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Abstract. The prevalence of e-commerce has made customers’ detailed personal informa-
tion readily accessible to retailers, and this information has been widely used in pricing de-
cisions. When using personalized information, the question of how to protect the privacy of
such information becomes a critical issue in practice. In this paper, we consider a dynamic
pricing problem over T time periods with an unknown demand function of posted price and
personalized information. At each time ¢, the retailer observes an arriving customer’s per-
sonal information and offers a price. The customer then makes the purchase decision, which
will be utilized by the retailer to learn the underlying demand function. There is potentially
a serious privacy concern during this process: a third-party agent might infer the personal-
ized information and purchase decisions from price changes in the pricing system. Using
the fundamental framework of differential privacy from computer science, we develop a
privacy-preserving dynamic pricing policy, which tries to maximize the retailer revenue
while avoiding information leakage of individual customer’s information and purchasing
decisions. To this end, we first introduce a notion of anticipating (e, 0)-differential privacy
that is tailored to the dynamic pricing problem. Our policy achieves both the privacy guar-
antee and the performance guarantee in terms of regret. Roughly speaking, for d-dimen-
sional personalized information, our algorithm achieves the expected regret at the order of
O(¢"VaBT) when the customers’ information is adversarially chosen. For stochastic person-
alized information, the regret bound can be further improved to O(Vd2T + e~2d?).
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1. Introduction

Expedia) and auto dealers like Tesla utilize personal-
ized pricing to their advantage when conducting sales

The increasing prominence of e-commerce has given
retailers an unprecedented power to understand cus-
tomers as individuals and to tailor their services ac-
cordingly. For example, personal information is
known to be used in pricing on travel websites (Han-
nak et al. 2014) and Amazon (Chen et al. 2016); Linden
et al. (2003) illustrate how personal information is
used in Amazon recommender systems to achieve a
dramatic increase in click-through and conversion
rates. Although personalized pricing may involve
complicated legal issues in many domains, it has been
adopted or considered in several key industries, such
as air travel, hotel booking, insurance, and ride shar-
ing. For example, according to Tringale (2018), “Hotel
websites such as Orbitz (whose parent company is

with a customer. Even Uber has dabbled in personal-
ized pricing by offering ‘premium pricing’ to predict
which users are willing to pay more to go to a certain
location.” As reported by Mohammed (2017), when
using Orbitz, for identical flights, hotel, and type of
room, the price of the traveling package found on a
laptop was 6.5% more than the price offered on the
Orbitz app. Moreover, in practice, instead of directly
charging different prices, the e-commerce platforms
usually use the discount or promotions to implement
personalized pricing strategies.

Although the availability of personal data (e.g., lo-
cation, web search histories, media consumption, so-
cial media activities) enables targeted services for an
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individual customer, it poses significant privacy is-
sues in practice (e.g., Apple Differential Privacy Team
2017). Many existing privacy-protection approaches
are rather ad hoc by “anonymizing” personal infor-
mation. However, such ad hoc anonymization leads
to two issues. First, it is difficult to quantify the level
of privacy. Second, it has been shown that a deano-
nymization procedure can easily jeopardize privacy.
Examples include the deanonymization of released
AQOL search logs (Barbaro and Zeller 2006) and
movie-watching records in Netflix challenges (Nar-
ayanan and Shmatikov 2008). Therefore, personalized
operations management urgently calls for mathemati-
cally rigorous privacy-preserving methods to prevent
personal information leakage in online decision mak-
ing. On one hand, personalized revenue management
has received a significant amount of attention in re-
cent operations literature (see, e.g., Cheung and
Simchi-Levi (2017), Ban and Keskin (2021), and refer-
ences therein). On the other hand, the question of how
to protect an individual’s privacy has not been well
explored in the existing literature.

In this paper, we study how to systematically pro-
tect an individual’s privacy in the dynamic pricing
problem with demand learning. Given T time periods,
a potential customer arrives at each time ¢, and the re-
tailer receives x; containing information about the
incoming customer, such as age, location, purchase
history and ratings, and credit scores, among other
things. We consider a very general personalized set-
ting where the customers are heterogeneous, and thus
the feature {x,},_, does not necessarily follow the same
distribution. By observing the personal information x;,
the retailer offers the customer a price p; € [0,1]. The
customer then makes y; € R, where the random de-
mand y; follows a dgenemlzzed linear model of a feature
vector ¢(x;, pr) €R? (see (1)) and the retailer collects
revenue p;l;. The objective of the retailer is to maxi-
mize the expected revenue over the entire T time peri-
ods or, more specifically, E[Zt 1Pyl As this paper
focuses on how to protect an individual’s sensitive in-
formation, we consider a stylized setting of pricing a
single product with unlimited inventories available.

Because of the personalized nature, the aforemen-
tioned pricing procedure involves the use of individu-
als’ sensitive information, such as customers’ personal
information, characterized by x; and their purchase
history, designated by y; (e.g., whether a purchase
was made at time f). Thanks to secured internet com-
munication channels, the information (x;, py, y;) at time
t is usually securely transmitted and thus only re-
vealed to the retailer and the particular customer com-
ing at time t. However, although the information at
time ¢ is not directly accessible to future customers,
the sensitive information is not completely shielded
from outside third-party agents (a.k.a. attackers or

adversaries) because of the ripple effects of historical
customers’ data on future pricing decisions in a data-
driven pricing system. Indeed, a third-party agent
who observes his own posted prices in the future can
potentially infer an individual’s personal information
x¢ and purchase decision y;. We provide two examples
showing how the sensitive data at time ¢ could be po-
tentially breached and why such privacy leakage
could incur serious challenges to the integrity of the
underlying pricing system.

o Leakage of purchase activity vy For sensitive com-
modities such as medications, customers’ purchasing
decisions {y;} must be well protected from the public,
as such purchases may potentially reveal purchasers’
underlying medical conditions. Some dynamic pricing
policies would increase prices facing increased sales
volumes for a higher profit. Such behavior might inad-
vertently leak information about y; to a third party via
the fluctuation of prices. For example, a third-party
agent might place orders immediately before and after
a person of interest, and if the agent sees a slight spike
in his or her received prices might be able to infer the
purchase decision y; of the person of interest.

o Leakage of customers’ personal information x,;: When
making the price decision pt for an arriving customer
at time £, the retailer makes use of the customer’s per-
sonal information x,. Some components of x;, such as
the customer’s age, credit history, and prior pur-
chases, are highly sensitive and should be protected.
Consider a natural pricing policy that is highly
“local” to personal information (e.g., posting similar
prices to future customers with a similar profile to
customer f). A third-party agent could arrive before
and after a person of interest with guesses of personal
information to detect whether there are noticeable
changes in the prices. Then, the agent would be able
to infer to some degree about the personal informa-
tion x; of the individual of interest.

In summary, it is vital to develop systematic and
mathematically rigorous policies that provably protect
customers’ privacy. As we previously discussed, simple
data anonymization lacks a theoretical foundation and
can be jeopardized. On the other hand, the notion of dif-
ferential privacy (DP), which was proposed in the com-
puter science field (Dwork et al. 2006a, b), has laid a
solid foundation for private data analysis and achiev-
ed great success in industries. The DP not only is a gold
standard notion in academia but also has been widely
adopted by companies such as Apple (Apple Differen-
tial Privacy Team 2017), Google (Erlingsson et al. 2014),
and Microsoft (Ding et al. 2017) and government agen-
cies such as the U.S. Census Bureau (Abowd 2018). The
aim of this paper is therefore to build on the differential
privacy notion to design mathematically rigorous pri-
vacy policies with provable utility (regret) guarantees
for the dynamic personalized pricing problem.
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1.1. Our Contributions
The major contributions of this paper can be summa-
rized as follows.

1.1.1. Near-Optimal Regret of Provably Privacy-Aware
Pricing Policies. Building on the notion of anticipating
differential privacy, we propose a privacy-aware per-
sonalized pricing algorithm that enjoys rigorous re-
gret guarantees. More specifically, in a general setting,
when the personalized information of each coming
customer can be adversarially chosen, our policy
achieves a regret upper bound of O(e'Vd3T), where
¢ is the parameter in DP (a smaller ¢ implies a stron-
ger privacy preservation of the resulting algorithm), 4
is the dimension of the feature map ¢(x;,p;), T is the
time horizon, and O(-) hides logarithmic factors (see
Theorem 1). The VT dependency on the time horizon
T in this regret upper bound is optimal (Broder and
Rusmevichientong 2012).

In addition to the regret upper bound for the gener-
al personalized information setting, we also study a
“stochastic” setting in which the customer’s personal
information {x;} is assumed to be stochastic and inde-
pendently and identically distributed (i.i.d.) from an
unknown nondegenerate distribution. We remark that
this is a common assumption/setting studied in the
existing literature (Qiang and Bayati 2016, Miao et al.
2019). In this setting, with some changes of hyperpara-
meters of our proposed algorithm, an improved regret
upper bound of O(dVT +¢e2d%) can be proved (see
Theorem 2). One attractive property of this bound is
that it separates the dependency on conventional
problem parameters (i.e.,, d and T) from the privacy-
related parameter (i.e., ¢€). The dominating term (with
T — o) in this regret bound—namely, the O(dVT)
term—is optimal in both d and T, as shown in Dani
et al. (2008).

In both the general setting and the stochastic set-
ting, the regret upper bounds of either O (e~ Vd3T) or
O@dVT + ¢72d?) also characterize the trade-offs be-
tween customers’ privacy protection and the revenue
(surplus) of the seller under the designed policy. More
specifically, the ¢ > 0 parameter characterizes the level
of customers’ privacy protection, with a smaller ¢ cor-
responding to stronger protection against malicious
agents. Clearly, as both regret upper bounds depend
inversely on ¢, it shows that as the seller seeks stron-
ger protection over the privacy of customers’ person-
alized data, the more he or she will suffer from
decreased revenue (and a larger regret). This revenue
loss is due to additional efforts/randomization re-
quired for data privacy protection.

Finally, the privacy requirements imposed on the
seller’s policy also have interesting implications on
consumer surplus. In Section 9.2 of this paper, we pro-
vide numerical results to characterize the trade-offs

between consumers’ privacy protection and consumer
surplus. We find that as the implied privacy protec-
tion becomes weaker (i.e., the seller having less ability
to discriminate against customers based on their per-
sonal data and features, resembling a transition from
the first-degree to the third-degree price discrimina-
tion), the consumer surplus increases because the sell-
er extracts less of the consumer surplus from his or
her limited ability to carry out price discrimination.

1.1.2. Technical Contributions. Our proposed frame-
work for privacy-preserving personalized dynamic
pricing makes use of several existing privacy-aware
learning /releasing techniques, such as the Analyze-
Gauss method in online principal component analysis
(Dwork et al. 2014), the tree-based aggregation tech-
nique for releasing serial data (Chan et al. 2011), and
differentially private empirical risk minimization meth-
ods (Chaudhuri et al. 2011, Kifer et al. 2012). On the
other hand, the development and analysis of our pro-
posed method make several key technical contributions
to the general topic of privacy-aware sequential deci-
sion making in revenue management problems, which
we briefly summarize as follows:

1. One salient feature of this paper is the inclusion of
customers’ personal information x; as sensitive data
that need to be protected, which is different from exist-
ing works (Tang et al. 2020), where only purchase ac-
tivities y; are regarded as sensitive data (see Section 2
for more discussions). The objective of protecting pri-
vacy in {x;} presents two technical challenges. First, as
{x;} and, subsequently, the feature representations {¢, }
are sensitive data, one cannot directly apply the private
follow-the-regularized-leader approach in Tang et al.
(2020) to the dynamic pricing problem. Furthermore,
the sensitivity of {x;} implies the sensitivity of {p;} as
well, because prices offered to incoming customers
must be strongly associated with customers” personal
information to achieve good revenue performances. To
address these challenges, we build our DP setting on
the notion of anticipating DP (Shariff and Sheffet 2018),
which excludes prices in prior selling periods from the
outcome sets of a randomized algorithm.

2. The demand rate function f as a function of price p
and personal information x is modeled in this paper as
a generalized linear model within the exponential fami-
ly. Despite its apparent similarity to linear models, such
generalization results in significant challenges when
privacy concerns are considered. In fact, this is still an
open problem for generalized linear contextual bandit
under the DP guarantee. More specifically, the results
of Shariff and Sheffet (2018) on privacy-aware linear
bandits rely heavily on the fact that the ordinary least
squares solution is in a closed form with two simple
sufficient statistics: the sample covariance matrix XX
and the response-weighted feature vector X'y. With
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the postprocessing property of DP (which we briefly
discuss in Section 4.4), it suffices to obtain privacy-
preserved copies of XT X and X'y at each time. By con-
trast, parameter estimates in generalized linear models
are usually obtained using maximum likelihood esti-
mates (MLEs), which do not have simple sufficient sta-
tistics. It is nearly impossible to guarantee the privacy
and a nontrivial regret simultaneously if the MLE is
updated at every period. To overcome this challenge,
we make the important observation that the requir-
ed number of updates of MLEs can be reduced signifi-
cantly (i.e., only O(dlogT) periods of updates will be
sufficient). This key observation allows us to compose
differentially private empirical risk minimizers (Kifer
et al. 2012) to arrive at a privacy-aware contextual ban-
dit algorithm even without explicit sufficient statistics.

3. The generalized linear model for demand rate
modeling resembles existing works on parametric con-
textual bandits without privacy constraints (Filippi et al.
2010, Li et al. 2017, Wang et al. 2019). One significant
limitation of these existing works is that, without
assuming stochasticity of the contextual vectors, the
optimization of parameter estimates in these works is
usually nonconvex. Examples include the robustified
Z-estimation in Filippi et al. (2010) and the constrained
least-squares formulation in Wang et al. (2019), both of
which are nonconvex for some popular generalized lin-
ear models such as the logistic regression model. Al-
though such nonconvexity poses only computational
difficulties in nonprivate bandit algorithms, these chal-
lenges become much more significant when privacy
constraints are imposed, because most existing techni-
ques of DP stochastic optimization require convexity
(Chaudhuri et al. 2011, Kifer et al. 2012), and the gener-
al privacy-aware nonconvex optimization is extremely
difficult.

To overcome this challenge, this paper analyzes a
constrained MLE in a more refined style with a rela-
tively large regularization parameter, demonstrating
with high probability that the solution to the con-
strained MLE lies in the strict interior of the constraint
set (see Lemma EC.1 in the supplementary material).
This result then implies the first-order Karush-Kuhn-
Tucker (KKT) condition of the solution, from which
the Z-estimation analysis in Li et al. (2017) and Filippi
et al. (2010) can be used together with the analysis of
an objective-perturbed convex minimization problem
to obtain satisfactory regret upper bounds.

1.2. Organization

The rest of the paper is organized as follows. Section 2
discusses the related literature in both dynamic pric-
ing and differential privacy. We set up our pricing
models and formalize the anticipating DP in Sections
3 and 4. Our policy is presented in Section 5, which
contains two components: privacy releasers and price

optimizers. Sections 6 and 7 establish the privacy and
regret guarantees. Section 8 provides the numerical
studies. In Section 9, we further provide some discus-
sions on the naive input perturbation approach and
insights of the impact on consumer surplus, followed
by a conclusion in Section 10.

2. Literature Review

This section briefly reviews related research from both
the personalized pricing and differential privacy
literatures.

2.1. Personalized Dynamic Pricing with
Demand Learning

Because of the increasing popularity of online retail-
ing, dynamic pricing with demand learning has be-
come an active research area in revenue management
in the past 10 years (see, e.g., Araman and Caldentey
(2009), Besbes and Zeevi (2009, 2015), Farias and Van
Roy (2010), Harrison et al. (2012), Broder and Rusme-
vichientong (2012), den Boer and Zwart (2013), Wang
et al. (2014, 2020), Chen et al. (2015), Cheung et al.
(2017), and Ferreira et al. (2018)). More recently, be-
cause of the availability of abundant personal infor-
mation, personalized pricing with feature information
has been investigated in several works. For example,
Chen et al. (2021) studied offline personalized pricing
and quantified the statistical property of the MLE.
Cohen et al. (2020) considered a binary thresholding
model for purchasing decisions by comparing a linear
function of the feature and the posted price, proposed
an ellipsoid-based method for dynamic pricing, and es-
tablished the worst case regret bound. Qiang and Bayati
(2016) considered a linear demand model and studied
the performance of the greedy iterated least squares. Ban
and Keskin (2021) and Javanmard and Nazerzadeh
(2019) studied the personalized dynamic pricing prob-
lem in high-dimensional settings with sparsity assump-
tion of features. A very recent work by Tang et al. (2020)
studied differentially private contextual dynamic pricing
and proposed a follow-the-approximate-leader-type pol-
icy. Our work differs from this paper in several respects.
First, we protect the personal information {x;}, whereas
Tang et al. (2020) treated this information as public. Sec-
ond, Tang et al. (2020) adopted the classical DP notion,
whereas we consider the notion of anticipating DP. Fi-
nally, we assume that the demand follows a generalized
linear model of a feature map of personal information
and price, whereas Tang et al. (2020) considered a binary
thresholding purchase model with a linear mapping of
contextual information.

2.2. Differential Privacy for Online Learning

Since the notation of (¢,0)-differential privacy was
proposed by Dwork et al. (2006a, b), it has become a
gold standard for privacy-preserving data analysis in
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both academia and industry. Please refer to the survey
by Dwork and Roth (2014) for a comprehensive intro-
duction to DP.

Built on this classical notion, other privacy notions
have also been developed in the literature, such as
Gaussian DP (Dong et al. 2019), joint DP (Shariff and
Sheffet 2018), local DP (Evfimievski et al. 2003, Kasivis-
wanathan et al. 2011), average-KL (Kullback-Leibler)
DP (Wang et al. 2016), and per-instance DP (Wang
2019). Our notion of anticipating DP is motivated by
the joint DP (Shariff and Sheffet 2018) designed for line-
ar contextual bandits. Although the work of Shariff
and Sheffet (2018) studied the linear contextual bandits
subject to differential privacy constraints, their meth-
ods and analysis are built on the noisy perturbation of
sufficient statistics (namely, the sample covariance and
sample average). Thus, their method is not applicable
to the personalized pricing question, where generalized
linear demand models are widely used (see also the
technical challenges summarized in the introduction).

In DP, there are several fundamental techniques,
such as composition, postprocessing (see Section 4.3
and Dwork and Roth (2014)), partial-sum by tree-
based aggregation (Dwork et al. 2010, Chan et al.
2011), and “objective perturbation” (Chaudhuri et al.
2011, Kifer et al. 2012). In our designed personalized
dynamic pricing algorithm, we build on these impor-
tant techniques to make sure that our algorithm is dif-
ferentially private.

The techniques of DP have been applied to multi-
armed bandit problems. For example, Mishra and
Thakurta (2015) developed differentially private up-
per confidence bound (UCB) and Thompson sampling
algorithms for classical bandits. Mishra and Thakurta
(2015) and Shariff and Sheffet (2018) further studied
differentially private linear contextual bandits, where
Mishra and Thakurta (2015) protected the privacy of
rewards and Shariff and Sheffet (2018) protected both
rewards and contextual information. However, for lin-
ear bandits, because the maximum likelihood estima-
tor admits a simple closed-form solution, one only
needs to protect the sufficient statistics (e.g.,
Zi,zlxt/x; and Zi,:lyt/xt/). On the other hand, we
consider a much more general demand model follow-
ing a generalized linear model. Therefore, the corre-
sponding MLE does not admit a closed-form solution;
we address this challenge by providing a new analysis
of constrained MLE properties. There are other inter-
esting private online learning frameworks developed
in recent literature. For example, the private sequen-
tial learning model was proposed in Tsitsiklis et al.
(2021) (for noiseless responses) and further investigat-
ed in Xu (2018) and Xu et al. (2020) (for noisy re-
sponses). In particular, Xu et al. (2020) quantified the
optimal query complexity for private sequential learn-
ing against eavesdropping. Whereas the existing

privacy literature mainly focuses on protecting a data
owner’s privacy, this work investigates how to protect
the privacy of a learner who sequentially queries a da-
tabase and receives binary responses. We note that the
goal of private sequential learning is to learn a global
parameter—for example, “the highest price to charge
so that at least 50% of the consumers would purchase”
in pricing domain (Xu et al. 2020, p. 4)—and to make
sure the adversary cannot infer the final released
price. By contrast, our goal is to use sequential deci-
sion making to maximize revenue while protecting in-
dividuals’ personalized information and purchasing
decisions.

In the recent work of Lei et al. (2020), an offline per-
sonalized pricing setting is studied with differential
privacy guarantees. The recent work of Zheng et al.
(2020) studied the stronger local privacy notion and
derived an algorithm with O(T%*) regret bound for
the generalized linear model, which is worse than the
regret bounds obtained in this paper.

3. Pricing Models and Assumptions

The basic setting of personalized dynamic pricing has
been described in the introduction. In this section, we
provide more technical details of the problem setting.
At each time f with the observed personal information
x¢ and the posted price p;, the (random) demand real-
ized by customer at time ¢ is modeled by a generalized
linear model within the exponential family, taking the
form of

Pry: =y | pr, x1, 01 =exp {C(y¢p; 6" — m(¢] 6")) + h(y)},
(1)

where ¢, = ¢(x;,pr) € R? is a known feature map, 0" €
R? is an unknown linear model, and ,m(-),h(-) are
components of the distribution family. Some exam-
ples of exponential family distributions include the
Gaussian distribution and the logistic model, which
are given at the end of this section. It is easy to verify
that f(¢p; 0") := m’(¢; 0") is the expectation of y; condi-
tioned on p;, x;, and 0°. Hence, we can equivalently
write Equation (1) as

Yt Zf(ﬁth@*) + &4, ()

where ¢, = ¢(x;,p;) and &, are independent random
variables satisfying E[&; | pr, x;] = 0.

We next specify the filtration process of x; and p.
Let F; = {(xT,yT,pT)}iz1 be the history up to time period
t. In the most general setting, the features {x;},, of the
T customers are arbitrarily chosen before the pricing
process starts." The price p, at each time t is subse-
quently chosen by the dynamic pricing policy condi-
tioned on filtration F;_; and x;. The demand y; is then
realized via y; :f(gb;rG*) +¢&t, where ¢, = ¢(x;,pr) and
E[&; |xtrpt/]:t—1] =0.
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Throughout this paper we impose the following
conditions on the distribution family, the linear mod-
el, and the feature map:

1. There exists a parameter By < co such that |y, |<
By for all time periods t in all databases D.

2. Both the feature vectors and the linear model have
at most unit norm, or more specifically, || p(x,p) || 2, ||
0|l <1 forall x, p.

3. The stochastic noises {&;} are centered and sub-
Gaussian, meaning that E[¢; | x;, pr, Fi-1] = 0 and there
exists s < oo such that E[e*' | x;, p;, Fi-1] < 'S /2 for all
AeR.

4. The expectation f(-) = m’(-) maps R to [0, 1] is con-
tinuously differentiable and strictly monotonically in-
creasing. Furthermore, for all | z |< 2, K™ < f’(z) <K for
some constant 1 < K < oo.

5. In Equation (1), C satisfies G 1<{<G for some
constant 1 < G < oo.

We give some common examples that fall into
Equation (1) and satisfy all imposed conditions.

Example 1 (Gaussian Model).

In the Gaussian model, the realized demand y; fol-
lows y; = ¢ 0" + & with & ~ N(0,1). It is easy to verify
that the Gaussian model falls into Equation (2) with C =
1, m@z)=31z%fz)=m'(z)=z, and h(y)=-1y*-1
In (27). The Gaussian model also satisfies all imposed
conditions with high probability with BYSS\/ﬁ% , 8=
1,K=1l,and G= 1.

Example 2 (Logistic Model).

In the logistic model, the realized demand y; is sup-
ported on {0, 1}, following the logistic distribution
Prlyi =16, 0] =e? 9 /(1+e? 7). It is easy to verify
that the logistic model falls into Equation (2) with C =
1, m(z) =In(1+¢€*), f(z) =m’(z) =¢* /(1 +¢%), and h(y) =
1. The logistic model also satisfies all imposed condi-
tionswith By =1,s =1, K= (1+¢?)?/e?,and G = 1.

4. Preliminaries on Differential Privacy

In this section we present background material on differ-
ential privacy, the core privacy concept adopted in this
paper. We start with the introduction of the standard dif-
ferential privacy concept, and then we show how the
privacy concept could be extended to its “anticipating”
version, which is more appropriate for data-driven se-
quential decision-making problems. Finally, we discuss
two fundamental concepts of composition and postpro-
cessing, which are essential in designing complex differ-
entially private systems. For a full technical treatment
and historical motivations, readers are referred to the
comprehensive review by Dwork and Roth (2014).

4.1. Differential Privacy
Differential privacy is a mathematically rigorous mea-
sure of privacy protection and has been extensively

studied and applied since its proposal in the work of
Dwork et al. (2006b). At a higher level, the fundamen-
tal concept behind differential privacy is the impossibil-
ity of distinguishing two “neighboring databases”
(differing only on a single entry) with high probabili-
ty, based on publicly available information about the
database. To facilitate such probabilistic indistinguish-
ability, the conventional approach is to artificially cali-
brate stochastic noise into the process or the outputs of
differentially private algorithms.

More specifically, Figure 1 gives an intuitive illus-
tration of the differential privacy concept applied to
our dynamic personalized pricing problem. Suppose
at time f the incoming customer with the context vec-
tor x; is being offered price p;, and makes purchase de-
cision y;. The price decisions {p;},_, produced by the
pricing algorithm are usually random, and therefore
we can use P to denote the joint distribution of these
prices. The concept of differential privacy requires
that if a customer’s personal data change from (x;, v;)
to (x¢,y) while all the other T - 1 customers’ data re-
main unchanged, the joint distributions of the posted
prices P will change to a distribution Q that is very
close to P. The closer P and Q are under the hypotheti-
cal personal data change (x:,y:) — (x/,y4’), the better
data privacy is protected under the pricing policy.

Why is the close proximity of price distributions P
and Q a good measurement of a pricing algorithm’s
privacy protection? Assume that a malicious agent
would like to extract the sensitive information of a
particular customer of interest, who arrives in the sys-
tem at time t. The malicious agent must extract such
sensitive data based solely on publicly available infor-
mation, which in this case would be the firm’s posted
prices p,...,pr. Here, “public information” in the dif-
ferential privacy literature refers to the information or
released data that can be accessed by a malicious ad-
versary, because these data are used by the adversary
to infer the personalized data of the customers, whose
privacy is to be protected. If the price distributions P
and Q produced by the pricing algorithm are very

Figure 1. (Color online) Illustration of the Differential Priva-
cy Concept
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similar, then it is information-theoretically not possible
for the malicious agent to distinguish with reasonable
success probability between a customer (x;, ;) and an-
other hypothetical customer (x/,y,’) (see Figure 1).
This means that no matter how smart the malicious
agent is, it is impossible for that agent to extract very
much sensitive data from the customer of interest sim-
ply based on publicly available price information.

Mathematically speaking, we use D to denote the
database of all sensitive data {(xt,yt)}tT:1 for all of the T
customers. For convenience of presentation, we also
write 0; = (x;, ;). A database D’ is a neighboring data-
base of D if and only if D" and D only differ at a sin%le
time period. More specifically, D = {o;};_;, D’ = {0/},
are neighboring databases if there exists ¢ such that
o; # 04 and o, =0, for all T # t. Suppose a pricing al-
gorithm A operates with input database D and produ-
ces randomized price output A(D) = (p1,...,pr). The
following definition gives a rigorous formulation of
(&,0)-differential privacy.

Definition 1 ((¢,0)-Differential Privacy (Dwork et al.
2006b)). For ¢,0 >0, a randomized algorithm A satis-
fies (¢, 6)-differential privacy if for every pair of neigh-
boring databases D, D’ and measurable set A C [pp],
it holds that -

Pr[A(D) € A] < ¢Pr[A(D’) € A] +6.

To facilitate the understanding of this definition, we
explain why the multiplicative factor e° is critical and
the role of the parameter 6 in practice. Let us first ex-
plain why the DP-definition in Definition 1 adopts a
multiplicative factor e® rather than an additive bound
of |Pr[A(D)e A]-Pr[A(D’) € A]. Imagine that two
neighboring data sets D, D’ give rise to the same out-
put O with probabilites p; =Pr[O|D] and
p2 =Pr[O|D’]. The key is to prevent a malicious party
from distinguishing between D and D’ based on the
observation of O. If an additive guarantee is involved
| p1 —p2 |< ¢, then it is possible that p; =0 and p, = €. If
this is the case, the adversary would be 100% sure
whether the underlying data set is D or D’ once she ob-
serves the output O (because p; =0 implies that it is
impossible to observe O given D). This means that with
probability ¢, which is usually not that small (e.g.,
¢ =0.1), a catastrophe (i.e., an outside adversary being
completely certain about the customer’s private data)
will occur with 10% probability. On the other hand, if
the guarantee is multiplicative (e.g., 0.9p2 < p1 < 1.1py)
then the adversary cannot completely distinguish
between D and D’ no matter how small p; or p; is. Fol-
lowing this discussion on the multiplicative factor ver-
sus the additive factor, because 6 is an additive term,
it corresponds to the probability of a catastrophe hap-
pening that allows the adversary to completely infer
the privacy information about customers’ data.

Because we do not want a catastrophe to happen, 6
needs to be set overwhelmingly small. With a tiny 6 val-
ue in the DP-definition, more specifically, the adver-
sary is always able to conclude that D (or D’) is more
likely than the other, but such preference of likeli-
hood is never going to exceed a ratio of e*. For exam-
ple, with € =0.1, the adversary may conclude that D
is 10.5% more possible than D’ based on observations
of published data O but will never be able to
completely/deterministically distinguish D from D’
based on O.

4.2. Anticipating Differential Privacy

Despite being a widely adopted measure, the DP no-
tion as stated in Definition 1 cannot be directly ap-
plied to dynamic pricing for several reasons. First,
Definition 1 would not lead to useful pricing policies.
This is because, essentially, Definition 1 requires that
conditioned on the output of the entire posted price se-
quence, the adversary cannot distinguish between o,
and o’ in a probabilistic sense. On the other hand, for
high-profit personalized pricing policies, once the cus-
tomer’s personal information x; changes, the price p;
offered to that customer must change accordingly in
order to achieve high expected revenue, making infer-
ence of x; much easier given p;. Furthermore, as we
have discussed in the previous paragraphs, the com-
munications of (xt,pt, yt) at time f are secured in prac-
tice, and therefore, an adversary should not have the
capability of accessing the price p, at time t. From this
perspective, the classical DP notion defined in Defini-
tion 1 is too strong because it implicitly allows the ad-
versary to access the price at time ¢ (as p; belongs to
the output A(D)). In a practical setting, however, the
adversary is only able to access information during
other time periods (e.g., by maliciously sending fake
customers to obtain price quotes) to infer the sensitive
information about an individual at time t. In other
words, in the following anticipating DP definition (see
Definition 2), the price offered to a specific customer
of interest p, is not public information, as we can ex-
pect basic communication security between the cus-
tomer and the seller. However, prices offered to other
customers are considered public information because
a malicious adversary could pretend to be a customer
and extract such price information and subsequently
infer the private data of the customer of interest based
on such extracted price information.

This argument can be made rigorous by the follow-
ing proposition. The proposition is similar to claim 13
of Shariff and Sheffet (2018) by showing that any
policy satisfying the (¢, 6)-differential privacy in Defi-
nition 1 must suffer regret that is linear in the time
horizon T. The proof of Proposition 1 is, however, dif-
ferent from Shariff and Sheffet (2018) because we
study generalized linear models such as the logistic
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regression model. We relegate the complete proof to
the supplementary material.

Proposition 1. Let 1t be a contextual pricing policy over T
periods that satisfies (&, 0)-differential privacy as defined in
Definition 1, with ¢ <In(2) and 6 <1/4. Then the worst-
case regret of 1t is lower bounded by CQ(T).

To address the challenges mentioned, Shariff and
Sheffet (2018) proposed a notion of “joint DP” in the
context of linear contextual bandits. We adopt this
notion but refer to it as anticipating DP. The notion of
anticipating DP highlights the key property of this
definition and our focus on more general dynamic
personalized pricing policies. Figure 2 gives an illus-
tration of the anticipating differential privacy (ADP)
concept. Compared with the classical differential pri-
vacy notion illustrated in Figure 1, the important dif-
ference of ADP is to restrict the output sets to prices
strictly after a customer of interest ¢ and to only re-
quire the distributions of anticipating prices (denoted
by P.; and Q) to remain stable with change of per-
sonal information (x¢,y;) — (x¢,y¢') at time t. Such a
restriction is motivated by the fact that the communi-
cation about (x¢, pt, y¢) at time ¢ is secured and the data
prior to time t have no impact on the privacy of
customer t because the pricing algorithm has no
knowledge of x; before time ¢. With the formulation of
anticipating differential privacy, the challenges we
mentioned earlier are resolved because the pricing de-
cision p; at time ¢ is no longer in the information set of
a potential attacker.

Our next definition gives a rigorous mathematical
formulation of the anticipating differential privacy no-
tion illustrated in Figure 2.

Definition 2 (Anticipating (¢,6)-Differential Privacy).
Let ¢,0 > 0 be privacy parameters. A dynamic person-
alized pricing policy 7t satisfies anticipating (¢, 0)-dif-
ferential privacy if for any pair of neighboring data-
bases D,D’ differing at time t (i.e., o;#0/) and
measurable set P, it holds that

Prlpi1,...,pr € P> |, D] < €“Pr(pis1, ..., pr € Psy
| T,D']+ 6.
3)

We also remark that all privacy definitions in this
section are model-free, meaning that they do not de-
pend on how realized demands y; are modeled.
Hence, the privacy guarantees of our proposed algo-
rithm are independent from the generalized linear
demand model in Equations (1) and (2). This fact is es-
sential in practical implementations of privacy-aware
algorithms because one cannot build privacy guaran-
tees of an algorithm on a specific underlying model,
which may or may not hold in reality. The modeling

Figure 2. (Color online) Illustration of the ADP Concept
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assumptions, on the other hand, are required for per-
formance analysis (also known as utility analysis—e.g.,
regret upper bounds or convergence results) of our
proposed privacy-aware pricing policies.

4.3. Composition in Differential Privacy

When a differentially private algorithm only outputs
a single statistic (e.g., the sample mean of the data-
base), Definition 1 is easy to check and verify. In reali-
ty, however, a useful differentially private protocol is
tasked to release several statistics (sometimes with
adaptively chosen queries), and the entire output se-
quence of a protocol needs to be differentially private.
With multiple output statistics, Definition 1 involves
high-dimensional vector spaces and is therefore diffi-
cult to check and verify. Composition, on the other
hand, provides convenient upper bounds on the priva-
cy guarantee of composite outputs using privacy
guarantees of individual queries. Take the dynamic
pricing setting as an example. The seller repeatedly in-
teracts with the potential customers by offering differ-
ent prices. It is therefore essential to leverage a com-
position guarantee in Fact 1 to make sure that all the
prices offered, when aggregated as a whole, do not leak
consumers’ privacy via their personalized data.

The left panel of Figure 3 gives an illustration of the
concept of composition in the context of personalized
pricing. In this simple example, a centralized pricing
algorithm has access to a pool of past customers’ sen-
sitive data and offers personalized prices to three cus-
tomers. The rule of composition in differential privacy
asserts that the privacy guarantee of the pricing algo-
rithm worsens as the pricing algorithm offers prices to
more customers, each time with access and calcula-
tions based on the majority of the same sensitive data.
In particular, if the privacy guarantee for each individ-
ual pricing decision is ¢, then the joint privacy guaran-
tee when k individualized prices are offered will
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Figure 3. (Color online) Illustration of the Concepts of Composition (Left) and Postprocessing (Right) in Differential Privacy
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worsen to Q(ke) or Q(Vke), depending on the detailed
composition mechanisms.

More specifically, let A = (A4, ..., Ax) be a collection
of k adaptively chosen queries, and suppose that each
query Ay satisfies (¢,0)-differential privacy as defined
in Definition 1. The following result is standard in the
literature and cited from theorems 3.16 and 3.20 from
Dwork and Roth (2014).

Fact 1. The composite query A =(As,...,Ax) satisfies
(¢’,0")-differential privacy with either one of the
following:

(1) (Basic composition) ¢/ = ke, 6" = kd.

(2) (Advanced composition) &7 = /2kIn(1/5)e+

ke(ef —1), & =kd+0, for & > 0.

To avoid potential confusion, we remark that both
basic and advanced compositions apply to any differ-
entially private algorithms. Indeed, they are two dif-
ferent types of joint privacy guarantees proved using
different techniques, reflecting different trade-offs
when composing multiple differentially private
queries/algorithms together. In particular, the basic
composition shows a linear growth in the ¢ parameter
(ie., ¢ =ke), but it allows the ¢' parameter to be 0
when the individual queries are (¢,0)-private. On the
other hand, the advanced composition allows for a
slower growth of the ¢ parameter (i.e.,, ¢"=<Vke) but
must yield an (¢’,0) differential privacy guarantee
with ¢’ > 0, even if the individual queries are (¢,0)-pri-
vate. In this paper, we shall use primarily the
advanced composition result because we focus on
(&,0) privacy guarantees with 6 > 0.

Corollary 1 (Corollary 3.21 of Dwork and Roth
(2014)). Given target privacy level 0 < &’ <1, >0 of the
composite query A, it is sufficient for each subquery to be
(&, 6)-differentially private with & = &’ /2+/2kIn (2k/0) and
0=10"/2k.

4.4. Postprocessing in Differential Privacy
Practical privacy-aware algorithms usually involve
several separate subroutines. In most cases, not all

Post-processing

Sensitive Data

!

Intermediate

P1 ) 3

outputs

l

[27]

subroutines access the sensitive database: some sub-
routines may only process the results from other sub-
routines. The principle of postprocessing states that one
only needs to preserve the privacy of those subrou-
tines with access to the sensitive database in order to
argue for privacy protection of the entire algorithm.
For example, in dynamic pricing, algorithms are de-
veloped into different components, and only one of
them directly accesses the sensitive data. It is therefore
necessary to use the concept of postprocessing to ar-
gue that the entire algorithm viewed as a whole does
not leak consumers’ private personalized data.

The right panel of Figure 3 gives an intuitive illus-
tration of the postprocessing concept in differential
privacy. Suppose that an algorithm with full access to
all sensitive data has produced some intermediate re-
sults (as shown in the red square of the illustration),
and these intermediate results have already satisfied
the definitions of differential privacy. Further assume
that there is a downstream algorithm, which operates
arbitrarily on the intermediate results to produce the
personalized prices p1,p2,ps, ..., without accessing the
sensitive data any more. Then the postprocessing asserts
that there is no need to worry about potential privacy
leakages of the downstream algorithm because the in-
termediate results have already been privatized. This
useful concept makes it easier to design multistep, so-
phisticated, privacy-preserving algorithms.

More specifically, let A be a subroutine with access
to the sensitive database, and let B be a subroutine
that depends only on the results of A.

Fact 2 (Proposition 2.1 of Dwork and Roth (2014)).
Suppose the outputs of subroutine A satisfy (&, 6)-dif-
ferential privacy. Then the outputs of subroutine B
also satisfy (&, 0)-differential privacy.

5. Algorithmic Framework

In this section we present the framework of our pro-
posed privacy-aware dynamic personalized pricing
algorithm.
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A straightforward idea is to directly inject noise
into customers’ sensitive information (e.g., x;) to pro-
tect privacy. However, as we will explain later in Sec-
tion 9.1, such a method will fail because the features
of each individual customer are relatively indepen-
dent of each other. Thus, an excessively large magni-
tude of noise needs to be injected, which incurs a large
regret. Therefore, this paper will develop a new dy-
namic personalized pricing algorithm based on the
privacy-preserving maximum likelihood estimator.
To better illustrate our algorithm, we first introduce
two types of routines used in our algorithm: the pri-
vate releasers that access the sensitive database and
produce differentially private outputs and the price
optimizers that access only the outputs from private
releasers to assign near-optimal and privacy-aware
prices. Then, a pseudo-code description of our main
algorithm will be presented and discussed.

5.1. Private Releasers and Price Optimizers

Our proposed privacy-preserving dynamic personal-
ized pricing algorithm consists of several subroutines.
We divide the subroutines into two classes: the pri-
vate releasers and the price optimizers.

The prwate releasers access the sensitive database
{x.peyi}i—, and output differentially private interme-
diate results. For example, in Figure 4, the PrivateCov
routine returns differentially private sample covari-
ance matrices, and the PrRIVATEMLE routine returns
differentially private maximum likelihood estimates.
For private releaser routines, the differential privacy
notions are classical (in Definition 1). Note that, in ad-
dition to differential privacy guarantees, the subrou-
tines also need to satisfy the anticipating constraints
for pricing algorithms (i.e., accessing only {x;yrpPr}rcs
to produce any outputs being used at time ).

The price optimizer, on the other hand, performs
optimization and outputs the prices p, for each time
period t. To ensure privacy, our designed price opti-
mizer will not directly access historical sensitive data
{X1 Yo pr}ees- Instead, it optimizes the offering price p;
based only on x; (the personal information of the in-
coming customer) and intermediate quantities com-
puted by private releasers up to time t.

Because our designed price optimizer has access to x;
at time t, one cannot directly apply the postprocessing
rule in Fact 2 to argue privacy guarantees. Neverthe-
less, the following proposition shows that if all private
releasers are differentially private, then so is the price
optimizer in the sense of anticipating differential priva-
cy in Definition 2. The proof of Proposition 2 is placed
in the supplementary material.

Proposition 2. Lef (ay, . .., ar) be the outputs of private re-
leasers at each time period t, and suppose the entire output
sequence (ai,...,ar) satisfies (&, 0)-differential privacy.

Suppose the price p; at time t is a deterministic function of
x¢ and ay, ..., a;-1. Then the pricing policy satisfies antici-
pating (&, 6)-differential privacy.

Remark 1. The conclusion in Proposition 2 holds for p;
as randomized functions of x;, a1, ...,a;-1 as well. Nev-
ertheless, because in our proposed algorithm the price
optimizer is deterministic, we shall restrict ourselves
to deterministic functions.

5.2. Our Policy

In Figure 4 we depict a high-level framework of our
privacy-aware dynamic personalized pricing policy. It
shows a three-layer structure of the proposed policy.
The first layer is the sensitive database, consisting of
data {o; = (p1x1y1)}_; its privacy needs to be pro-
tected. The second layer comprises private releasers,
consisting of two subroutines, PrivateECov (see Algo-
rithm 2 in Section 6.1) and PRIVATEMLE (see Algorithm
3 in Section 6.2). The PrivaTeCov subroutine supplies
dlfferennally private sample covariance matrices Af €
R at every time period. The PRivATEMLE subroutme
outputs dlfferentlally private maximum likelihood
estimates 0" ,—but only when such estimates are re-
quested by the price optimizer. The PrivateCov sub-
routine is designed to be (&1, 01)-differentially private,
and the PrivATEMLE routine is (ep,07)-differentially
private, so that all outputs from private releasers are
(&1 + &2,01 + Op)-differentially private, thanks to the ba-
sic composition rule in Fact 1.

The third layer of our proposed policy is the price
optimizer. As discussed in the previous section, to en-
sure privacy, the price optimizer shall not access the
sensitive database D directly. Instead, it should base
its decision of p; on outputs from private releasers and
x; only. The last block in Figure 4 illustrates the basic
flow of our prlce optimizer. The price optimizer main-
tains A and 0" throughout the pricing process, both
of which are obtained directly from private releasers
without accessing the sensitive database. At the begin-
ning of time period #, the price optimizer first obtains
sample covariance A! from the PrivaTeCov routine.
The optimizer then decides whether to request fresh
MLE from the PrivaTEMLE routine by comparing
det(AP) with det(AP), in addition to some other crite-
ria specified in Algorithm 1. Afterward, p; is selected
as the maximizer of an upper confidence bound of the
expected revenue on x,. It is only during this step that
the personal information x; is involved.

Algorithm 1 (The framework of privacy-aware
dynamic personalized pricing)

1: Input: privacy parameters €1, 01, €2,0, > 0, number
of pure-exploration periods T, maximum number of
PrivATEMLE calls D, regularization parameter p > 1,
confidence parameter y > 0.

2: Output: the offering prices p1,p2,...,pr;
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Figure 4. (Color online) Our Algorithm Framework
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4: For the first T time periods, offer prices p; uni-
formly at random from [0, 1];
5:forn=Ty+1,...,Tdo
6: Obtain X! « PrivateCov(n,¢e1,061) and let
A =YP +ply;
7 if det(AF) > 2det(A”) and Dyiig < Do then
8: o' — PrivateMLE(n, p, €57, 02"), AP
AL, Dmig = Dy +1;
9: end if
10:  Offer price p, = argmax ejo1] min {1, pf (¢, 0"

+y (p;(AP)‘lqbn}, where ¢, = ¢(x,, pn);

11: end for

Algorithm 1 also gives a pseudo-code description of
our proposed pricing policy, which is more accurate
and detailed than Figure 4. Note that Algorithm 1 in-
volves several algorithmic parameters, such as
To,Dw,y, and p, which do not affect the privacy guar-
antees of the algorithm but do have an impact on its
performance. How to set these algorithmic parameters
will be given later in Section 7, when we analyze the
regret performance of Algorithm 1. Before that, we
will first make a few important remarks about Algo-
rithm 1.

Remark 2 (Time Complexity).

The time complexity for the PRivaTEMLE subroutine
is the same as traditional MLE calculations, if not easi-
er (because the overall formulation is convex), because
only the objective is perturbed with a linear term. The
time complexity for the PrivateCov subroutine is
slightly more expensive: at each time #, the tree-based
protocol needs to update O(log#) nodes on the binary
tree instead of just adding ¢,$, to a counting matrix.
Overall, the algorithm’s time complexity is O(d°TInT)

(note d° comes from the computation of the determi-
nant), in addition to O(dInT) number of MLE calcula-
tions. The next section gives more details on the two
private releasers.

Remark 3 (Difference from Generalized Linear Con-
textual Bandit).

This remark explains how the algorithm differs
from a classic generalized linear bandit algorithm
without privacy consideration. The major difference is
that when there is no privacy consideration, there is
no need (and no use) to randomize and therefore va-
nilla MLE can be used to obtain an estimated model
0; at every time period t, with standard statistical
analysis of the errors for such estimates (see Li et al.
(2017)). With privacy constraints, such maximum like-
lihood estimates need to be carefully privatized by
calibrating artificial noise into the objective of the
MLE (the PrIvATEMLE subroutine later in Algorithm
3), which also calls for more detailed perturbation-
based statistical analysis. Another difference is that
without privacy constraints, the seller could update
its model estimate 0; at every time period to obtain
the most accurate and updated information. With pri-
vacy constraints, however, the seller cannot afford to
adaptively compute a model estimate after each time
period as a result of composition constraints and must
perform such model estimates sparingly, relying further
on a signal scheme also privatized by incorporating arti-
ficial noise matrices (see the PrivateCov subroutine later
in Algorithm 2).

Remark 4 (Exploration Phase).

In addition, we also clarify that the forced explora-
tion step in our algorithm is optional: the proposed
algorithm remains valid (i.e., satisfying suitable differ-
ential privacy constraints and achieving small overall
regret) without the forced exploration step (see



Chen, Simchi-Levi, and Wang: Privacy-Preserving Dynamic Personalized Pricing

12

Management Science, Articles in Advance, pp. 1-21, © 2021 INFORMS

Theorem 1 in Section 7.1, where Ty = 0). The forced ex-
ploration helps to ensure improved regret guarantee
when there are additional distributional assumptions
on contextual vectors (see Section 7.2). This forced ex-
ploration aims to make sure the sample covariance of
the context vectors is well conditioned, which leads to
improved regret guarantees of privatized MLE.

6. Design and Analysis of
Private Releasers

In this section, we give detailed designs of the two
private releasers: the PrivaTECOv subroutine and the
PrivATEMLE subroutine. We prove that both of them
satisfy (&,0)-differential privacy as defined in Defini-
tion 1. We also prove several utility guarantees that
will be helpful later in the regret analysis of the pricing
policy. Figure 5 shows the flow of our proof frame-
work. Because of space constraints and exposition con-
cerns, all proofs to technical lemmas or propositions in
this section have been placed in the supplementary
material.

6.1. The PrivateCov Subroutine

Algorithm 2 gives a pseudo-code description of
the PrivaTeCov subroutine. Note that in Algorithm 2
the Y’ covariance matrices are released sequentially
once each time period, and PrivateCov(n, ¢,0) would
simply be the X¥ matrix released at the end of itera-
tionn -1.

Algorithm 2 is based on the AnalyzeGauss frame-
work in Dwork et al. (2014) coupled with the tree-based
aggregation technique for releasing continual observa-
tions (Dwork et al. 2010, Chan et al. 2011). The Ana-
lyzeGauss method by Dwork et al. (2014) develops a
Gaussian mechanism on releasing a single covariance
matrix privately from the data. On the other hand, tree-
based aggregation provides a general protocol on how
to continually release sequentially updated statistics
(e.g., partial sums of sample covariance matrices) under
privacy constraints. For our PrivaTeCov, by calibrating

Figure 5. (Color online) Flow of Our Proof Framework

PRIVATECOV

Lemmal === Corr. 2 J

ATz \ Corr. 4

(privacy guarantee)

Prop 4 == Corr.3
LRI 2 Lemma 4

Lemma 3

Theorems. 1, 2
(regret guarantee)

PRIVATEMLE

Note. Corr., corollary; Prop., proposition.

symmetric random Gaussian matrices {WW"} into the
sample covariances under the tree-based aggregation,
one achieves differential privacy. The following propo-
sition claims that the outputs (Xf,..., X7 |) of Algo-
rithm 2 satisfy (¢, 6)-differential privacy.

Algorithm 2 (The PrivateCov subroutine)
1: function PrivateCov(T, ¢, ) > returns X, .. .,

b
2: o7 — 2

06/,(5/ =

o] ’ I3
MogaT” € < og,TIn/0)

AR, m = [log,TT;
3: Initialize 2O =%()=0 for all
£=0,..., m—-1;
4: forn=1,2,...,T—1do
5: Express (o inits binary form:
n= >0 ba(€)2°, bu(0) €{0,1};
6: Let ¢, <—min{€:bn(€) =1} be the least
significant bit of n;
7 Update X(£,) < ¢, o) + Zfd X(¢) and
Y(6) — %(€) —O0forall £ < £,;
8: Calibrate noise: 3(£,) «— Z(£,) + W™,
where Wi = WZ”d/\/'(O a2, &)
9: Release ¥ = Z{, _o bn(OX(0);
10: end for
11: end function
Proposition 3. The outputs of Algorithm 2,

(Zh,..., 28 ), satisfy (e, 0)-differential privacy.

The following lemma further gives high-probability
bounds on the deviation from X! to the actual sample
covariance X, = Zt oXORE Thls utility guarantee is
useful later in the regret analysis to justify the
det(A?) > 2det(A”) condition in Algorithm 1.

Lemma 1. With probability 1 — O(T1), it holds for all n €
(1,2,...,T—1} that

I 28 = | lop < O(e ™ VdIn*>(T/5)),
where T, = Ztgqbﬁp:.

The following corollary is an immediate conse-
quence of Lemma 1.

Corollary 2. Let A, =X,+ply and A =XF +ply for
some p > ¢€ “1dvd din>(T/5). Then there exlsts a universal
constant Cr < oo such that for any T > Cr, with probability
1-O(T™) for all ne{1,2,...,T—1}, it holds that
0.9det (A,) < det(AF) <1.11det(A,).

Corollary 2 shows that when the PrivateMLE is in-
voked in Algorithm 1, the determinant of the real
sample covariance matrix roughly doubles. This is im-
portant to our later regret analysis because if Priva-
TEMLE is invoked too frequently, the algorithm pays
the price of composition in privacy. Although, on the
other hand, if PRIvATEMLE is invoked too rarely, the
old (and inaccurate) parameters will be used for a
long time, which incurs a larger regret. Therefore, our
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analysis shows that the right frequency should be in-
voking PrIVATEMLE once the determinant of the
privacy-preserving covariance roughly doubles.

6.2. The PrivateMLE Subroutine
Algorithm 3 gives a pseudo-code description of the
PrivaTEMLE subroutine. The algorithm is based on the
objective perturbation framework developed in
Chaudhuri et al. (2011) and Kifer et al. (2012). More
specifically, Algorithm 3 calibrates a noisy term (w'0)
into the constrained MLE formulation in order to
achieve dlfferentlal privacy of the output optimal sol-
utions 9

The following proposition establishes the claim that
Algorithm 3 is (¢, 6)-differentially private.

Proposition 4. The output of Algorithm 3, éz,
(&, 0)-differential privacy.

satisfies

The next corollary, which establishes the privacy
guarantee of the PrivatTEMLE, immediately follows
Proposition 4 and Corollary 1. It shows how to set the
algorithmic parameters in Algorithm 3 to ensure that
the resulting price decisions are differentially private
at the designated levels ¢ and 0.

Corollary 3. Suppose PrivaTEMLE is invoked for at most
Dy, times in Algorithm 1. Then the composite sequence of
D, outputs of PRIVATEMLE satisfies (¢,0)-differential pri-
vacy if each call of PrivaTEMLE is supplied with privacy

pammeters b 5T a?’ld &’ m

Now, we are ready to provide the privacy guaran-
tee of the entire policy in Algorithm 1.

Corollary 4. The price decisions {p1,...,pr} of Algorithm
1 satisfy (&1 + €2,01 + O2)-differential privacy.

Algorithm 3 (The PrivaTEMLE subroutine)
1: function PrivaTEMLE(#, p, €, 6) &> returns 9

2: Bi « (By + 1)G, B, < KG, p « max{p,
2B/}, v2 5 — B2(8In(2/6) +4¢)/€2;

3: Sample w -~ N(O,vZIy);

4: Return 6 = argmm||9||2<2 (Z t<n—Inp(y: |

¢t16)) + P || 6 ”2 +wT6}
5:end functlon

Corollary 4 immediately follows Proposition 3, Cor-
ollary 3, Proposition 2, and Fact 1. More specifically,
in Algorithm 1, PrivaTeCov is invoked with parame-
ters (e1,01), which is (e1,01)-differential privacy.
Moreover, PRIVATEMLE is invoked with parameters
(&2/,02") for at most D times, whose outputs are
(&2, 67)-differential privacy. Therefore, the entire poli-
cy satisfies (¢1 + €2, 01 + 02)-differential privacy, thanks
to Proposition 2 and the basic composition rule in Fact
1.

In the rest of this section we establish the prediction
error guarantee (a.k.a. the utility guarantee in

differential privacy literature) of the estimator &
from the PrivATEMLE subroutine. More precisely,
Lemma 2 upper bounds the predlctlon errors of the
sequence of obtained model estimate 9 with the pres-
ence of artificially calibrated noises in the PrivareMLE
subroutine. With smaller values of ¢,0 indicating
stronger privacy protection, the parameter v.s be-
comes larger, which leads to a larger variance of the
Gaussian noise w. Thus, the PRIVATEMLE subroutine
needs to calibrate higher magnitudes of noise into the
objective function, leading to either larger prediction
errors (see (4)) or a lengthened forced exploration
phase (see the condition of (5)). Note that the lower
bound on Amin (X,) for (5) is achieved by the explora-
tion phase in Algorithm 1. This key result quantifies
the trade-off between the strength of the privacy
protection and the prediction errors of the model pa-
rameter estimates. Another point of practical guidance
provided by Lemma 2 is that the regularization
amount p also needs to grow as ¢, becomes smaller.

We emphasize that this key utility guarantee in
Lemma 2 is not directly covered by existing utility
analysis in Chaudhuri et al. (2011) or Kifer et al. (2012)
for two reasons. First, in Chaudhuri et al. (2011) and
Kifer et al. (2012), the utility is measured in terms of
the difference between objective values before and after
objective perturbation, which is not sufficient for the
purpose of analyzing contextual bandit algorithms
that require first-order KKT conditions. Additionally,
in both Chaudhuri et al. (2011) and Kifer et al. (2012),
the data (¢,,y;) are assumed to be sampled indepen-
dently and identically from an underlying distribution,
whereas in our problem, the data clearly are neither
independent nor identically distributed.

We also remark that our utility analysis of the (dif-
ferentially private) constrained MLE (see the proof of
Lemma 2) differs significantly from existing analysis
of generalized linear contextual bandit problems as
well (Filippi et al. 2010, Li et al. 2017, Wang et al.
2019). In Li et al. (2017), it is assumed that ¢, are i.i.d.
and their distributions satisfy a certain nondegenerate
assumption, which we do not necessarily impose in
this paper. In both Filippi et al. (2010) and Wang et al.
(2019), the formulations of the optimization problems
are nonconvex in 6, which facilitates the analysis of
the properties of the optimal solution. However, the
nonconvex formulation poses significant challenges
for privacy-aware algorithms because differentially
private methods for nonconvex optimization are
scarce. It is therefore a highly nontrivial task to ana-
lyze a fully convex optimization formulation without
stochasticity assumptions on ¢,.

Lemma 2. Fix ne{l,2,...,T-1}, and let

A=, +pl= anq)tcj): +pl. Suppose
p >max{5v,sV5dInT,2 + 48s*G*KdInT}. Then with
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probability 1 — O(T~2), the following hold: || éz |, <2, and
(0F — 0" A0 - 0) <
(sKV3dInT + (2G + 3)4/p + Gv. 5 V5dIn T).

(4)

2

Furthermore, if Apin(X,;) > A= [(\2/;;—?? + vé-,éG] ,
then Inequality (4) can be strengthened to

(0" -0 AL(0F — 0") < [4sKVdIn TT. (5)

Lemma 2 is proved by analyzing the first-order

KKT condition at QZ and is deferred to the supple-
mentary material. Lemma 2 upper bounds the trans-
formed estimation error of the differentially private

MLE QZ in two upper bounds. The first upper bound
in (4) applies to the general setting and has a
GvesV5dInT additive term involving the differential
privacy parameters ¢ and 0 in the upper bound. The
second upper bound in (5), on the other hand, shows
that if the sample covariance matrix X, is spectrally

lower bounded, then the upper bound on || 8" — 6 3\"
can be much improved with only the standard

O(VdInT) term.
7. Regret Analysis

Section 6 has established the privacy guarantees of
our dynamic personalized pricing policy (see Corol-
lary 4). In this section, we will further analyze the per-
formance/utility of our proposed policy by proving up-
per bounds on its expected cumulative regret.

Recall that in the dynamic personalized pricing prob-
lem, there are ¢ time periods, and at each time period, a
customer arrives with personal information x,. When
offered price p;, the expected demand is modeled by
the generalized linear model p(y;:|p:x:, 07) =
exp {CyP(prx)" 0" — m(Pp(pr.xr) " 6°) + h(y,, )} with ex-
pectation  E[y; | pr, x:, 0] =f(q§(pt,xt)T9*). With 6°
known in hindsight, the optimal price p; at time ¢ is the
one maximizing the retailer's expected revenue, or
more specifically,

p; := arg max pf(d)(p,xt)TQ*).
pelo, 1]

The regret of a dynamic pricing policy 7t is then de-
fined as the cumulative difference between the ex-
pected revenue of the policy’s offered prices and that
of a clairvoyant, or more specifically,

T
Regret(r; T) := Zl“ pif(d(pixe) " 0°) = pif (d(prxe) T 07).
=

Clearly, by definition, the regret of any admissible
policy is always nonnegative because no p; has a high-
er expected revenue compared with p;. The smaller

the regret, the better the policy’s performance. We are
also primarily focused on the asymptotic growth of the
regret as a function of the time horizon T, as well as
several other important parameters, such as the fea-
ture dimension d and the privacy parameters
£p:i= &1+ &, 00 := 01 + 07.

7.1. The General Case

We first analyze the regret of Algorithm 1 in the most
general case, in which customers’ personal informa-
tion {x;} is obliviously (i.e., prefixed) but can be adver-
sarially chosen without preassumed patterns. Our
next theorem upper bounds the regret of Algorithm 1
with proper choices of the values of algorithmic pa-
rameters. Recall that ¢ := €1 + €5, 0 := 01 + 0. We also
note that for the general case, the random exploration
phase (step 4 in Algorithm 1) will be unnecessary, and
thus we could set T, = 0.

Theorem 1. Suppose Algorithm 1 is run with parameters
e1,&p >0.1¢g, 61,00 = 0.10g, To=0,D = |_d10g1,5T-|,

p=max{e'dIn°T, 5v6/’6/2\/5dh1T,2+ 485%G?
KdinT}, and y=K[(V3sK+V5Gv, ») din T+

(2G +3)+/p], where €5, 0, are defined in step 3 of Algorithm
landv . o is defined in Algorithm 3. Then it holds that
2772

Regret(r; T) < 2yV4.6dTInT < 0(651\/d3Th15(1/60)),

where in the O(-) notation, we omit logarithmic terms in T
and polynomial dependency on other model parameters s,
K, G, and By

Theorem 1 is proved in the supplementary material.
We note that when T is large, our regret bound
matches the classical optimal regret bound of O(VT).
The dependency on the dimensionality of personal in-
formation d (i.e., Vd®) can be further improved by as-
suming a stronger assumption on the stochasticity of
personal information x; (see Section 7.2). The stochas-
tic personal information or demand covariate has
been a common assumption in the pricing literature
(see, e.g., Qiang and Bayati (2016), Javanmard and Na-
zerzadeh (2019), Ban and Keskin (2021), and Chen
et al. (2021)).

7.2. Improved Regret with Stochastic Contexts
In this section, we show that for a large class of prob-
lems in which the customers’ personal information is
stochastically distributed, the regret upper bound in
Theorem 1 could be significantly sharpened.

The following assumption mathematically charac-
terizes the stochasticity condition of customers’ per-
sonal information used in this section.

Assumption 1. Let U[0, 1] be the uniform distribution on
[0,1]. There exists an underlying distribution 1, and a
constant 1, >0 such that x1,...,xT”~'d'yx, and
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furthermore,

I, p) <1 as. ~p, xUO,1];
E e py-xtio ] [P, ) (px) T [=165.

Assumption 1 assumes that consumers’ personal
feature vectors are relatively widely spread so that
they are not concentrated in a narrow region or direc-
tion. Such an assumption helps improve the regret
analysis because the algorithm can expect to see fea-
ture vectors along with any directions with reasonable
chances, and therefore the overall estimates of the un-
known regression model can be more accurate.

With Assumption 1, the following theorem shows
that when algorithmic parameters are properly chosen
in Algorithm 1, the regret upper bound can be im-
proved compared with Theorem 1 for the general
setting.

Theorem 2. Under Assumption 1, suppose Algorithm 1 is
run  with  parameters 1,2 2 0.1¢g, 061,02 = 0.16y,

Do, = [dlog15T], p =max{e;'d5InT,5v,, 5 V5dInT,

2+48s°GKdInT}, T, = 32[%,@“’;_1131);’ +v,sGIIn2(dT), y =

4sK>NdIn T, where €,,6, are defined in step 3 of Algorithm
Land v, is defined in Algorithm 3. Then it holds for

sufficiently large T > ¢*<" that
Regret(r, T) < To + 2y V4.6dTInT
< O(dVT + e2dIn(1/0)),

where in the O(-) notation we omit logarithmic terms
in T and polynomial dependency on other model pa-
rameters s, K, G, and By

The proof of Theorem 2 is largely the same as the
proof of Theorem 1 except for the application of
the second upper bound in Lemma 2. We relegate the
complete proof of Theorem 2 to the supplementary
material. Comparing Theorem 2 with Theorem 1, we
note that the significant improvement lies in the addi-
tive nature between the ¢y,00 and d, T terms in Theo-
rem 2. More specifically, because the privacy-incurred
terms are now additive and do not scale polynomially
with T, in most practical scenarios when the time hori-
zon T is very large, the dominating term of Theorem 2
becomes only O(dVT), which is optimal (up to loga-
rithmic factors) in both the time horizon T and the fea-
ture dimension d (see, e.g., the Q(dVT) lower bound
in Dani et al. (2008)).

7.3. Impact of Privacy Constraints on

Seller Surplus
In our theoretical framework, the seller surplus is
measured and reflected by the notion of regret, which
measures how much revenue/profits are lost by the

seller’s pricing decisions compared with the optimal
personalized prices in hindsight. The smaller the re-
gret, the larger the seller surplus.

Our main results in Theorems 1 and 2 give quantita-
tive upper bounds on the regret of our proposed algo-
rithm. More specifically, the regret of our algorithm is
(omitting logarithmic factors and secondary model
parameters) O(e~!Vd3T) in the general setting and
O(V&T + £72d%) with additional assumptions on the
distribution of consumers’ context vectors. Here, T is
the time horizon (i.e., the number of customers han-
dled), d is the number of covariates in consumers’
personal data, and ¢ >0 dictates the level of privacy
leakage, with a smaller ¢ indicating stronger/stricter
protection of users” privacy. From these results, we
make the following observations.

o Trade-offs between seller profits and privacy protection:
With stronger privacy protection (i.e., ¢ — 0%), it is
clear that the regret of our proposed algorithm in-
creases, indicating that the seller profits are going to
suffer with additional privacy constraints. The decrease
of seller surplus is, however, alleviated when the con-
sumers’ context vectors are relatively well distributed,
as the ¢72d? term is not the dominating term in the
regret bound when there are a sufficient number of
customers/users. Such a decrease of seller profits is
intuitive and expected, because additional privacy con-
straints limit sellers” ability to offer very personally tai-
lored prices to boost their revenues.

e Value and privacy costs of information: The d parameter
in the regret bound characterizes how many covariates or
factors the pricing algorithm exploits in customers’ per-
sonalized data and shows the value and privacy costs of
information: with more factors/covariates (i.e., larger val-
ues of d), the retailer is able to consider more refined de-
tails and information of each incoming customer, but such
information adds to the burden of privacy protection,
leading to increased regret. To see this more clearly, with
some stochasticity assumption of covariates, the regret
bound O(dVT + £~24d2) in Theorem 2 shows the following
fact. For the regret term ¢ ~2d related to the privacy tobe a
constant, a larger dimension d (i.e.,, more customer infor-
mation) implies that ¢ = Cod also grows proportionally,
which leads to a weaker privacy protection. Additionally,
for the first term O(dVT), there is also a known lower
bound showing that any policy must suffer a regret of
Q(dVT) in the worst case (Dani et al. 2008). Therefore,
there is indeed a cost of information for the purpose of pri-
vacy protection. Our regret upper bounds therefore pro-
vide in principle a bottom line for practitioners to gauge
the costs of incorporating more factors of user information
into dynamic personalized price decisions.

8. Numerical Results
In this section we corroborate the theoretical guaran-
tees established in this paper for our proposed
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differentially private personalized pricing method
with simulation results on a synthetic data set. We
adopt the logistic regression model Pr{y; =1[¢,, 0] =
) 0 . *
eQ—T with C = 4/ (Pt(xt/pf) = %[xf; _Pt] € Rd/ and 0" =

——,
14 f

[-V0.1,-V0.1;...; —v0.1; y1-0.1(d-1)]€R?. The

personal feature vectors {x;} are synthesized uniform-

ly at random from the unit cube [—1,1]‘171. It is easy to
verify that || ¢, ||, <1 and || 0" ||, <1 always hold for
all d. Algorithm parameters (as inputs in Algorithm 1)
are chosen as Ty = 10, p = 10, Do = [dlog,T], and y =
1. Other privacy-related parameters will be varied to
demonstrate a spectrum of our proposed algorithm
on a continuous landscape of differential privacy
guarantees. Note that this experiment’s main purpose
is to investigate the impact of privacy-related parame-
ters (i.e.,, ¢ and 0) rather than compete with state-of-
the-art nonprivate pricing algorithms.

In Figure 6 we plot the average regret of our proposed
algorithm under various ¢, €; privacy settings and time
horizons T ranging from 10° to 10°. All settings are run
for 20 independent trials, and the average regret is re-
ported. For reference purposes, we also indicate in both
plots of Figure 6 (see the flat dashed line) the average
regret of a policy that simply produces uniformly at ran-
dom prices p; at each f, completely ignoring the person-
alized features/factors of each incoming customer. As
we can see, under most privacy settings, including high-
ly secured settings with small ¢ (e.g., €1 =& =0.02),
the average regret of our proposed algorithm is much
smaller compared with completely random prices,
demonstrating its utility under privacy constraints. Fur-
thermore, with relaxed privacy requirements (i.e., larger
values of ¢1,¢&,) and/or longer pricing horizons T, the
average regret of our algorithm significantly decreases,
which verifies the theoretical regret upper bounds we
established in Theorems 1 and 2.

In Figures 7 and 8, we provide some additional aux-
iliary simulation results. Figure 7 gives a direct land-
scape of the average regret of our algorithm under ¢
values ranging from 0.1 to 1. Figure 8 further explores
the robustness of our algorithm under several very
small 6 values (as small as 6 = 1/T™). Note that in Fig-
ure 8 there are multiple trend lines corresponding to
the performances of the proposed algorithm under
different settings of T, ¢, and 0 values. Apart from the
dependency on In(1/6), Figure 8 also shows that the
average regret of our algorithm decreases with
increasing time horizon T and relaxed privacy guaran-
tees (i.e., larger values of ¢), both of which are consis-
tent with the findings in Figures 6 and 7. The results
in both figures are as expected (significant decreases
in average regret with large ¢ values and moderate in-
creases in average regret with geometrically decreas-
ing 6 values) from our theoretical results.

To better illustrate our algorithm, we further report
two additional sets of simulation results. In Table 1
we report the average regret of our proposed algo-
rithm together with an algorithm that is not subject to
any kind of privacy constraints, which is implemented
by removing all noise calibration steps in the two pri-
vate releasers PrivaTECov and PrRIVATEMLE. We re-
mark that even larger ¢ values (e.g., ¢ =1.0 or £ =5.0)
indicate quite nontrivial universal privacy protection
of consumers’ sensitive data, which explains the rela-
tively larger regret incurred by differentially private
pricing algorithms compared with their nonprivate
counterparts. In Table 2 we report the average regret
of our proposed algorithm when the values of ¢; and
& are very different to see which privacy parameter
has a bigger impact on the performance of the de-
signed algorithm. Table 2 shows that ¢, clearly has a
much larger effect on the regret performance of our
algorithm, with the average regret significantly

Figure 6. (Color online) Average Regret of Our Proposed Algorithm Under Different Time Horizons T

Average regret with d=2
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Notes. The black dashed line indicates the average regret of a policy offering completely at random prices. Both 61,0, parameters are set at

5 =8, =1/T2
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Figure 7. (Color online) Average Regret of Our Proposed Algorithm Under Different Privacy Parameters ¢ = ¢1 = &,
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Note. Both 61,0, parameters are setatd; =0, =1/ T2

decreasing with larger ¢, values. On the other hand,
the impact of ¢; is not significant or clear. This is ex-
pected from the structure of the algorithm, because ¢,
is used in the PrivaTEMLE subroutine, which directly
affects the model estimates used in subsequent price
offerings.

9. Discussion and Insights

9.1. Insufficiency of Input Perturbation

Input perturbation is a straightforward method for de-
signing differentially private algorithms and is actual-
ly an effective method in some application scenarios.
The high-level idea of input perturbation is to artifi-
cially calibrate noise directly to the inputs of the

Average regret with d=3

0.014
0.012 | ——T-2x 10°
——T=5x 10°
0.017 T=10x 10°
0.008 |
0.006 |
0.004
0.002 f
0 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

algorithm in order to protect private information.
With noisy inputs, the privacy of the entire algorithm
trivially follows from the closeness-to-postprocessing
property of differential privacy (Fact 2).

In the context of personalized dynamic pricing, the
application of the input perturbation method amounts
to calibrating noise directly to the personal features x;
of each incoming customer: X;=x;+w; for some
centered noise vectors {w:};_;. Such an approach,
however, is likely to fail because the features of each
individual customer are relatively independent from
each other. Therefore, a very large magnitude of
noises {w;} needs to be injected, which renders the
subsequent pricing algorithm impractical. A more de-
tailed discussion follows:

Figure 8. (Color online) Average Regret of Our Proposed Algorithm Under Different 6 Parameter Values
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Notes. From left to right, the 6 values are 1/T,1/ T?,...,1/T'. The time horizon is measured in terms of 10° periods (i.e., T = 2 means 2 X 10° total
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Table 1. Average Regret Comparison with Nonprivate Pricing Algorithms

Algorithm e=0.1 e=0.2 e=0.5 e=1.0 e=5.0 Nonprivate
T=10°,d=2 201 x 1074 142 x 1074 74.6x107* 419%x107* 447 x107* 3.1x107*
T=10°d=2 46.0 x 1074 19.8x107* 115x107* 56x107* 55x107* 0.6x107*
T=10%d=3 156 x 107 130 x 10~ 92.6x107* 62.9x107* 434x107* 3.1x107*
T=10%d=3 749 %1074 49.4x107* 231x107* 147 x107* 5.7x 107 1.6x107*

1. Suppose X; = x; + w; is the anonymized version of
a customer’s feature vector x; at time f. Because ¥, is re-
leased and used in the subsequent process of the pric-
ing algorithm, one must ensure that X; is differentially
private. This means that the magnitude of w, must be
sufficiently large (on the order of Q)(1/¢)) to protect the
sensitive information of x;.

2. Usually, input perturbation results in a much worse
performance of the differentially private algorithms
compared with output perturbation. Consider the very
simple example of having sensitive data xq,...,x,, and
one wants to release x =, > . 13(l with e-differential pri-
vacy. If we use input perturbation with ¥; = x; + w; and
the Laplace mechanism, we have w, ~Lap(0,1/¢), and
therefore ¥! := 1 Z 1 X satisfies E[| %! - % |]=O(1/e/n).
On the other hand 1f one uses output perturbation by
releasing  ¥°:=%+1Lap(0,1/¢), then one has
E[| % - % []=O(1/en). It is easy to verify that both X !, %2
are differentially private, but ¥* clearly is much closer to
X compared with ¥'. This very simple example shows
that, in general, input perturbation (directly adding
noises to sensitive data) is usually less efficient and
should be avoided if there are better approaches.

3. In the particular model studied in this paper, the
use of a generalized linear model further complicates
the input perturbation-based methods. For many gen-
eralized linear models, such as the logistic regression
model, the efficiency of statistical estimates (e.g., the
MLE) decays exponentially fast with respect to the vec-
tor norm of the feature vector x. Hence, if we use X; =
x¢ +w; to replace x; directly in the logistic regression
model, the norm of ¥; is on the order of Q)(1/¢), and
therefore the resulting method is going to incur an
O(exp{1/¢}) term in regret, which makes the regret ex-
cessively large.

In Table 3 we compare the average regret of our
proposed algorithm with the input perturbation

method using numerical simulations. Table 3 shows
that the regret of our designed algorithm is signifi-
cantly smaller than that of the input perturbation. Fur-
thermore, the average regret of input perturbation is
very large unless the ¢ parameter is at least 1 and does
not necessarily decrease with increasing number of
time periods T.

9.2. Impact of Privacy Constraints on
Consumer Surplus

In this section we study the impact of privacy con-
straints of the seller’s personalized pricing algorithm on
the average consumer’s surplus, under different levels
of privacy constraints. We model the utility u; for each
incoming customer at time ¢ with feature vector x; and
offered price pr as up = C(P(xe, pr), 07) + C;, where C = 4,
O(xe, pr) = [xt,pt] and (, are ii.d. random variables
following the standard centered logistic distribution.
The customer will make one unit of purchase if u; > 0,
resulting in a surplus of u;, and leave without making
any purchases if 1; < 0, resulting in zero surplus at that
period. It is easy to verify that this utility model leads to
the logistic regression model we used in the numerical
experiments, or more specifically, Priye=1|x,p:] =

(P(xt/ Pt )

Figure 9 reports the average consumer surplus un-
der our proposed privacy-aware personalized pricing
algorithm, for both d = 2 and 3 with consumers’ con-
textual vectors {x;};_; and the unknown regression
model synthesized in the same way as in Section 8.
We also plot the consumer surplus for a hypothetical
pricing algorithm that is not subject to any privacy
constraints as dashed lines in Figure 9. Note that we
did not incorporate consumers’ surplus from the
protection of their private data, which is difficult to
measure and compare against the surplus from their

C;‘r
e where ¢, =

Prlu; > 0| x,pr] =

Table 2. Average Regret with T = 10° of Our Algorithm Under Different ¢1, ¢, Settings

Algorithm £=0.02 £=0.05 e=01 £=02 e=05
T=10°,d=2, fix & =0.1 0.0247 0.0232 0.0195 0.0145 0.0073
T=10°,d=2, fix &, =0.1 0.0192 0.0178 0.0196 0.0192 0.0191
T=10%d=3, fix & =0.1 0.0164 0.0160 0.0147 0.0128 0.0092
T=10°,d=3, fix &, =0.1 0.0145 0.0149 0.0144 0.0149 0.0154

Notes. When the row indicates “fix &1

=0.1" (or “fix £, = 0.1”), then the ¢ in the column represents the value of ¢, (or accordingly, €1).



Chen, Simchi-Levi, and Wang: Privacy-Preserving Dynamic Personalized Pricing

Management Science, Articles in Advance, pp. 1-21, © 2021 INFORMS 19
Table 3. Average Regret of Our Proposed Algorithm and the Input Perturbation Method

Our algorithm Input perturbation
Algorithm =02 =05 e=1.0 =02 e=05 e=1.0
T=10°,d=2 (x107%) 142 74.6 41.9 393 393 98.2
T=5x10°,d=2 (x107%) 427 19.4 10.4 393 393 95.8
T=10%d=2 (x107% 19.8 11.5 5.6 393 393 95.3

purchasing decisions. As we can see from Figure 9, as
¢ increases from 0 to 1, the implied privacy protection
becomes weaker as the adversary has a stronger ability
to distinguish between neighboring databases. This
means that as ¢ increases, the seller has less ability to
discriminate against customers based on their person-
al data and features, resembling a transition from
first-degree to third-degree price discrimination. As a
result, the consumer surplus increases as ¢ increases,
and the seller extracts less of the consumer surplus
from his or her limited ability to carry out price
discrimination.

10. Conclusions and Future Directions
In this paper, we investigate how to protect the privacy
of a customer’s personal information and purchasing de-
cisions in personalized dynamic pricing with demand
learning. Under the generalized linear model of the
demand function, we propose a privacy-preserving con-
strained MLE policy. We establish both the privacy guar-
antee under the notion of anticipating DP and the regret
bounds for oblivious adversarial and stochastic settings.
There are several future research directions. First,
we could extend the current privacy setting to the

local DP (Evfimievski et al. 2003, Kasiviswanathan
et al. 2011), which is a stronger notion of DP. The lo-
cal DP is suitable for distributed environments, as
user terminals need to randomize data before send-
ing it to the center. A very recent paper by Ren et al.
(2020) investigates the UCB algorithm under the lo-
cal DP. It would be interesting to study the person-
alized dynamic pricing under this stronger notion
of DP. More important, as privacy has become a sig-
nificant concern for the public, especially in the
e-commerce domain, we believe that systematic re-
search on privacy-preserving revenue management
will become increasingly important in both acade-
mia and industry. Although there is relatively less
research in this area, we hope our work inspires
future studies on privacy-aware operations manage-
ment (e.g., inventory control or assortment optimi-
zation) based on the DP framework.
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Figure 9. (Color online) Average Consumer Surplus Under Different Levels of Privacy Constraints and Time Horizons
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Notes. The dashed lines represent average consumer surplus for a personalized pricing algorithm not subject to any data privacy constraints.
Both €1, &, parameters are equal to € in the figures, and both 61,06, parameters are set as 1/ T2, where T is the time horizon.
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Endnote

! This setting is known as the “oblivious adversary” model in the
contextual bandit literature. Although this model is weaker than
the “fully adversarial” one mostly studied in the literature, we
adopt the oblivious adversary model for a more convenient treat-
ment of privacy constraints, as {x;} will not depend on the offered
prices or the randomly realized demands.
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