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Abstract

We present a comprehensive experimental rheological dataset for purified entangled ring polystyrenes and their blends with linear chains in
nonlinear shear and elongation. In particular, data for the shear stress growth coefficient, steady-state shear viscosity, and first and second
normal stress differences are obtained and discussed as functions of the shear rate, as well as molecular parameters (molar mass, blend com-
position, and decreasing molar mass of linear component in the blend). Over the extended parameter range investigated, rings do not exhibit
clear transient undershoot in shear, in contrast to their linear counterparts and ring-linear blends. For the latter, the size of the undershoot and
respective strain appear to increase with the shear rate. The universal scaling of the strain at overshoot and fractional overshoot (the ratio of
the maximum to the steady-state shear stress growth coefficient) indicates subtle differences in the shear-rate dependence between rings and
linear polymers or their blends. The shear thinning behavior of pure rings yields a slope nearly identical to predictions (—4/7) of a recent
shear slit model and molecular dynamics simulations. Data for the second normal stress difference are reported for rings and ring-linear
blends. While N, is negative and its absolute value stays below that of N, as for linear polymers, the ratio —N,/N, is unambiguously larger
for rings compared to linear polymer solutions with the same number of entanglements (almost by a factor of 2), in agreement with recent
nonequilibrium molecular dynamics simulations. Furthermore, —N, exhibits slightly weaker shear rate dependence compared to N; at high
rates, and the respective power-law exponents can be rationalized in view of the slit model (3/7) and simulations (0.6), although further work
is needed to unravel the molecular original of the observed behavior. The comparison of shear and elongational stress growth coefficients for
blends reflects the effect of ring-linear threading, which leads to significant viscosity enhancement in elongation. Along the same lines,
the elongational stress is much larger than the first normal stress in shear, and their ratio is much larger for rings and ring-linear blends
compared to linear polymers. This confirms the interlocking scenario of rings and their important role in mechanically reinforcing linear

matrices. © 2021 The Society of Rheology. https://doi.org/10.1122/3.0000186

. INTRODUCTION thinning of viscosity compared to their linear counterparts
[2,3], their role in enhancing the viscosity of linear polymers
[4-7], and their strong resistance to stretching (strain harden-
ing at low stretch rates) [8§—10]. These unusual phenomena
can be explained by the loopy conformations of the rings that
yield self-similar relaxation, threading by linear chains, and
ring interlocking in an elongated melt, respectively. In a
remarkable synergy of advanced characterization, rheometry,
simulations and modeling, the field has thrived in the last
decade and continues doing so, while several open questions
remain. Clearly, for a deep understanding of the rheology of
entangled ring polymers, there is a need to obtain more and
Note: This paper s part of the special issue on Ring Polymers. reliable experimental evidence of the response of ring poly-
YAuthor to whom correspondence should be addressed; electronic mail: mers in nonlinear shear and elongational flows. In particular,

dvlasso@iesl.forth.gr recent works with experimentally pure polystyrene rings

The rheology of entangled ring polymers has emerged as
a topic at the forefront of scientific research. The reasons are
the intriguing properties of these materials, which depart
from their unlinked counterparts, and the potential applica-
tions of rings as elements for tailoring the flow properties of
soft materials. Among the many manifestations of the
uniqueness of nonconcatenated entangled rings, we mention
their power-law stress relaxation [1,2], their weaker shear
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having about Z=5 and 12 entanglements indicate that they
exhibit much weaker shear thinning compared to their linear
counterparts [3,11]. Furthermore, the specific viscosity
enhancement of entangled linear polymers upon the addition
of small fractions of rings was explained by invoking the
constraint release process of the rings [4], whereas these
blends were shown to exhibit significant strain hardening in
uniaxial extension and an overshoot in the elongational stress
growth coefficient which was associated with a transient
threading-unthreading transition [8]. The above exciting
results open new routes in molecular rheology and, particu-
larly, in the direction of combining the features of rings and
other macromolecular architectures to tune the viscoelastic
properties of polymeric materials. The available evidence
must be complemented by systematic experiments with dif-
ferent molar masses, the fraction of the ring component in
blends, blend asymmetry (the ratio of components molar
masses), and, eventually, different chemistry (and flexibility).
Importantly, however, measuring the first normal stress dif-
ference (N;), as well as the much-neglected second normal
stress difference (N,), in entangled rings is timely. Indeed,
recent advances have facilitated the experimental investiga-
tions in this direction which, nevertheless, remain very chal-
lenging. However, we have shown recently that measuring all
three material functions in high-temperature melts is possible
by the appropriate use of a modular cone-partitioned plate
(CPP) setup [12].

It should be noted that progress in simulations has been
remarkable as well. The weaker shear thinning of rings com-
pared to their linear counterpart, their nonlinear response at
low elongational rates accompanied by extension rate thicken-
ing and ring-ring interlocking, and the threading-unthreading
transition represent the punchline of the rich outcome so far
[8,9,13—17]. Very recently, the N, and N, of moderately entan-
gled poly(ethylene oxide) rings were investigated by means of
atomistic molecular dynamics simulations, and it was found
that the ratio —N,/N, is clearly larger compared to linear poly-
mers [16]. On the modeling part, the shear thinning of viscos-
ity has been shown to be captured quantitatively by a new slit
model that also explains many details of the conformation of
the sheared rings [11]. It is based on the presence of two
length scales: the thickness of the shear slit in the velocity gra-
dient direction and, a smaller length scale, the tension blob
size due to the strong stretching of rings in the flow direction.
A ring is confined in the velocity gradient direction to the
shear slit with thickness, &, that defines the shear blob with
relaxation time on the order of the reciprocal shear rate 1/y.
The model further provides scaling predictions for N; and N,
reciprocally proportional to these two length scales [11],
which are discussed in the context of the experimental results
in the present work.

In this work, we address the above challenges with one
ambitious goal to provide a comprehensive set of reliable
experimental nonlinear rheological data with purified entan-
gled ring polymers and their blends with linear chains. The
data involve the shear stress growth coefficient, steady-state
viscosity and first and second normal stress differences, and
comparison with respective elongational data. Importantly, in
view of the significant role of the addition of small amounts

of rings in altering the properties of linear matrices, as men-
tioned above, we focus on this range of ring-linear blend
composition; one advantage is that, here, ring purification is
not as crucial as in the study of the individual ring compo-
nent or blends with large ring fraction (which are not
addressed here). We discuss the delicate points and possible
intricacies of the experiments, the role of blend composition,
the behavior of Ny and N,, and the link to existing informa-
tion from simulations, while we identify new challenges
ahead.

Il. MATERIALS AND METHODS

This study is based on measurements with 13 polystyrene
(PS) samples, including pure components and blends. In par-
ticular, two linear polymers (L185 and L130) and three puri-
fied rings (R185, R90, and R30), covering the range from the
onset of entanglements (R30) to well-entangled (R185) along
with five symmetric linear/ring and three asymmetric linear/
ring PS blends with a smaller molar mass of the linear
component, were investigated. The samples were carefully
characterized, and R185 and R90 were purified by liquid chro-
matography at the critical condition (LCCC); see Fig. S1 of
the supplementary material (SM) [69]. The main molecular
characteristics of the samples are listed in Table I. Sample
coding reflects the molecular architecture, linear (L) and/or
ring (R), followed by a number identifying the weight-average
molar mass (M,,) of the polymer, expressed in kg/mol; the
latter is often abbreviated as (k). The details of the synthesis,
purification, and characterization schemes of RI185 are
described elsewhere [18-21]. The linear PS L90 was synthe-
sized using potassium naphthalenide as an initiator in tetrahy-
drofuran (THF), while the ring R90 was obtained by coupling
the bifunctional anionic PS with o, dibromo-p-xylene in the
very dilute THF solution [22,23]. The same procedure was

TABLE 1. Ring, linear, and ring-linear blend samples investigated and their
key characteristics.

Sample code Components M,, (kg/mol)* Notes z°
L185 PS linear 185k 185 Linear 10.6
L130 PS linear 130k 133 Linear 7.4
R185 PS ring 185k 185 Ring 10.6
R90 PS ring 90k 89.2 Ring 5.1
R30 PS ring 30k 30 Ring 1.7
L185/R185 $r=0.05 Symmetric 10.6
¢r=0.15" Linear/ring 10.6
Ppr=0.2 10.6
$r=0.3 10.6
L90/R90 ¢r=0.72° 5.1
L130/R185 ¢r=0.05 Asymmetric 74
$r=0.2 Linear/ring 74
$r=0.3 74

“Measured by light scattering, except for the molar mass of R30 which was
determined based on PS standards.

"Based on the literature value for M, and considering that rings and linear
polymers have the same M,. For asymmetric blends, it is averaged based on
the weight fraction of the components.

“Used only for normal stress measurements.
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followed for R30. After standard fractionation with benzene
methanol [24], the R90 ring was further purified and charac-
terized by a procedure similar to that followed for R185
[1,4,9]. Purification of as-prepared PS and characterization
confirming the purity of the R90 are presented in Fig. S1 of
SM [69]. Sample R30 was undergone multiple SEC runs
(Fig. S2 [69], [24]), and the final product had an acceptable
level of purity as judged by the combination of the final chro-
matogram and its linear rheology (discussed below). Blends
are characterized by the weight fraction of rings, ¢p.

The Rouse, 7z, the terminal (disentanglement), 7, and
the ring terminal, 7g;,,, times of the pure components are
reported in Table II at 160 °C. The relaxation times have
been extracted from the linear viscoelastic master curves in
terms of storage G’ and loss modulus G” obtained through
small amplitude oscillatory shear experiments at various tem-
peratures. The inverse high-frequency crossover is assigned
to the Rouse relaxation time of an entanglement strand, 7,
[4,8]. For polystyrene linear polymer chains 7, is 0.002s
at 150°C [4]. Times at various temperatures have been
calculated by using the horizontal shift factor reported in
Parisi et al. [4]. The Rouse time for linear polymer chains has
been estimated as g = 7,(N/N,)* [25,26], where N and N, are
the numbers of Kuhn monomers per chain and entanglement
strand, respectively. N, has been estimated as the ratio between
the entanglement molar mass of PS, M,=17.5kg/mol [27],
and the respective molar mass of a polystyrene Kuhn segment,
My=0.72 kg/mol [25]. The number of entanglements of the
pure components (linear and ring polymers) and blends is
denoted as Z. Values are reported in Table I. Note that the
Rouse time of ring polymers has been estimated as %4 of that
of linear polymers with the same molar mass [28-30]. The
terminal times are estimated from the inverse frequency at the
crossover of the extrapolated terminal slopes of the dynamic
moduli [4,9].

Blends were prepared by mixing specified amounts of
rings and linear polymers (based on ¢y) in toluene in the
dilute regime. Solutions were kept at room temperature for
about 2 days and gently stirred at times in order to ensure
complete dispersion. Subsequently, toluene was removed
under vacuum over 7 days, and the resulting blends were
press-molded into disks at 150 °C (well above the glass tran-
sition temperature) for 20 min under vacuum to reduce
thermal oxidation. The same press-molding procedure was
adopted for the pure components.

TABLE II. Characteristic relaxation times of the pure components
at 160 °C.

Sample code 7z (s) Tds TRing ()
L185 0.051 2.940
L130 0.025 0.500
R185 0.013 0.138
R90 0.003* 0.03
R30 0.000 34 0.008

2
“Estimated  as ”‘ﬁ%(ﬂ) with  7g1185x=0.051, Zggx=5.14, and

Zissk
ZISS k= 10.6.

A. Shear rheology

Shear rheology experiments were performed on a rotational
strain-controlled ARES rheometer (TA, USA) equipped with a
force rebalance transducer 2KFRTNI1. The temperature was
controlled by means of a convection oven with an accuracy of
+0.1 °C and fed with nitrogen gas to minimize the risk of
thermal degradation of the samples. As the investigated
polymer melts are prone to edge fracture, a cone-partitioned
plate (CPP) geometry was used for all the nonlinear shear
experiments. Details about this geometry are reported else-
where [3,12]. Here, a stainless steel 25 mm diameter cone with
truncation equal to 0.051 mm and a cone angle of 0.1 rad was
used. Various diameters for the inner partition of the CPP were
used: 2, 3, 4, and 6 mm, as specified in the text below.
Press-molded disks were loaded by using a centering tool,
which ensures the proper centering of the sample in the mea-
suring area. Linear viscoelastic master curves for L130, R90,
and L130/R185 blends were obtained with stainless steel 8 mm
diameter parallel plates at various temperatures in the range
120-160 °C. Master curves for L185, R185, and L185/R185
blends were taken from the literature [4]. The horizontal and
vertical shift factors were taken from Parisi et al. [4].

The technique reported by Costanzo et al. [12] to extract
the first N; and second N, normal stress differences was
adopted. Briefly, the method consists of performing the
start-up of shear rate experiments at various shear rates by
using the CPP. The same experiments are performed with dif-
ferent inner partition diameters. This allows us to determine
the apparent first normal stress difference (N, ,,,) at different
diameters but the same shear rates. For instance, N 4, corre-
sponds to the apparent first normal stress difference measured
with a CPP having an inner partition of radius R, In the
present case, we used two different inner partitions per shear
rate, with radii R;,,.,.; and R;,,.,.;;. The relations that correlate
N1,app,i> N1,app,ii N1, and N, are [12]

2F; R
Nl,app,i = m :Nl +2(Nl +2N2)1l’1< - ‘)’ (1)

1
) o
Rinner,ii .

Here, F; and F;; are the normal forces exerted by the
sample when the inner partition Rj,..; O Rie.;i 1S used,
respectively; R is the radius of the sample loaded in the mea-
suring position, estimated as [12,31,32]

3m 1/3
R=(—"2 3
() ®

where m is the sample mass, p is the sample density
(0.995 g/cm? for PS at 150 °C) [33], and 6 is the cone angle
expressed in radians. By using a sample mass between 8 and
23 mg, we obtain R values between 3.7 and 5.3 mm. Note
that, with R;,,e,.; and Ry, selected as 2 and 3 mm or 3 and
4 mm, respectively, the same sample mass was used.
However, the latter is not a necessary condition to satisfy
Egs. (1) and (2) [12,32]. The two normal stress differences

Niapp,ii = s Ny +2(Ny +2N2)111(

2
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N, and N, can be extracted by solving the system of Egs. (1)
and (2), where R is calculated according to Eq. (3). In order
to ensure the same treatment of samples and reduce the con-
cerns of possible fracture and sample accumulation in the
gap between plate and partition, prior to applying a shear
flow, a fresh disk was used for each shear rate. Finally, a
note on the apparent normal stress is in order. The above
approach is crucially important for extracting N, whose value
is much smaller than that of N; (see discussion below).
Indeed, by considering the different radii of geometries and
samples used, the ratio —N,/N; (not exceeding 0.5) and the
weak shear rate dependence of the normal stress differences
(see also discussion below), we estimate from Eq. (1) [or
Eq. (2)] that the ratio N;,,,/N; varied between 1.15 and
1.75. In fact, the lowest and highest values were attained for
L185 and R185, respectively (note, however, that the former
is the only sample for which we used the N, ,,, value, in
Figs. 15 and S21 of SM [69]). Therefore, the apparent first
normal stress difference N ,,, represents a reasonable esti-
mation of the first normal stress difference, as will be dis-
cussed further below [12,32,34,35].

B. Extensional rheology

The extensional stress measurements were performed
using a filament stretching rheometer (FSR) [36]. Prior to
performing a measurement, the samples were molded into
cylindrical test specimens with a fixed radius of either
Ry=2.7mm or Ry=4.0mm. The aspect ratio Ag=L¢/Ro,
with L, being the initial length, was between 0.42 and 0.64.
The smaller radius and lower aspect ratio were used due to
the limited amount of the sample. The samples were press-
molded following the same aforementioned procedure. All
the samples were prestretched to a radius R, ranging from 1.2
to 3mm at 150-160 °C prior to the extensional experiments.
After prestretching, the temperature was decreased to
T=130°C for the extensional stress measurements. A few
measurements were performed at 150 or 160 °C and shifted
to 130 °C by using the shift factors reported in [4]. Nitrogen
gas atmosphere was ensured during the whole test.

During the extensional measurements, the force F(r) was
measured by a load cell and the diameter 2R(¢) at the midfila-
ment plane was measured by means of a laser micrometer.
At small deformations during the start-up of the elongational
flow, part of the stress difference arises from the radial varia-
tion due to the shear components in the deformation field.
This effect may be compensated by a correction factor as
described elsewhere [37]. For large deformations, the correc-
tion vanishes and the radial variation of the stress in the sym-
metry plane becomes negligible [38].

The Hencky strain £(¢) and the mean value of the stress
difference (o,, — o,,) over the mid-filament plane are calcu-
lated from observations of R(¢) and F(¢) as

e(t) = —2In(R(1)/R, ), @

(6ss — o) = F(t) —mygl2 1
7= T TR 1+ (RUYRo) Pexp(—ADI(BAD)
®)

where my is the weight of the filament and g is the gravita-
tional acceleration. The Hencky strain rate is defined as
& = de/dr. A control scheme [39] is employed in the FSR to
ensure the accurate constant strain rate. The extensional stress
growth coefficient is defined as 7" =(c,, — o, )/&.

lll. RESULTS AND DISCUSSION
A. Linear viscoelastic characterization

Figure 1 depicts the linear viscoelastic (LVE) master
curves [shifted G’ in panel (a) and shifted G” panel (b)] for
rings R185, R90, and R30; linear 1185 and L130; and blends
L185/R185, L130/R185, and L90/R90, at a reference temper-
ature of 160 °C. This sets the necessary background for the
present study: it confirms the power-law stress relaxation of
the purified rings and at the same time, the quality of the
samples. In fact, the lines through the (pure) ring data repre-
sent fits with the state-of-the-art fractal loopy globule (FLG)
model, which predicts a power-law exponent of 3/7 [44].
Actually, for R30, which was multiply fractionated by stand-
ard SEC and corresponds to transition to the entanglement
regime (Z=1.7), the data are well-described by the model,
but we also note that the linear precursor does not exhibit a
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FIG. 1. Linear viscoelastic master curves of shifted storage G’ [panel (a)]
and loss G” [panel (b)] moduli as a function of shifted oscillatory frequency
for pure components and blends. Details are reported in the legend. The
reference temperature is 160 °C. Dashed lines with slopes 1 and 2 indicate
the terminal slopes of the moduli. The solid lines represent the prediction of
the fractal loopy globule (FLG) model for ring polymers [44], with a 3/7
power-law exponent for the modulus (dashed black line). Data for PS Linear
185, Ring 185, and their blends are taken from [4].
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plateau; hence, our assessment of the sample’s quality is
based on the extracted value of the zero-rate viscosity
(Fig. 2). The latter is slightly higher than expected, suggest-
ing that this ring is not as pure as the others (which have been
fractionated by LCCC) but is appropriate for use in the rheo-
metric study discussed in Secs. III B-III D. The low-
frequency deviation is attributed to remaining traces of
unlinked linear and possible effects of long-living ring-ring
threading [14], but overall, it remains a debatable issue that
will not be discussed further. In addition, the data of Fig. 1
confirm that the blends studied here (with the fraction of the
linear component being 0.7 or higher) are characterized by
the presence of the rubbery plateau region. Details of their
relaxation via constraint release due to linear motion are dis-
cussed in [4] and more recently in [40]. Figure 2 presents the
zero-shear viscosity data for the pure components of Fig. 1 at
the same reference temperature of 160 °C. The values were
obtained from the complex viscosity, extracted from the
lowest measured frequencies in the Newtonian regime. Data
from the literature on PS of different molar masses have been
added and are in excellent agreement. The slight scattering of
PS ring data likely reflects a different level of purity (which
remains always high) as discussed in the literature
[1,18-20,24,41]. Of particular note is the striking difference
in the M,, dependence of 1y between linear and ring polymers
that conforms to predictions and confirms and expands earlier
data with purified rings and different chemistry [42]. There is
a notable, albeit small, deviation of the data for R30, as well
as for the higher molar masses. In the former case, the level
of purity seems to be not as high as in the other samples, as
already mentioned. In the latter case, despite the fact that
even LCCC fractionation is not perfect, the ultrasmall amount
of samples renders their continuous use and thermal treatment
necessary, suggesting the possibility of some contamination
due to unlinking of some rings. Whereas we do not know
when this may happen during a measurement cycle, in an
extreme case of the overused sample, we checked the linear

T T 7

10°4 W YuyaD.eral (2015 Y 4
@ Kapnistos M. ef al. (2008) A ]
Q LI30 A ]
A Liss , j3 . ]
5S4 O RIS A/ > i
10 ) ]
— ¥ R90 , E
< O R30 A
P_". A Linear PS /‘ m -
= 10" 4 ../ - 3
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/ﬁ’ |14
10° o -
//.

B _§

10° 10° 10°
M,, [g/mol]

FIG. 2. Zero-shear rate viscosity mp as a function of the weight-average
molar mass M,, for the pure components reported in Fig. 1. Additional linear
PS data (solid triangles) are also reported together with high-purity ring PS
from the literature [1,28]. All the data are reported at 160 °C. The dashed
lines represent the scaling law expected for entangled linear polymer melts
with exponent 3.4 [25] and for ring polymers with exponent 1.4 [44].

spectra and its SEC trace and found differences [43]. For the
presented data, the reproducibility of the linear viscoelastic
data served as an indicator of the good quality of the samples.

B. Transient shear response

In Fig. 3, we show typical results of start-up of shear
experiments in the form of the shear stress growth coefficient
at different imposed shear rates for the two linear polymers
L185 and L130 and for two ring polymers R185 and R90
(the shear stress growth coefficient for R30 is shown in
Fig. S13 of SM [69]). The range of Rouse—Weissenberg
numbers (Wig = y7g) explored is reported in Table III for
the systems investigated in this work. The lower values of
Wig are often within the linear regime leading to the
zero-shear-rate viscosity (1) at long times, whereas values
larger than one correspond to the stretched chain regime.
Similarly, it is possible to estimate the terminal Weissenberg
numbers as Wiy = yt4 and Wigi,g = YTring for linear chains
or blends, and for pure rings, respectively.

All other transient data are presented in the SM,
Figs. S3-S13 [69]. It is encouraging that the respective LVE
envelope, as deduced from the respective frequency spectra
of Fig. 1 and transformed into shear stress growth coefficient
by means of the Cox—Merz and Gleissle [34,45] rules, match
the low-shear-rate start-up data. Furthermore, the fact that the
steady state is reached for shear rates covering more than two
decades is a testimony of the present experimental ability to
study the nonlinear rheology with this type of setup reliably.
The steady-state values of the shear stress growth coefficient
decrease with increasing the shear rate (see further discussion
below). However, we observe some differences in the time
evolution of the shear stress growth coefficient of linear and
ring polymers and, particularly, in the regime between the
overshoot and steady state. The linear polymers exhibit a
clear undershoot at high shear rates [Figs. 3(a) and 3(b)].
However, this is not the case for the rings of the same molar
mass for which no undershoot is observed over the range of
investigated shear rates [Figs. 3(c) and 3(d)]. Moreover, at
the highest rates, the sample fractures before the steady-state
value are attained (data not shown). This points to a clear dif-
ference in the shear-induced conformational changes in the
two macromolecular architectures. Before further discussing
the features of the undershoot, we confirm that based on
careful experiments (see [12,46] and the present data), it is
real. We also note that recent slip-link simulations show
that undershoot is not linked to slip (which tends to sup-
press it) [47]. Recently, conformational differences between
extended single DNA ring and linear polymers have been
reported in the context of the coil-stretch transition [48].
Importantly, the undershoot (or the minimum in the transi-
ent response) of linear polymers has been linked to transient
tumbling [34,46,49]; if undershoots occur in rings, this
should happen at higher rates, which are not accessible
experimentally at the moment. The conjecture of different
conformation in sheared ring and linear polymers is sup-
ported by recent insightful evidence about their response in
the dilute or nondilute solution from both experiments
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FIG. 3. Shear rate start-up in terms of the shear stress growth coefficient as a function of time at various shear rates (reported in the legend) for (a) L185,
(b) L130, (c) R185, and (d) R90. Experimental data refer to the same temperature, 160 °C. The sample R90 was measured at 130 °C, and data were shifted to
160 °C by using the shift factors reported in [4]. The R30 sample is reported in Fig. S13 of SM [69]. Black solid lines report the LVE envelope, i.e., the

complex viscosity (n*) as a function of the inverse oscillatory frequency.

[10,50] and simulations [51-53], as well as simulations and
modeling in the melt state [11,13-16].

Adding rings to linear matrices alters the nonlinear shear
response in a subtle way. The message from Fig. 4 is that,

TABLE III. Wiy range in start-up of steady shear experiments.

Sample code Wig range

L185 0.005-1.6
L130 0.0025-2.5

RI185 0.01-3.33

R90 0.04-4.0
R30 0.0027-0.35
L185/R185 ¢r=0.05 0.0016-0.29
L185/R185 ¢r=0.2 0.0016-2.0
L185/R185 ¢r=0.3 0.0005-2.0
L130/R185 ¢r=0.05 0.0008-1.4
L130/R185 ¢p=0.2 0.0008-1.4
L130/R185 ¢p=0.3 0.0008-0.8

even with a ring fraction as high as 0.3, the qualitative
features of linear chains are predominant, similar to the con-
clusion based on linear viscoelasticity results [1,4-6,54]. For
example, the undershoot in the transient response is observed
at high shear rates. The undershoot data are presented in
Fig. 5. The strain at the undershoot minimum, y,,, increases
with Weissenberg number (here we consider Wig) by a factor
of 3 [or factor of 2 for sample L185, Fig. 5(a)] over the range
of Wi between 0.2 and 3 approximately (range 0.5-2 for
L185). The magnitude of the fractional undershoot, i.e., the
ratio of the minimum to the steady-state shear stress growth
coefficient, Muyn/Mseady—stare> SYStematic decreases (by about
10%) as Wig increases from 0.25 to 3 [Fig. 5(b)].
Interestingly, whereas the asymmetric blends exhibit under-
shoot, this is not the case for the symmetric ones; however,
the latter were measured at lower rates at which the asymmet-
ric blends do not exhibit undershoot either (Fig. 4). On the
other hand, the largest Wiy values reached for the rings are
similar to (or even slightly larger than) Wiy reached for the
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FIG. 4. Start-up of the shear rate in terms of the shear stress growth coefficient as a function of time at various shear rates (reported in the legend) for symmet-
ric blends L185/R185 at (a) ¢r=0.05, (b) $pr=0.2, and (c) ¢g=0.3, and for asymmetric blends L130/R185 at (d) ¢x=0.05, (e) $px=0.2, and (f) ¢dr=0.3.
Experimental data refer to the same experimental temperature, 160 °C. Black solid lines report the complex viscosity (n*) as a function of the inverse oscillatory

frequency.

symmetric blends (see Table III). Therefore, to assess the for both pure components [panel (a)] and blends [panel (b)].
effect of decreasing molar mass of the linear component of the =~ Viscosities from oscillatory and steady shear measurements are
blend, there is a need for more investigations with experiments plotted and found to validate the Cox—Merz (CM) rule with
and simulations. Finally, it can be observed from Figs. 3 and 4 the exception of divergence of the latter data from the complex
that the main features of shear thinning and the matching of  viscosity envelope for the high M,, linear chains at very high
the low-shear-rate data with the LVE envelope are maintained shear rates. From the experimental standpoint, the occurrence
for all examined blend compositions. To better appreciate the of instabilities (primarily the onset of weak wall slip and edge
shear thinning regime, we present in Fig. 6, the flow curves fracture propagating up to the gap of the CPP), cannot be
normalized by the zero-shear viscosity and the terminal time, avoided at large terminal Wi numbers (>30), despite the
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FIG. 5. Analysis of the transient undershoot: Strain at the minimum shear stress growth coefficient (a) and fractional undershoot (normalized), i.e., the ratio of
minimum to steady-state shear stress growth coefficient values (b), as functions of the Rouse—Weissenberg number. Error bars are within the symbol size.

Dashed lines are a guide for the eye.
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FIG. 6. Steady-shear (symbols) normalized by the zero-shear rate viscosity as a function of the shear rate normalized by the terminal relaxation time (terminal
relaxation Weissenberg number Wi, or Wig;,,) and complex viscosity (lines) normalized by the zero-shear rate viscosity as a function the normalized frequency
(Deborah number, De) for the pure components (a) and the blends (b). The dashed and dotted lines in panel (a) are fits with the Carreau—Yasuda model for the
linear and ring polymers, respectively. The dashed and dotted lines in panel (b) are fits with the Carreau—Yasuda model for the samples with small and large
fractions of rings, respectively. The shear thinning exponents are reported in the figure.

precautions taken. On the other hand, similar deviations were
recently reported with simulations and attributed to reduction
of the tension blob size [11]. Data are fitted with a modified
Carreau—Yasuda equation [11,55,56], % = 1/(1 + Wi)™, where
m is the shear thinning exponent. The latter takes values of
0.89 for pure linear melts, between 0.85 and 0.89 for the
blends, and 0.56 for the pure ring polymers, in agreement with
the slit model and molecular dynamics simulations presented
in[11].

A measure of the degree of deformability of polymers
under shear is the fractional overshoot, i.e., the ratio of the
maximum value of the shear stress growth coefficient to its
steady-state values. The fractional overshoot is plotted as a

function of the Rouse—Weissenberg number Wip in Fig. 7,
where we can clearly distinguish two groups: the pure rings
collapse into one group and follow a power-law dependence
Myaax Msteady—state vings ~ Wik '» While all other samples (linear
polymers and blends) appear to follow a distinctly different
scaling  behavior  7y4x/ nsteady—xlate|linear,blends ~ WiIIQM with
larger fractional overshoot values. The latter dependence has
been reported for many different entangled linear polymers
[3,12,34,57]. We note also that theoretical predictions based
on the tube model with appropriate adjustments to account
for segmental orientation and stretching do capture the occur-
rence of overshoot [34,58,59]. A recent tube-based model,
which takes into account the concept of gripping force
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FIG. 7. The maximum overshoot in the shear stress growth coefficient normalized by its steady-state value as a function of the Rouse—Weissenberg number.
The black dashed lines with slopes 1/4 and 1/7 indicate the dependence observed in the earlier analysis of entangled linear and marginally entangled ring
polymers, respectively [3,34]. Data for the 84 k linear (L84) and ring (R84) polymers, as well as their blend L84/R84 are taken from the literature [3].
The inset presents the maximum shear stress growth coefficient normalized by its steady-state value for L185 and the symmetric L185/R185 blends.
Symbols are listed in the legend and refer to Table I. Error bars refer to the errors in determining Nyax and NMgcady-stae- When not clearly visible, the error

bars are within the symbol size.
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between topological constraints at shear rates exceeding the
reciprocal Rouse time, also predicts the overshoot in stress
growth function [60,61]. However, the extent of fractional
overshoot and its experimentally observed shear rate depen-
dence were not captured quantitatively. The experimental
findings of Fig. 7 suggest that the degree of deformability is
larger in the pure melts of linear polymers and linear/ring
blends compared to the pure rings. Moreover, a closer look at
the data indicate that ring-linear blends exhibit slightly larger
fractional overshoot compared to their respective pure linear
component (see the inset panel in Fig. 7). Actually, the
dependence of overshoot on blend composition appears to be
nonmonotonic; it is tempting to recall the nonmonotonic
dependence of zero-shear viscosity on composition [4—6],
but the data are too limited to draw definite conclusions.
Hence, the threading of rings by linear chains should play a
role in the enhanced deformation, and it also appears that the
asymmetric blends (here with shorter linear component)
could be slightly less effective in this respect. However, this
needs further investigation.

The strain, ypmax, at the overshoot (maximum) is plotted
against Wip in Fig. 8. A tendency of all data to follow a
generic trend, albeit with some scatter, is observed.
Interestingly, the high-Wip scaling yyux ~ Wi,lz/ ? has been
reported for different entangled linear polymers [34,57] and
predicted by the tube-based model accounting for the grip-
ping force [60,61]. The limited data of linear and ring-linear
blends at Wig< 1 virtually collapse at the value of 2.3, the
Doi-Edwards prediction for the segmental alignment in flow
[26], while the rings do not seem to reach a plateau but
rather exhibit a weak dependence on Wig (which is slightly
stronger for R30). For Wip>1, there is stretching without
clearly distinguishable signatures between ring and linear
polymers or their blends. Along these lines, the Hencky

703

strain at the maximum value of the measured elongational
stress growth coefficient is shown as a function of Wiy in the
inset of Fig. 8 for pure ring and linear components and their
blends, as indicated in the caption (see also relevant discus-
sion below). Over the examined regime of Wiz< 1, the elon-
gational deformation is larger than the shear one, especially
for the R185 sample exhibiting the highest fractional defor-
mation [8,9]. The peculiar extensional response of R185 is
reported elsewhere [9].

C. Steady-state normal stresses

The measurements of the normal stress differences, espe-
cially N,, are much more challenging [12,32]. In Fig. 9, we
present the apparent first normal stress difference obtained as
described in Sec. I A above. Note that the transient data are
not taken into consideration because they are affected by
axial compliance as discussed in detail in [35]. Hence, we
focus on the steady-state values. Additional experimental
data, as well as reliability and reproducibility tests are pre-
sented in the SM (Figs. S14-S20) [69]. The insets of Fig. 9
demonstrate the significant result that the steady-state has
been reached. The cut-off in the overshoot data reported in
panel (c) at 7 =56.2s7! is due to the upper limit of the
normal force transducer, reached during the particular experi-
ment with a 4 mm CPP. We note that, despite the reproduci-
bility of the data, there are non-negligible fluctuations
rendering uncertainties in the result inevitable. In this
context, we note that the irregular oscillations observed in the
signals of Fig. 9 do not reflect material properties but rather
experimental issues. Actually, we have observed the lower
quality of the apparent first normal stress difference for the
smaller diameter of the plate at a given shear rate. This is due
to a trade-off associated with (i) the need to obtain a signal
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FIG. 8. Shear strain, calculated as the product of time and shear rate (y), at the maximum overshoot of the shear stress growth coefficient, y as a function of
the Rouse—Weissenberg number Wi for pure components and blends. Symbols are reported in the legend and refer to Table I. The horizontal dashed line at
YMmax = 2.3 represents the Doi—Edwards prediction for monodisperse linear polymers [26], whereas the dashed line with slope 1/3 indicates the dependence pre-
dicted by the analysis of entangled linear and marginally entangled ring polymers, respectively [3,34,60]. The inset displays the Hencky strain at the maximum
elongational stress growth coefficient as a function of Wir (product of the Hencky strain and rate £). Data for the 84 k linear (L84) and ring (R84) polymers, as
well as their blend L84/R84 are taken from the literature [3]. Error bars represent the error in determining ymax and evax. When not clearly visible, the error

bars are within the symbol size.
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FIG. 9. Start-up of the shear rate in terms of apparent first normal stress difference, Ny 4, as a function of time at various shear rates for (i) ring R185 with (a)
CPP 3 mm and (b) CPP 2 mm; (ii) blend L90/R90 at ¢z =0.72 with (c) CPP 4 mm and (d) CPP 3 mm; blend L185/R185 at ¢z=0.15 blend with (¢) CPP
3mm and (f) CPP 2 mm. Results for R185 and L90/R90 at ¢z =0.72 blend refer to 150 °C, whereas for L185/R185 at ¢ =0.15-160 °C. Insets in panels
(b)—(f) show a magnification of the steady-state region. Same legends hold for panels [(a) and (b)], [(c) and (d)], and [(e) and (f)]. Data for the R30 samples

are shown in Fig. S14 of SM [69].

with value below the upper limit of the axial transducer and
above the resolution threshold and (ii) avoiding flow instabil-
ities including edge fracture.

By using our method outlined in Sec. IT A, we extracted the
true experimental first and second normal stress differences,
which are plotted as functions of the Weissenberg number in
Fig. 10. The selected time for Wi is the terminal time assigned
to the linear polymers, blends, or rings (Table II). In other
words, we do not account for the slow mode of the rings, as
discussed in [4,9,11]. Furthermore, we observe that N, < 0
and |N,| < N; always, which is consistent with results from

recent nonequilibrium molecular dynamics simulations [16,62]
and will be further elaborated below. Given the inevitable
experimental uncertainties, despite the extra care taken
during the measurements, and relatively small range of
accessible rates (Table III), it is hard to draw definite con-
clusions about the dependence of the two normal stress dif-
ferences on Wi. Their differences, if any, are small, as also
confirmed by the recent molecular dynamics simulations
with polyethylene, which for the larger investigated chains
(C400Hggp) suggest a power-law dependence of N; and |N;|
with an average power-law exponent of 0.6 [16,62]. Note that
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FIG. 10. Steady-state values of the first N; (solid symbols) and (minus)
second —N, (open symbols) normal stress differences as a function of the
terminal Weissenberg number (based on the terminal time for linear or blend
Wi, or the extracted ring time Wig,,,) for ring R185, blend L90/R90 at
¢r=0.72 and blend L185/R185 at ¢z =0.15. The slope represents nonequi-
librium molecular dynamic simulations results for ring polyethylenes [63].
Error bars are calculated by averaging out at least 20 data points in the
steady state.

the reported respective exponents for linear chains, based on
results of nonequilibrium molecular dynamics simulations for
linear polymer melts (of chain length up to N=400) are
higher, 0.67 and 0.82 [63,64].

Figure 11 depicts the Wi-dependence of the ratio —N,/N,
for the measured polymers. For completeness, we add two
entangled linear polystyrene solutions (in oligomers) from
[12]. The value of—N,/N; ratio is higher for pure rings and
ring-linear blends, when compared to linear polymer solutions
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PS Linear 541k/2k ¢5,,,=0.7 Z=29
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FIG. 11. Ratio of experimental steady-state (minus) second —N, and first N,
normal stress differences as a function of the terminal Weissenberg number,
Wiy or Wig;,e, for R185 (solid squares), R30 (dark cyan pentagons),
L90/R9I0 at ¢pr=0.72 (solid diamonds) and L185/R185 at ¢x=0.15 (open
stars). For comparison, respective data from two PS solutions (long linear
polymers diluted in oligomers) taken from the literature (open circles and
squares) [12] are shown. Lines are drawn to guide the eye. Error bars are
calculated by averaging at least 20 data points in the steady state.

[12]. Furthermore, a comparison based on the number of
entanglements at the same Weissenberg number is more
revealing. Starting from the linear polymer solutions, there
seems to be a decrease in the ratio as Z increases from 6 to 29.
This was attributed to the fact that samples with broader relax-
ation spectrum have more relaxed (faster) modes, which are
not oriented and, therefore, have lower N; and contribute to
larger —N,/N; ratio [12]. Consequently, when the spectrum
approaches a single-mode limit in the terminal regime, which
is more evident for larger Z, this ratio decreases. This argu-
ment may also explain the hint of larger —N,/N ratio for rings.

Taking this as a basis, the limited high-Wi data of the 185k
blend with only 15wt. % of rings and Z=10.6 appear to
conform to this picture. We already know that threading of
rings by linear polymers strongly influences the linear and
nonlinear extensional properties of the blends [4,8]. More
striking are the results with the 90k blend with Z=5.1 and,
importantly, the pure 185k ring with Z=10.6: the —N,/N;
ratio is clearly higher and almost constant at about 0.4 over a
range of Wi covering almost 1.5 decades. This strongly sug-
gests that ring-linear threading is very important in nonlinear
shear response. The added rings are not a simple but a topo-
logical “solvent”, as discussed recently [4]. Moreover, the
presence of even a small fraction of rings (0.15) clearly affects
the ratio —N,/N, (see data in Fig. 11 at large values of the
Weissenberg number). The experimental evidence is unfortu-
nately limited and scattered due to the difficulty in obtaining
appropriately purified ring polymers in sufficient amounts.

We now review recent results from atomistic molecular
dynamics simulations with two different polymers, polyethyl-
ene [62], and poly(ethylene oxide) [16]. In the former work,
the authors investigated C;gH;s¢ and CyooHggo (the latter cor-
responding to Z~4.5) rings and their linear counterparts and
found that the ratio —N,/N, is always larger for the rings
(double) and depends on the macromolecular size. The respec-
tive ring/linear —N,/N; ratios were 0.4/0.2 and 0.2/0.1 for
Cs8H;56 and Cyo0Hggp, respectively. In the latter work, poly-
mers with Z~ 0.5, 1, and 2.5 and revealed that in all cases the
ratio —N,/N; was higher for rings, with the difference decreas-
ing with Z and exhibiting weak shear rate dependence.

We now compare the experimental data with recent predic-
tions of the shear slit model [11]. According to this model,
the sheared ring is compressed in the velocity gradient direc-
tion into a slit of the shear blob size, giving rise to negative
N, which is controlled by the number of monomers in a shear
blob g, (see the inset of Fig. 12). At the same time, the ring is
stretched in the flow direction, with o, > o,, and o,,—o0,,
= N, + N, being controlled by the number of monomers in a
tension blob g,. This yields the following predictions:

. . kT,
Ni(7) +Nali) = 5 ©
8(7)
. KT,
M) = -2, )
8s(7)

where p is the number density of monomers, 7 is the absolute
temperature, and k is Boltzmann's constant. The stronger
tension in the flow direction (smaller tension blob compared to
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FIG. 12. Normalized steady-state values of the first (filled symbols) and
second (empty symbols) normal stress differences by the thermal energy kT
and the number density of chains py, i.e., number of blobs per chain, as
functions of the terminal Weissenberg number, Wi; or Wig;,,. Samples R30,
R185 and a linear polymer solution from [12] are reported as dark cyan pen-
tagons, black squares and red triangles, respectively. Black dashed lines
depict the 3/7 and 1 slope for the second normal stress difference data, and
the 0.6 and 1 slope for the first normal stress difference (see discussion in
the text), respectively.

shear blob, see also the inset of Fig. 12 and [11]) means that
N; > —N,. Therefore, Eq. (6) suggests that N1(y) ~ g,(j/)fl.
The slit model predicts [11] g,(y) ~ ¥ ~>'7 for Wi,> 1, hence,
—N, ~ 7¥7. On the other hand, g;(7) ~ 7 ~* with the expo-
nent x decreasing from 12/7 to 8/7 beyond a crossover
shear rate value of Z”"%/z,. This translates in respective
power-law exponents for the first normal stress difference
N, of 12/7 and 8/7.

/

In Fig. 12, we plot the effective number of blobs per
chain as a function of the terminal Weissenberg number by
scaling the experimental normal stress data with
kTpy = Wkﬂ where N, is the Avogadro number and
py is the number density of number density of chains. In
general, in this representation, one may appreciate that the
number of blobs per chain increases with Wig;,,, or alterna-
tively, their size decreases. We note that —N, has a slope 3/7
at higher Wig;,, values, but for Wig;,,~1 (which corre-
sponds roughly to one shear blob per chain), there seems to
be a crossover toward a steeper, linear dependence. For
Wiging <1, the N, data exhibit a similar linear dependence,
which however becomes weaker at larger values of
Wigine > 1, departing from the predictions; the data seem to
comply with the slope of about 0.6, found in recent simula-
tions studies, as discussed above. Whereas it seems that at
lower rates the dependence is slightly stronger and a cross-
over may take place similarly to the —N, case, this cannot be
discerned given the experimental uncertainties, so we refrain
from further discussing.

The discussion and proposed interpretation of the rheo-
metric data presented and analyzed above can be summarized
graphically in Fig. 13 (top), where cartoons of entangled
linear polymers, entangled ring polymers, and their blends
deformed in a shear field at large Weissenberg number are
depicted. The message is the illustrated different deformed
conformations, with stretched linear polymers forming long
filaments, rings deformed in shear slits (the inset of Fig. 12),
possibly with some interlocking at very large rates, and
blends characterized by deformation of the threaded rings
and some unthreading. Undoubtedly, a quantitative interpreta-
tion calls for further modeling and simulations, let alone

FIG. 13. Schematic illustrations of strongly deformed (at a Rouse—Weissenberg number above 1) entangled linear polymers (left), entangled ring polymers
(middle), and ring-linear blends (right). Different colors (black and grey in print) are chosen for clarity of presentation (to identify individual polymers). Two

deformation fields are depicted, shear (top) and uniaxial extension (bottom).
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experiments. However, the key point is the consistency of the
data and the possible role of the recently revealed mechanisms
associated with deformed ring (e.g., threading-unthreading tran-
sition, interlocking, and weak shear thinning [3,4,8-11,17]) in
the transient shear and steady normal stress responses. The
above scaling model [11] represents a promising framework to
understand the molecular origins of Ny and N,.

D. Comparison of shear and elongational response:
Stress growth coefficients and stresses

It is interesting to compare the shear and extensional data
(see also Fig. S22 of SM [69]). We do so in Fig. 14 for the
blends and pure components, where their viscosities are
plotted as a function of the Rouse—Weissenberg number, Wig.
As a background, we note that the low-Wigx Newtonian
Trouton ratio of 3 and high-Wig thinning slope of linear poly-
mers are validated, whereas rings exhibit qualitatively differ-
ent behavior reflected in the low-Wiy thickening due to ring
interlocking [9,17,38], so the validity of the low-Wiy Trouton
ratio remains unclear. Note that in this representation, the
elongational data of pure linear and ring components L185
and R185 do not collapse in the regime of large Wig, since
they do so at the same elongational rates as discussed in [9].
Here, we focus on the blends for which we have sufficient
experimental evidence. Based on earlier works [8,9,17], the
elongation of linear and ring polymers, as well as their blends
is graphically illustrated in Fig. 13 (bottom). We also recall
that in the available Wiz measured (lower for elongation), the
achieved deformation is stronger in elongation compared to
the shear (Fig. 8, inset). Referring to Fig. 14, given that the
steady-state values of the elongational stress growth coeffi-
cient were not probed because of the sudden drop of its value
after the overshoot due to the threading-unthreading transition
[8], the -elongational stress growth coefficient at the

maximum are reported. These values are above the respective
Trouton values, as expected (since they are not the steady-
state elongational viscosity values). Further, the thinning
slopes of the blends follow those of the linear component,
ie., —0.82 and —0.5 for shear and elongation, respectively.
From these observations, the need for further investigations
of the conformational changes of threaded ring-linear blends
in shear and extension by means of simulations and targeted
neutron scattering experiments is evident.

We now compare in Fig. 15, the measured normal stresses
in shear and elongation. Given the experimental difficulties
identified above, only limited systematic data are presented.
Moreover, for the same reasons, the data for the L185 sample
in shear were obtained with one CPP geometry only, yielding
Ni,app» and are considered acceptable for the present discus-
sion (as also explained in the experimental Sec. Il A above).
This could be corroborated by the fact that the three sets of
data, Ny, for L185 and N; and R185 and their blend at
¢r=0.15, nearly collapse. The first observation from Fig. 14
is that the elongational stress is much larger compared to the
first normal stress difference in shear. This difference is
further enhanced in pure rings compared to linear polymers
(our data suggest respective values of 20 and 7 for the ratio
(0,, — o)/N; at the largest rates investigated). This is not
surprising given that shearing motion involves both normal
and shear stresses. Along these lines, it is interesting to note
that the low-rate R185 ring data in elongation deviate from
the established behavior of linear polymers [65,66], accord-
ing to which the elongational stress is proportional to stretch
rate, not to its square. This conforms to the strong thickening
of rings at low elongational rates due to interlocking [17].
Unfortunately, respective low-Wi normal stress data in
shear rtheometric experiments could not be obtained due to
instrument resolution limitations. However, the application
of Laun’s rule [67,68] suggests that the so-extracted elongational
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FIG. 14. Maximum elongational stress growth coefficients and steady-state shear viscosites as a function of the Rouse—Weissenberg number for ring-linear
blends at 130 °C. Extensional data for L185/R185 at ¢z =0.3 are taken from [8]. Details are reported in the legend. The solid lines to the left denote the values
of 3n, for each sample (larger lines correspond to the pure L185 and R185 components). The slopes —0.5 and —0.82 describe the thinning power-law slopes in
for linear polymers in uniaxial extension and shear, respectively [3,9,11,65]. Error bars calculated by averaging out at least 20 data points in the steady-state are

within the symbol size.
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stress ring data follow the known low-shear-rate scaling
with a power-law exponent of 2 (see Fig. S21 in SM [69]).
Finally, turning to the blends, the same observation holds,
i.e., much larger elongational stress compared to normal
stress in the shear. The data with blend L185/R185 (with
ring fraction not exceeding 0.3) at large rates of deformation
follow the pure ring data (however, the L185 data are appar-
ent as discussed above). This is again consistent with recent
findings pointing to the role of added rings in effectively
reinforcing linear matrices [4,8].

IV. CONCLUSIONS AND PERSPECTIVES

The systematic experimental study of the transient nonlin-
ear rheology of purified entangled polystyrene rings and their
blends with linear polystyrene chains has revealed several
interesting new findings. The transient shear viscosity of
rings barely exhibits undershoot in contrast to larger under-
shoot for linear chains at the same Weissenberg numbers. We
expect that, if present and/or detectable, undershoot will
appear at longer times at the same shear rate for rings, in
comparison to their linear precursors. The shear thinning of
the rings agrees with predictions of a shear slit model (with
shear thinning exponent of —4/7). Furthermore, the stress
response of symmetric and asymmetric ring-linear (with a
smaller molar mass of linear component) blends with ring
fraction up to 30% appears dominated by the linear compo-
nent, as judged by the appearance of the undershoot, scaling
of the fractional overshoot, and the strain at overshoot, as
well as the shear thinning exponent. Both N; and —N, for
rings and their blends exhibit a weak shear-rate dependence.
For Ny, the data for Wig;,,>1 appear consistent with results
from recent nonequilibrium molecular dynamics simulations

which indicate a power-law dependence with the exponent of
about 0.6, whereas for Wig;,,<1, they seem to follow a
linear dependence. Concerning —N,, its rate dependence at
large rates is consistent with predictions of the slit model
(slope of 3/7), whereas there is a crossover to stronger
dependence (slope of about 1) at lower rates corresponding
to Wigi,e ~ 1 and about one shear blob per chain. The ratio
—N,/N; for rings (of about 0.4) exceeds that of linear
polymer solutions with the same number of entanglements
by about a factor of 2. The larger —N,/N; ratio result is sup-
ported by the slit model and recent nonequilibrium molecular
simulations with different polymers.

Comparison of viscosities and normal stresses in shear
and elongation supports the different deformation mecha-
nisms of the ring and linear polymers (with the similar final
shape of extended chains and larger tension in elongation).
The ratio (c,, — o, )/N; is always much larger than 1 as
expected and larger rings and ring-linear blends compared to
linear polymers and increases with the rate of (shear or exten-
sional) deformation. Finally, the ring response at low rates
exhibits a much stronger dependence on the stretch rate com-
pared to linear polymers, with a double power-law exponent.
This evidence consistently conforms to the unique low-rate
thickening of rings.

Overall, the addition of ring polymers has significant
rheological consequences due to topological threading.
Available data indicate that at relatively low fractions of
rings, their blends with linear polymers exhibit features of
both components: (i) signatures of linear in the rubbery
plateau, transient shear overshoot, and undershoot (although
there is a need to clarify the possible role of molar mass asym-
metry, here having considered the case of the lower molar
mass of the linear component), with a Wi-dependence of
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fractional overshoot; and (ii) signatures of the ring in the
elongational stress (following rings) and the ratio of
(minus) second-to-first normal stress differences (follow-
ing linear chains). At a large ring fraction, the normal
stress ratio of blends seems to follow that of pure rings.

The presented data should be useful to develop a deeper
understanding of the intriguing nonlinear response of ring
polymers and their blends. In addition, we hope that it will
trigger further studies as more experimental and simulation
data are clearly needed. Importantly, in addition to simula-
tions and further development and extension of the shear slit
model (to include tumbling and model start-up in the flow),
in situ or ex situ structural investigations of the sheared and
elongated (e.g., [8]) rings and ring-linear blends will shed
light into the mechanisms of shear deformation and possible
tumbling. In this direction, polystyrenes offer the advantage
for easy ex situ studies once quenched to room temperature at
different rates (for example, this was done in [8]). This is the
subject of current and future investigations.
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