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Abstract. We study the dynamic assortment planning problem, where for each arriving
customer, the seller offers an assortment of substitutable products and the customer makes
the purchase among offered products according to an uncapacitated multinomial logit
(MNL)model. Because all the utility parameters of theMNLmodel are unknown, the seller
needs to simultaneously learn customers’ choice behavior and make dynamic decisions on
assortments based on the current knowledge. The goal of the seller is to maximize the ex-
pected revenue, or, equivalently, to minimize the expected regret. Although dynamic as-
sortment planning problem has received an increasing attention in revenue management,
most existing policies require the estimation of mean utility for each product and the final
regret usually involves the number of products N. The optimal regret of the dynamic as-
sortment planning problem under the most basic and popular choice model—the MNL
model—is still open. By carefully analyzing a revenue potential function, we develop a tri-
section-based policy combined with adaptive confidence bound construction, which
achieves an item-independent regret bound of O( ��

T
√ ), where T is the length of selling hori-

zon. We further establish the matching lower bound result to show the optimality of our
policy. There are two major advantages of the proposed policy. First, the regret of all our
policies has no dependence on N. Second, our policies are almost assumption-free: there is
no assumption on mean utility nor any “separability” condition on the expected revenues
for different assortments. We also extend our trisection search algorithm to capacitated
MNLmodels and obtain the optimal regret Õ( �����

NT
√ ) (up to logrithmic factors) without any

assumption on the mean utility parameters of items.
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Supplemental Material: The online supplement is available at https://doi.org/10.1287/moor.2021.1133.
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1. Introduction
Assortment planning has a wide range of applications in retailing and online advertising. Given a large number
of substitutable products, the assortment planning problem refers to the selection of a subset of products (a.k.a.,
an assortment) offered to a customer such that the expected revenue is maximized. To model customers’ choice
behavior when facing a set of offered products, discrete choice models have been widely used, which capture de-
mand for each product as a function of the entire assortment. One of the most popular discrete choice models is
the multinomial logit (MNL) model, which naturally results from the random utility theory where a customer’s
preference of a product is represented by the mean utility of the product with a random factor (McFadden [26]).
In many scenarios, customers’ choice behavior (e.g., mean utilities of products) may not be given a priori and
cannot be easily estimated well because of the insufficiency of historical data (e.g., fast fashion sales or online ad-
vertising). To address this challenge, dynamic assortment planning that simultaneously learns choice behavior
and makes decisions on the assortment has received a lot of attention (Agarwal et al. [1, 2], Caro and Gallien [7],
Rusmevichientong et al. [28], Saure and Zeevi [29]). More specifically, in a dynamic assortment planning prob-
lem, the seller offers an assortment to each arriving customer in a finite time horizon of length T. The goal of the
seller is to maximize the cumulative expected revenue over T periods or, equivalently, to minimize the regret,
which is defined as the gap between the expected revenue generated by the policy and the oracle expected rev-
enue when the mean utility for each product is known a priori.
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Despite a lot of research in the area of dynamic assortment planning under various choice models (see Section 2),
the optimal policy for the most fundamental uncapacitated MNL model still remains open in the literature. A nat-
ural idea to tackle this problem is to conduct some form of maximum likelihood estimation (MLE) of mean utilities
of different products on the fly, and then select the assortment that maximizes the expected revenue based on the
current estimate of mean utilities. However, when the number of products N is large compared with the horizon
length T, accurate estimation of mean utilities is extremely difficult, if not impossible, without additional assump-
tions. In terms of regret analysis, this approach usually incurs a regret that is polynomial in N, which is suboptimal
according to our lower bound result (i.e.,Ω( ��

T
√ )). Therefore, the following question naturally arises: Can we design

dynamic assortment policies without explicit estimation of mean utilities and achieve the optimal regret that is in-
dependent ofN?

In this paper, we provide affirmative answers to this question under the most fundamental and popular unca-
pacitated multinominal logit model. As mentioned above, the estimation of utility parameters will be inaccurate
when N is large and thus existing methods based on maximum likelihood estimation cannot be directly used.
We design several new techniques to address this challenge. Under an MNL model, we leverage the structure
of the optimal assortment in static problems and convert the problem into a dynamic optimization of a carefully
designed potential function. In particular, the seminal results by Gallego et al. [19], Liu and van Ryzin [23], and
Talluri and van Ryzin [30] show that the optimal assortment belongs to the set of revenue-ordered assortments.
More precisely, assuming that N products are revenue ordered with the revenues r1Pr2P⋯PrN, the optimal
assortment must belong to the set {{1}, {1, 2}, ⋯ , {1, ⋯ ,N}}. Therefore, it suffices to consider only the following
level sets of products: for each cutoff parameter θP0, we define the level set to be the products whose revenue is
greater than or equal to θ. Furthermore, motivated by Rusmevichientong et al. [28], we can define the potential
function F(θ) to be the expected revenue when this level set is offered as an assortment.

To construct our policy, we first establish a set of important properties of the potential function F(θ), including
(1) showing that the fixed point of F(θ) is the maximizer θ∗ and leads to the optimal assortment, and (2) setting
up a reference line and comparing F(θ) with the reference line to decide whether F is increasing or decreasing lo-
cally at θ. Based on these properties, we propose a trisection search policy that dynamically searches the maxi-
mizer θ∗ of the potential function and achieves an optimal regret up to logarithmic factors in T. Then we further
develop an approach with adaptive confidence levels to remove the logarithmic factor in T. The matching lower
bound result has also been established, which shows the optimality of the proposed policy. By exploring the
structure of the potential function, we no longer need to estimate N parameters of mean utilities; instead, we
only estimate the expected revenue of level sets at a few cutoff points. Before we present an overview of our tech-
nical result in Section 1.1, we briefly highlight two important advantages of the proposed policies:

1. First, the regrets of our policies have no dependence on the number of products N. This property makes our
result more favorable for scenarios when a large number of potential items is available, for example, online sales or
online advertisement. And a key message behind this result is that by exploring the structure of the problem, the
explicit estimation of utility parameters could be avoided in dynamic assortment planning.

2. Second, our policy is almost assumption-free: we require only that the revenue for each product is upper
bounded by a constant and the knowledge of total selling horizon T, which is usually available in practice. We
have no assumption on the mean utilities, for example, an assumption that no purchase is the most frequent out-
come (Agarwal et al. [1]). Moreover, we do not have any “separation condition” on the expected revenue between
a pair of candidate assortments, which has been assumed in the existing literature (Rusmevichientong et al. [28],
Saure and Zeevi [29]).

Finally, we extend our proposed trisection algorithm to the capacitated setting, in which the sizes of assort-
ments provided are constrained to be no larger than K <N. Our algorithm and analysis show an Õ( �����

NT
√ ) regret

that matches previous upper and lower bounds (Agarwal et al. [1, 2], Chen et al. [8]). The additional
���
N

√
depend-

ency in the regret arises because of the need to estimate individual preference parameters υi for each product
and cannot be avoided in general (Chen and Wang [8]).

Our proposed algorithm is different from the ones in Agarwal et al. [1, 2] in that a trisection framework is em-
ployed on top of assortment optimization and exploration subroutines, whereas in Agarwal et al. [1, 2] the assort-
ment decisions are made from upper confidence bounds (UCBs) or posterior distribution of individual product
preference parameters. Please refer to Remark 1 for more detailed comparisons with the existing work.

1.1. Our Results and Techniques
The main contribution of this paper is an optimal characterization of the worst-case regret for dynamic assort-
ment planning under the MNL model. More specifically, we have the following informal statement of the main
results in this paper.
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Theorem 1. (Informal). There exists a policy whose worst-case regret over T time periods is upper bounded by C1
��
T

√
for some

universal constant C1 > 0. Furthermore, there exists another universal constant C2 > 0 such that no policy can achieve a worst-
case regret smaller than C2

��
T

√
.

To enable such an N-independent regret, we provide a refined analysis of a certain unimodal revenue potential
function first studied in Rusmevichientong and Topaloglu [27] and consider a trisection algorithm on revenue
levels, extending some ideas on unimodal bandits to either discrete or continuous arm domains (Agarwal et al.
[3], Combes and Proutiere [17], Yu and Mannor [33]). An important challenge in our problem is that the revenue
potential function (defined in Equation (5)) does not satisfy convexity or local Lipschitz growth, and therefore
previous results on unimodal bandits cannot be directly applied (see the related work section, Section 2, for de-
tails). Moreover, it is a simple exercise that mere unimodality in multiarmed bandits cannot lead to regret smaller
than

�����
NT

√
, because the worst-case constructions in the classical lower bound in multiarmed bandits are based on

unimodal arms (see, e.g., Bubeck and Cesa-Bianchi [5], Bubeck et al. [6]).
To overcome these difficulties, we establish additional properties of the revenue potential function that are dif-

ferent from classical convexity or Lipschitz growth properties. In particular, we prove connections between the
potential function and the straight line F(θ) � θ, which are then used as guidelines in our updated rules of trisec-
tion. Also, because the potential function behaves differently on F(θ)6θ and F(θ)Pθ, our trisection algorithm is
asymmetric in the treatments of the two trisection midpoints, which is in contrast to previous trisection-based
methods for unimodal bandits (Combes and Proutiere [17], Yu and Mannor [33]) that treat both trisection mid-
points symmetrically.

We also remark that the trisection search policy leads to a regret O( ��������
T lnT

√ ), where the optimal regret should
be H( ��

T
√ ). The removal of additional lnT terms in dynamic assortment selection and unimodal bandit problems

is quite nontrivial, which requires new technical development. In fact, most previous results on dynamic assort-
ment selection (Agarwal et al. [1, 2], Rusmevichientong and Topaloglu [27]) and unimodal/convex bandits
(Agarwal et al. [3], Combes and Proutiere [17], Yu and Mannor [33]) have additional lnT terms in regret upper
bounds. The removal of this ln(T) term is achieved by using confidence bounds with adaptively chosen confi-
dence levels corresponding to different amounts of data collected. At a higher level, our strategy shares a spirit
similar to that of the minimax optimal strategy in the stochastic case (MOSS) algorithm for multiarmed bandits
(Audibert and Bubeck [4]). On the other hand, the analysis is quite different from the analysis of the MOSS algo-
rithm, involving new concentration inequalities and induction arguments tailored specifically to our model and
proposed policy.

We note that a preliminary version of this paper appeared in the 2018 conference proceedings Advances in
Neural Information Processing Systems (Wang et al. [32]). The journal version (1) develops a new adaptive trisection
search policy, which gets rid of the logarithmic dependence on T as compared with the policies in the conference
version (see Section 6); (2) extends the trisection search idea to capacitated MNL models and obtains the optimal
regret bound (see Section 9); and (3) provides the corresponding numerical results in Section 8.

The rest of this paper is organized as follows. Section 2 discusses the related work from both revenue manage-
ment and bandit learning fields. We introduce the model and notations in Section 3. We further define the revenue
potential function and investigate its properties in Section 4. The policy and regret analysis will be provided
in Section 5, and the lower bound results are developed in Section 7. In Section 8, we provide some simulation
studies to illustrate the performance of the proposed policies. Extension to capacitated models is given in
Section 9, and conclusion and discussions follow in Section 10. Some technical proofs are relegated to the online
supplement.

2. Related Work
There are two lines of related work—dynamic assortment planning and unimodal bandits. We will provide a
brief review of both fields and highlight some closely related work.

2.1. Dynamic Assortment Planning
Static assortment planning with known choice behavior has been an active research area since the seminal work
by van Ryzin and Mahajan [31] and Mahajan and van Ryzin [25]. When the customer makes the choice according
to the MNL model, Talluri and van Ryzin [30] and Gallego et al. [19] prove that the optimal assortment will be-
long to revenue-ordered assortments (see Lemma 1 in Section 4). An alternative proof is provided in Liu and van
Ryzin [23]. This important structural result enables efficient computation of static assortment planning under the
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MNL model, which reduces the number of candidate assortments from 2N to N and will also be used in our pol-
icy development.

Motivated by large-scale online retailing, researchers have started to relax the assumption on prior knowledge of
customers’ choice behavior. The question of dynamic optimization of assortments, where the mean utilities of prod-
ucts are unknown and have to be learnt on the fly, has received increasing attention in both the machine learning
and operations management communities (Agarwal et al. [1, 2], Caro and Gallien [7], Rusmevichientong et al. [28],
Saure and Zeevi [29]). Motivated by fast-fashion retailing, the work by Caro and Gallien [7] was the first to study
the dynamic assortment planning problem, which assumes that the demands for products are independent of each
other. The work Rusmevichientong et al. [28] and Saure and Zeevi [29] incorporate MNL choice models into dy-
namic assortment planning and formulate the problem into a online regret minimization problem.

The work by Rusmevichientong et al. [28] is closely related to our paper, and analyzes the same revenue po-
tential function and proposes a golden ratio search algorithm based on the unimodal property of the potential
function. However, using only the unimodal property leads a regret bound involving ln(N) (Rusmevichientong
et al. [28]), which is not N-independent. Moreover, the golden ratio search algorithm imposes a strong
“separability assumption” (see Rusmevichientong et al. [28, equation (8)]), which assumes a constant gap be-
tween the expected revenues of any pair of candidate assortments, which may fail when the number of items N
is large. In this work, we relax the gap assumption and also remove the additional lnN dependency by a more re-
fined analysis of properties of the revenue potential function.

Our paper is also closely related to recent works by Agarwal et al. [1, 2]. These works develop variants of UCB
and Thompson sampling type methods for capacitated MNL assortment models, where the size of each assort-
ment is not allowed to exceed a prespecified parameter K. Here the capacity limit K is usually much smaller than
N. For the capacitated MNL model, the paper by Chen and Wang [8] further establishes a lower bound result,
which shows an Ω( �����

NT
√ ) regret lower bound exists provided that K6N=4. By comparing this result with our re-

sult described in Theorem 1, it is interesting to see that the regret behavior in capacitated and uncapacitated
MNL models is significantly different (see Table 1). Whereas the dependence on N in regret is unavoidable in the
capacitated case, this paper shows that it can be got rid of in the uncapacitated case. We remove this dependence
on N by designing a novel policy that does not explicitly estimate utility parameters.

2.2. Unimodal Bandits
Another relevant line of research is unimodal bandits (Agarwal et al. [3], Combes and Proutiere [17], Cope [18], Yu
and Mannor [33]), in which discrete or continuous multiarmed bandit problems are considered with additional un-
imodality constraints on the means of the arms. Apart from unimodality, additional structures such as “inverse Lip-
schitz continuity” (e.g., |μ(i) −μ( j)|PL|i− j| for some constant L, where μ(i) denotes the mean reward of the i th
arm) or convexity are imposed to ensure smaller regret compared with unstructured multiarmed bandits. However,
both conditions fail to hold for the revenue potential function arising from uncapacitated MNL-based assortment
planning problems. In addition, under the gap-free setting where an O( ��

T
√ ) regret is to be expected, most previous

works have additional lnT terms in their regret upper bounds (except for the work of Cope [18], which introduces
additional strong regularity conditions on the underlying functions). In Cohen-Addad and Kanade [16], a more gen-
eral problem of optimizing piecewise-constant function is considered, without assuming a unimodal structure of the
function. Consequently, a weaker Õ(T 2=3) regret is derived.

2.3. Other Related Works
The works of Cohen et al. [15], Leme and Schneider [22], and Lobel et al. [24] considered sequential contextual de-
cision-making problems, with applications in healthcare management and dynamic pricing. They consider

Table 1. Summary of the state-of-the-art worst-case regrets for dynamic assortment planning under uncapacitated MNL and
capacitated MNL models, where T and N denote the length of the horizon and the number of products, respectively. We
also provide the reference for each result, either the theorem number (when the result is first derived in this paper) or the
reference. Here, the tilde-O notation, Õ, is used as a variant of the standard big-O notation but hides logarithmic factors.

Worst-case regret Uncapacitated MNL Capacitated MNL (K6N=4)

Upper bound O( ��
T

√ ) Õ( �����
NT

√ +N)
(Theorem 3) (Agarwal et al. [1, 2])

Lower bound Ω( ��
T

√ ) Ω( �����
NT

√ )
(Theorem 4) (Chen and Wang [8])

Chen, Wang, and Zhou: Dynamic Assortment Planning Under Multinomial Logit Models
4 Mathematics of Operations Research, Articles in Advance, pp. 1–19, © 2021 INFORMS



sequential cuts to a convex body with hyperplanes and employ novel volume- and surface-based arguments to
upper bound the number of cuts, eventually leading to a generalization of the one-dimensional binary search
idea to multiple dimensions. On the other hand, although we adopt only a single-dimensional searching scheme,
our algorithm fully explores and leverages the structure of the multinomial logit models.

In addition to MNL models, there are some recent works studying dynamic assortment under more complicated
choice models, such as nested logit models (Chen et al. [11]) and contextual MNL models (Chen et al. [9, 10],
Cheung and Simchi-Levi [13]). We also note that to highlight our key idea and focus on the balance between infor-
mation collection and revenue maximization, we study stylized dynamic assortment planning problems following
some existing literature (Agarwal et al. [1, 2], Rusmevichientong et al. [28], Saure and Zeevi [29]) that ignores oper-
ational considerations such as price decisions and inventory replenishment. It is also worthwhile noting that there
are recent works studying pricing decisions and inventory planning under the context of assortment optimization
(Chen et al. [12], Cheung et al. [14], Golrezaei et al. [20]). In particular, the works by Golrezaei et al. [20] and Chen
et al. [12] study assortment optimization under inventory constraints with known choice functions (no learning
component), and thus adopt the competitive ratio (instead of regret) as the performance measure. In contrast, our
main focus is to effectively learn underlying utility parameters in an MNL choice model. The recent work by
Cheung et al. [14] studies the resource allocation problem, where the context vectors and arrival sequence are ad-
versarially chosen but the combination of context vector and action is drawn from a fixed unknown distribution.

3. Model Specification
Let N be a finite set of all products/items with |N | �N, and each item i ∈N is associated with a revenue param-
eter ri > 0 and a utility parameter (a.k.a., preference parameter) vi > 0.1 Throughout this paper, we conveniently
label all items in N as 1, 2, ⋯ ,N. The revenue parameters r1, ⋯ , rN are known to the retailer, who has full know-
ledge of each items’ price/cost, whereas the utility parameters v1, ⋯ ,vN are unknown. Let S � 2N be the set of
all possible assortments. At every time t, a retailer picks an assortment St ∈ S (St ≠Ø) and observes a purchasing
action it ∈ St∪{0}, where it � 0 means no purchase occurs at time t. If a purchasing action is made (i.e., it ≠ 0), the
corresponding revenue rit is collected. It is worthy noting that because items are substitutable, a typical setting of
assortment planning usually restricts each purchase to be a single item.

The distribution of it is modeled by the following MNLmodel:

Pr it � j
[ ] � vj= 1+∑

i∈St vi
( )

j ∈ St;

1= 1+∑
i∈St vi

( )
j � 0:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (1)

Define also R St( ) as the expected revenue by supplementing St to a customer; more specifically,

R St( ) :�∑
j∈St

Pr it � j
[ ] · rj �

∑
j∈St rjvj

1+∑
j∈St vj

: (2)

For normalization purposes, the utility parameter for the “no-purchase” action is assumed to be v0 � 1. Apart
from that, the rest of the preference parameters {vi}Ni�1 are unknown to the retailer and have to be either explicitly
or implicitly learnt from customers’ purchasing actions {it}Tt�1.

The retailer’s objective is to maximize the expected revenue over the T time periods. Such an objective is
equivalent to the “regret minimization,” in which the retailer’s assortment sequence is compared against the op-
timal assortment. More specifically, the goal of the retailer is to design a policy π that generates {St}Tt�1 to minim-
ize the following cumulative regret:

Regret
(
St{ }Tt�1

)
:�∑T

t�1
R S∗( ) −E

π R St( )[ ]
, where S∗ ∈ argmax

S∈S
R S( ): (3)

Here, R(St) � E[rit |St] is the expected revenue the retailer collects on assortment St. For notational convenience,
we define r0 � 0 corresponding to the no-purchase action.

Finally, throughout this paper, we make only the following standard assumption on the revenue parameters
(see, e.g., Agarwal et al. [2, theorem 1]):

Assumption 1. r∞ :�maxi∈N ri61.

We note that upper bound on the maximum revenue is assumed to be one without loss of generality, because
one can always normalize the revenues.
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4. The Revenue Potential Function and Its Properties
The set S consists of 2N different assortments, which poses a significant challenge on both regret minimization
(treating each assortment in S independently results in exponentially large regret) and computation (as it is in-
tractable to enumerate all assortments in S). To address the challenge, we can reduce the number of candidate as-
sortments in S by constraining such assortment selections to “level sets.” In particular, for a given real number
θP0, define the θ-level set to be

Lθ N( ) :� i ∈N : riPθ{ },

that is, as all items whose revenues are not smaller than θ. For notational simplicity, we will use Lθ (omitting N
in the parentheses) when the context is clear. Furthermore, let

P :� Lθ N( ) : θP0
{ }⊆S (4)

be the class of all candidate assortments in S that can be expressed as level sets. It is easy to verify that |P|6N,
which is significantly smaller than |S| � 2N.

It is well known that the optimal expected revenue for the static assortment optimization problem will remain
the same when reducing the candidate assortments from S to P. More precisely, the following lemma is a classic-
al result in revenue management (Gallego et al. [19], Liu and van Ryzin [23], Talluri and van Ryzin [30]) that
shows the optimal expected revenue can be achieved by only considering the restricted level-set class P under
the MNLmodel.

Lemma 1. (Gallego et al. [19], Liu and van Ryzin [23], Talluri and van Ryzin [30]). Under the MNL model, there exists an
subset S��N such that RðS�Þ ¼maxS2SRðSÞ ¼maxS2PRðSÞ.

In other words, Lemma 1 suggests that it suffices to consider level-set-type assortments Lθ and to find θ ∈
[0, 1] that gives rises to the largest R(Lθ).

This motivates the following “potential” function, which takes a revenue threshold θ as input and outputs the
expected revenue of its corresponding level-set assortments:

The revenue potential function: F θ( ) :� R Lθ( ), θ ∈ 0, 1[ ]: (5)

Intuitively, F(θ) is the expected revenue obtained by providing the assortment consisting of all items whose reve-
nues exceed or are equal to θ. The potential function plays a central role in the development of our dynamic tri-
section search algorithm and item-independent regret bounds. The similar idea of studying the expected revenue
of revenue-ordered items was also considered in Rusmevichientong and Topaloglu [27]. But we will derive a
more comprehensive list of properties of the potential function F to facilitate our algorithmic development and
analysis. The derived properties in this section could also be potentially useful for solving other assortment plan-
ning problems under the MNLmodel.

Because item revenues ri are discrete, F is a piecewise-constant function, as illustrated in the left panel of Figure 1,
where S � {s1, ⋯ , sm} are the changing points of F. More specifically, we have the following proposition, and its veri-
fication is easy from the definition and the discretized nature of F.

Figure 1. (Color online) Illustration of the potential function F(θ), the important quantities F∗ and θ∗, and their properties.
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Proposition 1. There exists c0, ⋯ , cmP0 satisfying ci ≠ ci+1 for all i � 0, ⋯ ,m− 1, and S � {s1, ⋯ , sm}⊆{ri}Ni�1, such that
F θ( ) � c0 · 1 θ6 s1[ ] +∑m−1

i�1
ci · 1 si < θ6 si+1[ ] + cm · 1 θ > sm[ ], (6)

where cm � 0.

Define F∗ :�max06 i6m ci � supθP0 F(θ) as the maximum value of F. By Lemma 1, we have the following corol-
lary saying that F∗ equals the expected revenue of the optimal assortment.

Corollary 1. F∗ � R(S∗).
We further establish some more refined structural properties of F. For notational simplicity, let F(x+) :� limy→x+ F(y)

and F(x−) :� limy→x− F(y).
Lemma 2. There exists θ∗ > 0 such that θ∗ � F(θ∗) � F∗.

Lemma 3. For any θPθ∗, we have F(θ)6θ and F(θ)PF(θ+).
Lemma 4. For any θ6θ∗, we have F(θ)Pθ and F(θ)6F(θ+).

The proofs of the above lemmas are given in the supplemental material. Lemmas 2–4 provide a complete picture of
the structure of the potential function F, and most importantly the relationship between F and the central straight line
F(θ) � θ, as depicted in the right panel of Figure 1. In particular, F intersects with the y � x line at θ∗ that attains the
maximum function value F∗, andmonotonically decreases as onemoves away from θ∗, meaning that F is unimodal. Fur-
thermore, Lemmas 3 and 4 show that (1) F is left continuous, and (2) F∗ lies below the y � x line to the right of θ∗ and
above the y � x line to the left of θ∗. This helps us judge the positioning of a particular revenue level θ by simply com-
paring the expected revenue of R(Lθ) with θ itself, motivating an asymmetric trisection algorithm, which we describe
in the next section. It is worthwhile to note that the unimodality and properties in Lemmas 2–4 have already been suffi-
cient for the development of the optimal trisection algorithm. The piecewise constant property is not directly used in
the algorithmic development because each piece can be very small, which makes this property difficult to utilize.

5. Trisection and Regret Analysis
We propose an algorithm based on trisections of the potential function F in order to locate level θ∗ at which the
maximum expected revenue F∗ � F(θ∗) is attained. Our algorithm avoids explicitly estimating individual items’
mean utilities {vi}Ni�1, and subsequently yields a regret independent of the number of items N. We first give a sim-
plified algorithm (pseudocode description in Algorithm 1) with an additional O( �����

lnT
√ ) term in the regret upper

bound and outline its proofs. We further show how the additional logarithmic dependency on T can be removed
by using more advanced techniques.

Algorithm 1 (The Trisection Algorithm)
Input: revenue parameters r1, ⋯ , rn ∈ [0,1], time horizon T

Output: sequence of assortment selections S1,S2, ⋯ ,ST⊆N

1 Initialization: a0 � 0, b0 � 1;

2 for τ � 0,1, ⋯ do

3 xτ � 2
3 aτ + 1

3bτ, yτ � 1
3aτ + 2

3bτ ; . trisection

4 ℓ0(xτ) � ℓ0(yτ) � 0, u0(xτ) � u0(yτ) � 1 ; . initialization of confidence intervals
5 ρ0(xτ) � ρ0(yτ) � 0 ; . initialization of accumulated rewards
6 for t � 1 to 16

⌈
(yτ − xτ)−2 ln(T)

⌉
† do

7 if ℓt−1(yτ) 6 yτ 6 ut−1(yτ) then
8 ρt(yτ), ℓt(yτ),ut(yτ) ← EXPLORE(yτ, t, 1=T2)
9 else

10 ρt(yτ), ℓt(yτ),ut(yτ) ← ρt−1(yτ), ℓt−1(yτ),ut−1(yτ)
11 Exploit the left end point aτ: pick assortment S � Laτ ;

. Update trisection parameters
12 if ut(yτ) < yτ then aτ+1 � aτ, bτ+1 � yτ
13 else aτ+1 � xτ, bτ+1 � bτ

† Stop whenever the maximum number of iterations T is reached.

Chen, Wang, and Zhou: Dynamic Assortment Planning Under Multinomial Logit Models
Mathematics of Operations Research, Articles in Advance, pp. 1–19, © 2021 INFORMS 7



Algorithm 2 (EXPLORE Subroutine: Exploring a Certain Revenue Level �)

Input: revenue level θ, time t, confidence level δ

Output: accumulated revenue ρt(θ), confidence intervals ℓt(θ) and ut(θ)
1 Pick assortment S � Lθ(N ) and observe purchasing action j ∈ S∪{0};
2 Update accumulated reward: ρt(θ) � ρt−1(θ) + rj ; . r0 :� 0

3 Update confidence intervals: [ℓt(θ),ut(θ)] � ρt(θ)
t 6

�������
ln(1=δ)

2t

√
.

To assist with readability, below we list notations used in the algorithm description together with their meanings:
• aτ and bτ are left and right boundaries that contain θ∗; it is guaranteed that aτ6θ∗6bτ with high probability,

and the regret incurred on failure events is strictly controlled.
• xτ and yτ are trisection points; xτ is closer to aτ and yτ is closer to bτ.
• ℓt(yτ) and ut(yτ) are lower and upper confidence bounds for F(yτ) established at iteration t; it is guaranteed

that ℓt(yτ)6F(yτ)6ut(yτ)with high probability, and the regret incurred on failure events is strictly controlled.
• ρt(yτ) is the accumulated reward from exploring level set Lyτ up to iteration t.
With these notations in place, we provide a detailed description of Algorithm 1 to facilitate the understanding.

The algorithm operates in epochs (outer iterations) τ � 1, 2, ⋯ until a total of T assortment selections are made.
The objective of each outer iteration τ is to find the relative position between trisection points (xτ,yτ) and the
“reference” location θ∗, after which the algorithm either moves aτ to xτ or bτ to yτ, effectively shrinking the length
of the interval [aτ,bτ] that contains θ∗ to two-thirds. Furthermore, to avoid a large cumulative regret, the level set
corresponding to the left end point aτ is exploited in each time period within the epoch τ to offset potentially
large regret incurred by exploring yτ.

In Step 8 of Algorithm 1, lower and upper confidence bounds [ℓt(yτ),ut(yτ)] for F(yτ) are constructed using
concentration inequalities (e.g., Hoeffding’s [21] inequality).

These confidence bounds are updated until the relationship between yτ and F(yτ) is clear, or a prespecified number
of inner iterations for outer iteration τ has been reached (set to nτ :� �16(yτ − xτ)−2ln(T2)� in Step 6). Algorithm 2
gives detailed descriptions on how such confidence intervals are built, based on repeated exploration of level set Lyτ .

After sufficiently many explorations of Lyτ , a decision is made on whether to advance the left boundary (i.e.,
aτ+1 ← xτ) or the right boundary (i.e., bτ+1 ← yτ). Below we give high-level intuitions on how such decisions are
made, with rigorous justifications presented later as part of the proof of the main regret theorem for Algorithm 1:

1. If there is sufficient evidence that F(yτ) < yτ (e.g., ut(yτ) < yτ), then yτ must be to the right of θ∗ (i.e., yτPθ∗)
because of Lemma 3. Therefore, we will shrink the value of right boundary by setting bτ+1 ← yτ.

2. On the other hand, when ut(yτ)Pyτ, we can conclude that xτ must be to the left of θ∗ (i.e., xτ6θ∗). We show
this by contradiction. Assuming that xτ > θ∗, because yτ is always greater than xτ (and thus yτ > θ∗) and the gap be-
tween yτ and F(yτ) is at least yτ − xτ,2 the gap will be detected by the confidence bounds, and thus we will have
ut(yτ) < yτ with high probability. This leads to a contradiction. Because xτ is to the left of θ∗, we should increase the
value of the left boundary by setting aτ+1 ← xτ.

We remark that the lengths of epochs O(ln(T)(bτ − aτ)) increase as the lower and upper bounds of θ∗, aτ and bτ,
get close to each other. Additionally, the O(lnT) term reflects the union bounds of concentration of confidence in-
tervals used in the algorithm.

The following theorem is our main upper bound result for the (worst-case) regret incurred by Algorithm 1.

Theorem 2. (Regret Upper Bound). There exists a universal constant C1 > 0 such that for all parameters {vi}Ni�1 and {ri}Ni�1
satisfying ri ∈ [0,1], the regret incurred by Algorithm 1 satisfies

Regret ( St{ }Tt�1) � E
∑T
t�1

R S∗( ) − R St( )
[ ]

6C1

��������
T lnT

√
: (7)

5.1. Proof Sketch
In the rest of the section, we sketch key steps and lemmas toward the proof of Theorem 2. The proofs of technical
lemmas are provided in the supplemental material. We first state a simple lemma showing that the confidence
bounds ℓt(yτ) and ut(yτ) constructed in Algorithm 1 contain F(yτ)with high probability.

Lemma 5. With probability 1−O(T−1), ℓt(θ)6F(θ)6ut(θ) for all t.
The following lemma, based on properties of the potential function F and Lemma 5, establishes that (with

high probability) the shrinkage of aτ or bτ is “consistent”; that is, θ∗ is always contained in [aτ,bτ]. Its proof is
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based on the intuitive two-case analysis discussed before Theorem 2 and will be provided in the supplemen-
tal material.

Lemma 6. With probability 1−O(T−1), aτ6θ∗6bτ for all τ � 1,2, ⋯ ,τ0, where τ0 is the last outer iteration of Algorithm 1.

Using Lemmas 5 and 6, we are able to prove the following lemma that upper bounds the regret incurred at
each outer iteration τ using the distance between the trisection points xτ and yτ.

Lemma 7. For τ � 0,1, ⋯, let T (τ) denote the set of all indices of inner iterations at outer iteration τ. Conditioned on the success
events in Lemma 5 and 6, it holds that

E
∑

t∈T τ( )
R S∗( ) − R St( )6 206ε−1τ lnT, (8)

where ετ � yτ − xτ.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall the definition that ετ � yτ − xτ for outer iterations τ � 0,1, ⋯. Because after each outer iter-
ation we either set bτ+1 � yτ or aτ+1 � xτ, it is easy to verify that ετ � (2=3) · ετ−1. Subsequently, invoking Lemma 6 and
using summation of geometric series, we have

E
∑T
t�1

R S∗( ) −R St( ) 6 206
∑τ0
τ�0

ε−1τ lnT 6 206
∑τ0
τ�0

2=3
( )−τ lnT

6 206 × 3=2
( )τ0 − 1
3=2
( )− 1

× lnT 6 412 × ε−1τ0 lnT,
(9)

where τ0 is the total number of outer iterations executed by Algorithm 1. On the other hand, because at each out-
er iteration τ the revenue level aτ is exploited exactly nτ � 16�(yτ − xτ)−2 ln(T2)� times, we have

TPnτ0P32ε−2τ0 lnT: (10)

Combining Equations (9) and (10), we conclude that⋯ Regret({St}Tt�1) 6 75
��������
T lnT

√ �O( ��������
T lnT

√ ). w

6. Improved Regret with Adaptive Confidence Levels
In this section, we consider a variant of Algorithm 1 that achieves an improved regret of O( ��

T
√ ). The key idea is

to use an adaptive allocation of confidence levels, by allowing larger failure probability as more data are col-
lected. This is because later failures result in smaller accumulated regret. Such a strategy is motivated by the
MOSS algorithm (Audibert and Bubeck [4]) for multiarmed bandits. However, our analysis is quite different
from Audibert and Bubeck’s [4], involving new concentration inequalities and induction arguments tailored spe-
cifically to our model and proposed policy.

We start with a new uniform concentration inequality for adaptively chosen confidence levels.

Lemma 8. Let X1, ⋯ ,XL be independent and identically distributed random variables with mean μ and satisfy a 6 Xi 6 b al-
most surely for all ℓ ∈ [L]. For any δ ∈ (0,1], it holds that

Pr ∀ℓ ∈ L[ ], 1
ℓ

∑ℓ
i�1

Xi − μ

∣∣∣∣∣
∣∣∣∣∣6

�������������������������
2 b − a( )2 ln 8= δℓ( )( )

ℓ

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦P1 − Lδ: (11)

The proof of Lemma 8 is placed in the supplemental material, based on a careful doubling argument with
Hoeffding’s [21] maximal inequality. Compared with the classical Hoeffding inequality with the union bound,

one notable difference is the increasing “failure probability” as ℓ increases (effectively ℓδ in
�����������������
2 ln(8=(δℓ))(b−a)2

ℓ

√
instead of δ). This allows the confidence intervals to be much shorter for large ℓ.

With Lemma 8, we are ready to describe the variant of Algorithm 1, which attains the tight regret bound. Most
steps in Algorithms 1 and 2 remain unchanged, and the changes are summarized below:
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• Step 3 in Algorithm 2 is replaced with

ℓt θ( ), ut θ( )[ ] � ρt θ( )
t

6

���������������
2ln 8= δt( )[ ]

t

√
: (12)

• In Step 8 of Algorithm 1 is replaced with Explore(yτ, t, 1=T); correspondingly, the number of inner iterations is
changed to nτ � 8�(yτ − xτ)−2 ln(8T(yτ − xτ)2)�.

The first change for improving the regret is the way confidence intervals [ℓt(θ), ut(θ)] of F(θ) are constructed.
Instead of using fixed confidence level 1=T2 as in the baseline policy, in the revised policy, varying confidence lev-
els are employed, with “effective” failure probabilities increasing as the algorithm collects more data.

We also remark that similar confidence parameter choices were also adopted in Audibert and Bubeck [4] to re-
move additional ln(T) factors in multiarmed bandit problems.

The following theorem shows that the algorithm variant presented above achieves an asymptotic regret of
O( ��

T
√ ), considerably improving Theorem 2 with an O( ��������

T lnT
√ ) regret bound. Its proof is rather technical and in-

volves careful analysis of failure events at each outer iteration τ of the trisection algorithm. To highlight the main
idea behind the proof, we provide a sketch of the proof in Section 6.1 and defer the entire proof of Theorem 3 to
the online supplement.

Theorem 3. (Rate-Optimal Regret Upper Bound). There exists a universal constant C2 > 0 such that for all parameters {vi}Ni�1
and {ri}Ni�1 satisfying ri ∈ [0, 1], the regret incurred by the variant of Algorithm 1 described above satisfies

Regret St{ }Tt�1
( )

� E
∑T
t�1

R S∗( ) − R St( ) 6 C2
��
T

√
: (13)

Comparing Theorem 3 with Theorem 2, we observe that the additional O( �����
lnT

√ ) term is shaved off. Such im-
provement is made possible mainly by the adaptive choices of confidence levels (more specifically, O(1=δt) in-
stead of O(1=T2)) in Equation (12), which, coupled with a more refined uniform concentration result (Lemma 8)
and more careful inductive/recurrence analysis (Lemmas 9, 10, and 11 in Section 6.1), delivers the desired im-
provement in regret bounds. The refined uniform concentration result (Lemma 8), which plays a central role in
the improvement of an O( �����

lnT
√ ) term, is proved using the Hoeffding’s maximal inequality coupled with a

“doubling” type argument.
We also remark that our proposed algorithm can be made “anytime” (i.e., without prior knowledge of the time

horizon T) by using the standard technique of doubling. More specifically, consider geometrically increasing
“metaepochs” j � 0, 1, 2, ⋯, with metaepoch j consisting of Tj � 2j consecutive time periods. Within metaepoch j,
the proposed Algorithm 1 is run from scratch with T � Tj as the time horizon. By Theorem 3, the cumulative regret

of such an algorithm is O(Rj0
j�0

���
Tj

√ ) �O(Rj0
j�02

j=2) �O 2j0=2( ) , where j0 is the last metaepoch before the algorithm

reaches T time periods. On the other hand, we have that 2j0−16T. Consequently, the cumulative regret of such a
doubling-based algorithm is upper bounded by O( ��

T
√ ).

6.1. Proof Sketch
We sketch key steps and lemmas toward the proof of Theorem 2. The proofs of technical lemmas are provided
in the supplemental material. We first define some notations. Let τ � 0, 1, ⋯ be the number of outer iterations
in Algorithm 1, ετ � (yτ − xτ) be the distance between the two trisection points at outer iteration τ, and
nτ � 8�ε−2τ ln(8Tε2τ)� be the prespecified number of inner iterations. Recall also that θ∗ � F(θ∗) � F∗ is the optimal
revenue value suggested by Lemma 2.

Define the following three disjoint events that partition the entire probabilistic space:
• Event ε1(τ): θ∗ < aτ < bτ;
• Event ε2(τ): aτ 6 θ∗ 6 bτ;
• Event ε3(τ): aτ < bτ < θ∗.
Let τ0 ∈ N be the last outer iteration in Algorithm 1. Let also T (τ)⊆[T] be the indices of inner iterations in outer

iteration τ, satisfying |T (τ)|62nτ almost surely. For ω ∈ {1, 2, 3}, τ ∈ N, and α,β ∈ R
+, define

ψω
τ α,β
( )

:�E
∑τ0
τ′�τ

∑
t∈T τ′( )

R S∗( ) −R St( )
∣∣∣εω τ( ), |aτ −θ∗| � α, |F aτ( ) − aτ| � β

[ ]
: (14)
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Intuitively, ψω
τ (α,β) is the expected regret Algorithm 1 incurs for outer iterations τ,τ+ 1, ⋯ ,τ0, conditioned on

the event εω(τ) and other boundary conditions at the left margin aτ.
The following three lemmas are the central steps in our proof, which establish recurrence relationships among

ψω
τ (α,β), for ω ∈ {1, 2, 3}. The proofs are technically involved and, as we have mentioned, deferred to the supple-

mental material. To simplify notations, we write an�bn or bn� an if there exists a universal constant C > 0 such
that |an|6C|bn| for all n ∈ N.

Lemma 9. (Regret in Case 1). ψ1
τ(α,β) 6 βT+∑τ0

τ′�τ+1supΔ>ετ′ ΔT exp{−nτΔ2} +O(ε−1τ′ ln(Tε2τ′ )).
Lemma 10. (Regret in Case 2). ψ2

τ(α,β) �O(ε−1τ ln(Tε2τ)) +ψ2
τ+1(α′

2,β′2) +ψ3
τ+1(α′

3,β′3) ·O(ln(Tε2τ)=(Tε2τ)) + supΔ>ετ
ψ1

τ+1(α′
1,β′1(Δ))exp{−nτΔ2

τ} for parameters α′
1,β′1(Δ),α′

2,β′2,α
′
3,β′3 that satisfy β

′
1(Δ) 6 Δ and α′

3 6 3ετ.

Lemma 11. (Regret in Case 3). ψ3
τ(α,β) 6 αT.

We are now ready to complete the proof of Theorem 3 by combining Lemmas 10, 9 and 11.

Proof of Theorem 3. We first get a cleaning expression of ψ1
τ(α,β) using Lemma 9. First note that Δ↦Δexp{−nτΔ2}

attains its maximumonΔ > 0 atΔ � ��������
1=2nτ

√
. Also note that nτ � �8ε−2τ ln(8Tε2τ)�, and therefore

��������
1=2nτ

√
6ετ. Subsequently,∑τ0

τ′�τ
sup
Δ>ετ

ΔT exp −nτΔ2
{ }

6
∑τ0
τ′�τ

ετT exp −nτε2τ
{ }

6
∑τ0
τ′�τ

ετT exp −ln Tε2τ
( ){ }

6
∑τ0
τ′�τ

ε−1τ �O ε−1τ0
( )

,
(15)

where the last asymptotic holds because {ετ} forms a geometric series. Subsequently,

ψ1
τ α,β
( )6βT+ ∑τ0

τ′�τ
O ε−1τ′ ln Tε2τ

( )( )
: (16)

It remains to bound the summation term on the right-hand side of the above inequality. Let sτ′ � ε−1τ′
ln(Tε2τ′ ) � ρ−τ′ ln(Tρ2τ′ ), where ρ � 2=3. We then have sτ′ � ρτ0−τ′ [1+ lnρ−2(τ0−τ′)]sτ0 62(τ0 − τ′ + 1)ρτ0−τ′ ln(1=ρ)
for all τ′6τ0. Subsequently, ∑τ0

τ′�τ
sτ′ 6

∑τ0
τ′�0

2 τ0 − τ′ + 1( )ρτ0−τ′ ln 1=ρ
( ) · sτ0 6C · sτ0 : (17)

Therefore,

ψ1
τ α,β
( )6βT+O ε−1τ0 ln Tε2τ0

( )( )
: (18)

We are now ready to derive the final regret upper bound by analyzing ψ2
0(α,β), because the event ε2(0) al-

ways holds because 06θ∗61. Applying Lemma 10 with Lemma 11 and Equation (18), we have for all τ ∈
{0, 1, ⋯ ,τ0} that

ψ2
τ α, β
( ) 6 ψ2

τ+1 α
′
2, β

′
2

( )+O ε−1τ ln Tε2τ
( )( )

+O ετT( ) ·
ln Tε2τ

( )
Tε2τ

+ sup
Δ>ετ

ΔT+O ε−1τ0 ln Tε2τ0
( )( )( )

exp −nτΔ2
{ }

6ψ2
τ+1 α

′
2,β

′
2

( )+O ε−1τ ln Tε2τ
( )( )

+ sup
Δ>ετ

Δ T exp −nτΔ2
{ }

+O ε−1τ0 ln Tε2τ0
( )( )

· exp −nτε2τ
{ }

:

(19)

Using the same analysis as in Equation (15), we know supΔ>ετ
ΔT exp{−nτΔ2} �O(ε−1τ ) and exp{−nτε2τ}61=(Tε2τ).

Subsequently, summing all terms τ � 0, 1, ⋯ ,τ0 together, we have

ψ2
0 α,β
( )6∑τ0

τ�0
O ε−1τ ln Tε2τ

( )( )
+O ε−1τ0 ln Tε2τ0

( )( )
· 1
Tε2τ

�ε−1τ0 ln Tε2τ0
( )

· 1+ 1= Tε2τ0
( )( )

:

(20)
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Finally, note that nτ0 �ε−2τ0 and nτ0 6T, implying that ετ0 �
������
1=T

√
. Plugging the lower bound on ετ0 into the above

inequality, we have ψ2
0(α,β)�

��
T

√
, which completes the proof of Theorem 3. w

7. Lower Bound
We prove the following theorem showing that no policy can achieve an accumulated regret smaller than Ω( ��

T
√ )

in the worst case.

Theorem 4. (Regret Lower Bound). Let N and T be the number of items and the time horizon that can be arbitrary. There exists
revenue parameters r1, : : : , rN ∈ [0,1] such that for any policy π,

sup
v1,⋯,vNP0

Regret St{ }Tt�1
( )

P

��
T

√
384

: (21)

Theorem 4 shows that our regret upper bounds in Theorems 2 and 3 are tight up to
�����
lnT

√
factors and numerical

constants.

7.1. Proof Sketch of Theorem 4
We next give a sketch of the proof of Theorem 4. Because of space constraints, we present only an outline of the
proof and defer proofs of all technical lemmas to the online supplement. Without loss of generality, we assume
the number of items N is even, because an odd number of items can be easily handled by setting rN � vN � 0 for
the last item.

We first describe the underlying parameter values on which our lower bound proof is built. Fix revenue pa-
rameters {ri}Ni�1 as ri � 1 for i odd and ri � 1=2 for i even, which are known a priori. We then consider two con-
structions of the unknown utility parameters {vi}Ni�1:

P0 : vi � 1− 1=64
��
T

√( )
= 0:5N( ) for i odd, vi � 1 for i even;

P1: vi � 1+ 1=64
��
T

√( )
= 0:5N( ) for i odd, vi � 1 for i even:

We note that P0 and P1 also give the probability distributions that characterize the customer random purchasing
actions, and thus we will use Pj A[ ] to denote the probability of event A under the utility parameters specified by
Pj for j ∈ {0, 1}.

The first lemma shows that there does not exist estimators that can identify P0 from P1 with high probability
with only T observations of random purchasing actions. Its proof involves careful calculation of the Kull-
back–Leibler divergence between the two hypothesized distributions and subsequent application of Le Cam’s
lemma to the testing question between P0 and P1.

Lemma 12. For any estimator ψ̂ ∈ {0,1} whose inputs are T random purchasing actions i1, ⋯ , iT, it holds that maxj∈{0,1}
Pj[ψ̂ ≠ j]P1=3.

On the other hand, the following lemma shows that if the policy π can achieve a small regret under both P0

and P1, then one can construct an estimator based on π such that with large probability, the estimator can distin-
guish between P0 and P1 from observed customers’ purchasing actions.

Lemma 13. Suppose a policy π satisfies Regret({St}Tt�1) <
��
T

√
=104 for both P0 and P1. Then there exists an estimator ψ̂ ∈ {0,1}

such that Pj[ψ̂ ≠ j]61=4 for both j � 0 and j � 1.
Lemma 13 is proved by explicitly constructing a classifier (tester) ψ̂ from any sequence of low regret. In particular,

for any assortment sequence {St}Tt�1, we construct ψ̂ as ψ̂ � 0 if 1
T
2
NR

T
t�1R

�(N−1)=2�
j�0 1 2j+ 2 ∈ St

{ }
P1=2 and ψ̂ � 1 other-

wise. Using Markov’s inequality and the construction of ri,vi{ }, it can be shown that if Regret({St}Tt�1) >
��
T

√
=104, then ψ̂

is a good tester with small testing error. Detailed calculations and the complete proof are deferred to the online
supplement.

Combining Lemmas 12 and 13, we proved our lower bound result in Theorem 4.

8. Simulation Results
We present numerical results of our proposed trisection (and its improved variant) algorithm and compare their
performance with several competitors on synthetic data.
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8.1. Experimental Setup

We generate each of the revenue parameters {ri}Ni�1 independently and identically from the uniform distribution

on 0:4, 0:5[ ]. For the preference parameters {vi}Ni�1, they are generated independently and identically from the
uniform distribution on 10=N,20=N

[ ]
, where N is the total number of items available.

To motivate our parameter setting, consider the following three types of assortments: the “single assortment”
S � i{ } for some i ∈N , the “full assortment” S � {1, 2, ⋯ ,N}, and the “appropriate” assortment S � {i ∈N : riP0:42}.
For the single assortment S � i{ }, because the preference parameter for each item is rather small (vi620=N), no sin-
gle assortment can produce an expected revenue exceeding 0:5 × (20=N)=(1+ 20=N) � 10=(20+N). For the full

assortment S � {1, 2, ⋯ ,N}, because RN
i�1rivi→

p
0:45 × 15=N ×N � 6:75 and RN

i�1vi→
p
15 by the law of large num-

bers, the expected revenue of S is around 6:75= 1+ 15( ) � 0:422. Finally, for the appropriate assortment

S � {i ∈N : riP0:42}, we haveRi∈Srivi→p 0:46 × 15=N × 0:8N � 5:52 andRi∈Svi→p 15=N × 0:8N � 12. Therefore, the
expected revenue of S is around 5:52= 1+ 12( ) � 0:425 > 0:422. The above discussion shows that a revenue thresh-
old r∗ ∈ (0:4, 0:5) is mandatory to extract a portion of the items {i ∈N : riPr∗} that attain the optimal expected
revenue, which is highly nontrivial for a dynamic assortment selection algorithm to identify.

8.2. Comparative Methods
Our trisection algorithm with O( ��������

T lnT
√ ) regret is denoted by TRISEC, and its improved adaptive variant (with re-

gret O( ��
T

√ )) is denoted by ADAP-TRISEC. The other methods we compare against include the upper confidence
bound algorithm of Agarwal et al. [2] (denoted by UCB), the Thompson sampling algorithm of Agarwal et al. [1]
(denoted by THOMPSON), and the golden ratio search algorithm of Rusmevichientong et al. [28] (denoted by GRS).
Note that both UCB and THOMPSON proposed in Agarwal et al. [1, 2] were initially designed for the capacitatedMNL
model, in which the number of items each assortment contains is restricted to be at most K <N. In our experi-
ments, we operate both UCB and THOMPSON under the uncapacitated setting, simply by removing the constraint set
when performing each assortment optimization.

In our improved adaptive trisection algorithm (ADAP-TRISEC), we replace the
�����������
2 ln(8=(δℓ))

ℓ

√
confidence interval con-

figuration with
�������������
0:1 ln(8=(δℓ))

ℓ

√
. We observe that a smaller constant value leads to better empirical performance.

We clarify that the 0.1 numerical constant is not “fine tuned” as in, for example, cross-validation practices. In-
stead, we simply choose a reasonably small numerical constant (without any tuning), and other smaller con-
stants lead to similar performance.

Another modification is the GRS algorithm: in Rusmevichientong et al. [28], the number of exploration iterations
is set to 34 ln(2N)=β2, where β �minj≠j′ |R(Lrj) −R(Lrj′ )|, which is inappropriate for our “gap-free” synthetic set-
ting in which β � 0. Instead, we use the common choice of

��
T

√
exploration iterations in typical gap-independent

bandit problems for GRS.

8.3. Results
In Table 2, we report the mean and maximum regret from 20 independent runs of each algorithm on our synthetic
data, with different settings of N (number of items) and T (time horizon length). We observe that as the number of
items (N) becomes large, our algorithms (TRISEC and ADAP-TRISEC) achieve smaller mean and maximum regret com-
pared with their competitors, and ADAP-TRISEC consistently outperforms TRISEC in all settings. Unlike UCB or

Table 2. Average (mean) and worst-case (max) regret of our trisection (TRISEC) and adaptive trisection (ADAP-TRISEC)
algorithms and their competitors on synthetic data, where N is the number of items, and T is the time horizon.

UCB THOMPSON GRS TRISEC ADAP-TRISEC

N,T( ) Mean Max Mean Max Mean Max Mean Max Mean Max

(100, 500) 34.9 38.1 1.28 2.97 10.9 22.4 7.68 7.68 1.99 1.99
(250, 500) 54.3 56.2 2.81 4.95 7.93 34.2 7.57 7.57 2.23 2.23
(500, 500) 73.4 75.5 4.90 4.95 7.02 43.4 7.43 7.43 2.23 2.23
(1,000, 500) 90.3 93.5 8.17 10.7 5.34 45.1 7.44 7.44 2.25 2.25
(100, 1,000) 73.1 78.2 1.36 2.79 139.9 175.0 8.69 8.69 3.90 3.90
(250, 1,000) 113.7 119.3 3.36 5.17 90.1 110.1 8.69 8.69 4.13 4.14
(500, 1,000) 136.8 140.3 5.65 7.64 65.7 113.9 9.38 9.38 3.80 3.80
(1,000, 1,000) 160.8 165.4 9.31 12.4 8.43 22.8 9.77 9.77 3.97 3.97
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THOMPSON, whose regret depends polynomially on N, our TRISEC and ADAP-TRISEC algorithms have no dependency
on N, and hence their regret does not increase with N. Moreover, the separate exploration and exploitation
structure in GRS makes its performance somewhat unstable, which leads to a larger gap between mean and
maximum regrets.

9. Generalization to Capacitated Models
In this section, we show how our trisection-based method could be generalized to capacitated models, achieving
performance guarantees comparable to, and actually even more general than, existing results in the literature.

In a capacitated assortment optimization model, a capacity parameter K <N is prespecified, and capacity con-
straints |St|6K are imposed for all assortments {St}Tt�1 supplied throughout the T time periods. The other parts of
the model remain the same as specified in Section 3. The regret is then defined as

Regret St{ }Tt�1
( )

�∑T
t�1

R S∗( ) −R St( ), where S∗ � argmax
S ⊆N , |S|6K

R S( ):

9.1. A Revised Potential Function and Its Properties
Because of the capacity constraint |St|6K, the potential function F(·) defined in Section 4 is no longer sufficient, as
the optimal assortment might not simply contain products with the highest revenue parameters. This also means
that the level sets Lθ(N )might not be optimal. Instead, under the capacitated setting, for every θ ∈ [0, 1], we define

Mθ,K N( ) :� argmax
S⊆N , |S|6K

∑
i∈S

ri −θ( )vi:

More specifically, Mθ,K (N ) consists of at most K items from N with the largest nonzero values of (ri −θ)vi. The
following result is well known in the literature of static optimization of assortments with capacity constraints
(Rusmevichientong et al. [28]), which we also prove in the supplemental material for completeness.

Lemma 14. There exists θ ∈ [0,1] such that R(S∗) �maxS⊆N , |S|6KR(S) � R(Mθ,K(N )).
A modified potential function G : [0, 1] → R

+ is then defined as

∗G θ( ) :� R Mθ,K N( )( )
, θ ∈ 0, 1[ ]:

Note that graphical illustration of G(θ) is virtually the same as the plots in Figure 1 (piecewise constant and the
same unimodality properties), with the exception for more than N discontinuity points.

In the rest of this subsection, we establish several important properties of G that will be used in algorithm de-
velopment and analysis later. The proofs of these properties are relegated to the supplemental material.

Lemma 15. There exists a unique θ∗ ∈ [0, 1] such that the following hold:
1. θ∗ � G(θ∗) �maxθ∈[0,1]G(θ) �maxS⊆N ,|S|6KR(S).
2. For all θ6θ∗, G(θ)Pθ.
3. For all θPθ∗, G(θ)6θ.

9.2. A Trisection Algorithm for the Capacitated Model
The potential function G constructed in the previous subsection has some notable differences from the potential
function F for uncapacitated models. For example, F is unimodal and piecewise constant, whereas G is monoton-
ically decreasing and not a constant on most of its domain. Nevertheless, an algorithm similar to the trisection
method presented in Algorithm 1 can still be designed for the capacitated setting and potential function G.

Algorithm 3 gives a pseudocode description of the proposed method for the capacitated model. Compared
with Algorithm 1 for the uncapacitated model, there are two significant differences:

1. In the uncapacitated model, we obtain estimates and confidence intervals directly on the values of F(yτ), and
later compare them with the F(θ) � θ reference line. In capacitated models, however, because of the complexity of
the underlying model, we can no longer estimate the values ofG(yτ) accurately; instead, we focus on testing the re-
lationship betweenG(yτ) and yτ directly, which suffices for the sake of the trisection algorithms and is much easier.

2. In the uncapacitated model, estimates of F(yτ) can be obtained by repetitively offering the same level-set as-
sortment Lyτ(N ); in capacitated models, on the other hand, the estimation of G(yτ) becomes much more involved
because Mθ,K(N ) cannot be directly computed without knowledge of {vi}i∈N . To overcome this issue, we use an
UCB-type algorithm to estimate υi and (approximately) computeMθ,K(N ) at the same time.
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Algorithm 3 (The Trisection Algorithm for the Capacitated Model)

Input: revenue parameters r1, ⋯ , rn ∈ [0, 1], time horizon T, capacity constraint K,

numerical constants γ1,γ2,γ3 > 0
Output: sequence of assortment selections S1,S2, : : : ,ST ⊆ N , |St|6K

1 Initialization: a0 � 0, b0 � 1;

2 for τ � 0,1, : : : do
3 xτ � 2

3 aτ + 1
3bτ, yτ � 1

3aτ + 2
3bτ; . trisection

4 nyi �my
i � 0 for all i ∈N ; . initialization of cumulative statistics for yτ

5 nai �ma
i � 0 for all i ∈N ; . initialization of cumulative statistics for aτ

6 ty � ta � 0, s � 0; . initialization of time period counters
7 tmax �max{3γ1(yτ − xτ)−1, 9γ2

2(yτ − xτ)−2} ×N ln3(NT+ 1);
8 ρy � ρa � 0; . accumulated rewards
9 whilemax{ty, ta} < tmax † do

10 Ŝy ←OPTIMIZECAP(K,yτ, {nyi ,my
i });

11 Ŝa ←OPTIMIZECAP(K,aτ, {nai ,ma
i });

12 ρ̄y ←min 1, ρ
y

ty + γ1
N ln3(NT+1)

ty + γ2

������������
N ln3(NT+1)

ty

√
+ γ3

����
lnT
ty

√{ }
;

13 if ρ̄yPyτ then

14 {n̂y, m̂i
y},Δty,Δρy ← EXPLORECAP({nyi ,my

i }, Ŝy, tmax − ty);
15 ty ← ty +Δty, ρy ← ρy +Δρy;

16 {n̂a, m̂i
a}← {n̂a, m̂i

a};
17 else

18 {n̂a, m̂i
a},Δta,Δρa ← EXPLORECAP({nai ,ma

i }, Ŝa, tmax − ta);
19 ta ← ta +Δta;
20 {n̂y, m̂i

y}← {n̂y, m̂i
y};

21 Update counter: s← s+ 1;
. Update trisection EXPLORECAP parameters

22 if ρ̄y < yτ then aτ+1 � aτ, bτ+1 � yτ else aτ+1 � xτ, bτ+1 � bτ
† Stop whenever the maximum number of iterations T is reached.

The exploration in capacitated models is accomplished by two subroutines. The first subroutine, OPTIMIZECAP,
outputs an assortment with size at most K that approximates Mθ,K(N ) in terms of the objectiveRi∈S(ri −θ)vi, for
θ ∈ {aτ,yτ}. The second subroutine, EXPLORECAP, explores the approximately optimal assortment Ŝy,(s) or Ŝa,(s)
and collects data (i.e., purchasing activities of arriving customers) in order to refine the estimates of υi or G(θ).
Note that instead of providing the assortment for one time period, the EXPLORECAP routine provides the assort-
ment repetitively until a no-purchase event occurs, which is inspired by the MNL-bandit (Agarwal et al. [1, 2])
approaches in the previous literature.

To further give insights into the design of Algorithm 3, we first explain some important notations in the
pseudocode description:

• y and a indicate whether the statistic/estimate is for the right trisection point yτ or the left end point aτ. With an
y superscript, the related notation is for yτ, whereas with an a superscript, the related notation is for aτ.

• my
i andma

i are the number of times product i is offered in an assortment explored by subroutine EXPLORECAP.
• nyi and nai are the number of times product i is purchasedwithin subroutine EXPLORECAP.
• ρy and ρ̄y are the estimates of the potential function G(yτ) and are used to determine the relative positions of

(xτ,yτ) and θ∗.
At a higher level, Algorithm 3 uses the same trisection framework as in the uncapacitated case to locate

the optimal revenue level θ∗ (at which G(θ∗) � θ∗) by comparing (estimates) of G(yτ) with yτ. The OPTIMIZECAP

and EXPLORECAP subroutines, additionally, provide more refined controls over which assortments are to be
selected (at certain revenue levels yτ) and how these assortments are explored, in order to control regret and
better estimate G(yτ).
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In the rest of this subsection, we give more details of the OPTIMIZECAP and EXPLORECAP subroutines and estab-
lish several theoretical properties for them.

9.2.1. The OPTIMIZECAP Subroutine. A pseudocode description of the OPTIMIZECAP subroutine is given in Algorithm 4.
Step 3 of Algorithm 4 can be computed efficiently by sorting the items according to their score (ri −θ)v̄i and

choosing the top K items with the largest nonnegative scores. The time complexity of the algorithm is
O(N log N) for each execution of Step 3.

Additionally, the original combinatorial optimization question maxS⊆[N],|S|6KR(S) can be viewed from a joint
optimization perspective. More specifically, the question maxS⊆[N], |S|6KR(S) can be equivalently written as
maxθ∈[0,1] maxS⊆[N], |S|6Kφ(θ,S), where φ(θ,S) �min θ,Ri∈S(ri −θ)vi

{ }
. From this perspective, the variable θ is

similar to the “dual variable” of S from an optimization perspective, and the φ(θ,S) joint function is similar to
the Lagrangian multipliers.

Algorithm 4 (The OPTIMIZECAP Subroutine)

Input: capacity constraint K, parameter θ, statistics {ni ,mi} i∈N
Output: assortment Ŝ

1 For i ∈N compute v̂i � ni=mi and δi �min
{
T,max{ ���

v̂i
√

, v̂i}
������������
24 ln (NT+1)

mi

√
+ 48 ln (NT+1)

mi

}
∗;

2 Define v̄i �min{T, v̂i + δi};
3 Compute Ŝ ← argmaxS⊆N ,|S|6KRi∈S (ri −θ)v̄i;
∗ If mi < 48 ln (NT+ 1) then set v̂i � 0 and δi � T.

Algorithm 5 (The EXPLORECAP Subroutine)

Input: statistics {ni ,mi}i∈N , candidate assortment Ŝ, maximum time periods tmax

Output: updated statistics {ñi,m̃i}i∈N , Δt, Δρ
1 Offer assortment Ŝ repetitively until a customer makes no purchases or a total of tmax time periods are reached;

2 Δt← the number of time periods Ŝ is offered;
3 Δρ← the total rewards collected in the offering time periods;
4 m̃i ←mi + 1 if i ∈ Ŝ and m̃i ←mi if i ∉ Ŝ;

5 ñi ← ñi + no: of time periods in which i is purchased if i ∈ Ŝ and ñi ← ni if i ∉ Ŝ;

The following lemma shows that, with high probability, the estimated preference parameters {v̂i}i∈N are very
close to the true values {vi}i∈N , and furthermore, the constructed upper estimates {v̄i}i∈N are valid with high
probability. Its proof is deferred to the supplemental material.

Lemma 16. With probability 1−O(T−1) uniformly over all calls of OPTIMIZECAP and all i ∈N , it holds that vi6 v̄i and

|v̄i − vi| 6 2δi 6 2min T, 2 max
���
vi

√
,vi

{ } �������������
24 ln (NT+1)

mi

√
+ 82 ln (NT+1)

mi

{ }
.

9.2.2. The EXPLORECAP Subroutine. A pseudocode description of the OPTIMIZECAP subroutine is given in Algo-
rithm 5.

In the rest of this subsection, recall that Ŝ is obtained by finding the top K products associated with the largest
nonnegative values of (ri −θ)v̄i, where v̄i are upper estimates of υi obtained in the OPTIMIZECAP subroutine, and
θ, being either yτ or aτ, is the partition point on which EXPLORECAP is invoked.

Lemma 17. With probability 1−O(T−1) uniformly over all calls of EXPLORECAP, it holds that Δt6 (1+ 2 ln(T)) 1+∑
i∈Ŝvi)

(
.

Lemma 18. Suppose G(θ)Pθ, for θ ∈ {aτ,yτ}. Conditioned on the events of Lemmas 16 and 17, it holds at any time period in τ

that θt− ρ6800N ln3(NT+ 1) + 4
�����������������������
6N t ln3(NT+ 1)

√
+ 2

��������
t ln T

√
with probability 1−O(T−1), where t ∈ {ty, ta} and ρ ∈

{ρy,ρa} correspond to θ ∈ {yτ,aτ}.
The proofs of both lemmas are deferred to the supplemental material. Lemma 17 upper bounds the number of

time periods elapsed in each call of EXPLORECAP, using the preference parameters υi of products offered in the as-
sortment Ŝ. This lemma shows that lengthy exploration of suboptimal assortments Ŝ is rare, thereby upper
bounding the regret accumulated in the EXPLORECAP subroutine. Lemma 18 shows that, to the left of the “critical
point” θ∗ (at which G(θ∗) � θ∗), the deviation between ρ̄y in Algorithm 3 and θ can be upper bounded. With such
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upper bounds, the proposed algorithm can safely detect the relative position of xτ,yτ with respect to θ∗ by com-
paring (an upper bound of) ρ̄y with θ.

9.2.3. Regret Analysis of Algorithm 3. The following theorem is the main regret upper bound on Algorithm 3.

Theorem 5. Suppose Algorithm 3 is run with γ1 � 800, γ2 � 4
��
6

√
, and γ3 � 2. Suppose also that N6T. Then its cumulative re-

gret can be upper bounded by

E
∑T
t�1

R S∗( ) − R St( )6 Õ
�����
NT

√( )
,

where in Õ(·), we omit universal constants and poly-logarithmic terms in N and T.
We note that the choices of constants γ1,γ2,γ3 in Theorem 5 are solely for the convenience of our technical

proofs. In practice, they can be set at much smaller, reasonable levels, or be selected using historical data and
cross-validation.

Remark 1. The Õ( �����
NT

√ ) upper bound in Theorem 5 matches the results in existing works (Agarwal et al. [1, 2]) up to
logarithmic terms in N and T. An improvement of Theorem 5 over Agarwal et al. [1, 2] is that no assumptions on
{vi}i∈N are imposed. In contrast, previous works assume vi61, essentially meaning that the probability of no purchase
is always the largest regardless of the products provided in an assortment. We note that Agarwal et al. [2] is able to re-
move the this assumption but incurs a larger regret bound. Our algorithm and analysis therefore are more general and
practical, being suitable to scenarios in which very popular products/items exist whose υi far exceeds the no-purchase
utility one.

We also note that compared with the UCB (Agarwal et al. [2]) and Thompson sampling (Agarwal et al. [1]) al-
gorithms, our capacitated trisection algorithm uses a more computational efficient optimization step. Indeed, the
optimization step in our algorithm is described at Line 3 of Algorithm 4, in which one only needs to sort the
items according to the values (ri −θ)v̄i and pick the largest K nonnegative ones. In comparison, both the UCB
and Thompson sampling algorithms have to solve the static assortment optimization problem.

9.3. Numerical Study
For any given N (number of items), we generate the revenue and preference parameters of the N items from the
same probability distribution described in Section 8. We then test our capacitated trisection algorithm on the syn-
thetic data with different settings of N, K (the capacity limit of an assortment), and T (the time horizon). In Table 3,
we report the mean and maximum regret from 20 independent runs of each parameter setting and compare the
performance with that of the UCB and Thompson sampling algorithms. From the numerical results, we see that
our capacitated trisection algorithm performs comparably with the UCB algorithm when T is relatively large. This
is expected because our method also utilizes the idea of upper confidence bounds in the construction. Also, from
the literature, it is known that Thompson sampling usually achieves better empirical performance even when the
regret bounds are of the same order. Moreover, as we have explained in Remark 1, our algorithm is computational-
ly more efficient, and runs about 10 times faster than the UCB and Thompson sampling algorithms with the param-
eter settings reported in Table 3.

Table 3. Average (mean) and worst-case (max) regret of the UCB and Thompson sampling algorithms our capacitated
trisection algorithm (CAP TRISEC) on synthetic data, where N is the number of items, K is the capacity limit of an assortment,
and T is the time horizon.

UCB THOMPSON CAP TRISEC

N,K,T( ) Mean Max Mean Max Mean Max

(20, 4, 100,000) 1,997 4,828 74 107 12,325 14,564
(20, 4, 1,000,000) 19,783 44,504 129 228 27,095 40,601
(30, 5, 100,000) 1,429 3,573 116 177 17,252 18,888
(30, 5, 1,000,000) 17,107 46,599 196 309 36,766 50,284
(40, 6, 100,000) 2,008 3,666 159 235 22,201 23,797
(40, 6, 1,000,000) 28,262 56,468 231 314 58,318 77,689
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10. Conclusion and Future Directions
In this paper, we consider the dynamic assortment planning problem under uncapacitated MNL models and de-
rive an optimal regret bound, which is independent of N.

There are a few interesting future work. In this paper, we assume that the time horizon length T is known. It is
interesting to design “horizon-free” algorithms that adapt to the time horizon T. Moreover, the uncapacitated
MNL can be viewed as a capacitated MNL with the capacity upper bound K �N. It is known from Agarwal et al.
[2] and Chen and Wang [8] that the optimal regret is H( �����

NT
√ ) when K6N=4, and from this paper that the opti-

mal regret is H( ��
T

√ ) when K �N. It is interesting to investigate the phase transition from H( �����
NT

√ ) to H( ��
T

√ ).
Finally, another direction is to investigate “instance-optimal” regret bounds whose regret depends explicitly on
the problem parameters {ri}ni�1, {vi}ni�1 and matching corresponding (instance-dependent) minimax lower bounds
in which {vi}ni�1 are known up to permutations. Such instance-optimal regret might potentially depend on
“revenue gaps” Δi � R(S∗) −R(Lri), where S∗ is the optimal assortment, and ri is the revenue parameter of the
item with the i th largest revenue.
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Endnotes
1 From random utility theory, we have vi � exp(ui), where ui is the underlying mean utility. For the ease of presentation, we will call υi the
“utility parameter” because we only use υi throughout this paper.
2 By Lemma 3, we have yτ − F(yτ)Pyτ − F(xτ)Pyτ − xτ.
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