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ABSTRACT: The diffusion of monomerically thin nanorods in

polymer melts is studied by molecular dynamics simulations. We D,
focus on the systems where the chains are long enough to screen

the hydrodynamic interactions, in which case the diffusion reptation

coefficient D) for the direction parallel to the rod decreases

linearly with increasing rod length . In unentangled polymers, the

diffusion coefficient for the direction normal to the rod exhibits a

crossover from D ~ I to ~I”" with increasing ], corresponding to %S

a progressive coupling of nanorod motion to the polymers. MB
Accordingly, the rotational diffusion coefficient Dy ~ D 17> ~ I™* unentangled entangled

and then Dy ~ I as ] increases. In entangled polymers, D; and Dy

are suppressed for [ larger than the entanglement mesh size a. D, ~ 7> and Dy ~ I for I sufficiently above a, in agreement with de
Gennes’ rod reptation model.

%m 2%5

1. INTRODUCTION and normal to the long axis of the rod. In addition to
translational diffusion, a nanorod also undergoes rotational
diffusion. The rotation couples the parallel and normal
components of the translation in the body frame, and the
overall translational diffusion is isotropic in the lab frame after
the correlation of rod orientation with the initial orientation
has decayed.38 Therefore, for nanorods, there are four distinct
diffusion coefficients including the overall translational
diffusion coefficient Dy, the parallel component Dy, the
normal component D, and the rotational diffusion coefficient
Dy. Although the breakdown of the continuum description for
nanorods in a polymer matrix has been observed in
experiments' >’ and simulations,”’ the rich features of the
diffusion of nanorods in a polymer matrix have not been well
studied.

With the precise control of both nanorod geometry and
polymer structure, molecular dynamics (MD) simulations can
reveal how nanorod diffusion couples to a polymer matrix.
Here, we present the results of extensive MD simulations of
the diffusion of thin nanorods with a diameter equal to the
monomer size in polymer melts in the dilute limit. Rod length
I, polymer chain length N, and entanglement length N, are
varied in the simulations. We characterize the scaling of various
diffusion coeflicients with ! and how they are related to each
other. We find that the diffusion coefficient of nanorods in

Incorporation of nanorods 1nt0 polymers can 51gn1ﬁcantly
improve the mechanical,' > optical," ® and electrical’~
properties of polymer matrices. While the spatial dispersion
and organization of nanorods play critical roles in governing
the properties of polymer—nanorod composites,” *™'® the
dynamics of nanorods in polymers is not well understood,'”~>"
which limits the ability to rationally manipulate the position
and orientation of nanorods. Recent experiments also show
that nanorods could be promising drug delivery carriers due to
their superior transport capability in polymeric gels such as
mucus;zz_26 however, the underlying mechanism is still
elusive.

While a continuum theory has been developed for a rodlike
colloidal particle in a viscous fluid,””*® it cannot describe the
diffusion of a nanorod in a polymer matrix.””*"** A major
reason is that the nanorod may not be fully coupled to the
matrix, resulting in the breakdown of the continuum
approximation. Such a breakdown has been established for
spherical nanoparticles in a polymer matrix.”"~*" The friction
coeflicient for the diffusion of a spherical nanoparticle depends
on the ratio of particle diameter to the chain size in
unentangled polymer melts and the entanglement mesh size
in entangled melts. Likewise, one would expect that the friction
coefficient for the diffusion of nanorods in a polymer melt
should also depend on the geometric parameters of the rod
with respect to the length scales of the polymer. In recent
experiments”’ and simulations,”’ it has already been shown
that the diffusion coefficient of nanorods in polymer melts is
higher than that predicted by the continuum theory.

One distinctive feature of the diffusion of a nanorod is the
emergence of anisotropy in the translational diffusion parallel
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Figure 1. Snapshots of simulation samples of thin nanorods (blue) in polymer melts (mixed colors) for (a) I = 8¢ in unentangled polymers of N =
64 and (b) I = 320 in entangled polymers of N = 400. Schematic illustration of the diffusion of nanorods in (c) unentangled and (d) entangled

polymer melts.
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Figure 2. (a) Trajectories of thin nanorods in polymers (upper panel) and the projections to the xy plane (lower panel). The thick and thin bars in
the lower panel indicate 206 and the entanglement mesh size So, respectively. (b) Rotational trajectories of the unit vector u(t) along the rod axis

for the same systems in (a). (c) Schematic illustration of orientational unit vectors u(t) and u(t + At) of the nanorod at time t and t + At. u(t) is

the average of u(t) and u(t + At), ie, u(t) = [u(t) + u(t + A/ lu(t) + u(t + At)l. (d) Schematic illustration of the decomposition of the
displacement s(At) of a nanorod over a short time interval At to the parallel and normal components.

polymer melts does not scale with rod length I like that of
spherical nanoparticles does with sphere diameter d. This
unanticipated behavior reveals the role of particle shape in the
coupling of nanoparticles to the polymer matrix.

2. MODELS AND METHODS

2.1. Simulation Models. The canonical bead-spring model of
polymers®~*' is used in the simulations. Monomers of size ¢ and
mass m interact via the Lennard-Jones (LJ) potential with an
interaction strength €, cutoft distance r. = 2.50, and characteristic time

scale 7 = 6/m/€. Chains of N = 2—2000 monomers are connected
by finitely extensible nonlinear elastic (FENE) bonds. Chain stiffness
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is varied by a bond bending potential V, = ky(1 + cos 0), where € is
the angle between two consecutive bonds. We modeled polymer
chains with ky = 0, 1.5€ and 3.0¢, which gives Kuhn lengths Iy = 1.90,
2.90 and 5.00, respectively.** We also simulated rods in an L] fluid (N
=1).

Nanorods are modeled as rigid bodies made of beads similar to the
monomers. A nanorod of length [ is made of I/ beads of size ¢ and
mass m that are placed along a straight line with regular spacing o.
Nanorod beads interact with polymer beads via a L] potential with r,
= 2.50, which promotes the dispersion of nanorods in the melt.
Meanwhile, the LJ interaction between beads on two nanorods is
purely repulsive (r, = 2'/%6) to prevent the aggregation of nanorods.
To equilibrate the nanorods in polymer melts, each sample was
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Figure 3. (a) Overall translational diffusion coefficient Dy, (b) parallel component Dy and the best fits to a linear function, (c) normal component
D, and the best fits to a crossover function from D| ~ "> to ~I™!, and (d) diffusion anisotropy x = Dy/D; and the best fits to a crossover function
from k ~ I to k = const. for nanorods of length [ in unentangled polymers with k, = 0 and indicated N. The values of fitting parameters for the best-
fit lines are presented in the SL The inset of (b) shows Dyl for the systems with N = 1, 2, 4, and 8. The inset of (c) shows the collapse of the

rescaled simulation data for D,.

simulated with a cubic box of side length L and periodic boundary
conditions in all three directions. Two representative samples are
visualized in Figure la,1b, respectively. All samples were equilibrated
at temperature T = 1.0e/ky and pressure P = 0 except for N = 1,
where P = 0.5¢/0°. During the equilibration, a Nosé—Hoover
thermostat/barostat was applied to the matrix chains, while a Nosé—
Hoover thermostat was used to equilibrate both the translational and
rotational degrees of freedom of the rigid nanorods. System
parameters for the nanorods in polymer chains with stiffness kg = 0,
1.5¢, and 3.0e are listed in Tables S1—S3 in the Supporting
Information (SI), respectively. The number of nanorods was N, = 27
in all samples except for N = 2000, where N, = 50, while the number
of matrix chains N was varied. The volume fraction of the nanorods
¢. = NId*/L* where d and | are the diameter and length of the
nanorods, is between 0.004 and 0.07% in all samples. The excluded
volume of a nanorod is vy = Pd, and the volume fraction of the
excluded volumes of the nanorods ¢,y = Nv./L? is less than 2.1% in
all samples. The nanorods are well dispersed without any aggregation
during our simulations. This is demonstrated by the steady large value
of the radius of gyration R, of the N, nanorods over time (see Figure
S1 of the SI). The model used here can be extended to further study
the effects of nanorod diameter and interaction strength with
polymers in the future.

Diffusion of nanorods in polymer melts at equilibrium was
simulated at a fixed volume and a constant temperature T = 1.0¢/
kg. The temperature of matrix chains was controlled using a Nosé—
Hoover thermostat with a damping time of 107. The temperature for
the translation and rotation of a rigid nanorod was maintained by a
separate Nosé—Hoover thermostat with a damping time of 107.
Depending on N and ], the simulations were run from 8 X 10* to 2 X
10°7 for ky = 0, from 6 X 10*z to 1 X 1077 for ky = 1.5¢, and from 6 X
10%*7 to 5 X 10° for ky = 3.0¢. The time step was 0.017. All of the
simlﬂations were performed using the LAMMPS simulation pack-
age.

2.2. Calculation of Dy, D), and D,. We computed the mean-
square displacement (MSD) (Ar*(£)) = ([Feom(t) — Feom(0)]*) of the
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center of mass of nanorods as a function of time t in the polymer
melts. The overall translational diffusion coefficient D was extracted
from the long-time limit of (Ar*(t))/6t. (Ar*(t)) and {Ar*(t))/6t for
two sets of simulations are shown in Figures S2 and S3.

The translational diffusion can be decomposed to parallel and
normal components, as schematically shown in Figure lc. We
decomposed the displacement of a nanorod to its parallel and normal
components using a numerical procedure similar to that in ref 38. The
procedure is illustrated in Figure 2c,d. The parallel component is the
displacement of the center of mass of nanorods along the rod axis in
the body frame, whereas the normal component is the displacement
perpendicular to the axis. From ¢ to t + At with a time interval At, the
unit vector along the nanorod changes from u(t) to u(t + At), as
shown in Figure 2c. The center-of-mass displacement of the nanorod

is s(At), and the parallel component sH(At) = [s(At)-u(t)]u(?),

where u(t) is the average of u(t) and u(t + At), as shown in Figure 2d.
The displacement s (f) along the nanorod axis over time t is obtained
by summing the parallel displacements in successive time intervals,
ie, s;(t) = Xs)(At). The parallel component of MSD (Arﬁ(t)) =
(sﬁ(t)) The diffusion coefficient D) along the rod axis is determined
as the long-time limit of (Arj(t))/2t.

To obtain the normal component of nanorod displacement, we first
rotate the unit vector u(t) about an axis u,y(t) so that u(t) aligns with
the z-axis u, in the lab frame. The rotation axis is u,,; (t) = u(t) X u,,
and the rotation angle is w(t) = cos_l[u(t)~uz]. Using the same axis
() and angle w(t), we then rotate the displacement vector s(At)
to a new vector s'(At). The projections of s'(At) to the x-axis and y-
axis are s,/(At) and sy’(At), as illustrated in Figure 2d. The body-
frame displacement s,(t) perpendicular to the nanorod axis is
obtained by summing over s, (At) and s, (At) in successive time
intervals, i.e,, s, (t) = X [s,/(At) +5,/(Af)]. The normal component of
MSD (Ari(t)) = (s1(t)). The diffusion coefficient D, perpendicular
to the nanorod axis is determined as the long-time limit of (Ar7(¢))/
4t.
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Figure 4. (a) Rotational diffusion coefficient Dy vs ! for the nanorods in unentangled polymers of ky = 0 and indicated N. Solid lines are best-fit
lines to a crossover function from Dy ~ I™* to ~I™3. The inset shows the collapse of the rescaled data for different N values. (b) (Ar? (t))/4t, where
(Ar(t)) is the mean-square displacement normal to the rod axis versus time for N = 64. The rotational diffusion time 7 is marked on the line. The

inset shows Dy /Dy vs |, where Dy = (Dj + 2D,)/3.

The accuracy of the decomposition depends on the time interval
At. The angle A9 = cos '[u(t)-u(t + At)] for the rotation of the
nanorod during the time interval At needs to be small enough.
Figures S4 and S5 show the results of decomposition converge for A0
< 10°. For all results presented, we ensured that A@ < 10°. The
decompositions of the overall displacements in Figures S2 and S3 are
shown in Figures S6 and S7, respectively.

2.3. Calculation of Dgi. The rational diffusion of a nanorod is
schematically shown in Figure lc. To characterize the rotational
diffusion, we followed the unit vector u(t) along the nanorod axis as a
function of time t. Three representative rotational trajectories of u(t)
are shown in Figure 2b. The rotational diffusion coefficient Dy is
calculated based on the mean-square angular displacement (MSAD)
of nanorods, MSAD = (lu(t) — u(0)I). In the large-time limit, MSAD
=2[1 — exp(—2Dgt)]. MSAD curves for the two sets of simulations in
Figures S2 and S3 are shown in Figures S8 and S9.

Although the nanorods are well dispersed and well separated from
each other in our simulations, the long-range hydrodynamic effect
may affect the diffusion coefficients of nanorods. For a single spherical
nanoparticle that is larger than the fluid molecules, the translational
diffusion coefficient Dy(L) in a finite simulation box of size L is
affected by the long-range hydrodynamics, and a term —2.837kzT/
6rnL, where 7 is the bulk viscosity of the fluid, has been used to
correct the long-range hydrodynamic effect."*~*® For multiple rodlike
nanoparticles in the present simulations, no numerical expressions
correcting the long-range hydrodynamic effect exist. A systematic
study to determine the correction terms for various diffusion
coefficients of the nanorods with different rod lengths in different
chain lengths requires extensive computational resources and is
beyond the scope of the current study.

3. RESULTS AND DISCUSSION

3.1. Diffusion of Nanorods in Unentangled Polymer
Melts. We first consider nanorod diffusion in three
unentangled melts with N = 16, 32, and 64, all of which are
below the entanglement length N, = 85 for ky = 0. Results for
the translational diffusion of nanorods are presented in Figure
3. Simulations allow us to separately obtain Dy, Dy, and D,
from their respective mean-square displacements (MSDs) as
functions of time (see Section S2 in the SI for the MSDs). All
three diffusion coefficients in Figure 3a—c generally decrease
with increasing I as nanorods experience more drag from the
surrounding polymers. D decreases linearly with increasing !
in melts of N = 16, 32, and 64. Solid lines in Figure 3b show
the best fits to Dy = Dy(I/6)™", where D, is the monomeric
diffusion coeflicient for I/6 = 1. According to the Einstein
relation, the parallel friction coeflicient {; = kgT/D) increases
linearly with I. Each of the /o beads couples to a local region
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of monomer size and experiences a monomeric friction }.
This gives rise to £} = cI(1/6).*” Each individual ¢!l contributes
independently to ¢ as the hydrodynamic interactions between
different beads are screened. In contrast, the hydrodynamic
interactions are not screened in the melts of shorter chains
with N = 2, 4, and 8 and in the L] fluid (N = 1). As shown in
the inset of Figure 3b, D I increases with [ rather than being
constant for N < 8, indicating that the unscreened hydro-
d?mamic interactions reduce the friction with respect to {; =
¢l(1/6). The focus of this paper is the systems of N > 16.
The cross section of the nanorod depends upon the
direction of its motion, which produces qualitative differences
in the diffusion normal and parallel to the rod axis. D, is
significantly smaller than D and initially decreases unexpect-
edly as D, ~ 7> before crossing over to D, ~ I”" as ] increases.
As shown in Figure 3¢, D, for N > 16 can be fitted with
function D, = D1 + (I/15)]/[2(I/11)%], where D is the
diffusion coefficient at the crossover rod length I=. A good
collapse of the simulation data rescaled by the best-fit values of
DY and I is shown in the inset of Figure 3c. The first regime
D, ~ I"* indicates a progressive coupling of nanorods to longer
chain segments and eventually the entire polymer chains as !
increases. This can be seen by noting that D; ~ I implies that
the perpendicular friction per unit length ¢,/ ~ DT'I™" grows
linearly with increasing I. The second regime D, ~ [
indicates saturation of the perpendicular friction per unit
length for sufficiently large I
We can compare the diffusion normal to the rod axis and
that of a spherical nanoparticle in the same unentangled
polymer melts. Scaling theories’”** show that the friction
coeflicient of a spherical particle increases from the monomeric
friction {, for d comparable to the monomer size b as { =
{o(d/b)? until d is comparable to the melt chain size R. As d
exceeds R, { is given by Stokes’ law, { = fij,,d, where f is a
numerical prefactor and 7, is the bulk melt viscosity. Our
simulations reveal ¢, ~ I* for a nanorod in the first regime.
This differs from ¢ ~ P of a sphere with similar d ~ I < R,
indicating that the shape plays a role in the dynamical coupling
of anisotropic nanoparticles and polymer melts, which needs to
be included in a theoretical description.”” ¢, ~ I of a nanorod
in the second regime is reminiscent of { ~ [ of a sphere with d
& | > R. Previous theory for rodlike colloidal particles of length
T and diameter d in a viscous fluid of viscosity 7, shows that |
~ nJ/In(l/d) with the logarithmic term correcting for the
unscreened hydrodynamic interactions among different
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Figure $. (a) Dy, (b) Dy, and (c) x = Dy/D,_for the translational diffusion and (d) Dy, for the rotational diffusion of nanorods in polymer melts of
N = 16, 100, 400, and 2000 with k, = 1.5¢. Solid lines indicate the best fits to the crossover functions, while dashed lines indicate the scaling
exponents. Best-fit values of the fitting parameters are presented in the SI

sections of the rod.”” There is currently no theory relating ¢,
t0 ey for a nanorod in a polymer melt with the hydrodynamic
interactions “partially” screened as in the simulations of N >
16. Numerically, {| = (2.7 & 0.1)#,,4] for I = 320 in the melts
of N = 16 with ky/e = 0, 1.5, and 3 (see Section S4 in the SI for
the values of 7).

The total translational diffusion Dy is dominated by the
motion along the rod axis as [ increases. The diffusion
anisotropy k = D/D, is shown in Figure 3d. k first increases
linearly with I because k = {,/¢; ~ I*/l ~ L. For N = 16, k
eventually levels off as both Dy and D, scale as I"' for
sufficiently large I. For N = 32 and 64, « has not completely
leveled off, as D, ~ I”" has not fully developed at ! = 326. Solid
lines in Figure 3d are the best fits to x = 2x.(I/I)/[1 + (I/I5)],
where k, is the diffusion anisotropy at the crossover rod length
I5. The fundamental reason for the diffusion anisotropy is that
while the parallel component is coupled only to surrounding
monomers, the normal component is progressively coupled to
larger chain segments and eventually entire polymer chains
with increasing I k = 2 in the continuum theory for rodlike
colloidal particles as both parallel and perpendicular
components of the diffusion experience the same viscosity
n.”” K at saturation for monomerically thin nanorods in an
unentangled polymer melt can be much larger than 2 and is
controlled by #,,.;, which determines {, as x saturates.

Nanorods also undergo rotational diffusion that couples the
parallel and perpendicular components of the translational
diffusion in their body frame. Understanding how this coupling
is related to nanoparticle shape is essential for extracting
accurate diffusion data from micro- and nanorheology
experiments.”’ Results for Dy of the rods in unentangled
melts are shown in Figure 4a. Dy shows a strong decrease with
increasing I. This is illustrated in Figure 2b, which shows the
rotational trajectories swept by several rods of different ! over
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the same time period. In all systems, the decrease of Dy
exhibits a crossover from Dy ~ I™* to ~I™3, which can be fit by
a crossover function Dy = DY 1 + (I/I2)]/[2(1/1*)*], where D}
is the diffusion coefficient at the crossover rod length IX. The
inset of Figure 4a shows that the simulation data collapse when
rescaled by the best-fit values of DY and I for different N
values. The scaling behavior observed for Dy is related to that
of D, as Dy & D,172*" Therefore, the crossover from Dy ~ I=*
to ~I~* corresponds to the crossover from D, ~ [7* to ~I™*
and is a consequence of the progressive coupling to the
polymer matrix.

The crossover rod lengths I, I and [} all correspond to the
rod length above which the nanorods are coupled to the entire
polymer chains. As a result, one would expect they are
controlled by the polymer chain size. We compare 12, I5, I} and
the root mean squared end-to-end size R, of polymer chains
for N = 16, 32, and 64 in Figure S10 of the SI. The crossover
rod lengths and average polymer size all increase with N, but
they are not related by constant numerical factors. What
determines the crossover rod lengths is an open question that
needs further study.

The rotational diffusion time 7 = 1/2Dy, for the nanorods in
chains of N = 64 are indicated by cross symbols on the lines of
(Ari(t))/4t in Figure 4b, where (Ari(t)) is the MSD of
nanorods normal to the rod axis in the body frame. The
plateau of (Ar7(t))/4t indicates the diffusive regime, with the
onset of the plateau corresponding to the translational
diffusion time 7y in the body frame.”" For | < 86, 7y precedes
the plateau. As a result, rotation of the rod accompanies each
diffusion time step in the body frame and couples the
orthogonal components. Dy = (D + 2D;)/3 based on
independent D and D, overpredicts Dy in the lab frame, as
shown in the inset of Figure 4b. For I > 160, 7y is on the
plateau. There is no significant rotation for each diffusion time
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step in the body frame. Therefore, the body and lab frames are
equivalent at the diffusion time scale 71, and D = Dy is valid
for I > 160.

3.2. Diffusion of Nanorods in Entangled Polymer
Melts. As the polymer chain length N increases above the
entanglement length N,, the polymer entanglement network
affects diffusion of the nanorods longer than the network mesh
size a. Figure 5 shows Dy, D), k, and Dy as functions of | for
nanorods in polymer melts with kg = 1.5€. The entanglement
length is reduced to N, = 28 for ky = 1.5¢.”> Note that ky = 0
and N, = 85 for the simulations of unentangled systems in
Section 3.1. The polymer melts with N = 16, 100, 400, and
2000 in this section correspond to Z = N/N, = 0.6, 3.6, 14, and
71, respectively.

The linear decrease of D) with I is not affected by the
presence of an entanglement network since the diameter of the
rod o is smaller than the network mesh size a =& So. Solid lines
in Figure Sa are best fits to Djj = Dy(I/6)~". In contrast, D, is
suppressed as | grows larger than a. Figure Sb shows that D; ~
I72 for | < 8¢ in entangled chains with N > 100 (Z>4)is
unchanged from the first scaling regime D, ~ I in
unentangled chains. While there is a crossover to D; ~ ™!
in the unentangled melt of N = 16 (see the red solid line in
Figure Sb), the entangled systems exhibit a steeper decrease in
D, for | > 160. Figure 2a illustrates the suppression of
perpendicular diffusion for the rods of I = 326 in the entangled
melt of N = 400. To describe the motion of a nanorod trapped
in an entanglement network, de Gennes developed a rod
“reptation” model,>® as schematically illustrated in Figure 1d.
In his model, as the rod reptates over a distance of its length !
with Dy &~ D), the displacement due to normal diffusion ~a.
From I*/Dy = a’/D;, D; ~ Dy(a/l)*> ~ 7. As shown by the
black solid line in Figure Sb, D, for N = 400 can be fit to the
crossover function D, = 2DZ/[(I/I})* + (I/1£)*], indicating
that D, ~ I for [ sufficiently larger than a in agreement with
de Gennes’ reptation model. Figure Sc shows the suppression
of D enhances k, which no longer plateaus as in unentangled
polymers (red solid line), but instead grows as I* for large I
The black solid line in Figure Sc is the best fit of x for N = 400
to the crossover function k = k[ (I/I5) + (1/1)*]/2.k ~Pas D,
is reduced by a factor & (I/a)* compared to Dy. This large ratio
means the diffusion of nanorods is dominated by the motion
parallel to the rod axis, which only depends on the local
dynamics of polymer segments. This result agrees with the
experimental observation by Choi et al. that the dynamics of
nanorods is decoupled from the macroscopic viscosity of
polymer melts and thus is only coupled to the local
dynamics.”’ As the rod diameter goes above a, one would
expect suppression of the parallel diffusion as well. The
diffusion of the fat nanorod would rely on the relaxation of the
surrounding entanglement network as in the diffusion of a
spherical particle with d > a4 in an entangled polymer
melt 325455

The rotational diffusion also exhibits a suppression as [ is
sufficiently larger than a. Rather than crossing over from Dy ~
I™* to ~I7, Dy in entangled polymers transitions to Dy &~ D 17>
~ I3, Dy for N = 400 in Figure 5d can be fit to the crossover
function Dy = 2DX/[(I/18)* + (I/I¥)*]. The suppression clearly
distinguishes the rotational trajectory of a rod of | = 32¢ in the
chains of N = 400, as shown in Figure 2b.

The crossover rod lengths I, I5, I for N = 400 in Figure 5 all
correspond to the rod length above which nanorods are
affected by the entanglement network. The crossover rod
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lengths are expected to be controlled by the network mesh size.
As shown in Section 3.2 of the SI, /a = 1.7, I/a = 2.5, and I}/
a = 3.9, suggesting that the rod length needs to be multiple a
for the suppression of nanorod motion.

Using MD simulations, Karatrantos et al.?! have shown that
thin nanorods in polymer melts can diffuse faster than
predicted by the continuum theory and the diffusion
coefficient reaches a plateau as melt chain length N increases,
both of which were attributed to local viscosity experienced by
nanorods. The N-dependency of the diffusion of thin nanorods
in polymer melts has also been examined in the simulations by
Li et al”® The N-dependent translational diffusion in
unentangled melts and N-independent translational diffusion
in entangled melts in their simulations were related to the
difference between the diffusion parallel and perpendicular to
the rod axis. In this work, by decomposing the diffusion into
parallel and perpendicular components, we explicitly show thin
nanorods only experience monomeric friction for the diffusion
parallel to the rod axis and the parallel component Dy
dominates the overall diffusivity, which is the origin of the
breakdown of the continuum theory. These findings are
consistent with previous simulations.”””” Furthermore, by
identifying the scaling of various diffusion coefficients Dy, D,
and Dy with rod length I, we elucidate the length-scale-
dependent coupling of nanorod dynamics to the polymer
melts.

For spherical nanoparticles in polymer melts, the dynamical
coupling between the nanoparticles and polymers has been
described through extending the Stokes—Einstein relation Dgg
= kgT/{ = kgT/37nd for a particle of diameter d in a medium
of viscosity 5. The essential part of the extension involves a
replacement of the bulk viscosity # by an effective viscosity 7.
that depends on the nanoparticle diameter d.*"**>° Since the
bulk viscosity is related to the stress relaxation modulus G(t) of
polymer dynamics as 1 = / PG(t) dt, nes < n corresponds to
coupling to only part of the polymer dynamics, which can be
quantified by an effective relaxation modulus G.g(t). 7.4 =
J8Ge(t) dt, and Gg(t) for the partial coupling can be
obtained from the MSD of nanopartiles by the generalized
Stokes—Einstein relation.”>**™>" For rodlike nanoparticles in
polymer melts, the dynamical coupling of nanoparticles and
polymers may also be quantitatively described by invoking an
effective viscosity 7. and an effective relaxation modulus
G.i(t). Specifically, 7.4 may be introduced as in a recent scaling
model of the dynamical coupling in liquid polyelectrolyte
coacervates,”’ and G g(t) may be computed as in a recent
experimental study that quantifies polymer rheology using a
rotational generalized Stokes—Einstein relation.”” In this paper,
we focus on reporting the scaling relations for the diffusion
coefficients of nanorod, while leaving a detailed examination of
Neir and G,g(t) for future research.

4. CONCLUSIONS

To summarize, MD simulations of monomerically thin
nanorods in polymer melts show a length-scale dependent
coupling of nanorod diffusion and the polymer matrix, which is
not resolved in current continuum theories. Dy ~ "' if the
melt chains are sufficiently long to screen the hydrodynamic
interactions among different sections of a nanorod. In
unentangled polymers, there is a crossover from D, ~ [ to
~I"" with increasing |, as the rod is progressively coupled to
larger segments of the polymer chains with partially screened
hydrodynamic interactions. The diffusion anisotropy «
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increases with [ linearly and eventually saturates for sufficiently
large . The rotational diffusion coefficient Dy &~ D,I™* and
exhibits a crossover from Dy ~ I™* to ~I7. In entangled
polymers, the confinement by the entanglement network
results in D, ~ 73 with k ~ I* and Dy ~ I"® for the nanorods
with [ sufficiently above a. The suppressed dependence of D,
and Dy on [ agrees with de Gennes’ rod reptation model. >

For the diffusion of rodlike particles in Newtonian fluids,
numerical expressions for diffusion coefficients have been
obtained.”*' = 1t remains challenging to derive diffusion
coeficients numerically for nanorods in polymer melts. The
scaling relations we identify can serve as a foundation for the
future development of new theories.””*® With the absence of
an analytical theory, they can also guide the experiments®”~"*
characterizing the transport of anisotropic nanoparticles in
polymer matrices. Although Dy is the most experimentally
tractable diffusion coefficient,”””" we hope that experimen-
talists would be motivated by this work to study Dy, D,, and
Dy

Our findings can provide insights into rodlike nano-objects
diffusing in both synthetic gels”> and their biological
counterparts.””***> The microscopic picture established here
can also benefit the preparation of carbon nanotube—polymer
composites,”® green pol7yrner nanocomposites based on rodlike
cellulose nanocrystals,”” and the understanding of how rodlike
virus nanoparticles such as the tobacco mosaic virus transport
in polymer solutions.””””
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