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Abstract. We consider a logit model-based framework for modeling joint pricing and
assortment decisions that take into account customer features. This model provides a
significant advantage when one has insufficient data for any one customer and wishes to
generalize learning about one customer’s preferences to the population. Under this model,
we study the statistical learning task of model fitting from a static store of precollected
customer data. This setting, in contrast to the popular learning and earning paradigm,
represents the situation many business teams encounter in which their data collection
abilities have outstripped their data analysis capabilities. In this learning setting, we es-
tablish finite-sample convergence guarantees on the model parameters. The parameter
convergence guarantees are then extended to out-of-sample performance guarantees in
terms of revenue, in the form of a high-probability bound on the gap between the expected
revenue of the best action taken under the estimated parameters and the revenue generated
by a decision maker with full knowledge of the choice model. We further discuss practical
implications of these bounds. We demonstrate the personalization approach using ticket
purchase data from an airline carrier.
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1. Introduction
The increasing prominence of electronic commerce
has given businesses an unprecedented ability to un-
derstand their customers as individuals and to tailor
their services for them accordingly. This benefit is
twofold: customer profiles and data repositories of-
ten provide information that can be used to predict
which products and services are most relevant to a
customer, and the fluid nature of electronic services
allows for this information to be used to optimize
their experience in real time (see Murthi and Sarkar
2003). For instance, Linden et al. (2003) document
howAmazon.comhasusedpersonalization techniques
to optimize the selection of products it recommends to
users for many years, dramatically increasing click-
through and conversion rates as compared with static
sites. Other companies, such as Netflix, have imple-
mented personalization through recommender systems
as described by Amatriain (2013) to drive revenue
indirectly by improving customer experience.

In this paper, we study the application of person-
alization strategies to problems in revenue manage-
ment, specifically assortment optimization and pric-
ing. A key factor of a successful assortment or pricing
strategy is the ability to understand and predict cus-
tomer demand or preferences. In many online applica-
tions, afirmwillhaveenoughcustomer-specificdata (i.e.,
purchase history) to model the preferences of each cus-
tomer individually. However, the e-commerce busi-
ness trend has also led to a faster-paced, more uncertain
business environment, with accelerated product life
cycles and higher rates of change in customer base.
When dealing with new products or new customers,
feature information is useful in leveraging knowl-
edge of demand or preferences across customers. In
such a setting, the goal is to mathematically under-
stand the relationship between customer or situa-
tional features and the resulting purchase decisions.
The logit model is by far the most commonly used

tool for understanding customerpreferences/demand in
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practice (Train 2009). It is ubiquitous in both the op-
erations management (OM) and marketing litera-
tures. In the OM context, this model is often used to
understand the effects of product features on customer
preference, but the framework has also been widely
used to study the effects of customer or situational
features on choice. For example, logit models have
been used as a framework for personalization in various
applications, including conjoint analysis (Arora and
Huber 2001), targeted advertising (Luo et al. 2013),
personalized promotions (Zhang and Krishnamurthi
2004), pricing (Zhang et al. 2014, Xue et al. 2016), and
assortment optimization (Golrezaei et al. 2014). The
logit model has the advantages of interpretability and
simplicity, which are key in many applications. Thus,
evenwith the proliferation of extremely sophisticated
and complex statistical models, the logit framework
remains a useful tool in practice.

In this work, we analyze a unified logit-based mod-
eling framework that captures personalized decision
making for both assortment and pricing decisions. Our
analysis is highly relevant to practical settings be-
cause we explicitly consider the need to estimate the
model from a corpus of past transaction and firm
decision data. Based on the classical M-estimation
theory, we provide sample complexity results for
learning the multinomial logistic model, bounding
the number of transactional data points needed to
achieve any given level of accuracy. This bound can
be applied when data samples represent transactions
in which different customers are shown different
assortments and in which prices are the result of past
decisions. We also give finite-sample results in the
setting where data points are dependent across time
but satisfy a mixing condition. These results help to
build the link between theory and practice, where the
offered assortments are highly personalized and data
are dependent.

To further tailor the estimation error results for rev-
enue management applications, we provide a high-
probability upper bound on the gap between the ex-
pected revenue of the proposed method and the oracle
revenue. Such a bound provides practical insights
because it characterizes the trade-off between the cost
of information, given by the cost of the minimum
number of transactional records to be collected, and
the potential revenue loss.

Although we will focus our exposition on familiar
problems in revenue management, the analysis tech-
nique is not limited to this domain and can be applied
in many other contexts that incorporate estimation of
personalized preferences, such as online advertise-
ment allocation, crowdsourcing task assignment, and
personalized medicine.

2. Literature Review
We focus on two revenue management applications:
assortment optimization and pricing. Assortment
optimization was brought to the attention of the
revenue management community by van Ryzin and
Mahajan (1999). Since that time, assortment optimi-
zation techniques and models have been heavily
researched, with much past work well summarized
in Kök et al. (2015). The multinomial logit model
(MNL), our focus in this paper, is among the most
commonly studied models of customer choice for
assortment optimization (Talluri and van Ryzin 2004,
Rusmevichientong et al. 2010, and Du et al. 2016 are
some examples). Train (2009) gives a good practical
and theoretical summary of the logit model in the
context of choice modeling. A commonly made as-
sumption in the literature on MNL models is that
the utility of each product is linear in the attri-
butes of the product. See Vulcano et al. (2008) and
Rusmevichientong et al. (2010) for discussions of this
assumption. However, incorporating the attributes of
different customers is a more recent trend, which we
discuss later.
Within the assortment optimization literature, two

trends are especially relevant to our work: model
estimation and personalization. Recently, researchers
have investigated the problem of estimating choice
models for assortment optimization. For example,
Vulcano et al. (2008) proposed an algorithm for es-
timating true demand from censored transaction
data and proved convergence of their algorithm.
Rusmevichientong et al. (2010), Ulu et al. (2012), and
Sauré and Zeevi (2013) propose dynamic policies that
balance learning customer choice behavior against
earning short-term revenue. Rusmevichientong et al.
(2010) and Sauré and Zeevi (2013) use the multino-
mial logit model. None of these papers consider
personalization.
Bernstein et al. (2015) approach personalized as-

sortment optimization by establishing one choice
model for each customer type and show properties of
an optimal assortment policy for two products in the
presence of inventory considerations. Golrezaei et al.
(2014) also consider multiple customer types, providing
a practical algorithm for personalization under inven-
tory constraints and proving a worst-case performance
bound (i.e., the competitive ratio) for arbitrary customer
arriving sequence.
Turning to our other application area, there has

been much literature on pricing recently because
of the popularity of dynamic pricing, sometimes
with demand learning. A brief survey of some early
papers in this field can be found in Aviv and
Vulcano (2012). Aydin and Ziya (2009) consider the

Chen et al.: Statistical Learning Approach to Personalization in Revenue Management
2 Management Science, Articles in Advance, pp. 1–15, © 2021 INFORMS



case of customized pricing inwhich customers belong
to either a high- or low-reservation price group and
provide a signal to the seller that gives some infor-
mation as to how likely they are to belong to the
higher-price group. Netessine et al. (2006) and Aydin
and Ziya (2008) each consider a form of personalized
dynamic pricing in their treatments of cross-selling,
in which the offer to each customer is customized,
based on the other items that they have purchased or
are considering purchasing. Carvalho and Puterman
(2005) study a multistage pricing problem and assume
a logit model for demand as a function of the offered
price, and they suggest that their model could be
extended to include customer-specific attributes. In
many cases, models of price discrimination are actu-
ally cast as multiproduct models, where the different
price levels come with different qualifications and ex-
tras as in the airline industry. See Belobaba (1989)
and Talluri and van Ryzin (2004) for examples of
this type. Additionally, Javanmard and Nazerzadeh
(2019) consider a high-dimensional dynamic pricing
problem with multiple products, including feature-
based customer choice and maximum likelihood
estimation (MLE). Qiang and Bayati (2016) also con-
sider dynamic pricing with covariates, showing the
optimality of a greedy least-squares method in
their setting.

Though in some cases personalized pricing is not
recommended because of considerations of customer
satisfaction and legality, there are some areas in
which it is natural, such as in business to business
transactions and even customer transactions where
personalization happens on features such as location
and time rather than on customer demographics and
purchase history. Additionally, personalized pricing
has recently found its way into more traditional in-
dustries such as retail via personalized discounts and
web pricing (Clifford 2012) and airline tickets (made
possible by IATA 2014). From a theoretical perspec-
tive, Li and Jain (2016) develop a model of behavior-
based pricing that, contrary to previous literature,
suggests that behavior-based pricing may increase
revenues and allow firms to offer discounts to loyal
customers, especially when fairness is important to
consumers. On the other hand, in situations where
personalized pricing is illegal or unwise, our ap-
proach is completely valid for pricing applications
with nondemographic features, such as time until
takeoff in the airline industry, that when taken into
account may allow for a better pricing strategy.

In a related paper, Bertsimas and Kallus (2019)
develop a method of extending machine learning
predictions to actionable prescriptions that takes into
account the uncertainty in the estimate of the joint
distribution between outcomes and observable in-
formation. However, in their paper, the observed

outcome depends only on contextual information and
not on the decision, whereas in our framework, the
action is treated as both historical contextual infor-
mation and a decision variable. In another related
paper, Cohen et al. (2016) consider pricing products
that are characterized by a set of features. The value of
the product is a linear function of the features, much
like how we assume that the utility of a product is
linear in the customer features. They analyze an online
algorithm for this setting in the case of adversarially
chosen customer features. By contrast, our setting
is offline and uses previously collected transaction
data, andwe consider randomly chosen features rather
than adversarial.
Other work has treated the problem of pricing an

assortment of products subject to customer choice
behavior. For example, Li and Huh (2011) demon-
strate that under the nested logit model, the total
profit function is concave in the vector of market
shares that map one to one with pricing decisions,
enabling optimal prices to be determined efficiently.
Gallego and Wang (2014) generalize to the case of
product-specific price sensitivities and demonstrate
an optimal markup scheme. In Gallego and Topaloglu
(2014), the authors offer a slightly different ap-
proach and demonstrate a polynomial time algo-
rithm for selecting optimal prices from a discrete
set of candidate prices under the nested logit model.
In contrast to these approaches, Jagabathula and
Rusmevichientong (2016) employ a nonparametric
model and demonstrate a method for estimating
the choice model from data and an approximation
scheme to solve the resulting price and assortment
optimization problem.
Our work is also related to some learning and

earning literature with covariate information, where
the focus of those papers is mainly on regret analysis.
For dynamic pricing, with a parametric demand model,
Cohenet al. (2016) establish the regret ofO(d2 log(T/d))
for a binary search algorithm inspired by the ellipsoid
method, where d is the dimension of a feature vector
and T is the length of the time horizon. With an ad-
ditional sparsity assumption on features (with the
sparsity level s), Ban and Keskin (2020) propose a
policy with expected regretO(s ̅

T̅
√ (log d + logT)), and

Javanmard and Nazerzadeh (2019) develop an online
policy with regret O(s log d logT). Chen and Gallego
(2018) consider a fully parametric demand model and
provide an algorithm with the regret O(T(2+d)/(4+d)
log(T)2). For the assortment optimization problem,
Agrawal et al. (2017, 2019) andChen andWang (2018)
study dynamic assortment optimization without any
covariate information and establish the tight regret
bound of O( ̅̅̅̅

nT
√ ), where n is the total number of

products. Cheung and Simchi-Levi (2017) and Chen
et al. (2018) further incorporate feature information
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into dynamic assortment optimization and establish
an Õ(d ̅

T̅
√ ) regret. However, these dynamic assort-

ment efforts do not take the pricing decision into
consideration.

Our results build on some classical theorems from
statistics, notablyM-estimation theory. Traditionally,
these results have focused on asymptotic results (see,
for example, theorem 3.2.16 in van der Vaart and
Wellner 2000), though finite-sample bounds are be-
coming more useful in modern data-driven applica-
tions. In the nonindependent feature setting, Banna
et al. (2016) provide important results that undergird
our analysis.

The rest of the paper proceeds as follows. In Section 3,
we present our modeling approach and formalize
the algorithm, detailing its application to customized
pricing and assortment optimization. Section 4 is
devoted to proving revenue bounds for the two
problems under various assumptions. The experi-
mental results are provided in Section 5, followed by
the conclusion in Section 6.

3. A Unified Logit Model and
Estimation Guarantees

In this section, we develop a unified logit modeling
framework to integrate decision-specific context in-
formation into revenue management problems. We
consider a decision maker performing joint pricing
and assortment decisions.

In our setting, the decision maker has J potential
products to offer (the set of products is denoted by
[ J]:� {1, 2, . . . , J}). We include another “no-purchase”
option as is common in choice models. Prior to
making pricing and assortment decisions for the
products, the decision maker observes a customer
feature vector z ∈ Z, where Z ⊆ Rd is the space of
possible contexts. We assume the z vectors are scaled
such that z| |∞ ≤ 1 for all z. After observing z, the de-
cision maker selects a price pj for each product j, from
the interval [pmin, pmax] with pmin > 0. By an appro-
priate scaling, we can take pmax � 1. We use the no-
tation p � (p1, . . . , pJ) to denote the vector of current
pricing decisions, and we use P � [pmin, pmax]J to
denote the space of possible pricing decisions. Be-
cause the customer will see the result of the pricing
decision, the price and the context vector combine to
provide a signal of customer choice behavior. This is
done via a personalized utility for each product j,
Uz

j � Vz
j + εj, where we view Vz

j as the base person-
alized utility of product j for the customer with fea-
ture vector z at the price level pj. Here, Vz

j is specified
by a linear model Vz

j � 〈γ∗j , z〉 + β∗j pj for some γ∗j ∈ Rm

and β∗j ∈ R and for 1 ≤ j ≤ J. Without loss of gener-
ality, the mean utility V0 of the no-purchase option is
taken to be zero, for each feature vector z. If the

current customer has feature vector z and the decision
maker offers the assortment S ∈ S of products at
prices specified by the vector p ∈ RJ , the customer
will choose the product in S with the highest Uz

j .
We assume that the εj values are Gumbel distributed
and independent, in which case it is a well-known
result from discrete choice theory (Train 2009) that
in this setting, the customer chooses product j ∈ S
with probability

Pz j;S,p, γ∗, β∗( ) � eV
z
j

1 +∑
l∈S eV

z
l

�
exp 〈γ∗j , z〉 + β∗j pj

{ }
1 +∑

l∈S exp 〈γ∗l , z〉 + β∗l pl
{ } , (1)

for j �� 0. In what follows, we use the variable y
to denote the customer’s decision between offered
productswith y ∈ {0, . . . , J}, where product 0 is used to
represent the no-purchase alternative. We also note
that this model is different from some contextual
assortment optimization models in the existing lit-
erature (Chen et al. 2018) because it involves the price
information pj.
Before discussing the estimation procedure, we

note that our model of the price effect via the pa-
rameters β∗j ∈ R is simply for clarity of exposition
and to highlight the model of the seller’s decision
(i.e., price) as a feature. It is equally possible to model
the effect of price using other, possibly nonlinear,
functions. In particular, if the set of possible prices
is discrete and finite, then using indicator random
variables is a common way of modeling the nonlinear
impact of categorical features in multifactor analysis
of variance (Rao et al. 2008). We demonstrate the
application of this methodology in our numerical
experiments focused on customized pricing as de-
tailed in Section 5.1. This model directly extends to
modeling interaction effects between offered prices
and other features (e.g., via introducing extra fea-
tures). These interaction effects allow us to measure
the change in price sensitivity given specific customer
features, and we have found such effects to be es-
pecially useful in practice.

3.1. Maximum Likelihood Estimation Approach
Nomanager has access to a correct and fully specified
model. Every model must be learned from data. We
focus on issues of learning and statistics, which de-
pend on the estimation procedure, described next.
We assume the decision maker has access to a set

T � {(z1, S1,p1, y1), . . . (zn,Sn, pn, yn)} of npast samples,
each consisting of the associated features, the offered
pricing and assortment decisions, and the resulting
outcome that serves as input to the algorithm. In
this case pi � (pi1, . . . , piJ) is the vector of historical
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pricing decisions for all products in period i.We stress
that, in contrast to the literature on learning and
earning, this data set is assumed to be analyzed all at
once, rather than online. It is also worthwhile to note
that this corpus of data is not the result of a per-
sonalized pricing strategy, or else, the prices would
be a function of the observed features, destroying
the ability to learn the price parameter of the model.
One potential realistic source for these data could be
company data from before any personalization was
implemented, when prices were varied over time,
but on a coarser scale without regard to the customer
features. In this case, our setup would model a firm
that is in the process of implementing personalized
revenue management for the first time. Another set-
ting is when a random pricing strategy is interlaced
with a personalized pricing strategy, and only the
data from the random prices are included in the
training set. Despite the popularity of dynamic learning
and earning in academic literature, we believe that the
static setting considered in this paper is more prevalent
in practice.

In preparation for MLE, we calculate the negative
log-likelihood �n(T ;γ,β)�−1/n∑n

i�1log(Pzi(yi;Si,pi,γ, β)),
where the concrete form of Pzi (yi; Si,pi, γ, β) is given
in (1). We further predetermine a positive number
R such that ‖(γ∗, β∗)‖1 ≤ R, where ‖v‖1 � ∑

i |vi| de-
notes the vector �1-norm, and adopt the regularized/
constrainedMLEwith the constraint that ‖(γ, β)‖1 ≤R.
In practice, one can either tune this R for better per-
formance or simply fix a large-enough number R.
This regularization is useful to control model com-
plexity, to facilitate theoretical analysis, and often
leads to better empirical performance. For our theo-
retical results, we assume ‖(γ∗, β∗)‖1 ≤ R.
To learn the parameters of the model, we minimize

�n(T ;γ, β) over (γ, β) under �1 regularization to get an
estimate for γ and β. It is easy to see that �n(T ;γ, β) is a
convex function and �1 regularization is a convex
constraint on (γ, β). Therefore, any fast convex opti-
mization procedure (e.g., accelerated projected gra-
dient descent, alternating direction method of mul-
tipliers, etc.) can be adopted to solve this optimization
problem. The reader might refer to Boyd et al. (2010)
and Bach et al. (2011) for recent developments on
�1-regularized convex optimization algorithms.

3.2. Applications of the Model
Although we consider pricing and assortment deci-
sions simultaneously, the model can capture equally
well either customized pricing or personalized as-
sortment optimization, with the other decision fixed.
In the case of customized pricing, the seller has a
single product ( J � 1) without inventory constraints

and wishes to offer a price to each customer that will
maximize her revenue. Here, the outcome y is a binary
decision and is equal to one if the customer purchases
the product and zero otherwise. Given a pricing de-
cision p, we can express the expected revenue in this
scenario by

fz p;γ∗, β∗( )
:� p Pz 1;γ∗, β∗( )

, (2)
where Pz(1;γ∗, β∗) � exp{〈γ∗,z〉+β∗p}

1+exp{〈γ∗,z〉+β∗p}. In the case of per-
sonalized assortment optimization, the prices of each
product are taken as fixed, and instead, the seller has
the choice of which assortment S ⊆ S to show each
arriving customer. Because in this case, prices are
fixed, the effect on purchase decisions can be incor-
porated into the product-specific intercept term, and
we suppress dependence on β∗. Offering the assort-
ment S to a customer with feature vector z gives the
following expected revenue:

fz S;γ∗( ) � ∑
j∈S

pjPz j;S, γ∗( )
, (3)

where Pz(j; S, γ∗) � exp{〈γ∗
j ,z〉}

1+∑l∈S exp{〈γ∗
l ,z〉}. In both of these

applications, the seller wishes to learn the personal-
ized choice model from past transaction data. Criti-
cally, this model includes both the effect of an indi-
vidual customer’s features and the effect of the seller’s
pricing and assortment decisions. In the following
section, we provide statistical bounds on the accuracy
of the estimation procedure and show how these
bounds can be extended to provide similar guaran-
tees on the revenue of the seller’s resulting decisions.

3.3. Discussions of Linearity Assumption
In this section, we comment on the linearity as-
sumption of utility parameters and some natural ex-
tensions of the linear model.
First, the recent work (Besbes and Zeevi 2015) has

examined a similar linear demand assumption in the
context of demand learning through dynamic pricing.
They found that evenwhen true demand is nonlinear,
the “price of misspecification” (i.e., the revenue loss
from using a linear demand model) is much smaller
than would be expected.
If one believes, however, that a linear demand

assumption is too strong, we discuss two potential
ways to weaken this assumption. The first is to in-
clude basis functions of features (e.g., B-spline basis)
as part of the feature vector. This requires no change
to the model assumptions, only an increase in the
dimension of the feature vector. Such an approach is
standard in the literature (see, for example, Ban and
Rudin 2019). Another strategy is that one can replace
the linearity assumption with a generalized additive
model (GAM), in which the utility is taken to be a sum
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of arbitrary one-dimensional functions of the fea-
tures: that is,

Vz
j �

∑d
i�1

fij zi( ) + gj pj
( )

,

where fij and gj are univariate smooth functions. Such
an approach remains very computationally tractable
and is common in statistical analysis. We refer the
interested reader to Hastie and Tibshirani (1990) for
more information, including a backfitting algorithm
for learning GAMs from data.

4. Theory
We now proceed to derive high-probability guaran-
tees on the performance of the proposed regularized
maximum likelihood estimate technique. Specifically,
we will show that the parameters recovered by this
estimation technique lie within an L2 ball centered
at the true parameters with high probability, and
quantify the rate at which the radius of this ball
converges to zero as the number of historical samples
grows. Subsequently, we show how this result can be
extended to bound the revenue lost in operational
contexts in comparison with an operator with full
knowledge of the system parameters. Throughout,
we assume that the logit model is well specified (i.e., it
is the correct underlying model of outcome proba-
bilities). Let θ :� (γT

1 , β1, . . . , γ
T
J , βJ)T, with θ∗ the un-

derlying true parameters for generating the observed
data i ∈ {1, . . . ,n} (i.e., Pzi(yi;Si, pi) � Pzi (yi;Si, pi, θ∗)).

We make the following assumptions.

Assumption 1.
a. Conditional independence: the observed outcomes

{yi}ni�1 are independent given each zi, Si, and pi.
b. The vectors {xij :� (zi, pij)T}ni�1 for each j are inde-

pendent across i, though not necessarily identically dis-
tributed. For each i, the distribution is sub-Gaussian with
uniform sub-Gaussian norm ψ.

Conditional independence between transactions is
a standard assumption in the revenue management
literature. By allowing for the possibility of nonid-
entically distributed features and prices, our model
affords the flexibility to capture a number of scenarios
of practical interest. For example, past prices could
have been set by random experimentation or deter-
ministically through a promotion schedule fixed at
the beginning of the selling season. In addition, it is
possible that the distribution of customer attributes
was itself changing over the course of the historical
period. We will only require that the features and
pricing decisions are not too correlated over time in
a sense that will be made precise shortly (see As-
sumption 2b).

We also assume that the customers’ feature vectors
obey a sub-Gaussian distribution. The assumption
of sub-Gaussian feature vectors is a common and
natural assumption for regression analysis because
it captures a wide range of multivariate distribu-
tions. Examples include the multivariate Gaussian
distribution, the multivariate Bernoulli distribution,
the spherical distribution (for modeling normalized
unit-norm feature vectors), and a uniform distribu-
tion on a convex set, among many others. We refer
interested readers to the online appendix and to
Vershynin (2012) for more details.
We note that the assumption of bounded features

directly implies that the feature vectors are sub-Gaussian.
However, the sub-Gaussian norm implied by the
boundedness assumption for a feature vector of di-
mension d could be as large as

̅̅
d

√
in the worst case.

The assumed ψ could be much smaller than this naive
bound in practice.

Assumption 2.
a. Let I j � {i : j ∈ Si}, j ∈ [ J], be the indices of trans-

actions that offer product j in their assortment, with
nj � |I j|.We assume that for all j ∈ [ J], nj ≥ νn, where ν ≡
minj

nj
n ∈ (0, 1J] is a constant.

b. Define ΣI j � 1
nj

∑
i∈I j E(xijxTij). Let λmin(·) denote the

minimum eigenvalue of the argument matrix. We assume
there exists a constant ρ such that λmin(ΣI j) ≥ ρ > 0 for all
j ∈ [n]. We also assume that maxi,j{λmin(E(xijxTij))} > 0.

The first part of this assumption requires that the
seller has sufficiently explored each product. In the
context of assortment optimization, there are J prod-
ucts, and it is impossible to estimate a customer’s
reaction to a product if this product has never been
offered in previous assortments. Intuitively, when ν is
small, some products are explored rarely in the data,
which renders the estimation task difficult. On the
other hand, when ν is close 1

J , the collected data are
more balanced in the sense that each product is ex-
plored roughly the same number of times. In such a
case, the estimation task is simpler, and the revenue
gap becomes smaller.
The second part of this assumption simply requires

that the contextual variables and the pricing decisions
are not collinear. From a theoretical perspective, such
collinear features add no representational capacity to
the model, and in practice, it is standard procedure in
regression modeling to check variables for such col-
linearity and to adjust the model in response (see
Bertsimas andKing 2015 for detailed discussion). This
assumption also highlights the need for managers to
be aware of possible sources of price endogeneity in
their data and to work to minimize these effects to
ensure that the data will be useful for subsequent
price optimization. As a practical example, a retailer
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that only schedules pricing promotions on weekends
is likely to introduce correlations between offered
prices and features leading to incomplete learning
and potentially suboptimal operational decisions.

4.1. Estimation Error Bound
To establish the revenue gap, we first establish the
rate of convergence of the parameter estimates θ̂ to the
true parameters θ∗. Specifically, under Assumptions 1
and 2, wewill prove that ‖θ̂ − θ∗‖2 ≤ C

̅̅̅̅̅
logn
n

√
with high

probability for some constant C. Intuitively, this says
that the parameters of the choice model that are es-
timated from the data converge to the true parameters
at a rate of 1/

̅̅
n

√
(up to a logarithmic factor). Using the

smoothness of our revenue functions, we will show
that this rate of convergence of parameters can be
translated into the revenue space. The formal theorem
statement is given here.

Theorem 1 (Parameter Convergence Rate). Under
Assumptions 1 and 2, we have the following: as long as

n ≥ 4Cψ log(νn)
νmin(ρ,1)2 for some constant Cψ only depending on ψ,

with probability at least 1 − 1/n − 2J/(νn),

‖θ̂ − θ∗‖2 ≤ 2
1 + exp −R( ) + J − 1( ) exp R( )[ ]2

exp −R( )νρ

×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2J d + 1( ) log 2nJ d + 1( )( )

n

√
.

With respect to its dependence on n, this bound
is rate optimal as it matches the Cramer–Rao lower
bound up to logarithmic terms (see, for example,
theorem 6.1 in Lehmann and Casella 1998, p. 124).
Here, J, d, and R are viewed as constants. Providing
a sharp lower bound with respect to the constants
requires an explicit characterization of the inverse
Fisher information matrix, which unfortunately, has
no closed-form expression in this case.

To prove Theorem 1, we first establish the strong
convexity of the loss �n(θ) with strong convexity
parameter η > 0. Let Δ̂ � θ̂ − θ∗ denote the error in the
parameter estimate with respect to θ∗, and recall that
the goal of Theorem 1 is to provide a finite-sample
upper bound on ‖Δ̂‖2. The strong convexity of �n
implies that

η

2
Δ̂
⃦⃦⃦ ⃦⃦⃦2

2
≤ �n θ∗ + Δ̂

( )
− �n θ∗( ) − ∇�n θ∗( )

, Δ̂
〈 〉

. (4)

Because θ̂ is the minimizer of �n, we have �n(θ∗+
Δ̂) − �n(θ∗) � �n(θ̂) − �n(θ∗) ≤ 0. Together with (4) and
using Hölder’s inequality, this implies that

η

2
Δ̂
⃦⃦⃦ ⃦⃦⃦2

2
≤ − ∇�n θ∗( )

, Δ̂
〈 〉

≤
⃦⃦⃦
∇�n θ∗( )⃦⃦⃦

∞ Δ̂
⃦⃦⃦ ⃦⃦⃦

1

≤ ̅̅̅̅̅̅̅̅̅̅
J d + 1( )√ ∇�n θ∗( )⃦⃦⃦

∞ Δ̂
⃦⃦⃦ ⃦⃦⃦

2
.

⃦⃦⃦⃦

This further implies that

Δ̂
⃦⃦⃦ ⃦⃦⃦

2
≤ 2

̅̅̅̅̅̅̅̅̅̅
J d + 1( )√
η

∇�n θ∗( )⃦⃦
∞.

⃦⃦⃦ (5)

Intuitively, (5) tells us that when �n has sufficient
curvature near θ∗ (quantified by η), a small gradient
must imply that the true parameter θ∗ is near optimal
for the empirical log-likelihood function �n.
Therefore, to establish an upper bound on ‖Δ̂‖2 �

‖θ̂ − θ∗‖2 using (5), we only need to (1) establish
an upper bound on ‖∇�n(θ∗)‖∞ and (2) identify the
strong convexity parameter η. These steps are ac-
complished in the following lemmas, with proofs
given in the online appendix. We begin by showing
that ‖∇�n(θ∗)‖∞ can be upper bounded with high
probability.

Lemma 1 (Gradient Bound). Under the assumptions of
Theorem 1, with probability at least 1 − 1

n,⃦⃦∇�n θ∗( )⃦⃦
∞ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log 2nJ d + 1( )( )

n

√
.

Now we show that �n is a strongly convex function
with strong convexity parameter η, which is inde-
pendent of sample size n.

Lemma 2 (Strong Convexity). Under the assumptions of
Theorem 1, as long as n ≥ 4Cψ log(νn)

νmin(ρ,1)2 for some constant Cψ

only depending on ψ, with probability at least 1 − 2J/(νn),
we have strong convexity parameter

η � exp −R( )νρ
2 1 + exp −R( ) + J − 1( ) exp R( )[ ]2 . (6)

Proof of Theorem 1. By plugging both the upper
bound on ‖∇�n(θ∗)‖∞ in Lemma 1 and the strong
convexity parameter η in (6) into (5), we obtain the
result of Theorem 1, which completes the proof of
Theorem 1. ■

4.2. Revenue Bound
Theorem 1 gives us a finite-sample (nonasymptotic)
estimation bound that holds with high probability
(i.e., the theorem tells us that the parameter estimates
θ̂ converge to the true parameters θ∗ at a rate of 1̅

n̅
√ ).

We can now present the associated bound on ex-
pected revenue, which is much more important in the
context of revenue management problems. In what
follows, we fix any customer feature vector z ∈ Z.
Given this feature vector, we define the expected rev-
enue function for the assortment and pricing decision
specified by S ∈ S and p ∈ P under parameters θ by

fz S, p;θ
( ) � ∑

j∈S
pjPz j;S,p, θ

( )
.
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Let (̂S, p̂) and (S∗, p∗) denote the personalized as-
sortment and pricing decisions determined under the
estimated parameters θ̂ and the true parameters θ∗,
respectively. Formally, we have

Ŝ, p̂
( )

:� argmax
S∈S,p∈P

fz S,p; θ̂
( )

and

S∗, p∗( )
:� argmax

S∈S,p∈P
fz S,p;θ∗( )

.

Here, we assume access to an optimization oracle
for solving these optimization problems. For exam-
ple, Li and Huh (2011) show that the problem of
finding optimal market shares, and thereby deter-
mining optimal prices, can be solved as a convex
optimization problem under the nested logit model
of which the multinomial logit is a special case. When
prices are fixed, Talluri and van Ryzin (2004) dem-
onstrate that the optimal assortment is revenue ordered
in the unconstrained case, whereas Rusmevichientong
et al. (2010) provide an efficient algorithm when fea-
sible assortments must meet a cardinality constraint.

After estimating the parameters and determining
the action (̂S, p̂), we are interested in the revenue gap
between the revenue of this decision and that gen-
erated by the oracle decision (S∗,p∗) when the cus-
tomer’s behavior is specified by the true parametersθ∗.
This gap is expressedmathematically as fz(S∗, p∗;θ∗)−
fz (̂S, p̂;θ∗). The next theorem demonstrates that this
revenue gap decreases at a quantifiable rate as the
sample size n is increased. We note that this revenue
gap is an out-of-sample guarantee because such a bound
holds for any new customer with feature vector z.

Theorem 2 (Revenue Convergence Rate). Under
Assumptions 1 and 2, we have that with high probability,
as long as n ≥ 4Cψ log(νn)

νmin(ρ,1)2 , for any feature vector z, the expected
revenue gap as a fraction of the maximal price can be
bounded by

fz S∗,p∗;θ∗( ) − fz Ŝ, p̂;θ∗
( )

≤ C R, ψ
( )
νρ

J4 d + 1( )

×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log 2nJ d + 1( )( )

n

√
,

where C(R, ψ) is a constant only depending on R and ψ.

The proof is a simple consequence of the following
proposition.

Proposition 1. For any offered assortment S ⊆ {1, . . . , J}
and price vector p ∈ P, with high probability, as long as

n ≥ 4Cψ log(n)
νmin(ρ,1)2, the error in our revenue forecast as a fraction of

the maximal price can be bounded as follows:

fz S,p;θ∗( ) − fz S,p; θ̂
( )⃒⃒⃒ ⃒⃒⃒

≤ C R, ψ
( )
2 νρ

J4 d + 1( )

×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log 2nJ d + 1( )( )

n

√

for all bounded feature vectors zwhere C(R, ψ) is a constant
depending only on R and ψ.

Proof of Proposition 1. Fix a customer feature vector
z ∈ Z, a subset of products S ⊆ S, and a price vector
p ∈ P. For a fixed subset of products, the difference
in expected revenue under the true model defined by
θ∗ and our estimated model specified by θ̂ depends
only on the difference in purchase probabilities
they suggest. To bound the difference in these
purchase probabilities for each item j, we observe
that δ

δθjk
Pz(j;S,p, θ) ≤ 1

4 ‖z‖∞ ≤ 1
4 for all k ∈ S for any

value of θ, and z ∈ Z. Therefore, we have the global
bound on the gradient of Pz(j;S,p, θ) with respect to
θ of ‖∇Pz(j;S,p, θ)‖∞ ≤ 1

4. Using this, we can proceed
to bound the forecast error as claimed using this
Lipschitz constant:

| fz S,p;θ∗( ) − fz S, p; θ̂
( )|

≤ ∑
j∈S

pj
⃒⃒⃒
Pz j;S,p, θ∗( ) − Pz j;S, p, θ̂

( )⃒⃒⃒
≤ ∑

j∈S
pj
1
4
‖θ∗ − θ̂‖1

≤ J pmax

4
‖θ∗ − θ̂‖1

≤ J
4

̅̅̅̅̅̅̅̅̅̅
J d + 1( )√ ‖θ∗ − θ̂‖2

.

Substituting in the result of Theorem 1 yields the
desired result with high probability. ■

Proof of Theorem 2. We have

fz S∗,p∗;θ∗( ) − fz Ŝz, p̂z;θ
∗( )

� fz S∗z ,p∗;θ∗
( ) − fz Ŝz, p̂z; θ̂

( )( )
+ fz Ŝz, p̂z; θ̂

( )
− fz Ŝz, p̂z;θ

∗( )( )
≤ fz S∗,p∗;θ∗( ) − fz S∗,p∗; θ̂

( )( )
+ fz Ŝz, p̂z; θ̂

( )
− fz Ŝz, p̂z;θ

∗( )( )
≤ C R, ψ

( )
νρ

J4 d + 1( )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log 2nJ d + 1( )( )

n

√
,

where in the final step, we have applied the result of
Proposition 1 twice. ■
As desired, we have bounded the optimality gap of

the reward generated by the recommended action
(̂S, p̂) as compared with the oracle decision (S∗,p∗).
This bound decreases as O( 1̅

n̅
√ ), up to logarithmic

terms, and thus, quantifies the trade-off between the
value of data and potential lost revenue. We can now
specialize these results to the cases of customized
pricing and assortment optimization. In the case of
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customized pricing, there is only a single product
( J � 1), which allows the bound to sharpen considerably.

Corollary 1 (Customized Pricing). In the setting of cus-
tomized pricing, under Assumptions 1 and 2, we have that
with high probability, as long as n ≥ 4Cψ log(n)

min(ρ,1)2 , for any feature
vector z, the expected revenue gap as a fraction of the
maximal price can be bounded by

fz p∗;θ∗( ) − fz p̂;θ∗( ) ≤ C R, ψ
( )
ρ

d + 1( )

×
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log 2n d + 1( )( )

n

√
.

Corollary 2 (Assortment Optimization). In the setting of
assortment optimization with fixed prices, under Assump-
tions 1 and 2, we have that with high probability, as long as

n ≥ 4Cψ log(νn)
νmin(ρ,1)2 , for any feature vector z, the expected revenue

gap can be bounded by

fz S∗;γ∗( ) − fz Ŝ;γ∗
( )

≤ C R, ψ
( )
νρ

J4d

̅̅̅̅̅̅̅̅̅̅̅̅̅
log 2nJd( )

n

√
.

4.3. Dependent Observations
In some cases, the assumption of independent feature
vectors across customers may be too strong. It is very
possible that customers who have similar features
will arrive in the system close together. One reason for
this correlation of features is that a customer is likely
to communicate about a purchase and thus, influence
similar customers’ purchase decisions. The results of
Sections 4.1 and 4.2 can be generalized to the case of
dependent features by replacing the independence
assumption with a mixing assumption. Intuitively, a
random process is mixing if pairs of events tend to-
ward independence as their intervening distance in
the sequence grows.

There are many notions of mixing (Bradley 2005).
We adopt geometric absolute regularity. LetA and B
be σ fields on a set Ω. Define

b A,B( ) � 1
2
sup

∑
i∈I

∑
j∈J

|P Ai ∩ Bj
( ) − P Ai( )P Bj

( )|{ }
,

where the supremum is taken over all finite partitions
(Ai)i∈I and (Bj)j∈J ofΩwhereAi ∈ A andBj ∈ B for all i, j.
We also define b0 :� 1 and for m � 1, . . . , n,

bm :� sup
j∈ n−m[ ]

b σ xi, i ≤ j
( )

, σ xi, i ≥ j +m
( )( )

,

where σ(·) denotes the σ algebra generated by a set of
random variables.

A stochastic process is said to be geometrically
absolutely regular if bm ≤ exp(−c(m − 1)) for some
constant c > 0.
Consider this generalization of Assumption 1.

Assumption 3.
1. Conditional independence: the observed outcomes

{yi}ni�1 are independent given each zi, Si, and pi.
2. For each j, the vectors {xij :� (zi, pij)T}ni�1 are geo-

metrically absolutely regular with uniform constant c. For
each i, the distribution is sub-Gaussian with uniform sub-
Gaussian norm ψ.

We can now prove the following result, which is a
generalization of our Theorem 1.

Proposition 2. Under Assumptions 2 and 3, we have⃦⃦⃦
θ̂ − θ∗

⃦⃦⃦
2
≤ Õ

̅̅
d
n

√( )
,

where Õ(·) denotes the order of the expression up to log-
arithmic factors.

This result includes finite, irreducible, aperiodic
Markov chains as a special case (Samson 2000). The
proof of Proposition 2 will be relegated to the online
appendix. Proposition 2 can be extended to derive a
revenue bound analogous to the bounds in Section 4.2.

5. Numerical Experiments
The theory we have presented so far suggests that our
method provides an effective technique for estimat-
ing and optimizing data-driven decisions. We per-
formed simulations for both customized pricing and
personalized assortment optimization to demonstrate
the effectiveness of our proposed techniques. Addi-
tionally, we corroborate our theoretical results using
data from a European airline carrier by showing that
themodel performswell with a real data set, evenwith
relatively small training sets.

5.1. Customized Pricing
For customized pricing, we defined a problem class
by specifying a number of prices K ∈ {2, 4, 10} and a
number of features d ∈ {5, 10, 15} and then performed
100 trials for each problem class.
We used a price set of size K by evenly spacing

prices on the interval [5, 20], ordered such that pK ≤
pK−1 ≤ · · · ≤ p1. For the K discrete prices, we adopt a
dummy variable encoding that represents the price
using K − 1 binary features, which requires K coeffi-
cients, including the intercept. We generated the
K − 1-dimensional parameter vector β∗ as the K − 1
highest-order statistics of K independent and iden-
tically distributed (i.i.d.). normal random variables
with mean zero and standard deviation three, sorting
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from lowest to highest with the lowest incorporated
into the intercept. This demonstrates an extension of
our methodology to incorporate price-specific sen-
sitivity parameters, which allow price effects to have a
nonlinear impact on the log odds of the purchase
probability. Here, the first term β1 is incorporated
into the intercept effect to remove a redundant pa-
rameter. We also generated a d-dimensional true
parameter vector γ∗, where each dimension was
chosen i.i.d. from a normal distribution with mean 0
and standard deviation 1.5. The difference in stan-
dard deviations for the two parameters allows the
price effect to dominate the effects of the other fea-
tures. The sorting of the βk is motivated by the fact that
in almost all cases, demand for a product is decreasing
in its price.

We then generated a training set, where each data
point consists of a feature vector z of size d, drawn
i.i.d. from a multivariate normal distribution, a price
drawn uniformly at random from the constructed
set, and a purchase decision given according to the
logistic regression model with the true parameters
γ∗ and β∗. Each method in each problem class was
tested with n � 100, 300, and 500 training data points.
The distribution of the vectors z had mean zero
and a covariance structure such that var(Zi) � 1 and
cov(Zi,Zj) � 0.3, i �� j. We trained the following using
the training data.

1. The Personalized Revenue Maximization (PRM)
algorithm, our maximum likelihood-based approach.
We first estimate the parameters as described in
Section 3.1 and then select prices greedily.

2. The I-PRM algorithm (PRM with the isotonic
constraint that βk < βl for all k < l).

3. A single-price policy.
4. A random forest-based (RF) classification algorithm.
The random forest algorithm (see Breiman 2001)

splits the data intoK subsets by offered price. For each
subset k, RF then trains a forest of predictors, using
customer features as splitting criteria. The output of
forest k is a mapping from the space of feature vec-
tors (in this case, Rd) to a probability of purchase at
price pk. We then used these as inputs to the revenue
optimization in order to choose a price. In training
this model, we used the default splitting criteria (see
Breiman 2001). We experimentedwith crossvalidation
in terms of the leaf size parameter.

We generated a test set of 1,000 data points con-
sisting of feature vectors and a reservation price
generated according to the true model. We then used
the test set to calculate empirical expected revenue
for each method. We also calculated empirical ex-
pected revenue for a policy that knows the true pa-
rameters, selecting the price p∗ that maximizes the
contextual expected revenue fz( p;θ∗) � pPz( p, θ). We
present the performance of each policy as the expected

revenue of that policy divided by this optimal ex-
pected revenue.
Figure 1 shows the performance of all four methods

under four representative problem classes, averaged
across the 100 trials. The I-PRM slightly outperforms
the regular version, and both are significantly better
than a single-price strategy. Not very many samples
are required for the algorithms to recover almost all of
the full-knowledge revenue. The random forest also
does better than single price but not by much. In this
setting, we do not expect it to perform as well as PRM
because PRM has extra information about the un-
derlying generative model.
Recognizing that the generation of simulated

data from an underlying logistic distribution favors
the PRM algorithm over other algorithms, we also
performed tests in the misspecified case. For these
tests, we included second-order effects for each
feature, resulting in underlying demand function
Pz( y � 1; p, β∗, γ∗, ξ∗) � (1 + exp(−(∑K

k�2 β
∗
k I(p � pk) +∑d

j�1 γ∗j zj + ∑d
j�1 ξ∗j (zj)2)))−1. We performed 100 trials

for the same problem classes as in the well-specified
case, generating the features, β∗, and γ∗ in the same
way. The ξ∗ parameters were generated i.i.d. stan-
dard normal. In addition to the PRM, I-PRM, single-
price, and random forest algorithms, we also trained
versions of PRM and I-PRM that knew the form of
the underlying model. In other words, PRM and
I-PRM learned only β̂ and γ̂ parameters, whereas the
new versions learned β̂, γ̂, and ξ̂ parameters. We
dubbed these methods “HO PRM” and “HO I-PRM”
for “higher-order” PRM and I-PRM. We tested all
methods on a 1,000 data point test set generated
with the new underlying demand model. We again
normalized all empirical revenues by the empiri-
cal revenue of the full-knowledge method, which
knows the true underlying distribution. Addition-
ally, we compared results with the oracle model,
the PRM model with the true maximum expected
log likelihood using only the variables available
to the PRM model. This model was simulated by
training a logistic regression model on 10,000 training
data points.
Figure 2 shows the results of these methods over

n � {100, 300, 500, 1,000}. The PRMand I-PRMmethods
converge to the oracle revenue rather than the true
optimal revenue in this case because of the mis-
specified model, but the oracle policy still collects a
large fraction of the full-knowledge policy, more than
95% in smaller problem classes. The HO PRM andHO
I-PRM converge, as expected, to the full-knowledge
method, but for small amounts of data, their per-
formance is comparable with PRM and I-PRM. Also,
for n < 500 the HO methods struggled to converge
because of the larger number of parameters to be
estimated. With small amounts of data, the random
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forest method also struggled and was outperformed
by the PRM and I-PRM methods.

5.2. Assortment Optimization
For the assortment optimization experiments, the
problem classes were given by specifying a number of
products J ∈ {3, 6, 12, 20} and a number of features
d ∈ {5, 10, 15}. As in customized pricing, for each
problem class we performed 100 trials. The revenues
rj, j � 1, . . . , J were evenly spaced on [5, 25]. We also
generated a d × J-dimensional true parameter ma-
trix θ∗, where each matrix entry was chosen i.i.d from
a normal distribution with mean zero and standard
deviation three. To reflect the fact that features are
often correlated with price of product, we sorted the
first two rows of θ∗. We then generated a training
set as in customized pricing, where each data point
consists of a multivariate normal feature vector z
of size d, an assortment drawn uniformly at ran-
dom, and a purchase decision given according to the
multinomial logit model with the true parameters γ∗.
We trained the following using the training data:

1. the PRM Algorithm as applied to the case of
assortment optimization,

2. a “Mean-Effect” Revenue Maximization (MERM)
algorithm that does not use any feature information.
We did not train a tree-based or an empirical single-

assortment method in the multinomial case because
of the exponential number of possible assortments.
The featureless algorithm MERM learned the mean
effect Vj for each product by performing maximum
likelihood estimation on the offered assortment and
purchase decision data as follows:

V̂MERM
1 , . . . , V̂MERM

J

� arg min
V1,...,VJ

1
n

∑n
i�1

−Vji + log 1 +∑
l∈Si

exp Vl{ }
( )[ ]

,

where ji indicates the item purchased for the ith trans-
action. MERM then used thesemean estimates V̂MERM

in an MNL model of choice to pick the best assortment.
Our test set consisted of feature vectors and a product

ranking list generated according to the true model. In
keeping with Talluri and van Ryzin (2004), all assort-
ment policies were restricted to the revenue-ordered
assortments Sk � {1, . . . ,k}, k ∈ [ J].
Figure 3 shows the performance of PRM and

MERM algorithms (both normalized by the full-
knowledge revenue) across a representative selection

Figure 1. (Color online) Performance of PRM, I-PRM, Single-Price, and Random Forest Algorithms in the Well-specified
Setting for Various Problem Classes
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of problem classes. As expected, PRM consistently
and significantly outperforms the featureless approach,
especially as the number of products grows large.

5.3. Customized Pricing for Airline Priority Seating
In addition to simulated experimental results, we
tested our method for data-driven customized pric-
ing with sales data from a European airline carrier.
The data set concerns sales of passenger seating res-
ervations, in which for an extra fee, passengers may
select a seat at booking that will be reserved for them
on the day of their flight. Over a one-month period, a
fraction of customers who purchased domestic air-
line tickets was offered the opportunity to purchase
a seating reservation at a treatment price randomly
selected with equal probability from four candi-
date prices. The resulting data set consists of around
300,000 records with the treatment price offered, data
concerning attributes of the flight, data concerning
attributes of the transaction, and the resulting pur-
chase decision. Other than the treatment price, the
features we used are listed. We also considered in-
teraction effects between each of these features and
the treatment price.

• Booking DW: the day of the week of booking, as a
categorical variable.

• Flight DW: the day of the week of the outbound
flight, as a categorical variable.
• Flight Hour: the hour of the day of the outbound

flight, as a numerical value.
• Return Flight DW: the day of the week of the

return flight, as a categorical variable. This includes
a value indicating that the outbound flight was
one way.
• Days Out: the number of days between the date

of the flight and the date of booking, as a numeri-
cal value.
• Trip Days: the length of the trip in days, as a

numerical value.
• Number of Passengers: the number of passengers

on the reservation, as a numerical value.
• Trip Type: a carrier-provided classification of the

trip, as a categorical variable.
• Fare Class: the fare class of the base ticket, ag-

gregated into three groups, as a categorical variable.
The numerical-valued features are taken to have

linear impact on the log odds of purchase in our base
model. Moreover, as we suggested in Section 3.3, we
also model nonlinear effects using a GAM, described
in more detail.
To allow us to fairly evaluate the extent to which

ourmodel can explain the observed data,we began by

Figure 2. (Color online) Performance of Methods in the Misspecified Setting for Various Problem Classes
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splitting our data into a training set and a testing set,
with the earliest 60% of transaction records used
for training and the latest 40% used for testing. Be-
cause of the relatively limited number of purchases,
the nonpurchase records were down-sampled in the
training set, resulting in 9,635 training examples. This
down-sampling prevents machine learning tech-
niques from overgeneralizing because of the preva-
lence of nonpurchases.

We fit and evaluated our model 100 times over each
of the following training set sizes n ∈ {1,000, 1,750,
2,500, 3,750, 5,000, 9,635} using the following steps.
First, we randomly select n examples from the training
pool and subsequently divide this set into four folds
for cross-validation. We perform feature selection on
each of these folds using a forward model selection
procedure that at each step adds the feature that
most improves the model, and we select the set of
features with the highest average cross-validation
performance. Finally, using these features, we refit
the model on the entire training set and test its per-
formance on the fully held-out test set. In addition to
fitting the linear PRM model, we also fit a variation
that utilizes the modeling flexibility of GAM on the

features selected in this manner. The PRM-GAM
learns a flexible nonlinear relationship between the
numerical features (flight hour, days out, trip days,
number of passengers) and the purchase decision.
Interactions between the treatment price and these
features are learned by fitting a separate nonlinear
relationship for each such feature under each treat-
ment price. Under this model, the effect of categorical
features is learned in the same manner as for PRM.
In Figure 4, we report the average out-of-sample

AUC (Area Under the Receiver Operating Character-
istic Curve) obtained on the held-out test set over the
100 runsof thisprocedure.AUC isa statisticalmeasureof
model quality defined by the area under the curve given
by the false positive rate and true positive rate of a
classifier at each possible decision threshold (see, e.g.,
Fawcett 2006 for an introduction to this metric). If we
compute the purchase probability using a given
model for every testing set transaction record, the
AUC is the fraction of purchase records that is given a
higher probability than nonpurchase records. We
observe that the AUC on the held-out sample grows
from 0.75 to 0.78 as the training set size is increased
from 1,000 to 9,635. Our results also demonstrate the

Figure 3. (Color online) Performance of Methods in the Well-specified Assortment Optimization Setting for Various
Problem Classes
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benefit of modeling numerical features in a flexible
way as the nonlinear GAM outperforms the linear
model-based PRM at every sample size, and this
performance differential seems to grow as the sample
size grows larger.

6. Extensions and Future Work
For a class of personalized revenue management
problems, we demonstrate that learning takes place
reliably by establishingfinite-sample, high-probability
convergence guarantees for model parameters. We
also extend the parameter convergence guarantees to
performance bounds for the joint pricing and assort-
ment problem.

Beyond problems in revenue management, our
approach is relevant in many other situations in
which decisions resulting in discrete outcomes can
benefit from taking into account explicit contextual
information. One such example is in online adver-
tisement allocation in which we would like to predict
click-through rates and make the optimal advertise-
ment selection, taking into account information
we have about each viewer. Another example appli-
cation is crowdsourcing in which we would like
to specialize our work schedule based on informa-
tion we have gathered concerning our workers, the
available tasks, and the interaction between their
attributes. Finally, beyond the specific domain of
operations management, we envision applications in
personalized medicine in which the likelihood of
success of a treatment or the probability of disease
could be predicted and decisions optimized by taking
into account information concerning each patient. It
is of great interest to explore such applications in
the future.
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