last line, we defined the transformed deflection operator,
L =L oJ! and transformed source, § = J o S, resulting in
the same image D. The only formal requirement on J in
Equation (34) above is that the mapping is bijective and the
inverse J ' is uniquely defined over the extent of image D.

In summary, for any bijective angular mapping operator J,
there exists an alternative solution to the lens equation,
D=L oS with source S=J oS and lens L =L o J .
This statement is an operator formulation of the SPT
(Schneider & Sluse 2014; Unruh et al. 2017; Wertz et al. 2018).

In the presence of two or more images, D;, D;, the relative
operator translating one image into another can be determined
without the knowledge of the intrinsic source S:

Di=LjoS=LioL oD, =L oL 'oD. (35)

In short, the measurable quantity in lensing under the full
consideration of the SPT is the relative distortion operator
L; oL; ! between two images of the same source.’

In the following, we sequence the general degeneracy
operator J in a scalar component, Ayst, a linear distortion
component, I', and a third component O encapsulating any
higher-order components not captured in the previous two
components, as

J = )\MSTFO. (36)

The scalar component in this transform is the special case of the
MST. The shear component I' characterizes the shape noise,

5 We refer to Tessore (2017) for the explicit notation of this invariance in the
linear regime of a matrix with shear and convergence.
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while the nonlinear component O characterizes any higher-
order distortion of the SPT.

In Section 3.2 we further discuss the MST component within
the framework of curved arcs, and in Section 3.3 we discuss the
shape noise aspects of the SPT, with a brief discussion on
higher-order terms.

3.2. Mass-sheet Transform (MST)

The MST is the scalar component of the general SPT
(Equation (36)). This scalar component is a multiplicative
transform of the lens equation (Equation (1)) preserving image
positions (and thus any higher-order differentials, too) under a
linear source displacement 3 — A3 and was introduced by
Falco et al. (1985) and Gorenstein et al. (1988) as

AvstB = 0 — Avsta(8) — (1 — Amst) 6. 37

The term (1 — Ays7)@ in the equation above describes an
infinite sheet of convergence (or mass) and hence the name
mass-sheet transform. The corresponding transform of the
convergence profile is given by

kmst(0) = Avst(0) — (1 — Amst)- (38)

The MST can be described as a global transform of the
convergence and hence it can lead to physical solutions for a
wide range of values of Ayst, which makes the MST a
prominent and relevant degeneracy for many applications, in
particular the measurement of the Hubble constant with time-
delay cosmography (e.g., Schneider & Sluse 2013; Birrer et al.
2016; Sonnenfeld 2018; Birrer et al. 2020; Blum et al. 2020;
Kochanek 2020). Only observables related to the absolute
source size, intrinsic magnification of the lensed source, the
absolute lensing potential, or the relative time delay when
imposing a known cosmology with absolute distances, are able
to break this degeneracy.

The differentials of the lens equation (e.g., Jacobian,
Equation (2), and flexion, Equation (8)) transform under an
MST as

A = Mstd, D' = ystD. (39)

The coefficients in the Jacobian and higher-order differentials
are not constrained by imaging observables unless other
constraints or assumptions on the lensing profile are inserted
and thus do not serve themselves as observables.

Equivalently, the MST scales the radial and tangential
eigenvectors as

)\/tan = /\K/IIST /\tan’ )\/rad = AKAIST )\rad' (40)

The quantities that remain locally invariant under the MST is
the ratio of tangential to radial eigenvalue Ay, /Mg that
describes the relative distortions and any directional quantities
(eigenvector direction).® Considering the third-order deriva-
tives, the curvature s, and s.,q remain invariant under the
MST. The derivatives of the eigenvalues follow the same
scaling with the MST as the eigenvalues themselves.

3.3. Shape Degeneracies in Curved Arcs

Beyond the MST, the remaining aspects of a linear distortion
are the reduced shear components (I' in Equation (36)). These

6 This is equivalent to the reduced shear expression.
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Figure 3. Demonstration of the shape noise component of the SPT applied on a curved arc on-axis relative to tangential eigenvector. The middle column corresponds
to a reference example of a round intrinsic source (top) being distorted by a curl-free curved arc (Equation (27), second row), resulting in the lensed curved arc (third
row). The re-fitting with an SPT mapping leads, by construction, to a perfect fit (the fourth row indicates reduced residuals of the fit) without curl (fifth row). The other
columns correspond to an enforced different elliptical shape of the intrinsic source (§) with a lensing operator (L) to perfectly describe the SPT. The resulting fit to the
data is perfect but the required curl is nonzero. The off-axis distortions with the SPT is presented in Figure 4 (https://github.com/sibirrer/curved_arcs/blob/main/

Notebooks/spt_curved_arc.ipynb).

components are changing the ellipticity of the intrinsic source.
In the regime where the lensing operator L is linear, any linear
SPT, T, leads to a linear transform of . = LoI'! and is thus
indistinguishable from the reduced shear. This degeneracy is
generally known as shape noise (see, e.g., Bernstein &
Jarvis 2002). We refer to Appendix B for a shear and intrinsic
shape notation convenient in transforming according to a linear
SPT. However, if the lensing operator L is nonlinear, such as in
the regime of curved arcs, the shape noise transformed lensing
operator couples the differentials nonlinearly and can give rise
to a curl component in the deflection operator L.

We illustrate the nonlinear coupling by performing an SPT
on a curved arc with a round source and an extended curved
tangential deflector model given by expression (27). In Figure 3
the shear transform is performed along the tangential axis and
in Figure 4 the transform is performed along the orthogonal
shear modulus. By construction, the SPT results in a perfect

match of the original arc for all cases. For the on-axis SPT
(Figure 3), the local eigenvectors and tangential curvature are
transformed by the expected relative tangential and radial size
of the source. The extended deflection field, however, contains
a significant curl contribution. For the off-axis distortions
(Figure 4), even at the center of the arc, significant curl
contributions arise from the SPT.

In the next approach, we restrict the lensing transform L to a
curl-free curved arc (Equation (27)), while demanding the
source morphology to be sheared. Figure 5 shows the
approximate SPT with a curl-free curved arc for on-axis
distortions, re-fit to give the best possible fit to the original arc
generated with a round source. While the curved arc parameter
fit follows the same infinitesimal properties as for the SPT at
the center of the arc, residuals in the extent of the arcs remain.
Thus, within the assumption of a curl-free tangentially curved
deflector model, the shape noise can be constrained. Off-axis
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Figure 4. Demonstration of the shape noise component of the SPT applied on a curved arc off-axis relative to tangential eigenvector. The middle column corresponds to a
reference example of a round intrinsic source (top) being distorted by a curl-free curved arc (Equation (27), second row) resulting in the lensed curved arc (third row). The re-
fitting with an SPT mapping leads, by construction, to a perfect fit (the fourth row indicates reduced residuals of the fit) without curl (fifth row). The other columns correspond
to an enforced different elliptical shape of the intrinsic source (S) with a lensing operator (L) to perfectly describe the SPT. The resulting fit to the data is perfect but the
required curl is nonzero. The on-axis distortions with the SPT is presented in Figure 3. Off-axis shape distortions are better constrained by curved arcs than on-axis distortions
as illustrated in the difference in the residuals between this figure and Figure 3 (https://github.com/sibirrer/curved_arcs/blob/main/Notebooks/spt_curved_arc.ipynb).

distortions, as illustrated in Figure 6, are more constrained, as
the remaining residual patterns indicate. This feature can also
be linked to the missing curl component in the center of the arc,
as expected by the SPT. The closest approximations to the
exact SPT within the curved arc lens model family do not allow
us to adequately describe the observed arcs to the signal-to-
noise ratio level of the simulation for substantial distortions of
the source, thus restricting shape noise.

Higher-order SPT components (O in Equation (36)) in
general lead to source transforms that deviate from elliptical
shapes. A subset of these transforms can lead to curl-free
mappings L. One mathematically possible case is when there is
no lensing (L = 1), then the shape of the source S is a curved
arc itself. However, the physical plausibility of galaxies
resembling in an intrinsic arc-like shape needs to be considered
and the likelihood of higher-order morphological shapes can be
estimated empirically from the shapes of the entire galaxy

population in low lensing environments. We further refer to
Schneider & Sluse (2014) for a discussion on higher-order
SPTs in the axisymmetric case for global mass distributions,
and to Unruh et al. (2017) for non-axisymmetric cases.

In this section, we did not discuss the impact of a point-
spread function (PSF). In the example in Section 5.1 we
incorporate a PSF corresponding to an HST observation. We
point out that uncertainties in the ellipticity of the PSF can also
lead to degeneracies related to shape noise and thus accurate
and precise PSF estimates are essential for studies of
gravitational lensing, in particular when extracting significant
information from individual objects.

We also note that when multiple arcs of the same source are
present and the local lensing distortions are simultaneously
reconstructed, this will add further constraining power on the
SPT components depending on the relative alignment of the
different curved arcs. So even if there is a curl-free SPT that
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Figure 5. Demonstration of the shape noise component of the curl-free curved arc approximation of the SPT applied to a curved arc on-axis relative to tangential
eigenvector. The middle column corresponds to a reference example of a round intrinsic source (top) being distorted by a curl-free curved arc (Equation (27), second
row) resulting in the lensed curved arc (third row). The re-fitting with a tangentially curved deflector model best approximating the SPT leads, by construction, to a
perfect fit (the fourth row indicates reduced residuals of the fit). The tangentially curved deflector models have, by design, no curl components (fifth row). The other
columns correspond to an enforced different elliptical shape of the intrinsic source (S) with a lensing operator (L) of a curved arc (Equation (27)) approximating the
SPT. The resulting fit to the data is not perfect and the enforced curl-free nature of the model leads to distinguishable intrinsic source shape features. The on-axis
distortions with the curved arc approximated SPT is presented in Figure 6 (https://github.com/sibirrer/curved_arcs/blob/main/Notebooks/spt_curved_arc.ipynb).

can reproduce one arc by transforming the source morphology
in a particular way, the lensing operator of an additional image
may require significant curl components to match the
observations. Given that off-axis shape distortions are better
constrained than on-axis components, multiple images of arcs
that are asymmetrically aligned, meaning on- and off-axis
directions in the individual arcs correspond to different axes in
the intrinsic source plane, do suppress the shear-ellipticity
degeneracy more efficiently. Fully connected Einstein rings
further enhance the suppression of the shear-ellipticity
degeneracy.

4. Constraining Global Mass Distributions

Theoretical discussions in the literature regarding mass profile
constraints primarily use positional constraints and magnification

ratios and are often tied and applicable to a specific mass profile
family. In this section, we discuss and illustrate which
observational features that are extractable by curved arcs allow
us to constrain which specific aspects of global mass distributions
in the nonlinear regime of gravitational lensing. We first discuss
the tangential constraints related to ellipticity and external shear of
a mass distribution (Section 4.1) and then in a second step we
separately discuss the radial constraints provided by observed
curved arcs (Section 4.2). This section is accompanied by
Appendix A where we state the specific functional form of the
global lens models we use in this work as an example.

4.1. Azimuthal Constraints

Tangential distortions in strong gravitational lensing imprint
a signal about the asymmetric mass distribution in the main
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Figure 6. Demonstration of the shape noise component of the curl-free curved arc approximation of the SPT applied to a curved arc off-axis relative to tangential
eigenvector. The middle column corresponds to a reference example of a round intrinsic source (top) being distorted by a curl-free curved arc (Equation (27), second
row) resulting in the lensed curved arc (third row). The re-fitting with a tangentially curved deflector model best approximating the SPT leads, by construction, to a
perfect fit (the fourth row indicates reduced residuals of the fit) without curl (fifth row). The curved arc models have, by design, no curl components (fifth row). The
other columns correspond to an enforced different elliptical shape of the intrinsic source (§) with a lensing operator (L) of a curved arc (Equation (27)) approximating
the SPT. The resulting fit to the data is not perfect and the enforced curl-free nature of the model leads to distinguishable intrinsic source shape features. The off-axis
distortions with the curved arc approximated SPT is presented in Figure 5 (https://github.com/sibirrer/curved_arcs/blob/main/Notebooks/spt_curved_arc.ipynb).

deflector and along the line of sight. To first order, the
asymmetry can be described by an elliptical mass distribution
and external shear. Positional constraints of quadruply imaged
sources can only partially break the shear-ellipticity degeneracy
(see, e.g., Schechter & Wynne 2019; Luhtaru et al. 2021) under
fixed radial profile constraints. O’Riordan et al. (2020) studies
positional and magnification constraints on the joint ellipticity—
power-law radial slope, not considering degeneracies with
external shear.

In the formalism of extended curved arcs, the following
shape quantities provide information about the azimuthal
structure of the lens: (i) the change in the tangential stretch
along the azimuth of the deflector, J;Ayy, (i) the change
in the curvature direction along the azimuthal direction, and
(iii) the change in the curvature radius along the azimuthal
direction.

10

Figure 7 illustrates the curved arc properties at a fixed radial
distance along the azimuthal axis for three different lens
models. The round model exhibits, imposed by its symmetry,
identical curved arc structure along the azimuth with the
curvature radius and direction pointing toward the center of the
deflector profile. The elliptical mass model, here described as a
power-law elliptical mass distribution (PEMD; see Appendix A
for details), causes a change in the tangential stretch A, along
the azimuth with a 180° symmetry imposed by the lens model
symmetry. The curvature radius and direction, however, remain
centered on the deflector mass. In the third case, we illustrate
the azimuthal behavior of a round mass density with an
addition of an external shear component. While the change in
the tangential stretch varies almost identically as for the case of
an elliptical mass distribution, the additional unambiguous
feature of the shear component is the fact that the direction of


https://github.com/sibirrer/curved_arcs/blob/main/Notebooks/spt_curved_arc.ipynb

THE ASTROPHYSICAL JOURNAL, 919:38 (20pp), 2021 September 20

Round

Elliptical

Birrer

\

N

=
Z——>
=2

S—F——=

Figure 7. Illustration of curved arc properties at a fixed radial distance along the azimuthal axis for three different lens models. Left: round lens model, resulting in a
fully symmetric appearance of arcs. Middle: elliptical mass distribution, causing a change in the tangential stretch 9, )\, along the azimuth with a 180° symmetry
imposed by the lens model symmetry. The curvature radius and direction, however, remain centered as it is the case for a round mass distribution. Right: round mass
density with an addition of an external shear component. While the change in the tangential stretch varies almost identically as for the case of an elliptical mass
distribution, the additional unambiguous feature of the shear component is the fact that the direction of the curvature in the arc is offset from the mass distribution
center with an altered curvature radius (https://github.com/sibirrer /curved_arcs /blob/main/Notebooks /curved_arc_illustration.ipynb).

the curvature in the arc is offset from the deflector center with
an altered curvature radius.

The example illustrated in Figure 7 demonstrates how
extended resolved arcs are able to break the ellipticity-shear
degeneracy. The formalism of curved arcs is able to capture
these constraints. We do not discuss azimuthal structure
beyond a dipole and external shear but expect that the curved
arc formalism and approach is also able to effectively describe
and present observational signatures in more complex regimes
of azimuthal structure.’

4.2. Radial Constraints

The primary radial constraint from gravitational lensing of a
mass profile is the Einstein radius fg. In the round case, the
Einstein radius marks the radius where the tangential stretch
Awn diverges and changes its sign, which is known as the
critical curve. The next-order leading term characterizing the
radial profile is the radial stretch eigenvalue A.4. This value,
however, is not an observable due to the MST, and only ratios
of eigenvalues are observable. The leading order measurable
quantity by gravitational lensing observables is the normalized
differential radial stretch of O,Aaq/Aa measured as the
average finite differential between two arcs at different radial
distance from the critical curve. The quantity 9, \aq/ Araq can be
equivalently expressed as radial derivatives of the deflection
angle a or the lensing potential ¢ (Equation (10))

Oda _ v

)\rad 71_0/71_7;/}”’

(41)

where / denotes the radial derivative.®
The invariant quantity at the Einstein radius when the radial

differential is scaled relative to the Einstein radius is given by

E ar /\rad(aE)
)\rad(eE)

We note that the quantity .4 is effectively equivalent
in the constraining power to the expression introduced by

grad = (42)

7 See, e.g., a study with multipole moments and their impact on Hubble
constant measurements by L. Van de Vyvere et al. (2021, in preparation).

8 We also refer to Sonnenfeld (2018) for the use and derivation of the right
side of Equation (41).
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Kochanek (2020)

o’ (k)

8r>\rad(0E) o 0E
(1 — kp)’

0
: )\rad (QE)

(43)

where kg is the convergence at the Einstein radius. The only
difference between the expression in this work and that by
Kochanek (2020) is the representation of the MST, either by
the absolute radial stretch eigenvector or the convergence at the
Einstein radius, respectively. Both expressions allow for a
model-independent interpretation and translation of lensing
constraints from one mass profile family to another. This
relation has been used, for example, by Shajib et al. (2021) to
derive constraints on a family of more flexible mass density
profiles based on original constraints derived with power-law
density profiles.

In the following, we discuss which aspects of curved arcs
allow us to constrain 0, \aq/Amq- We identify three distinct
aspects: (i) relative arc thickness measurements, (ii) the relation
of O, Ama/Ama to tangential stretch due to underlying
symmetries, and (iii) positional constraints of arcs.

4.2.1. Differential Radial Thickness of Arcs

The most direct constraints on the radial differentials can be
made by measuring the relative thickness of multiply imaged
arcs appearing at different radial distances from the critical
curve. This measurement is demanding, as arcs are usually not
stretched along the radial direction (\,q ~ 1) and thus are thin.
Relative thickness differences of a few percent are often below
the resolution of the instrument. We emphasize that radial
differential thickness, though the most intuitive constraining
aspect, is often not the dominating constraining factor in the
inference of radial differentials but instead is subdominant to
the aspects mentioned in the following paragraphs.

4.2.2. Differential Tangential Extent of Arcs

Differentials in the tangential extent of arcs do also allow us
to constrain the radial differentials when imposing symmetries
between the differential quantities. Specifically, an azimuthally
symmetric deflection field obeys the following relation between
tangential stretch and relative source and image position in
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This relation simply reflects the fact that when rotating the
source position around the center of the deflector, the image
positions are demanded to rotate with the same angle. This
symmetry argument leads to an imposed relation between
the differential of the tangential stretch in radial direction,
dA@n/dr, and the radial eigenvector A,g. In particular,
differentiating Equation (44) along the radial direction results
L 6 d5

mn
- _ - )“;“n 1 — )“;“n
ﬂr ﬁ% der ar /\rad '

where in the last equality above we substituted (3, = 6,/ Aun
(Equation (44)) and df,/dB,= A\.4. A version of the MST-
invariant relation of Equation (45) reads

)

Imposing this relation allows one to derive constraints on the
radial density profile while utilizing measurements of tangential
stretch differences. Relative tangential stretch differences are
often easier to measure as the extent of the arc is larger in the
tangential direction, well beyond the seeing limit.

In Figure 8 we illustrate the differences of tangential arcs
relative to the scale at the Einstein radius for three different
values of the power-law slope of a constant power-law mass
profile. The differentiability between different power-law
slopes is provided in terms of relative radial stretch and
relative tangential stretch.

(44)

8r>\tan = (45)

ar)\tan _ 1

—11 -
/\tan (

0,

Atan
)\rad

(46)

6/6k

Figure 8. Illustration of the differences of tangential arcs relative to the scale at the Einstein radius for three different values of the power-law slope of a power-law
mass profile, as specified by the colors in the legend. Top: curved arcs at different radii for a fixed intrinsic source size normalized to match the width at the Einstein
radius. Bottom: difference in the tangential (dotted—dashed), radial (dashed), and magnification (solid) of the arcs relative to the isothermal density profile (black). The
differentiability between different constant power-law slopes is provided in both relative radial stretch and relative tangential stretch. Positional constraints on the
appearance of multiple images are not part of this figure and are covered in Figure 9 (https://github.com/sibirrer/curved_arcs/blob/main/Notebooks/curved_arc_
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We emphasize that the relative tangential stretch relation
along specific directions can also be caused by azimuthal
structure. Specific assumptions, such as the absence or presence
of an azimuthal twist as a function of radius may impact radial
constraints on the profile, if they are primarily derived from the
tangential scale ratio, a statement also made by Kochanek
(2021).

4.2.3. Positional Constraints

Positional constraints of image pairs of the same source
also contain information about the radial differential stretch
0, Arad/ Araa- In this section we discuss the round deflector case
where two magnified images appear, one inside the Einstein
radius, 6;,, and one outside the Einstein radius, 6,,. A third
demagnified solution of the lens equation is at or very close to
the center of the deflector density and we ignore this image in
this discussion, as it is often unobserved.

Image pairs satisfy the lens equation (Equation (1)). The lens
equation (Equation (1)) for the two solutions 0;, and 6, arising
from the same source position 3 demands that

Oin — a(bin) = B = Ot — a(Oour)- “47)

To investigate radial dependences on the relative solution of
the lens equation, we expand the solution relative to the
Einstein radius, where the solution is given by 0g — a(fg) = 0.
We can write the solution of the lens equation in an integral
form of the source displacement from the origin as

b dB(0) b dB3(0")
—/—df = 3= ——do'.
b ==

df
Defining the relative radial distance from the Einstein radius
for the two images as A6, =0g — 0;, and Al = Oou — g
and noting that dG,(0)/df, = /\;a}i(ﬂ), we can write the radial

(48)
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solution of the lens equation as

Abin 1 A 1
f —di' = —df.
0

= (49)
)\rad(aE - 0/) 0 >\rad(0E + 9/)

Writing A\a(f) ' as a Taylor expansion around 6y and only
considering first- and second-order terms in Af, Equation (49)
can be approximated by

1 ar /\rad

L Ag, + 29201 A2
rad 2 rad
r L Ay — L0 Amapg2 (50)
Arad 2 >‘rad

We further simplify the expression above explicitly stating the
asymmetry in the image appearance Af,,/A6;, as a function of
the mean displacement of the image pair relative to the critical
curve, (Afoy + Aby,)/2. Approximating AG2, /Abiy ~ Ay,
Expression (50) can be expressed by

Aeoul + ar)\racl Aein + Aeout
Aein )\rad 2 .

This relation shows that the radial asymmetry in the
appearance of images relative to the Einstein radius (or in
more general terms the critical curve) is directly linked to the
reduced derivative of the radial stretch, 0,A.q/Ama at the
Einstein radius, and is linear as a function of mean radial
separation. Equation (51) is effectively equivalent to the
relation presented by Sonnenfeld (2018) expressed in terms
of differentials of the lensing potential.

To investigate the validity of the approximation in Equation (51),
we compare in Figure 9 the relative radial image position for
different slopes of a power-law radial density profile. For the
isothermal density profile (y=2), A.q is constant and the exact
solution as well as the approximation predicts an exact symmetry
in the image pair appearance. For shallower and steeper slopes,
0, A s well as higher-order terms are nonzero and an asymmetry
in the appearance is observed. The approximate solution proves to
be accurate to one percent in the inferred power-law slope out to
about 0.4 X 6g in the mean separation of the images.

~ 1 61y

5. Example and Discussions

In the previous sections, we have introduced the formalism to
describe local curved arcs and have elaborated lensing degen-
eracies and constraints from a theoretical point of view. The goal
of this section is to outline potential practical applications and
outline extensions. We provide an example of deriving macro-
model independent lensing constraints from a multiply imaged
extended source in Section 5.1. In Section 5.2 we provide
suggestions for the usage of the presented formalism for different
science cases, and in Section 5.3 we discuss limitations and
possible extensions of the current formalism.

5.1. Example: Model-independent Extraction of Lensing
Information of a Quadruply Imaged Extended Source

Here we provide an example of utilizing the curved arc
formalism to derive macro-model independent constraints on
the deflector model for a quadruply imaged extended source.
We assess this alternative to fitting a global deflector model and
discuss what constraints are data driven and what constraints
are model driven.
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Figure 9. Ratio of relative radial distances of an image pair relative to the
Einstein radius for different radial power-law density slopes. The term A6, is
the distance from the outer image to the Einstein radius and A6, is the distance
from the inner image to the Einstein radius. Top panel: distance ratio of A6,/
A, as a function of average distance normalized to the Einstein radius, 1/2
(ABoy + Abyy)/0k. Solid lines indicate the exact solution of the lens equation,
while dashed lines show the approximated linear solution ignoring terms
beyond 9, Ard/Ama given by Equation (51). Lower panel: ratio of exact to
approximate pair asymmetry. Imprints of the distortions of extended sources
are illustrated in Figure 8 (https://github.com/sibirrer/curved_arcs/blob/
main/Notebooks/curved_arc_illustration.ipynb).

5.1.1. Model Set-up and Fitting Procedure

Our input deflector model is a PEMD profile with a circular
Gaussian source. We are using a Hubble Space Telescope
typical PSF width (as a Gaussian kernel), pixel scale, and noise
level (Figure 10, top left). We explicitly chose an example of a
macro-model that cannot be represented globally by the
degrees of freedom we allow for with individual tangentially
curved deflector models.

For the model fitting, we define four regions of the image that
capture the individual distorted images and chose four indepen-
dent extended tangentially curved deflector models in the
reconstruction process. The local deflector models have the
parameterization of the tangential and radial stretch eigenvalues,
An @and Ayg, the direction ¢, tangential curvature sy, and a
tangential eigenvalue differential O, Ay, The underlying deflector
model is stated in Appendix A.4. In addition to the distortions,
each deflector model patch has two additional uniform deflection
displacement parameters that effectively map the center of the
curved arc to the center of the intrinsic source and contain
the positional information. Per curved arc, there are seven
free parameters. For the source morphology, we allow for a free
ellipticity, as parameterized with the eccentricity moduli (see
Appendix B.2). This description ensures a full exploration of
the shape noise degeneracy discussed in Section 3.3. We fix the
intrinsic source size for the purpose of an efficient sampling and
the fact that the MST adds an additional full degeneracy in
the overall scales of the inferred eigenvalues (see Section 3.2). We
use LENSTRONOMY in the joint-1linear mode, meaning that
the likelihood of the different patches and different deflector
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Figure 10. Example of applying a curved arc description to derive macro-model independent constraints on the lens model. The input mock data are generated with a
PEMD mass profile (top left: input mock data; lower left: local curved arc differentials from the input truth at the arc positions and magnification map). The individual
arcs are fit within separate cut-out regions with independent tangentially curved deflector models. Only the source is required to share the same morphology among the
different curved arcs. The local curved deflector formalism allows us to describe the input data to the noise level (middle top: best-fit reconstruction of the arcs; top
right: reduced residuals of the model minus data). The lensing constraints derived from the local tangentially curved deflector models at the position of the arcs are
accurate (bottom right). The set of local tangentially curved deflector models do not require the global macro-model to be fully described in regions that lack data
constraints (bottom middle: local magnification predictions) (https://github.com/sibirrer/curved_arcs/blob/main/Notebooks/local_vs_global_fit.ipynb).

models are evaluated given the same source morphology
surface brightness amplitude. This mode has been used by Yang
et al. (2020, 2021) to reconstruct the intrinsic sources of multiply
lensed galaxies in the cluster lensing environment. PSF and
noise properties are matched to the input simulation during the
inference.

In total, the sampling contains 30 nonlinear parameters. For
the parameter posterior sampling we follow Birrer et al. (2015).
We first find a maximum likelihood position using a Particle
Swarm Optimizer (Kennedy & Eberhart 1995) exploring a
large volume of parameter space (200 particles for up to 500
iterations). We then use the obtained best-fit value as a starting
point with a significantly narrower proposal distribution to
perform a Markov Chain Monte Carlo using EMCEE (Foreman-
Mackey et al. 2013; with 300 particles for 2000 burn-in and
2000 sampling iterations to ensure convergence of the chain).

5.1.2. Model-independent Curved Arc Constraints

Figure 10 presents the best-fit reconstruction using the
curved arc formalism. The local curved arc deflectors centered
at the appearances of the arcs reproduce the observables to the
noise level of the input data, without relying on specific
assumptions on the functional form of the global macro lens
model. Thus, we expect from this modeling procedure an
accurate extraction of the lensing information independent of
the underlying global deflector properties.

Beyond the best fit, the posteriors on the curved arc parameters
capture effectively the lensing information in the extended data
that go beyond the positional information. The blue contours in
Figure 11 correspond to the model-independent inference of the
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tangential and radial stretch eigenvectors (Agn, Amg) at the
positions of the images (subscript 0-3) of the example displayed
in Figure 10. In addition to the eigenvalues, we also show the
eccentricity moduli of the source shape (e; and ep; see
Appendix B.2). Not displayed are the direction ¢4, curvature
Stan> and tangential differential O; A\, parameters for the individual
local tangentially curved deflector models. The sampling is
performed under flat priors in the parameters stated. The posteriors
are consistent with the input truth (black line, evaluated from the
input macro-model at the positions of the curved arcs).

We notice a significant degeneracy between the intrinsic
shape parameter ¢; and the eigenvalues of all the local arcs.
The direction of e; corresponds to horizontal and vertical
distortions and are almost on-axis with the tangential direction
of all the four images. We showed in Section 3.3 that the shape
noise is less well constrained on-axis to the tangential arc than
off-axis (comparison of, e.g., the residuals of Figure 5 for on-
axis and Figure 6 for off-axis shape noise). Thus, we expect a
stronger breaking in the off-axis direction of the shape noise (e,
in this example) than in the on-axis direction (e; in this
example). On-axis shape noise is also degenerate with the
tangential-to-radial stretch ratio (e.g., Figure 5). The degen-
eracies and relative uncertainties in this example are a reflection
and confirmation of the discussion presented in Section 3.3.

5.1.3. Global Model-dependent Constraints

We can compare the constraints on the same quantities as
measured by the curved arc inference when performing an
inference on a global deflector model and then evaluating the
local quantities from the global posterior model.


https://github.com/sibirrer/curved_arcs/blob/main/Notebooks/local_vs_global_fit.ipynb
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Figure 11. Comparison of a model-independent and model-dependent inference of the tangential and radial stretch eigenvectors (Awn, Araq) at the positions of the
images (subscript 0-3). The example input and fit with curved arcs is shown in Figure 10. The terms e; and e, correspond to the intrinsic source eccentricity moduli
(see Appendix B.2). Blue contours: posteriors of the extended local arc inference. The different images are constrained by independent curved arc parameters. Only the
intrinsic source is demanded to be identical when predicting the individual arc surface brightness. The source size is held fixed, thus the posteriors reflect a slice within
the MST (i.e., rescaling all eigenvalues results in an equally valid model with a rescaled source). Not shown are the direction ¢,,q, curvature sy,,, and tangential
differential O, \y, parameters for the individual local tangentially curved deflector models. Uncertainties quoted in the figures correspond to these blue contours. Red
contours: post-processed predictions of the same quantities derived from a global PEMD+-shear model inference of the same data. The intrinsic source size was a free
parameter. The assumptions on the chosen global mass profile breaks the MST. Black lines: truth input values computed from the input lens model (PEMD+shear).
The eigenvalues (modulo an overall scaling) of the blue contours can be considered as a measurement provided by the data. No continuity in the deflection field
between the curved arc locations is required. The additional constraints between blue and red contours do solely come from the specific imposed global model
assumptions, in addition to the MST breaking in the PEMD+-shear scenario. Accuracy in the red contours is only guaranteed if the chosen lens model assumptions are
valid (https://github.com/sibirrer/curved_arcs/blob/main/Notebooks /local_vs_global_fit.ipynb).

In our example, we chose as a global macro-model an The PEMD+-shear model is a popular model of choice in many
elliptical PEMD (Appendix A) model with external shear applications of galaxy scale strong gravitational lensing
(Appendix B.1) and with flat priors on all of the parameters. modeling. In addition to the source shape parameters, we also
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allow the source size parameter to vary in this scenario to be
agnostic to MST breaking effects. The red contours in
Figure 11 correspond to the post-processed posterior predic-
tions from the global PEMD-shear model inference of the
same data for the same quantities as derived for the curved arc
inference. The differences in the posterior widths between the
curved arc measurements and a global lens model inference is
attributed to the specific assumptions imposed by the choice of
the macro-model parameterization and the translation of the
prior space. Global mass profile assumptions can be discussed
in terms of required radial and tangential symmetries demanded
by a certain model (see Section 4). In the tangential direction,
the PEMD+shear model allows only specific configurations of
the curvature direction and strength, and of the tangential
differentials along the azimuthal direction (Section 4.1). In
addition, the symmetry requires a specific relation of the
tangential and radial stretch (Equation (46)). The asymmetry in
the appearance of the images further allows one to add
constraints on the relative radial stretch differential 0, Ara/Araa
beyond the explicitly measured differential width in the radial
direction reflected in the curved arc posteriors. These
assumptions and symmetry considerations allow the imposed
model to break the shape noise and the related degeneracies
present in the curved arc inference.

Furthermore, the PEMD+-shear model imposes a one-to-one
relation between the measurable quantity 0,\.q/A\ag and the
power-law slope (Equation (A10)). This assumption imposed
by the model effectively breaks the MST and simultaneously
allows the model to constrain the source size.

The parameterization we chose inherently contains the input
truth and, thus, allows for an accurate recovery of the input
quantities. Had we chosen a different parameterization of the
macro-model, the general expectation is that the posteriors are
within the margins of the curved arc measurement, modulo an
overall MST rescaling not represented in the displayed curved
arc posteriors, to be consistent with the data. However, any
narrowing of the posterior due to further implied constraints on
the macro-model might lead to biases within the boundaries of
the curved arc posterior.

We will discuss certain aspects of this example in Section 5.3
in more broader terms in light of possible applications and
limitations.

5.2. Science Cases

In this section we highlight several science cases where our
formalism may find beneficiary applications. A more uniform
approach to quantifying lensing constraints across different
scientific studies and analyses may also result in an overall
better ability to utilize constraints that were obtained to
originally address a specific science question and then
translated to other investigations.

5.2.1. Dark Matter: Locally Resolved versus Unresolved Small-scale
Distortions

Unresolved flux ratio statistics of multiply imaged quasars is a
powerful probe of small-scale dark matter clustering and is used to
constrain the nature of dark matter (Dalal & Kochanek 2002;
Gilman et al. 2020a, 2020b; Hsueh et al. 2020). Interpretations
of the flux ratios require reference flux ratios predicted by a
smooth macro-model. Current flux ratio statistics constraints are
derived from quadruply lensed quasars only (Gilman et al. 2020a;
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Hsueh et al. 2020) and the positional constraints of the images and
the deflector light are the primary sources of information to
establish a macro-model reference prediction. Assessments of
potential systematics in regard to an assumed macro-model
parameterization have been studied by Hsueh et al. (2016, 2017,
2018) and they are a potential source of noise.

The curved arc formalism, applied in similar way as for the
example in Section 5.1, allows one to establish a reference local
flux ratio prediction based on the extended host galaxy, without
relying on assumptions on the macro-model. The example in
Section 5.1 translates into a 1% flux ratio prediction, below the
current measurement errors of the fluxes (Nierenberg et al.
2020), thus making the statistics not limited by macro-model
uncertainties. On one hand, such an approach requires
sufficient host galaxy light components around the quasars,
potentially restricting such an analysis to a subset of the
quadruply lensed quasar systems. On the other hand, this
approach can be also employed in using doubly lensed quasars,
a much larger population of lenses, for systems with
equivalently extended host information.

In the fully resolved regime of extended arcs in the absence
of quasars, a perturbative description of an extended arc might
be able to replace global model fitting in characterizing the
abundances of small-scale structure in the lens and along the
line of sight, as done in the literature (e.g., Vegetti et al. 2012;
Hezaveh et al. 2016; Birrer et al. 2017a). Substructure signal is
generally an anomaly of required local lensing perturbations to
match the appearances of multiply imaged sources with a
single, yet inherently unknown, morphological structure of the
source.

5.2.2. Time-delay Cosmography and Hubble Constant Measurement

The relevant radial quantity to derive from the mass density
profile to achieve an accurate time-delay prediction is the local
convergence at the Einstein radius, which is not a direct
observable from lensing data (Kochanek 2002). We recom-
mend one to derive solely invariant quantities from modeling
imaging data, i.e., as quantified in expression (42) on the radial
profile. In a second step, one can translate these constraints
with additional data, such as kinematics. Due to the tight
coupling between radial and tangential constraints, a careful
assessment of the tangential structure assumptions needs to be
performed as well (Kochanek 2021). The Fermat potential
prediction can then be rescaled by a factor of the relative local
convergence at the Einstein radius between the initial model
used in extracting the lensing information and the one
constrained by external data. A special case of such an analysis
is presented by Birrer et al. (2020) who used the most direct
parameterization relevant for the time-delay prediction, the
MST itself, in translating constraints from the PEMD models to
a more general form of mass density profiles constrained by
stellar kinematics observations.

Physically interpretable mass models can be well approxi-
mated by a pure MST within a range exceeding 10% in the
MST (Birrer et al. 2020; Blum et al. 2020; Kochanek 2020).
Higher-order radial differentials can potentially distinguish
variations among the families of models but are hard to
measure in practice. We refer to Section 2 of Birrer et al. (2020)
for a detailed discussion of data constraints and physical
descriptions of density profiles following approximately an
MST relative to a baseline model.
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5.2.3. Large Scale Structure and the Statistics of Gravitational Lenses

Searches for strong gravitational lenses in current and
ongoing large area imaging surveys, such as the Dark Energy
Survey (DES) and the Hyper-Supreme-Cam survey (HSC)
have resulted in hundreds of promising galaxy—galaxy scale
candidate lenses (see, e.g., Sonnenfeld et al. 2018; Jacobs et al.
2019). With the next generation large area ground and space
based surveys (Vera Rubin Observatory, LSST, Euclid, Nancy
Grace Roman Space Telescope), of order 10° galaxy—galaxy
lenses will be discovered (e.g., Collett 2015). The number of
curved arcs, where nonlinear curvature can be detected, even in
the absence of a detectable counter image, may well be up to an
order of magnitude larger, simply by the argument of lensing
cross-sections.

The advantage of reduced shape noise in the strong lensing
regime relative to the linear lensing regime and image
multiplicity, combined with the expected number of curved
arcs, is that we gain significant information about the galaxy—
halo connection from clusters down to galaxy scales. Proposed
statistical studies on the radial density profiles of galaxies using
positional and magnification information (see, e.g., Blandford
& Kochanek 1987; Kochanek & Blandford 1987; Sonnenfeld
& Cautun 2021) can be enhanced with the full information
encompassed in curved arcs. Strong lenses may also be able to
provide significant cosmic shear information (Birrer et al.
2017b, 2018; Arjun Kuhn et al. 2020; Fleury et al. 2021),
potentially even in tomographic mode. These are only two
specific examples utilizing partial information contained in the
nonlinear lensing observables.

The description introduced in this work may also help with
simulations and calibrations of large scale weak lensing
surveys. In particular, in investigations into next-to-leading
order lensing effects and potential systematics in the shape
measurements as a cause (see Schneider & Er 2008 for such a
discussion in regard to flexion) may be needed for the next
generation weak lensing surveys.

All in all, a continuous formalism to describe observables
from the weak to the strong lensing regime allows one to self-
consistently combine the currently distinct cosmological
probes, gaining synergies and complementarity in systematics
and constraints.

5.3. Discussion of Limitations and Extensions

The focus of this work is primarily to present a framework
and methodology to allow the science investigator to assess
impacts of certain assumptions on specific science cases and to
translate constraints on lensing quantities beyond a given
family of mass models. This work does not state whether or not
certain assumptions on the global deflector mass distribution
are valid for specific science investigations and their stated
uncertainties. One globally imposed constraint that is valid for
any physical deflector mass distribution is the continuity in the
deflection field. A set of local arc models does not demand this
continuity between the different arcs, as, for example,
illustrated for the example presented in Section 5.1 in
Figure 10 by the disconnected critical curves. When the
individual curved arcs are sufficiently separated from each
other without constraining data in between, dropping the
continuity assumption is a practical convenience for being
agnostic to the deflection field behavior outside the data
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constraining region and counting on a physical model that is
able to continuously connect the different local regions.

In many real lensing configurations, arcs extend over large
azimuthal angles, effectively adding more constraints on the
azimuthal structure of the deflector and physically demanding
stronger assumptions on the continuity of the global deflection
field. More extended arcs most likely require more and higher-
order local differentials to match the observations. In particular,
differentials associated with the curvature strength and
direction, which have not been considered in this work, may
be required. Extensions to higher orders can be implemented
within the provided framework and do not impact the general
methodological questions and conclusions presented in this
work. Continuity constraints and priors can also be added,
either directly in the inference of curved arc constraints on the
data, or in post-processing on the posterior level. Continuity
can be demanded in both the lensing differentials as well as the
total deflection. The latter is effectively demanding the
positional constraints on the arcs to be a solution of a global
macro-model for a single source position.

The case of fully connected arcs, effectively Einstein rings,
requires full curl-free continuity in the local deflection field in
the azimuthal direction. In this regime, where a subset of the
source is displayed along a continuous rotation of the tangential
direction, the shape noise degeneracy is most effectively
broken.

However, we stress that invariances under the MST remain
even in the regime of fully connected arcs, particularly
impacting the constraining power in the radial direction.

6. Conclusion

In this work, we introduced a formalism to describe the
gravitational lensing distortion effects of curved extended arcs
based on the eigenvectors and eigenvalues of the local lensing
Jacobian and their directional differentials. We identified a set
of nonlinear extended deflector descriptions that inherit the
local properties able to describe the extent of individual lensed
images. Our parameterization is tightly linked to observable
features in extended sources and allows for an accurate
extraction of the relevant information of extended images
without imposing an explicit global deflector model.

We re-formulate the most general lensing invariance in an
operator notation and subsequently quantify what aspects can
be broken based on specific assumptions about the local lensing
nature and assumed intrinsic source shape.

Our main findings are:

1. The nonlinear lensing nature in curved arcs allows one to
partially break the shape noise degeneracy. In particular,
shape noise off-axis to the eigenvector directions can be
constrained while on-axis shape distortions are more
degenerate with lensing eigenvalues and curvature.

2. Elliptical mass distributions lead to tangential stretch
gradients but keep the curvature radius along the azimuth
constant. External shear distortions, in addition to
tangential stretch gradients, do lead to offsets in the
curvature radius and direction along the azimuth
(Section 4.1).

3. Information on the radial mass profile can be obtained by
measuring the differential thickness of arcs along the
radial direction, the radial distance ratio of image pairs,
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or, when imposing azimuthal constraints, by the tangen-
tial stretch change along the radial direction (Section 4.2).

4. Imposing symmetries on the global form of the tangential
behavior of the deflector profile can break the shape
noise, while imposing functional forms on the radial
deflector profile can break the MST.

Our formalism is applicable in all regimes of gravitational
lensing, from the weak linear regime to the semi-linear regime
and up to the highly nonlinear regime of highly magnified arcs
and Einstein rings of multiple images. The methodology
presented in this work provides a framework to assess
systematics and to guide an inference effort in choices in the
model complexity based on the data at hand. Implementations
of all of the aspects presented in this work are available in
LENSTRONOMY. The specific examples and discussions
provided in this work can serve as a baseline for more
extended theoretical and practical investigations and assess-
ments in different regimes of gravitational lensing and for
different scientific investigations. We outline applications and
implications for dark matter substructure inferences, measuring
the Hubble constant, and large scale structure inferences from
the statistics of gravitational lenses.

S.B. thanks Anowar Shajib, Dominique Sluse, Daniel
Gilman, Tommaso Treu, Martin Millon, Lyne van de Vyvere,
and Roger Blandford for useful feedback in the process of
writing this manuscript. Support for this work was provided by
the National Science Foundation through NSF AST-1716527.

Appendix A
Power-law Elliptical Mass Distribution (PEMD)

A.l. Parameterization

The elliptical power-law mass distribution can be defined as’

y-1

/ 0k
Vabi + 03/q

where ¢ is the semiminor-to-semimajor axis ratio, fg is the
Einstein radius, and v’ is the logarithmic slope of the three-
dimensional mass profile. A logarithmic slope v/ =2 is an
isothermal profile, the limit of 4/ — 3 results in a point mass,
and 7' — 1 describes a uniform critical mass sheet. The
coordinates (#,, 0,) are rotated such that 6; is along the
semimajor axis.
Alternatively, the same profile can be defined as
!/
K(0) = 3 - 0’

/ V-1
(o]
2 0,1 — € cos(2¢p)

where 0, is the radial distance to the center, ¢ is the angle
relative to the major axis, and e is the ellipticity, which is
related to the axis ratio, g, by

k(O 02) = 2= (A1)

l—q2

= ) A3
1+ ¢ (A9

€

To provide an identical normalization of the deflection angles,
the Einstein radii of expression (Al), fg, and of expression

° This is the current LENSTRONOMY convention with version 1.8.1 and
previous versions.
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(A2), 8'g, need to follow the relation
0/]5 2 2(,]
(5e) = (A9

The Einstein radius definition of expression (Al) is such that
the square average of the deflection angle along the semimajor
and semiminor axes corresponds to fg, while expression (A2)
matches the Einstein radius 6'g in directions half-way between
the semimajor and semiminor axes.

Computations for deflection angles and the lensing potential
are provided by Barkana (1998) and Tessore & Metcalf
(2015).19

A.2. Eigenvectors in Spherical Case

In the spherical case of the PEMD profile (Equation (Al),
(A2)), the deflection angle and differentials are simple
analytical expressions. The deflection angle in the radial
direction is given by

2
a(r) = HE(QE )q : (A5)

v
where 0 is the Einstein radius and ~/ is the three-dimensional
power-law slope of the mass profile.

The tangential and radial eigenvalues are given by

()
Atan r

1+ 0 -2 %)
,

The radial differential of the tangential eigenvalue, 0, Ay, is
given by

(A6)

and

7=l

(A7)
rad

0=

N2’
(-6
and the radial differential of the radial eigenvalue, 0, \.q, is
given by

ar >\tan =

(A8)

(1 =@ - (L)

—1
oe(1+ (%) o - 2)
At the Einstein radius g, we can express the MST-invariant
quantity 9,Aadq/Arag as
ar>\rad(9E) _ '7/ -2
Arad (0E) O
and the overall Ilensing scale
(Equation (42)) is given by
grad = ry/ - 2.

This relation reflects the fact that the MST-invariant observa-
tional constraint captured by &4, When interpreted as a

O Aad = (A9)

5

, (A10)
invariant quantity g

(Al1)

19 Both computational methods to compute lensing properties are implemented
in LENSTRONOMY.
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constant PEMD, constrains the power-law slope and effectively
breaks the MST.

A.3. Eigenvectors in Elliptical Case

In the elliptical case, the eigenvectors and directions remain
the same as for the round case, substituting the r by the
circularized expression r’ (i.e., the denominator of expression
(A1) or (A2)).

In addition, a nonzero second-order differential emerges,
namely the tangential stretch differential in the tangential
direction, 0; Ay Using the chain rule, we can write

!/
Dy = L O (A12)
or' Oeyn
Adopting the ellipticity definition of the form of
expression (A2), such that
r'=ry1 — ecos(2¢), (A13)
we can write
/ / 3
or'  or 0¢ € sin(2¢) (Al4)

aelan B gaetan - «/1 — € COS(2¢) )

Combining Equations (A12) and (Al4), we can compactly
write

O Aan € sin(2¢)
or' |1 = ecos2g)

with the first term given by the round case of expression (AS).

8t)\tan = (AIS)

A.4. Curved Arc Description with Tangential Stretch
Differential

The constant radial and tangential eigenvalue deflector
model with constant tangential curvature is presented in
Section 2.4 and can be written as a combination of an SIS
and an MST. A convenient way to introduce a model that
satisfies the same quantities locally and has an additional
tangential differential component O, Ay, is the singular
isothermal ellipsoid (SIE), which replaces the SIS profile.
The SIE is the special case of the PEMD for ' =2
(Appendix A) and O, Ay, is given by expression Al5. To
satisfy locally constraints on 0, Ay, with the next leading order
set to zero an off-axis eccentricity of 7/4 is applied to the
curvature direction. The off-axis direction is determined by the
sign of imposed O, Agy-

Appendix B
Ellipticity and Shear

B.1. Shear
Shear distortions are fully characterized by the constant -y,
and ~y, values (Equations (5), (6)) and lead to a deflection field

a® =2 22 |@- 6. (B1)

T2 M
where 6, is a (somewhat arbitrary) zero-point of the deflection
field, only impacting an overall constant shift of the deflection
angle. In polar coordinates, we can also equivalently
parameterize the shear distortions with an absolute shear
strength « and an orientation relative to the first axis ¢,. The
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Cartesian shear components are then given by

N ="cos(2¢,) v = sin(2¢,). (B2)

Pure shear distortions do have a magnification effect
w=1 - 712 — 75)‘1 and thus do alter the size of the object
in addition to causing distortions. Shape distortions agnostic to
the intrinsic source size are generally referred to as reduced
shear and are given by

/ 71,2

Y2 = . (B3)

1 —k
In terms of a descriptive lens model, we require the knowledge
of kappa in this notion. However, we can introduce a reduced
shear model that, by design, has magnification ;= 1. Such a
model, when defined by reduced shear components (v'1, 7'2),
requires a convergence of

S S
V1=~ =97

We define the normalized reduced shear model, L, as the
linear distortion model with parameters v/; and +’, where the
convergence term is set by Equation (B4). This specific linear
distortion parameterization preserves the total magnification.
The inverse lensing operator is given by the same operator with
flipped signs in the reduced shear components

k=1-— (B4)

Loi(71:72) = Lass(—=7'1, =7"2)- (B5)
This specific form of the shear description becomes relevant in
Appendix B.2 when discussing intrinsic surface brightness

ellipticity and degeneracies with shear distortions.

B.2. Ellipticity

A convenient term to describe elliptical surface brightness
distributions is the axis ratio g and orientation ¢; of annuli of
constant surface brightness. A surface brightness profile with
constant ellipticity can be described as a distortion transform of
a radial surface brightness profile 7,(r), with ellipticity operator
E(x, y), such that I, = I,(E(x, y)). Different ellipticity operators
are used in the literature. Differences exist in the definition of
the ellipticity as well as the overall size change. We are using
the operator

E(q): (x,y) — (Jqx. y/Jq). (B6)

where x is in the orientation of the major axis. This is the same
ellipticity operator as that used in the PEMD profile defined by
expression (Al). The operator form of expression (B6) con-
serves the product-averaged radius.

A convenient basis with which to express the axis ratio g and
the orientation angle ¢, is the eccentricity moduli

_1l—gq

1~ g e2 = " sin(26).
q

1+g¢

e = cos(2¢;) B7)

B.3. Shape Noise

In the eccentricity moduli (Equation (B7)), the ellipticity
operator E is made identical to the lensing distortion operator
L, (see Appendix B.1) by identifying v; =e; and v, = e,.



THE ASTROPHYSICAL JOURNAL, 919:38 (20pp), 2021 September 20

Using these bases for shear and ellipticity, we can identify
the shape noise component of the SPT as

1= Lnrs(*eh *EZ)OE(EI’ 92), (BS)

and this enables us to separate the MST component and shape
noise component.
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