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Abstract. Distributionally robust optimization (DRO) has been introduced for solving sto-
chastic programs in which the distribution of the random variables is unknown and must
be estimated by samples from that distribution. A key element of DRO is the construction
of the ambiguity set, which is a set of distributions that contains the true distribution with
a high probability. Assuming that the true distribution has a probability density function,
we propose a class of ambiguity sets based on confidence bands of the true density func-
tion. As examples, we consider the shape-restricted confidence bands and the confidence
bands constructed with a kernel density estimation technique. The former allows us to in-
corporate the prior knowledge of the shape of the underlying density function (e.g., unimo-
dality and monotonicity), and the latter enables us to handle multidimensional cases. Fur-
thermore, we establish the convergence of the optimal value of DRO to that of the
underlying stochastic program as the sample size increases. The DRO with our ambiguity
set involves functional decision variables and infinitely many constraints. To address this
challenge, we apply duality theory to reformulate the DRO to a finite-dimensional stochas-
tic program, which is amenable to a stochastic subgradient scheme as a solution method.

Funding: X. Chen was supported by the National Science Foundation [Grant IIS-1845444].

Keywords: distributionally robust optimization • confidence band • data-driven ambiguity sets

1. Introduction
An important task in a stochastic program (SP) is to minimize the expectation of a cost function that depends on
both decision variables and random variables. In particular, an SP is typically formulated as1

v? :� inf
x∈X Eξ?~P?[ f (x, ξ?)] :�

∫
R

m
f (x, ξ)P?(dξ)

{ }
, (1)

where x ∈ R
n is a decision variable, X ⊆ R

n, ξ? ∈ R
m is a random variable following distribution P?, and f (x,ξ) :

R
n × R

m → R is a measurable cost function. SP has been actively studied in the past decades: see Birge and
Louveaux (2011), Shapiro et al. (2014), and references therein. Suppose ξ? is absolutely continuous so that it has a

probability density function p? : Rm → [0, +∞) such that P?(A) �
∫

A
p?(ξ)dξ for any Borel set A ⊂ R

m.2 Then, we

can rewrite (1) as

v? � inf
x∈X Eξ?~p?[ f (x,ξ?)] :�

∫
R

m
f (x,ξ)p?(ξ)dξ

{ }
: (2)

Despite their popularity, (1) and (2) are often challenging to solve becaue the distribution P? or the density
p? is rarely known in real-life applications. When a set of historical data of ξ? is collected, one may solve the
approximation of (1) by replacing P? with a distribution estimated from the data, for example, the empirical
distribution. However, because of the approximation error, the decision made with the estimated distribu-
tion may be of inferior quality and, thus, may have an undesirable out-of-sample performance (Mak et al.
1999, Bertsimas et al. 2014, Mohajerin Esfahani and Kuhn 2018). An attractive alternative is the so-called dis-
tributionally robust optimization (DRO), in which one constructs an ambiguity set consisting of the distributions
that are likely to be P? and then minimizes the expected cost over the worst-case distribution from the

1
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ambiguity set. In particular, letting D be an ambiguity set of probability measures, a DRO problem can be
formulated as

inf
x∈X sup

P∈D
Eξ?~P[f (x,ξ?)] :�

∫
R

m
f (x,ξ)P(dξ)

{ }
: (3)

Scarf (1958) first propose this model for a newsvendor problem, and it has been extensively studied since then
by operations research and operations management communities.

In the literature, there exist several effective approaches to construct ambiguity sets, including the moment-, distance-,
and hypothesis test–based approaches. We defer the detailed review of these approaches to Section 1.1. In many real-
world applications, the random variable ξ? is known to be absolutely continuous (e.g., when ξ models the prices of
commodities or the returns of securities). However, the ambiguity sets constructed by most of the aforementioned ap-
proaches contain distributions that are not absolutely continuous. In fact, as shown in many papers (e.g., Bertsimas et al.
2014, Mohajerin Esfahani and Kuhn 2018), the worst-case distribution from those ambiguity sets is discrete. As a result,
by solving (3) with those ambiguity sets, one may obtain a solution that is hedging against a discrete distribution which
is never the true distribution. This phenomenon potentially leads to overconservative decisions made by DROmodels.

In Section 3.3, we use a simple example to show that the ambiguity set constructed by the Wasserstein distance
(Mohajerin Esfahani and Kuhn 2018) may lead to a worst-case expected cost significantly higher than the expected
cost under the true distribution in the case where the true distribution is absolutely continuous. This follows
from the fact that the ambiguity set constructed by the Wasserstein distance contains very conservative discrete
distributions. To address such conservativeness, the main goal of this paper is to propose an approach to con-
struct ambiguity sets that consist of only absolutely continuous distributions, which can potentially exclude those
conservative discrete distributions and, thus, reduce the worst-case expected cost.

The ambiguity set we propose is constructed based on a confidence band of the true density function. We show in
Section 3.3 with the aforementioned example that, using our ambiguity set, the worst-case expected cost can be-
come significantly closer to the true expected cost than that using the ambiguity set constructed by the Wasserstein
distance. Although what ambiguity set is the best in general remains an open question, this paper provides addi-
tional options for practitioners who rely on DRO to make decisions under uncertainty and need to estimate the
worst-case cost under various perspectives to avoid overly conservative decisions.

With a little abuse of notation, in the rest of the paper, we still denote by D the ambiguity set that consists of
density functions (instead of probability measures). With such an ambiguity set, the DRO model corresponding
to the SP in (2) becomes

inf
x∈X supp∈D

Eξ?~p[ f (x,ξ?)] :�
∫
R

m
f (x,ξ)p(ξ)dξ

{ }
: (4)

As a result, the worst-case distribution (if attainable) corresponding to the optimal solution of (4) is absolutely
continuous.

The rest of the paper proceeds as follows. We review the related literature in Section 1.1 and summarize our con-
tributions in Section 1.2. The mathematical notations needed are defined in Section 1.3. Then, we first propose the
generic DRO in Section 2, followed by the construction of our data-driven ambiguity sets using density estimation
techniques from the statistics literature. In particular, we present two classes of ambiguity sets and showcase their
convergence to the true density function and further prove the convergence of the optimal value of (4) to the optimal
objective value of the SP in (2) as the sample size increases to infinity; see details in Section 3. The setting of our am-
biguity set gives rise to a challenging problem to solve as the resulting optimization Problem (4) involves functional
decision variables (i.e., the density p) and continuously many constraints. In Section 4, using the special structure of
our ambiguity set, we show that (4) can be reformulated into a finite-dimensional convex stochastic program, which
is amenable to an efficient stochastic subgradient method approach as the solution method. Finally, we validate our
approach with a newsvendor problem and a portfolio management problem in Section 5.

1.1. Literature Review
In the existing literature, different approaches have been utilized to construct ambiguity sets. We briefly review
some popular approaches as follows:

• Amoment-based ambiguity set consists of all distributions that share the same (marginal and cross) moments;
see Bertsimas and Popescu (2005), Calafiore and El Ghaoui (2006), Chen et al. (2019), de Klerk et al. (2019), Delage
and Ye (2010), Dupačová (1987), Erdoğan and Iyengar (2006), El Ghaoui et al. (2003), Wiesemann et al. (2014),
Hanasusanto et al. (2015), Li et al. (2018), Natarajan and Teo (2017), Vandenberghe et al. (2007), and Zymler et al.
(2013a,b). A DRO problem in (3) with a moment-based ambiguity set can usually be reformulated into a tractable
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conic program, for example, a second order cone program or a semidefinite program. However, the ambiguity set
D is typically not guaranteed to converge to the true distribution P? as the size of the historical data increases al-
though the estimations of the moments of the random variables are guaranteed to converge to their true values.

•A distance-based ambiguity set is constructed by using somemetric to measure the distance between two prob-
ability distributions. In fact, such an ambiguity set can be considered as a ball centered at a reference distribution,
for example, the empirical distribution, in the space of probability distributions. The distance metrics considered
in the literature include Kullback–Leibler divergence (Hu and Hong 2013, Jiang and Guan 2015), φ-divergence
(Ben-Tal et al. 2013, Klabjan et al. 2013, Duchi et al. 2021), the Prohorov metric (Erdoğan and Iyengar 2006), empiri-
cal Burg-entropy divergence (Lam and Mottet 2017, Lam 2019), and the Wasserstein metric (Pflug and Wozabal
2007, Gao and Kleywegt 2016, Gao et al. 2017, Mohajerin Esfahani and Kuhn 2018). Many distance-based ambiguity
sets can guarantee asymptotic or finite-sample convergence to the true distribution.

• Hypothesis test–based ambiguity sets are proposed by Bertsimas et al. (2014, 2018). Based on a hypothesis test
(e.g., a goodness-of-fit test), those approaches construct ambiguity sets consisting of the distributions that pass the
hypothesis test with a given confidence level. According to Bertsimas et al. (2014), as the sample size increases, a
hypothesis test–based ambiguity set can ensure that both the optimal objective value and the optimal solution of
DRO asymptotically converge to those of the original SP if the hypothesis test has certain consistency property. The
method that we propose in this paper belongs to this category.

• A likelihood-based approach is proposed in Wang et al. (2016) to construct an ambiguity set that consists of all
distributions that make the likelihood of the historical data above a given threshold. It is shown by Wang et al.
(2016) that, if such a threshold is appropriately chosen according to the data size, the ambiguity set converges to
the true distribution as the data size increases to infinity.

Before our work, the ambiguity sets consisting of density functions were considered by Mevissen et al. (2013) and
de Klerk et al. (2019). Their ambiguity sets contain only polynomial density functions, and our approach does not
have this restriction. We also note that the ambiguity set considered in Mevissen et al. (2013) utilizes the kernel den-
sity estimation as does one of our ambiguity sets. Although their method must specify the Legendre polynomial se-
ries as density estimators, our method allows for using a broader family of kernel density estimations. Moreover,
our ambiguity sets are constructed with data samples and, in the case of univariate p?, may integrate some shape in-
formation of the density function p? (e.g., unimodality or monotonicity), and the ambiguity set in de Klerk et al.
(2019) is not data-driven and integrates some moment information of p?. Other methods that integrate shape infor-
mation on p? include Lam and Mottet (2017) and Li et al. (2018). Li et al. (2018) consider an ambiguity set with mo-
ment and generalized unimodal constraints. Lam and Mottet (2017) impose convexity constraints on the tail of the
density function. The main difference between our approach and theirs is that our method is data-driven and theirs
do not require data samples and directly impose shape information as constraints in their optimization models.

1.2. Contributions
We summarize the main contributions of the paper as follows.

• We propose a class of ambiguity sets for DRO in which the true distribution of the random variables is known
to be absolutely continuous. Our ambiguity set is constructed using a confidence band of the true density function
and only contains absolutely continuous distributions. We use the shape-restricted confidence band by Hengartner
and Stark (1995) and the confidence band constructed with kernel density estimators (Jiang 2017) as two examples.
We further devise an example (see Section 3.3) to show that DRO with the proposed ambiguity set may lead to a
less conservative worst-case expected loss by effectively excluding conservative discrete distributions. This sug-
gests that the proposed ambiguity set can serve as an effective alternative to the existing ambiguity sets.

• It is shown by Hengartner and Stark (1995) and Jiang (2017), respectively, that the two confidence bands men-
tioned converge to the true density function as the data size increases to infinity (Theorem 1, Lemmas 1 and 2).
Based on their results, we further show that the optimal values of the DRO problems using these two confidence
bands converge to that of the original SP (Theorems 2 and 4). This new result may enrich the literature.

• As the DRO with the proposed ambiguity set contains a functional decision variable, it is challenging to opti-
mize in general. Using the strong duality theory of conic programming on a Banach space (see, e.g., Shapiro 2001),
we reformulate the DRO into a finite-dimensional convex program, which can be efficiently solved by using a sto-
chastic subgradient method (Nemirovski et al. 2009).

1.3. Notation and Terminology
Let Z+ be the set of nonnegative integers. Let ProjA(·) denote the Euclidean projection operator on to the set A,
that is, ProjA(u) � arg minv∈A ||v− u||2: Given a set E, let IE(ξ) be the indicator function that equals one when ξ ∈ E
and zero when ξ ∉ E. Given an extended real-value function g : Rn → [0, +∞], we denote its epigraph, domain,
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and subdifferential at x by epi(g), dom(g), and ∂g(x), respectively, and use g′(x) to denote a subgradient of g at x.
In this paper, all random events to which P is applied are determined by independent and identically distributed
(i.i.d.) random variables ξ̂1, ξ̂2, … , ξ̂N, each of which has density p?. Hence, P is essentially a probability mea-
sure generated by the cross-product distribution p? ×⋯× p?︸���︷︷���︸

N folds

.

2. Data-Driven Distributionally Robust Optimization
In this paper, we consider an ambiguity set for the true distribution p? in (2) that consists of all density functions
whose value is between two nonnegative functions constructed by historical data. We assume that there exists a
set of N historical data points sampled from p? and denoted by

Ξ̂N :� ξ̂1, : : : , ξ̂N

{ } ⊆ Ξ,

where Ξ ⊂ R
m is the support of p?, that is, p?(ξ) � 0 for any ξ ∉ Ξ.3 We assume Ξ is bounded. For a given

α ∈ (0, 1), we then construct two functions lα : Ξ→ [0, +∞] and uα : Ξ→ [0, +∞] based on Ξ̂N, α, and some
shape information on p? (e.g., unimodality and monotonicity) such that

P{lα(ξ) ≤ p?(ξ) ≤ uα(ξ), ∀ ξ ∈ Ξ} ≥ 1−α: (5)

Functions lα and uα are nonnegative but not necessarily density functions as they are not required to have an in-
tegral of one. Note that the randomness in (5) is due to uα(ξ) and lα(ξ), which depend on the random samples in
Ξ̂N. We call the pair of functions (lα,uα) the confidence band for the density function p? at a confidence level of 1−
α and α is called the significance level. In Section 3, we introduce two different approaches from the literature on
statistics to construct (lα,uα).

With (lα,uα) satisfying (5), we can construct an ambiguity set that contains p? with a confidence level of 1−α.
More specifically, we define

L :� p|p : Ξ→ R is a Lebesgue−measurable function on Ξ
{ }

and consider the following ambiguity set:

D(Ξ̂N, α) :� p ∈ L

∣∣∣∣lα(ξ) ≤ p(ξ) ≤ uα(ξ), ∀ ξ ∈ Ξ,
∫

Ξ

p(ξ) dξ � 1
{ }

, (6)

which satisfies P p? ∈D(Ξ̂N, α)
{ }

≥ 1− α according to (5). With D(Ξ̂N, α) defined in (6), we can instantiate the
DRO problem in (4) as

v?
D(Ξ̂N ,α) :� inf

x∈X sup
p∈D(Ξ̂N, α)

∫
Ξ

f (x,ξ)p(ξ)dξ: (7)

Immediately, we have the following result about the optimal value of (7).

Proposition 1. Suppose that lα and uα in (6) satisfy (5) and that v?
D(Ξ̂N ,α) in (7) is finite and attained by x̂N ∈ X . Let

v̂N :� Ep?[ f (x̂N, ξ)]. We have P v?
D(Ξ̂N ,α) ≥ v̂N

{ } ≥ 1−α:

Proof. Whenever p? ∈D(Ξ̂N, α), we have

v?
D(Ξ̂N ,α) � sup

p∈D(Ξ̂N, α)
Ep[f (x̂N, ξ)] ≥ Ep?[f (x̂N, ξ)] � v̂N:

Hence, we have

P v?
D(Ξ̂N ,α) ≥ v̂N

{ }
≥ P p? ∈ D(Ξ̂N, α)

{ }
≥ 1 − α

according to (5) and (6).

3. Data-Driven Ambiguity Sets
In this section, we present two existing methods from the literature on statistics to construct a confidence band
for a density function based on observed data. The first method is applicable to only univariate distributions but
can integrate some prior information on the shape of the true density function. The second one is applicable to
multivariate distributions.
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3.1. Shape-Restricted Confidence Bands
In this section, we assume m � 1, namely the random variable ξ? is univariate, and present the method by Hen-
gartner and Stark (1995) to construct a confidence band (lα,uα) for p?. Although this method only applies to a uni-
variate density function, it is capable of incorporating some shape information about p? (e.g., unimodality and
monotonicity) into the construction of the ambiguity set that improves the convergence rate of the ambiguity set
to the true density p?.

We need the following assumptions in this subsection.

Assumption 1 (For Shape-Restricted Confidence Bands).
The following statements hold:
A1. SetΞ � [a,b] (the support of p?) with known a and b satisfying −∞ < a < b < +∞.
A2. The true distribution p? is unimodal with a known mode μ ∈ [a,b], meaning that p? is monotonically increasing on

[a,μ] and decreasing on [μ,b].
A3. There exists a known constant U such that p(ξ) ≤U for any ξ ∈ Ξ.

In Assumption 1(A1), we assume that a and b are finite for the simplicity of the notations in the following deri-
vation. In fact, the method by Hengartner and Stark (1995) can be generalized to the case in which a � –∞ and/
or b � +∞. Moreover, for most applications, a conservative estimation of the range of ξ is usually available,
which can be directly used as [a,b]. Similarly, any conservative estimation of the global upper bound of p(ξ) can
be used as U. We also note that Assumption 1(A2) covers the case in which p? is known to be monotonically in-
creasing (μ � b) or decreasing (μ � a). The statistical techniques for testing whether a set of data are sampled
from a unimodal distribution are studied in literature (e.g., Hartigan and Hartigan 1985).

Next, we describe the method by Hengartner and Stark (1995) to construct a confidence band. Let
(ξ̂(1), : : : , ξ̂(N)) be the order statistics of ξ? constructed from Ξ̂N so that ξ̂(1) <⋯< ξ̂(N). We choose a group size K ∈
Z+ satisfying 0 < K <N and partition the sequence (ξ̂(1), : : : , ξ̂(N)) into groups while keeping their order so that all
groups have a size of K except the last group that might have a size less than K if N is not dividable by K. In fact,
let

M′ :� �N=K� and M :� 
N=K�
so that M′ �M if N is dividable by K and M′ �M− 1 otherwise. Then, the size of the first M′ groups is always K
and only whenM′ �M− 1 is the size of theMth (last) group N −KM′. Let F? : R→ [0, 1] be the cumulative densi-
ty function of ξ?. We then define the following indexes:

ki � (i− 1)K+ 1, i � 1, 2, : : : ,M′
N, i �M if M≠M′,

{
and the random variables

Δi :� F?(ξ̂(ki)) − F?(ξ̂(k(i−1))), i � 2, 3, : : : ,M:

In Figure 1, we illustrate the construction of Δi corresponding to a beta distribution using some specific values of
N, K, and i.

Given a significance level α, the construction of the confidence band by Hengartner and Stark (1995) requires
computing two quantities, c−(α) and c+(α), that satisfy

P c−(α) ≤ Δi ≤ c+(α), i � 2, 3, : : : ,M
{ } ≥ 1− α:

However, c−(α) and c+(α) are difficult to calculate directly using the definition of Δis because F? is unknown. To
address this issue, Hengartner and Stark (1995) construct random variable Δi that has the same distribution as Δi

and can be easily simulated without any knowledge on F?. In fact, it is well known that F?(ξ?) is a uniformly dis-
tributed random variable on [0, 1]. By theorem 6.6(b) and (c) in DasGupta (2019), the random vector

F?(ξ̂(1)),F?(ξ̂(2)) − F?(ξ̂(1)), : : : ,F?(ξ̂(N)) − F?(ξ̂(N−1)), 1− F?(ξ̂(N))
( )

has standard Dirichlet distribution, that is, uniform distribution in the N-dimensional simplex, and has the same
distribution as

X1∑N+1
j�1 Xj

,
X2∑N+1
j�1 Xj

, : : : ,
XN+1∑N+1
j�1 Xj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Chen, Lin, and Xu: Distributionally Robust Optimization with Confidence Bands
INFORMS Journal on Optimization, Articles in Advance, pp. 1–25, © 2021 INFORMS 5



where X1, X2, … , XN+1 are i.i.d. exponential random variables with mean one. Because

Δi � F?(ξ̂(ki)) − F?(ξ̂(k(i−1))) �
∑ki−1

j�k(i−1)
F?(ξ̂(j+1)) − F?(ξ̂(j))
[ ]

,

it has the same distribution as

Δ̃i :�
∑ki

j�k(i−1)+1
Xj∑N+1

j�1 Xj

: (8)

Different from Δis, the distributions of Δ̃i s can be simulated by sampling Xis in (8). Through such simulation,
we can estimate c−(α) and c+(α)with an arbitrary precision such that

P c−(α) ≤ Δi ≤ c+(α), i � 2, 3, : : : ,M
{ } � P c−(α) ≤ Δ̃i ≤ c+(α), i � 2, 3, : : : ,M

{ } ≥ 1−α:

Let Lμ be the set of all density functions on Ξ with mode at μ, that is,

Lμ :� p ∈ L

∣∣∣∣p(ξ) ≥ 0, ∀ ξ ∈ Ξ,
∫

Ξ

p(ξ)dξ � 1, the mode of p is μ:
{ }

and let

Dμ(Ξ̂,α) :� p ∈ Lμ

∣∣∣∣c−(α) ≤ ∫ ξ̂(ki)

ξ̂(ki−1 )
p(ξ)dξ ≤ c+(α), i � 2, 3, : : : ,M

{ }
: (9)

Then, by the definitions of Δi, Dμ(Ξ̂,α), c−(α), and c+(α), we have

P p? ∈Dμ(Ξ̂,α)
{ }

≥ P c−(α) ≤ Δi ≤ c+(α), i � 2, 3, : : : ,M
{ } ≥ 1− α: (10)

Given this property, Dμ(Ξ̂,α) can be used as an ambiguity set D in (4). However, this ambiguity set may be too
large to ensure a good solution from solving (4). Therefore, Hengartner and Stark (1995) further refine Dμ(Ξ̂,α)
with a confidence band based on the unmodality of p?.

The confidence band (lα,uα) by Hengartner and Stark (1995) has no analytical form in general, but lα(ξ) and
uα(ξ) can be calculated numerically at any given ξ. Let ξ ∈ [a,b] be the point at which we want to calculate lα(ξ)
and uα(ξ). Let N̂ ∈ Z+ be the number of distinct elements in the set {a,b,μ,ξ, ξ̂(k1), : : : , ξ̂(kM)} and zj be the jth small-
est element in this set, namely

Figure 1. (Color online) We Generate n � 20 Samples from Beta Distribution Beta(5,2), Whose Cumulative Distribution
Function F? Is Plotted Here

Notes. We sort and split the samples into M �M′ � 5 groups with four samples (K � 4) in each group. The value Δ3 � F?(ξ̂k3 ) − F?(ξ̂k2 ) �
F?(ξ̂9) − F?(ξ̂5) is chosen as an example and marked in the figure with samples ξ̂(k2) � ξ̂(5) and ξ̂(k3) � ξ̂(9) marked by the red dots. Here, Δ3 has
the same distribution as Δ̃3 defined in (8).
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{zj}j�1N̂ � {a,b,μ,ξ, ξ̂(k1), : : : , ξ̂(kM)} and z1 � a ≤ z2 ≤⋯≤ zN̂ � b:

Note that M ≤ N̂ ≤M+ 4 as a, b, μ, and ξ may coincide with each other and with some ξ̂(ki). Then, we consider
the following two sets of nonnegative step functions on [a,b]:

p(·) ∈D−
μ(Ξ̂,ξ) :� p ∈ L

∣∣∣∣∣
p(·) � ∑

{j:zj+1<μ}
βjI(zj,zj+1](·) + max

{j:μ∈[zj,zj+1]}
βj

( )
Iμ(·)

+ ∑
{j:μ∈[zj,zj+1]}

βjI(zj,zj+1)(·) +
∑

{j:zj>μ}
βjI[zj,zj+1)(·),

where βj ∈ [0,U] for j � 1, 2, : : : , N̂ − 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11)

p(·) ∈D+
μ(Ξ̂,ξ) :� p ∈ L

∣∣∣∣∣p(·) � ∑
{j:zj+1≤μ}

βjI[zj,zj+1)(·) +U · Iμ(ξ) +
∑

{j:zj≥μ}
βjI(zj,zj+1](·),

where βj ∈ [0,U] for j � 1, 2, : : : , N̂ − 1:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, (12)

where IE(·) denotes the indicator function of the set E. In spite of the sophisticated form of the functions they con-
tain, the sets D−

μ(Ξ̂,ξ) and D+
μ(Ξ̂,ξ) essentially contain all nonnegative step functions on [a,b] with N̂ − 1 pieces and

break points at {zj}j�1N̂ . Given any β � (β1, : : : ,βN̂−1) ∈ R
N̂−1
+ , one can construct a step function by setting the function

value to be βi in the ith piece. Here, we require βj ≤U because of the known upper bound U of p? (see Assumption
1(A3)). The only difference between the functions in D−

μ(Ξ̂,ξ) and D+
μ(Ξ̂,ξ) is how their values are determined at the

break points {zj}j�1N̂ . In particular, each function in D−
μ(Ξ̂,ξ) is left-continuous on [a,μ) and right-continuous on

(μ,b], and its value at μ is the larger one of the two pieces adjacent to μ. On the contrary, each function in D+
μ(Ξ̂,ξ)

is right-continuous on [a,μ) and left-continuous on (μ,b], and its value at μ is always U. In Figure 2, we show some
examples of the curves of the functions fromD−

μ(Ξ̂,ξ) and D+
μ(Ξ̂,ξ). In this figure, a solid break point means that the

end point is included in the piece, and a hollow break point means not included. The height of the jth piece is βj.
Then, the confidence band by Hengartner and Stark (1995) is calculated at ξ as

lSRα (ξ) :� inf
p∈D−

μ (Ξ̂, ξ)∩Dμ(Ξ̂,α)
p(ξ) and uSRα (ξ) :� sup

p∈D+
μ (Ξ̂, ξ)∩Dμ(Ξ̂,α)

p(ξ): (13)

Here, the superscript “SR” refers to “shape restricted.” By its definition, the value of lSRα (ξ) (respectively, uSRα (ξ))
equals the smallest (largest) value at ξ among all density functions that have the piecewise-constant form in (11)
((12)) and satisfy

c−(α) ≤
∫ ξ̂(ki)

ξ̂(ki−1 )
p(ξ)dξ ≤ c+(α) for i � 2, 3, : : : ,M:

Finally, the ambiguity set based on the shape-restricted confidence band in (13) is defined as

DSR(Ξ̂N, α) :� p ∈ L

∣∣∣∣∣lSRα (ξ) ≤ p(ξ) ≤ uSRα (ξ), ∀ξ ∈ Ξ,
∫
Ξ

p(ξ) dξ � 1

{ }
: (14)

Figure 2. Examples of the Functions inD−
μ(Ξ̂,ξ) andD+

μ(Ξ̂,ξ)Defined in (11) and (12)

Notes. A solid break point means that the end point is included in the piece, and a hollow break point means not included. The height of the jth
piece is βj. We also mark the mode zj̃ � μ in the figures as well as possible locations of zĵ � ξ.
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Remark 1. In the original work by Hengartner and Stark (1995), the constant U in (11) and (12) is +∞. In this pa-
per, we require U to be finite so that uSRα (ξ) ≤U < +∞ for any ξ, which is needed to establish Theorem 2. Requiring a
finite U does not change any statistical property of DSR(Ξ̂N, α) we need (i.e., Theorem 1) to obtain the results in this
paper.

The following theorem is from theorem 3.1 and equation (12) in Hengartner and Stark (1995).

Theorem 1 (Hengartner and Stark 1995). Suppose Assumption 1 holds. Then,

P p? ∈ DSR(Ξ̂N,α)
{ }

≥ 1 − α:

We then describe the numerical procedure for computing lSRα (ξ) and uSRα (ξ) for a given ξ. Recall that zj denotes
the jth smallest element in {a,b,μ,ξ, ξ̂(k1), : : : , ξ̂(kM)}. Let ĵ and j̃ be the indexes in {1, 2, : : : , N̂} such that zĵ � ξ and
zj̃ � μ. By (11) and (12), if a density function p belongs to either D−

μ(Ξ̂,ξ) or D+
μ(Ξ̂,ξ), the value p(ξ) only depends

on either βĵ or βĵ−1. Hence, to solve (13), one only needs to maximize or minimize βĵ or βĵ−1 subject to the appro-
priate constraints on β that restrict p in D−

μ(Ξ̂,ξ) ∩Dμ(Ξ̂,α) orD+
μ(Ξ̂,ξ) ∩Dμ(Ξ̂,α). Such constraints can be charac-

terized as the following polyhedron:

H(Ξ̂N,α) � β ∈ R
N̂−1
+ | β1 ≤ β2 ≤⋯≤ βj̃−1, βj̃ ≥ βj̃+1 ≥⋯≥ βN̂−1c

−(α) ≤ ∑
j:ξ̂(ki−1 )≤zj<ξ̂(ki)

βj(zj+1 − zj) ≤ c+(α),
{

∀i � 2, : : : ,M
∑N̂−1

j�1
βj(zj+1 − zj) � 1, 0 ≤ βj ≤U, ∀ 1 ≤ j ≤ N̂ − 1}: (15)

Here, the first line of the constraints in (15) ensures μ is the mode of p as p must be in Dμ(Ξ̂,α) ⊂ Lμ. The second

line of the constraints in (15) is obtained by instantiating the condition

c−(α) ≤
∫ ξ̂(ki )

ξ̂(ki−1 )
p(ξ)dξ ≤ c+(α)

in (9) with the piecewise-constant function p in D−
μ(Ξ̂,ξ) or D+

μ(Ξ̂,ξ). The third line requires that p must be a den-
sity function, and the last line is from Assumption 1(A3). With this constraint set, lSRα (ξ) and uSRα (ξ) in (13) can be
computed, respectively, by solving the following linear programs

lSRα (ξ) �
min

β∈H(Ξ̂N,α)
βĵ−1, if ξ ≤ μ,

min
β∈H(Ξ̂N,α)

βĵ , if ξ > μ, and uSRα (ξ) �
max

β∈H(Ξ̂N,α)
βĵ , if ξ ≤ μ,

max
β∈H(Ξ̂N,α)

βĵ−1, if ξ > μ:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (16)

We summarize this procedure for constructing a confidence band for a unimodal density function in Algorithm 1.
According to Hengartner and Stark (1995), Algorithm 1 can also be extended for constructing a confidence band
when the mode of p? is not known exactly but only known to be in an interval [μ+,μ−] ⊂ [a,b]. The convergence
rate of the constructed confidence band is given in the following lemma, which is a paraphrase of equation (104)
in Hengartner and Stark (1995).4

Algorithm 1 (Shape-Restricted Confidence Band (lSRα (ξ),uSRα (ξ)) at ξ ∈ Ξ)
Input: Data Ξ̂N � {ξ̂1

, : : : , ξ̂
N} sampled from p?, an interval Ξ � [a,b], the mode μ of p?, a constant U ≥ p?(ξ) for

any ξ ∈ Ξ, a significance level α ∈ (0, 1), a group size Kwith 0 < K <N and a targeted point ξ ∈ Ξ.
1: LetM′ :� �N=K� andM :� 
N=K�.
2: Let ξ̂(1), : : : , ξ̂(N) be the order statistics of Ξ̂N with ξ̂(1) <⋯< ξ̂(N).

3: Let ki :� (i− 1)K+ 1 if i � 1, 2, : : : ,M′
N if i �M≠M′

{
.

4: Let X1, X2, … , XN+1 be i.i.d. exponential random variables with mean one and define

Δ̃i :�
∑ki

j�k(i−1)+1Xj∑N+1
j�1 Xj

, for i � 2, 3, : : : ,M:

5: Generate a sufficient number of samples of Δ̃i s and use them to estimate constants c−(α) and c+(α) that satisfy
P c−(α) ≤ Δ̃i ≤ c+(α), i � 2, 3, : : : ,M
{ } ≥ 1−α:
6: Let zj be the jth smallest value in the set {a,μ,ξ, ξ̂(k1), : : : , ξ̂(kM),b} for j � 1, : : : , N̂ , where N̂ represents the num-

ber of distinct elements in that set.
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7: Let ĵ and j̃ be the indexes in {1, 2, : : : , N̂} such that zĵ � ξ and zj̃ � μ. Define the polyhedronH(Ξ̂N,α) in (15).
8: Compute (lSRα (ξ),uSRα (ξ)) by solving the corresponding linear programs in (16).
Output: (lSRα (ξ),uSRα (ξ)).

Lemma 1 (Hengartner and Stark 1995).
Suppose Assumption 1 holds and p? is (C,ρ)-Hölder continuous for constants C > 0 and ρ > 0, that is, | p?(ξ′) − p?(ξ) |

≤ C | ξ′ − ξ | ρ for any ξ and ξ′ in Ξ. If K � 
B N2ρlogN
( )1=(1+2ρ)� in Algorithm 1 for a constant B > 0, we have

lim
N→∞P

∣∣∣∣∣uSRα (ξ) − lSRα (ξ)
∣∣∣∣∣ ≤ 4p?(ξ)

#########
3+ 2ρ
1+ 2ρ

√
B−1=2 +C(p?(ξ))−(ρ+1)Bρ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ logN

N

( )ρ=(1+2ρ)⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭ � 1: (17)

This is for any ξ ∈ Ξ except μ.

The width of the confidence band at ξ, that is, | uSRα (ξ) − lSRα (ξ) | , converges to zero at a rate
O logN

( )
=N)ρ=(1+2ρ)

( )
according to Lemma 1. According to the lower bound in Khas’minskii (1976), this conver-

gence rate is optimal (up to a constant factor) for a confidence band of a unimodal density. It is also worthwhile
to note that the rate of convergence from Kolmogorov–Smirnov distance is slower as compared with this approach.
As shown in Hartigan and Hartigan (1985), the confidence band for the cumulative density function formed by the

Kolmogorov–Smirnov distance is only O (1=N)1=4
( )

, which is slower than the rate of O (logN=N)1=3
( )

in Lemma 1

when ρ � 1.
Lemma 1 shows the pointwise convergence of the confidence band to the true distribution p?. In the next theo-

rem, we show that, under additional assumptions to Lemma 1, we can characterize the convergence of v?
DSR(Ξ̂N ,α)

defined in (7) to v? in (2).

Theorem 2. Suppose the assumptions in Lemma 1 hold andmaxx∈X ,ξ∈Ξ|f (x,ξ)| < +∞. For any ε > 0, we have

lim
N→+∞P max

x∈X

∣∣∣∣∣
∫
Ξ

f (x,ξ)p?(ξ)dξ− sup
p∈DSR(Ξ̂N, α)

∫
Ξ

f (x,ξ)p(ξ)dξ
∣∣∣∣∣ ≤ ε

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≥ 1− α

and limN→+∞P
∣∣∣∣v?DSR(Ξ̂N ,α) − v?

∣∣∣∣ ≤ ε

{ }
≥ 1−α:

Proof. See Appendix A.
We present some examples of the confidence bands constructed by Algorithm 1 with various values of α and

N in Figures 3 and 4 in which the true distribution p? is chosen to be a scaled beta distribution and a truncated ex-
ponential distribution, respectively. The spikes of the upper bands near mode μ in all figures are explained in
Appendix E.

3.2. Kernel Density Estimation Confidence Bands
The shape-restricted confidence bands described in the previous section can only be applied to a univariate den-
sity function. In this section, we describe a method to construct a confidence band for a multivariate density func-
tion based on the classical kernel density estimation (KDE) (Rosenblatt 1956, Parzen 1962). This method requires a
kernel function, which is a mapping K : Rm → [0, +∞) satisfying ∫

R
m
K(ξ)dξ � 1. The commonly used kernel func-

tions include uniform kernel K(ξ) � 1
2m I||ξ||∞≤1(ξ) and Gaussian kernel K(ξ) � 1

(2π)m=2 exp (−||ξ||22=2). Let h > 0 be a
bandwidth parameter. Recall that Ξ̂N :� {ξ̂1, : : : , ξ̂N} ⊆ R

m is the set of N i.i.d. samples drawn from p?. The KDE of
p? based on Ξ̂N, K and h is

p̂h(ξ) :�
1
N

∑N
i�1

1
hm

K
ξ− ξ̂i

h

( )
: (18)

The convergence of p̂h(ξ) to the true density p?(ξ) has been studied for a long time (see Tsybakov 2008 for exam-
ple) with most of the existing works focusing the asymptotic convergence property. Recently, the finite-sample
nonasymptotic convergence property of KDE is characterized by Rinaldo and Wasserman (2010) and Jiang
(2017). The confidence band we construct based on KDE utilizes the nonasymptotic convergence property shown
by Jiang (2017).
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We need the following assumptions in this section.

Assumption 2 (For KDE-Based Confidence Bands).
The following statements hold:
A1. There exists a nonincreasing function κ : [0, +∞)→ [0, +∞) such thatK(ξ) � κ(||ξ||2).
A2. There exist constants r > 0, Cr > 0, and τ > 0 such that κ(t) ≤ Cr · exp (−tr) for any t > τ.
A3. There exists a constant U such that p(ξ) ≤U for any ξ ∈ Ξ.

Assumption 2 (A1 and A2) are from Jiang (2017), and they hold if κ is one of the popular kernel densities (up
to scaling) in R, including the two mentioned as well as exponential, tricube, triangular, and Epanechnikov ker-
nels. Under these assumptions, the following finite-sample convergence result is established by Jiang (2017).

Lemma 2 (Jiang 2017, Theorem 2).
Suppose Assumption 2 holds and p? is (C,ρ)-Hölder continuous for constants C > 0 and ρ ∈ (0, 1], that is, | p?(ξ′) −

p?(ξ) | ≤ C‖ξ′ − ξ‖ρ2 for any ξ and ξ′. Let α ∈ (0, 1) and Vm be the volume of the unit ball in R
m. If h > log (N=α)=N( )1=m,

we have

P sup
ξ∈Ξ

|p̂h(ξ) − p?(ξ)| ≤ C1hρ +C2

#############
log (N=α)

Nhm

√{ }
≥ 1− α:

Here5 p̂h(ξ) is defined in (18),

C1 � VmC
∫ ∞

0
κ(t)tm+ρdt, and C2 � 8m

#######
VmU

√ ∫ ∞

0
κ(t)tm=2dt+ 1

( )
+ 64m2κ(0):

Figure 3. (Color online) The Confidence Bands Generated by Algorithm 1 inWhich p? � 250 ·Beta(5, 2)
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Notes. The bands in the first row are generated with n � 100 but different α’s. The bands in the second row are generated with α � 0:2 but differ-
entNs. (a) α � 0:1. (b) α � 0:2. (c) α � 0:3. (d) n � 10. (e) n � 100. (f) n � 1,000.
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In particular, if h � log (N=α)=N( )1=(2ρ+m), we have

P sup
ξ∈Ξ

|p̂h(ξ) − p?(ξ)| ≤ (C1 +C2) log (N=α)
N

( )ρ=(2ρ+m){ }
≥ 1− α:

Based on the convergence property in Lemma 2, with h > log (N=α)=N( )1=m, we can construct the KDE-based con-
fidence band for p? with a significance level of α as follows:

lKDE
α (ξ) �max{0, p̂h(ξ) − δ}, uKDE

α (ξ) � p̂h(ξ) + δ, (19)

where

δ � C1hρ +C2

#############
log (N=α)

Nhm

√
: (20)

The corresponding uncertainty set is

DKDE(Ξ̂N, α) :� p ∈ L

∣∣∣∣∣ lKDE
α (ξ) ≤ p(ξ) ≤ uKDE

α (ξ), ∀ξ ∈ Ξ,
∫
Ξ

p(ξ) dξ � 1

{ }
: (21)

The following property is a direct consequence of Lemma 2.

Theorem 3. Suppose Assumption 2 holds. Then, P p? ∈DKDE(Ξ̂N,α)
{ }

≥ 1− α.

We summarize this procedure for constructing a KDE-based confidence band in Algorithm 2.

Figure 4. (Color online) The Confidence Bands Generated by Algorithm 1 inWhich p? Is a Truncated Exponential Distribution
Exp(1=100)with the Support on [0, 250]
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Notes. The bands in the first row are generated with n � 100 but different α’s. The bands in the second row are generated with α � 0:2 but differ-
entNs. (a) α � 0:1. (b) α � 0:2. (c) α � 0:3. (d) n � 10. (e) n � 100. (f) n � 1,000.
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Algorithm 2 (KDE-Based Confidence Band (lKDE
α (ξ),uKDE

α (ξ)) at ξ ∈ Ξ)
Input: Data Ξ̂N � {ξ̂1

, : : : , ξ̂
N} sampled from p?, a constant U ≥ p?(ξ) for any ξ ∈ Ξ, a significance level α ∈ (0, 1),

a kernel function K(ξ) � κ(||ξ||2) with κ satisfying Assumption 2(A1 and A2), a bandwidth h > 0, and a point
ξ ∈ Ξ.

1: Compute C1 � VmC
∫ ∞

0
κ(t)tm+ρdt and C2 � 8m

#######
VmU

√ ∫ ∞

0
κ(t)tm=2dt+ 1

( )
+ 64m2κ(0).

2: Let p̂h(ξ) and δ be defined as in (18) and (20), respectively.
3: Compute (lKDE

α (ξ),uKDE
α (ξ)) as in (19).

Output: (lKDE
α (ξ),uKDE

α (ξ)).
The following theorem shows that, under additional assumptions to Assumption 2, v?

DKDE(Ξ̂N ,α) defined in (7)
converges to v? in (2).

Theorem 4. Suppose the assumptions of Lemma 2 hold, max x∈X ,ξ∈Ξ|f (x,ξ)| < +∞, and Ξ is bounded. Let h �
log (N=α)=N( )1=(2ρ+m) in Algorithm 2. For any ε > 0, we have

lim
N→+∞P sup

x∈X

∣∣∣∣∣
∫
Ξ

f (x,ξ)p?(ξ)dξ− sup
p∈DKDE(Ξ̂N, α)

∫
Ξ

f (x,ξ)p(ξ)dξ
∣∣∣∣∣ ≤ ε

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≥ 1− α

and limN→+∞P | v?
DKDE(Ξ̂N ,α) − v∗ | ≤ ε

{ } ≥ 1− α:

Proof. See Appendix B.

3.3. Example: Reduced Conservativeness by the Ambiguity Set Consisting of Only Absolutely
Continuous Distributions

We consider a cost function f (ξ) on [0, 1], which is zero on [0, 1− δ) for δ ∈ (0, 1) and linearly increases to 1
δ on

[1− δ, 1]. In particular, we define

f (ξ) �
0, if ξ ∈ [0, 1− δ)
1
δ2

(ξ− (1− δ)), if ξ ∈ [1− δ, 1]:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Let ξ? follow a uniform distribution on [0, 1], that is, p?(ξ) � 1 on [0, 1]. For simplicity, we do not introduce a deci-
sion variable x in f but only consider the problem of estimating the worst-case expected cost based on different
ambiguity sets. We choose δ to be a small number so that the cost is very high when ξ is close to one but quickly
decreases to zero when ξ is deviated away from one. In this example, for any δ ∈ (0, 1), the expected cost under
the true distribution is

v? :�
∫ 1

0
f (ξ)dξ � 1

2
:

Given a sample Ξ̂N � {ξ̂1, : : : , ξ̂N} from p?, according to Mohajerin Esfahani and Kuhn (2018), the worst-case ex-
pected cost over the ambiguity set constructed by the Wasserstein metric with a radius of ε can be calculated by
solving

v?W :�
sup

Qi, i�1, : : : ,N
1
N

∑N
i�1

∫ 1

0
f (ξ)Qi(dξ)

s:t: Qi is a probability measure on [0, 1],
1
N

∑N
i�1

∫ 1

0
|ξ− ξ̂i|Qi(dξ) ≤ ε:

�
sup

ξi, i�1, : : : ,N
1
N

∑N
i�1

f (ξi)

s:t:
1
N

∑N
i�1

|ξi − ξ̂i| ≤ ε:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(22)

According to equation (8) in Mohajerin Esfahani and Kuhn (2018), to ensure a significance level α, one should
choose the radius to be ε �Ω(1= ###

N
√ ) so that we can assume 1

N ≤ ε. As a result, the solution (ξ1, : : : ,ξN−1,ξN) �
(ξ̂1, : : : , ξ̂N−1, 1) is feasible to (22) so that the optimal objective value of (22) is lower bounded as
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v?W ≥ 1
N

∑N−1

i�1
f (ξ̂i) + 1

N
f (1) ≥ 1

Nδ
,

which means v?W increases to positive infinity as δ approaches zero (but N is fixed). In other words, the worst-
case expected cost over the ambiguity set constructed by the Wasserstein metric can be significantly larger than
the true expected cost in this example.

Now let’s consider the worst-case expected cost over the ambiguity set constructed by the shape-restricted
confidence band in (14). We choose the mode of p? to be μ � 0. In fact, we can make the density function of the
uniform distribution slightly tilt up at zero while keeping v?W and v? almost unchanged. We first claim that
uSRα (ξ) defined in (16) is no more than 1

1−δ when ξ ∈ [1− δ, 1]. To show this, we first recall that N̂ ∈ Z+ is the num-
ber of distinct elements in the set {0, 1,ξ, ξ̂(k1), : : : , ξ̂(kM)} and zj is the jth smallest element (so that z1 � 0). Let ĵ be
the indexes in {1, 2, : : : , N̂} such that zĵ � ξ. Suppose uSRα (ξ) > 1

1−δ at some ξ ∈ [1− δ, 1]. Because ξ > μ � 0, by (15)

and (16), there must exist β ∈H(Ξ̂N,α) such that βĵ−1 � uSRα (ξ) > 1
1−δ and

1 � ∑N̂−1

j�1
βj(zj+1 − zj) ≥

∑ĵ−1
j�1

βj(zj+1 − zj) > 1
1− δ

(zĵ − z1) � ξ

1− δ
≥ 1,

where the first equality is from a constraint in (15), the first inequality is because βj ≥ 0, the second inequality is

because βĵ−1 >
1

1−δ and the fact that βj is nonincreasing in j, and the last equality is because zĵ � ξ and z1 � 0. This

contradiction means we must have uSRα (ξ) ≤ 1
1−δ when ξ ∈ [1− δ, 1]. As a result, we have

v?
DSR(Ξ̂N ,α) � sup

p∈DSR(Ξ̂N, α)

∫ 1

0
f (ξ)p(ξ)dξ ≤

∫ 1

1−δ
f (ξ)uSRα (ξ)dξ ≤

∫ 1

1−δ
f (ξ)
1− δ

dξ � 1
2(1− δ) :

In summary, as δ decreases to zero, we have v? � 1
2 , v

?
DSR(Ξ̂N ,α) ≤ 1

2(1−δ) → 1
2 and v?W →+∞, which indicates that,

when the true distribution is absolutely continuous, an ambiguity set consisting of only absolutely continuous
distributions can be preferred to an ambiguity set that includes discrete distributions because the former may
provide a less conservative estimation of the worst-case cost.

Our example can be easily extended by introducing a decision variable x ∈ Ξ � [0, 1] in the cost function
f (x,ξ) � x · f (ξ) + (1− x) · c, where c is a constant significantly higher than 1

2 but not more than 1
Nδ. The optimal de-

cisions made using either the true distribution or the confidence-band based ambiguity set are x � 1, but the deci-
sion solved using a Wasserstein-based ambiguity set is x � 0, which leads to a significantly higher expected cost
under the true distribution.

3.4. Other Confidence Bands
Besides (16) and (19), there exist other techniques to construct a confidence band for p? that can also be used to
construct an ambiguity set in the form of (6). One of the simplest approaches is based on the histogram density
estimator. For simplicity, we assume p? is univariate (m � 1), and Ξ � [a,b] with finite a and b. Suppose Ξ is even-
ly divided into K intervals at points ak � a+ (b− a) k

K for k � 0, 1, : : : ,K. The histogram estimator of p? based on Ξ̂N

is defined as

p̂K(ξ) :�
∑K−1
k�0

KI[ak,ak+1)(ξ)
b− a

·Nk

N
,

where Nk is the number of elements in Ξ̂N ∩ [ak,ak+1). We assume p? is C-Lipschitz continuous for a constant
C > 0, that is, | p?(ξ′) − p?(ξ) | ≤ C | ξ′ − ξ | for any ξ and ξ′ in Ξ. According to section 3.2.1 in Scott (2015), we have

|E[p̂K(ξ)] − p?(ξ)| ≤ C(b− a)
K

, ∀ξ ∈ Ξ: (23)

According to theorem 2.2 in Chen (2019) and its proof, we have, for α ∈ (0, 1),

P sup
ξ∈Ξ

|p̂K(ξ) −E[p̂K(ξ)]| ≤
K

b− a

##############
log (2K=α)

2N

√{ }
≥ 1−α: (24)
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Using this result and (23), we can construct a confidence band for p? with a significance level α as

lHα (ξ) �max {0, p̂K(ξ) − δ}, uHα (ξ) � p̂K(ξ) + δ, (25)

where

δ � C(b− a)
K

+ K
b− a

##############
log (2K=α)

2N

√
:

The corresponding uncertainty set is

DH(Ξ̂N, α) :� p ∈ L| lHα (ξ) ≤ p(ξ) ≤ uHα (ξ), ∀ξ ∈ Ξ,
∫

Ξ

p(ξ) dξ � 1
{ }

, (26)

which satisfies

P p? ∈ DH(Ξ̂N,α)
{ }

≥ 1 − α:

By choosing K such that K→+∞ and K � o( ###
N

√ ) as N→+∞, one can show the convergence of the DRO objec-
tive value in a theorem similar to Theorem 4.

Another confidence band can be constructed using the frequency polygon, which is the linearly smoothed ver-
sion of p̂K(ξ) described previously (see chapter 4 in Scott 2015). In particular, we define

p̂FPK (ξ) :� K(ξ− ai)
b− a

p̂K(ai+1) +
K(ai+1 − ξ)

b− a
p̂K(ai) if ξ ∈ [ai, ai+1):

Assuming p? is C-Lipschitz continuous, the distribution of p̂FPK (ξ) is determined by p̂K(ai) for i � 0, : : : ,K− 1 so
that we can easily derive the properties of p̂FPK similar to (23) and (24), which allows us to construct a confidence
band and the corresponding ambiguity set similar to (25) and (26).

4. A Numerical Method for DRO
In this section, we present a numerical scheme that solves the DRO problem in (7). Although we only described
a few specific ambiguity sets in Section 3, the optimization method we propose here can be potentially applied to
DRO with any ambiguity set in the form of (6) as long as the following assumption holds after Ξ̂N is drawn.

Assumption 3 (On Ambiguity Set D(Ξ̂N,α)). The following statements hold:

A1.
∫
Ξ

uα(ξ)dξ <∞, ∀ x ∈ X .

A2.D(Ξ̂N,α)≠ ∅.
Note that this assumption is made for D(Ξ̂N,α) after Ξ̂N is drawn because the numerical algorithm in this sec-

tion is proposed to solve (7), which is only defined after a particular Ξ̂N is drawn. We show that this assumption
holds with a high probability for DSR(Ξ̂N,α) and DKDE(Ξ̂N,α).

Suppose Assumption 1 holds. The ambiguity set DSR(Ξ̂N,α) in (14) satisfies Assumption 3 with a probability of
1− α. This is because we have uSRα (ξ) ≤U for any ξ ∈ Ξ according to the definition of uSRα (ξ) in (16) and the con-
straint 0 ≤ βj ≤U in (15). Moreover, by Theorem 1, DSR(Ξ̂N,α) at least contains p? and, thus, is nonempty with a
probability of 1− α.

Suppose Assumption 2 holds and Ξ is bounded. The ambiguity set DKDE(Ξ̂N,α) in (21) can also satisfy
Assumption 3 with a probability of 1− α. In fact, by Theorem 2, with a bandwidth h >

log (N=α)=N( )1=m, DKDE(Ξ̂N,α) at least contains p? with a probability of 1− α, which further implies uKDE
α (ξ) �

p̂h(ξ) + δ ≤ p?(ξ) + 2δ ≤U+ 2δ according to (19) and (20).
We define vP(x) as the optimal value of the inner maximization problem of (7), that is,

vP(x) :� sup
p∈ D(Ξ̂N,α)

∫
Ξ

f (x,ξ)p(ξ)dξ: (27)
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When Assumption 3 holds and max ξ∈Ξ|f (x,ξ)| < +∞ for every x ∈ X , we have

|vP(x)| ≤ sup
p∈ D(Ξ̂N,α)

∫
Ξ

|f (x,ξ)|p(ξ)dξ ≤
∫
Ξ

|f (x,ξ)|uα(ξ)dξ <∞: (28)

Note that (27) is a continuous linear program that is formulated with a functional decision variable (i.e., p) and con-
tinuously many constraints. In general, (27) cannot be reformulated as a convex optimization problem of finite
dimension and solved by off-the-shelf optimization techniques as in most of the works in distributionally robust
optimization. In this section, we propose a stochastic subgradient descent (SGD) method for solving (27) and pre-
sent its convergence rate. For simplicity, we write (uα, lα) as (u, l) by suppressing α in the rest of this section.
The dual problem of (27) is given as follows:

vD(x) :� inf
λ,α, β

λ −
∫

l(ξ)α(ξ)dξ +
∫

u(ξ)β(ξ)dξ
s:t: λ−α(ξ)+β(ξ) ≥ f(x, ξ) ∀ξ ∈ Ξ,
α(ξ) ≥ 0, β(ξ) ≥ 0 ∀ξ ∈ Ξ:

(29)

Weak duality implies vP(x) ≤ vD(x). According to Shapiro (2001), strong duality holds between (27) and (29). We
state the strong duality in the following lemma whose proof is given Appendix C. Because this result is not new,
in the proof, we only discuss what result in Shapiro (2001) is used to establish the strong duality and why the as-
sumptions of that result hold in our case.

Lemma 3. Suppose Assumption 3 holds andmax ξ∈Ξ|f (x,ξ)| < +∞ for any x ∈ X . We have vP(x) � vD(x) for any x ∈ X .

The objective function of (29) can be rewritten as

λ +
∫

l(ξ)(β(ξ) − α(ξ))dξ +
∫

(u(ξ) − l(ξ))β(ξ)dξ:

Let (z)− :�max {−z, 0} and (z)+ :�max {z, 0}. The constraints of (29) require β(ξ) ≥ (f (x,ξ) −λ+α(ξ))+. Because
u(ξ) ≥ l(ξ) ≥ 0 for any ξ ∈ Ξ, by optimizing β(ξ) for any fixed α(ξ), we can always require β(ξ) �
(f (x,ξ) −λ+ α(ξ))+ for any ξ ∈ Ξ in the optimal solution. Eliminating β(ξ) in the objective function gives

λ+
∫

[l(ξ)[(f (x,ξ) −λ+ α(ξ))+ −α(ξ)]dξ+ (u(ξ) − l(ξ))(f (x,ξ) −λ+α(ξ))+]dξ:

Because u(ξ) ≥ l(ξ) ≥ 0, the preceding integrand is nonincreasing in α(ξ) when α(ξ) ≤ λ− f (x,ξ) and nondecreas-
ing in α(ξ) when α(ξ) ≥ λ− f (x,ξ). Considering the constraint α(ξ) ≥ 0, the objective function can be minimized
at α(ξ) � (λ− f (x,ξ))+ � (f (x,ξ) −λ)− for any fixed λ. After further eliminating α(ξ), the optimal value of (29) can
be stated equivalently as

vD(x) � inf
λ

λ−
∫

l(ξ)(f (x,ξ) −λ)−dξ+
∫

u(ξ)(f (x,ξ) −λ)+dξ, (30)

and thus, we have

v?
D(Ξ̂N ,α) :� inf

x∈X, λ F(x,λ) :� λ−
∫

l(ξ)(f (x,ξ) −λ)−dξ+
∫

u(ξ)(f (x,ξ) −λ)+dξ
{ }

: (31)

In general, the two integrals appearing in (31) do not have analytical forms, raising a challenge for finding the
optimal solution. Hence, we consider an SGD method for solving (31) by constructing a stochastic subgradient of
F(x,λ) in (31). To do so, we need the following result.

Lemma 4. Suppose (i) Assumption 3 holds, (ii) f (x,ξ) is lower semicontinuous and convex in x for any ξ ∈ Ξ and bounded
over Ξ for any x ∈ X, and (iii) X has a nonempty interior. There exists a Lebesgue integrable mapping f ′(x,ξ) : X × Ξ→
R

d such that f ′(x,ξ) ∈ ∂xf (x,ξ) and∫
l(ξ)f ′(x,ξ)If (x,ξ)<λ(ξ)dξ+

∫
u(ξ)f ′(x,ξ)If (x,ξ)≥λ(ξ)dξ ∈ ∂xF(x,λ), (32)

1−
∫

l(ξ)If (x,ξ)<λ(ξ)dξ−
∫

u(ξ)If (x,ξ)≥λ(ξ)dξ ∈ ∂λF(x,λ), (33)

where IE(·) is the 0− 1 indicator function of the event E.
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Proof. Because f (x,ξ) is measurable in x and ξ, lower semicontinuous, and convex in x and also because
0 ≤ l(ξ) ≤ u(ξ), the integrand −l(ξ)(f (x,ξ) −λ)− + u(ξ)(f (x,ξ) −λ)+ in (31) is random lower semicontinuous (see
definition 7.35 in Shapiro et al. 2014) and convex in x for any ξ ∈ Ξ according to theorem 7.36 in Shapiro et al.
(2014). By Assumption 3, we have F(x,λ) < +∞ for any x ∈ X and λ. Because X has a nonempty interior, all the
assumptions of theorem 7.47 in Shapiro et al. (2014) hold, which implies the conclusions of this lemma. w

According to Lemma 4, we can construct the stochastic subgradients of F(x,λ) by stochastically approximating
the integrals in (32) and (33). We have assumed Ξ is bounded so that there exists a box I ⊂ R

m containing Ξ. We
denote the volume of I by |I|. Suppose ξ is sampled from a uniform distribution on I. We can show that the left-
hand sides of (32) and (33) are the expectations of

|I|If (x,ξ)<λ(ξ)l(ξ)f ′(x,ξ) + |I|If (x,ξ)≥λ(ξ)u(ξ)f ′(x,ξ) (34)

and

1− |I|If (x,ξ)<λ(ξ)l(ξ) + |I|If (x,ξ)≥λ(ξ)u(ξ), (35)

respectively. Hence, we can use (34) and (35) with ξ uniformly sampled from I as the unbiased stochastic
subgradients of F with respect to x and λ, respectively. To further reduce the sampling noise, we use a minibatch
technique by generating B i.i.d. samples from the uniform distribution on I and constructing such a stochastic
subgradient using each sample and then taking the average over all samples. Based on this idea, we proposed
the SGD method for (31) in Algorithm 3. The convergence of Algorithm 3 is well known (see, e.g., Nemirovski
et al. 2009), so we only present a short proof in Appendix D by directly using some results from Nemirovski et al.
(2009) and explaining why the assumptions of those results holds in our case.

Algorithm 3 (SGD for (31))
Input: Initial solution (x0,λ0) ∈ X × R, batch size B ≥ 1, step length ηk > 0, a box I ⊂ R

d containing Ξ, the vol-
ume of I denoted by |I|, and the total number of iteration K.

1: for k � 0, 1, : : : ,K− 1 do

2: Compute (x̄k, λ̄k) �
∑k

i�0ηi(xi,λi)∑k
i�0ηi

:

3: Sample {ξ1,ξ2, : : : ,ξB} from a uniform distribution over I.
4: Construct the stochastic gradients

gkx �
|I|
B

∑
i:f (xk, ξi)<λk

l(ξi)f ′(xk, ξi) + |I|
B

∑
i:f (xk, ξi)≥λk

u(ξi)f ′(xk, ξi),

gkλ � 1 − |I|
B

∑
i:f (xk,ξi)<λk

l(ξi) − |I|
B

∑
i:f (xk,ξi)≥λk

u(ξi):

5: Compute xk+1 � arg minx∈X 1
2 ||x− xk + ηkg

k
x||22 and λk+1 � λk − ηkg

k
λ.

6: end for
Output: (x̄K−1, λ̄K−1)

Theorem 5 (Nemirovski et al. 2009).
Suppose (i) the assumptions of Lemma 4 hold and (ii) there exists a constant M such that E||(gkx,gkλ)||22 ≤M2 for all k in

Algorithm 3 and a constant D such that 12 ||(x0,λ0) − (x∗,λ∗)||22 ≤D2. Algorithm 3 with step length ηk �
##
2

√
D

M
##
K

√ for all k ensures

E vD(x̄k) − v?
D(Ξ̂N ,α)

[ ] ≤ E F(x̄k, λ̄k) − v?
D(Ξ̂N ,α)

[ ]
≤

##
2

√
DM###
K

√ : (36)

5. Computational Results
In this section, we validate our approach on two examples: a single-item newsvendor problem and a portfolio se-
lection problem. Particularly, for the newsvendor example, we compare our approach with that in Bertsimas et al.
(2014), which applies hypothesis tests to construct ambiguity sets, and for the portfolio selection example, we
compare our approach with that in Mohajerin Esfahani and Kuhn (2018), which applies the Wasserstein metric
to construct ambiguity sets. We implement all methods in MATLAB (R2014a) version 8.3.0.532 on a Windows
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computer with an Intel Core i3 2.93 GHz and 4 GB of RAM. The linear programs involved in the implementa-
tions are solved by CPLEX 12.4 and the modeling language YALMIP (Lofberg 2004).

5.1. Single-Item Newsvendor
We consider a classic single-item newsvendor problem in which we assume the demand ξ? of an item follows a
continuous distribution with a bounded support set [a,b] ⊆ R with 0 ≤ a < b and a bounded density function. An
order of x units (x ≥ 0) must be placed before demand occurs. After the demand occurs, each unit of unmet de-
mand incurs a shortage cost denoted by cs > 0, and each unit of surplus inventory incurs a holding cost denoted
by ch > 0. Hence, the cost function is defined as f (x,ξ) �max cs(ξ− x), ch(x− ξ){ }

, which represents the cost of
mismatch between supply and demand. Assuming a set of historical demand data are available, we construct an
ambiguity set DSR(Ξ̂N, α) in (14) and solve the DRO in (7) with D(Ξ̂N, α) �DSR(Ξ̂N, α). We compare the optimal
order obtained with the one found by the DROmodel in Bertsimas et al. (2014) in which the ambiguity set is built
using the Kolmogorov–Smirnov test.

In our numerical experiments, we choose cs � 19 and ch � 1 and consider three different ground true distribu-
tions for the demand:

1. A truncated normal distribution created by truncating a normal distribution with mean 100 and standard devi-
ation 50 on [0, 250].

2. A beta distribution rescaled onto [0, 250]with parameters α � 5 and β � 2.
3. A truncated exponential distribution created by truncating an exponential distribution with mean 100 on

[0, 250].
For each distribution, we consider four different sample sizes, that is, N ∈ {10,20,40,80}. For each size, we ran-

domly generate a data set Ξ̂N by i.i.d. sampling from the demand distribution. Using Ξ̂N, we apply our approach
and the method by Bertsimas et al. (2014) to construct the ambiguity sets and then solve the corresponding DRO
problems to obtain an order size x̂ from each approach. To evaluate the out-of-sample performance of x̂, we

sample another i.i.d. data set {ξ′i}Nlarge

i�1 with Nlarge � 100,000 from the true distribution and calculate the sample

average approximation of the expected cost, that is, 1
Nlarge

∑Nlarge

i�1 f (x̂,ξ′i ) with x̂ from each approach. We repeat this

procedure 100 times to show the mean and variation of the out-of-sample performance.
When constructing the ambiguity set DSR(Ξ̂N, α) in our method, we need to provide a significance level α and

a group size K (see Algorithm 1). Although a theoretical value of K is suggested in Lemma 1, it involves quanti-
ties that are hard to estimate (e.g., B and ρ). When we construct DSR(Ξ̂N, α), we set

K �K(N, c) :�min
⌈
c N2logN
( )1=3⌉

,N − 1

{ }
and select c from {0:5, 0:75,1, 1:25,1:5} based on the holdout validation method. The significance level α is chosen
from {0:75,0:8, 0:85,0:95} based on the same validation method. In particular, we randomly partition Ξ̂N into
Ξ̂train and Ξ̂test with |Ξ̂train| � 0:7N and |Ξ̂test| � 0:3N. Given a combination of c and α, we first construct

Figure 5. (Color online) The Out-of-Sample Performance of CLX and BGK on a Newsvendor Problem

Notes. The boundaries of the shaded areas represent the 20th and 80th percentiles, and the solid line represents the mean from 100 independent
trials. Demand distribution: truncated normal (left), rescaled beta (middle), and truncated exponential (right).
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DSR(Ξ̂train, α) using K �K(0:7N, c), and then we solve

x∗c,α ∈ arg min
x∈X

sup
p∈DSR(Ξ̂train, α)

∫
Ξ

f (x,ξ)p(ξ)dξ

using Algorithm 3. Then, we select the combination of c and α that give the smallest 1
|Ξ̂ test |

∑
ξ̂∈Ξ̂ test

f (x∗c,α, ξ̂). For
each of the 100 independent trials, we repeat this process to select c and α. For a fair comparison, we also apply
the same validation scheme to choose the significance level α used in the method by Bertsimas et al. (2014).

We denote our approach by CLX and the method in Bertsimas et al. (2014) by BGK. Figure 5 illustrates the per-
formances of CLX and BGK for each of the three distributions of demand. For each sample size N, we plot the
20th percentile, the mean, and the 80th percentile of the out-of-sample performances in the 100 trials. Figure 5 in-
dicates that CLX has better out-of-sample performances than BGK when the sample size is small. As the sample
size increases, the performances of both approaches become similar as the ambiguity sets in both approaches
converge to the true demand distribution. We note that the average computation times of CLX and BGK over all
instances are about, respectively, 80 and 2 seconds for all tested sample sizes.

5.2. Portofolio Management
In this example, we consider the classical portfolio selection problem consisting of n assets in which the investor
must divide the total budget to fractions w � (w1,w2, : : : ,wn) with wi ≥ 0 and

∑n
i�1wi � 1 and invest wi of the bud-

get in the ith security. We assume that the ith security has a random future return ξ?i . The return from each unit of
budget is, thus, w�ξ?. We assume that the investor is risk averse and measures the investment risk by the condi-
tional value at risk (CVaR) of the return w�ξ; see Rockafellar and Uryasev (2000). Suppose the joint distribution of
the return ξ? � (ξ?1,ξ?2, : : : ,ξ?n) has a density function p?(ξ). The CVaR at level ε ∈ (0, 1) of the return of a portfolio
with respect to a probability distribution p? is defined as

CVaRp∗,ε(−w�ξ?) ≡ inf
β∈R Eξ?~p? β+ 1

ε
−w�ξ? − β
( )

+

[ ]
� inf

β∈R

∫
β+ 1

ε
−w�ξ− β
( )

+

[ ]
p?(ξ)dξ,

which represents the average of the ε × 100% worst portfolio losses (negative return) under distribution p?.
When p? is known, we consider the case in which the investor wants to minimize a weighted sum of the mean
and the CVaR of the portfolio loss −w�ξ, for which the SP is as follows:

inf

wi≥0,
∑n
i�1

wi�1

Eξ?~p?[−w�ξ?] + γCVaRξ?~p?,ε(−w�ξ?)
{ }

� inf

β,wi≥0,
∑n
i�1

wi�1

∫
max −w�ξ+ γβ, − (1+ γ=ε)w�ξ+ γ(1− 1=ε){ }[ ]

p?(ξ)dξ

� inf
x∈X

∫
f (x,ξ)p?(ξ)dξ:

Here, γ > 0 indicates the investor’s risk-aversion level, X � {x � (w,β) ∈ R
n+1|wi ≥ 0,

∑n
i�1wi � 1}, and

f (x,ξ) �max −w�ξ+ γβ, − (1+ γ=ε)w�ξ+ γ(1− 1=ε){ }
:

If the distribution p? of ξ? is unknown, but a collection of historical data returns is collected, the investor can
construct a data-driven ambiguity set of p? and solve the DRO problem corresponding to the SP. We construct
the ambiguity setDKDE(Ξ̂N, α) in (21) and solve the DRO in (7) with D(Ξ̂N, α) �DKDE(Ξ̂N, α) to construct an port-
folio. Then, we compare our solution with the one obtained by the DRO model in Mohajerin Esfahani and Kuhn
(2018) in which the ambiguity set is constructed using the Wasserstein metric.

Following the numerical experiments by Mohajerin Esfahani and Kuhn (2018), we consider n � 10 assets with
decomposable returns ξ?i � φ+ ζi for i � 1, 2, : : : , 10, where φ ~ normal(0, 2%) is a systematic risk factor shared by
all assets and ζi ~ normal(i × 3%, i × 2:5%) is an unsystematic risk factor associated with the ith asset. By the con-
struction, assets with higher indexes promise higher mean returns at higher risks. We set ε � 20% and γ � 10 in
our all experiments. We consider six different sample sizes, that is, N ∈ {30,60,120,240,480, 960}. For each size,
we randomly generate a data set Ξ̂N by i.i.d. sampling returns from the aforementioned distribution of ξ?. Using
Ξ̂N, we apply our approach and the method by Mohajerin Esfahani and Kuhn (2018) to construct the ambiguity
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sets and then solve the DRO to obtain a portfolio ŵ from each approach. To evaluate the out-of-sample perfor-

mance of ŵ, we sample another i.i.d. data set {ξ′i}Nlarge

i�1 with Nlarge � 100,000 from the true distribution and calcu-
late the sample average approximation of

Eξ?~p?[−ŵ�ξ?] + γCVaRξ?~p?,ε(−ŵ�ξ?)
using {ξ′i}Nlarge

i�1 with x̂ from each approach. We repeat this procedure 100 times to show the mean and variation
of the out-of-sample performance.

When constructing DKDE(Ξ̂N, α), we choose K(ξ) � κ(||ξ||2) with κ being the boxcar kernel, namely κ(z) �Q if
z ∈ [0, 1] and κ(z) � 0 otherwise. Here, Q is a normalization constant that ensures

∫
R

m
K(ξ)dξ � 1. Similar to

DSR(Ξ̂N, α), the construction of DKDE(Ξ̂N, α) in our method requires some quantities that are hard to estimate
(e.g., C and ρ). Therefore, we construct DKDE(Ξ̂N, α) using lKDE

α and uKDE
α in the form (19) with the parameters δ

and h selected by the holdout validation method rather than their theoretical values in (20) and Lemma 2. In par-
ticular, we set h � c log (N)=N( )1=(2+m) (see Lemma 2) and then select c from {0:02,0:04,0:06,0:08, 0:1} and δ from
{0:02,0:04,0:06,0:08, 0:1}. We randomly partition Ξ̂N into Ξ̂train and Ξ̂test with |Ξ̂train| � 0:7N and |Ξ̂test| � 0:3N. Giv-
en a combination of c and δ, we first construct DKDE(Ξ̂train) using and δ and h � c log (N)=N( )1=(2+m), and then solve

x∗c,δ ∈ arg min
x∈X

sup
p∈DKDE(Ξ̂ train)

∫
Ξ

f (x,ξ)p(ξ)dξ

using Algorithm 3. Let w∗
c,δ be the portfolio component in x∗c,δ. Then, we select the combination of c and δ that

makes the smallest sample approximation of

Eξ?~p?[−(w∗
c,δ)�ξ?] + γCVaRξ?~p?,ε(−(w∗

c,δ)�ξ?)
on Ξ̂train. For each of the 100 independent trials, we repeat this process to select c and δ.
For a fair comparison, we apply the same validation scheme to choose the radius (the only parameter) of the

Wasserstein ball in Mohajerin Esfahani and Kuhn (2018). More specifically, we randomly partition Ξ̂N into Ξ̂train

and Ξ̂test with |Ξ̂train| � 0:7N and |Ξ̂test| � 0:3N and select the value for radius r from the set
R :� {r � b · 10c|b ∈ {0, 1, : : : , 9}, c ∈ {−3, − 2, − 1}}. For each candidate of the radius, we construct the Wasserstein
ball

DW(Ξ̂train, r) :� P|P is a distribution on R
m, dW(P̂ ,P) ≤ r

{ }
,

where P̂ is the empirical distribution defined over Ξ̂train and dW(P̂ ,P) is defined as

dW(P̂ ,P) :� inf
∫
R

m×Rm
||ξ− ξ′||1Π(dξ,dξ′)

∣∣∣∣∣Π is a joint distribution on R
m × R

m

with marginals P and P̂ respectively

{ }
:

We then solve

x∗r ∈ arg min
x∈X

sup
P∈DW(Ξ̂ train, r)

∫
Ξ

f (x, ξ)P(dξ)

using their proposed method. Let w∗
r be the portfolio component in x∗r. Then, we select radius r that makes the

smallest sample approximation of

Eξ?~p?[−(w∗
r)�ξ?] + γCVaRξ?~p?,ε(−(w∗

r)�ξ?)
on Ξ̂train. We employ this procedure to choose the best radius for each of the 100 independent trials.
We denote our approach by CLX and the method in Mohajerin Esfahani and Kuhn (2018) by WASS and

plot the numerical results in Figure 6. In particular, for each of the 100 trials in each sample-size scenario, we
evaluate the solutions from both CLX andWASS by their out-of-sample performances. We then plot the 20th per-
centile, the mean, and the 80th percentile of the out-of-sample performances of both approaches over the
six sample-size scenarios. Figure 6 indicates that both approaches converge to the true expectation at a compara-
ble speed with the sample size increases. We also report the computation times for both CLX and WASS meth-
ods. The average computation times of CLX are 20,33,59, 115, 249, and 437 seconds for sample sizes of
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30, 60,120,240,480, and 960, respectively, and the average computation times of WASS are
0:002,0:002,0:004,0:008,0:031, and 0.112 seconds for sample sizes of 30,60,120,240, 480, and 960, respectively.

6. Conclusions
In this paper, we consider a DRO problem and propose data-driven approaches to construct ambiguity sets that
only consist of absolutely continuous distributions. Such ambiguity sets are constructed using confidence bands
of the density functions. Two different existing techniques in statistics literature are borrowed to create the confi-
dence bands. We show that the optimal objective values of the DRO problems formulated using these two types
of confidence bands converge to the optimal objective value of the corresponding SP based on the true distribu-
tion. The DRO problem we formulate is a continuous linear program. We then propose a stochastic gradient
decent method to solve it. Numerical experiments in a newsvendor problem and a portfolio selection problem
verify the effectiveness of our approach.
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Appendix A. Proof of Theorem 2
For δ > 0, we define a subset of Ξ as

Ξδ :� {ξ ∈ Ξ|p?(ξ) > δ}:
We first bound the differences between uα, lα and p? at a given point ξ ∈ Ξδ. We assume ξ > μ first, and the proof for ξ <
μ is similar. We don’t need to bound the differences at ξ � μ because the point μ has a zero measure so that it does not
affect the Lebesgue integrals appearing in this theorem. For simplicity of notation, we use c+ and c– to represent c−(α)
and c−(α) in this proof.

There exists an index i such that ξ̂(ki) < ξ < ξ̂(ki+1). Because ξ > μ and p? is (C,ρ)-Hölder continuous, there exists Nδ inde-
pendent of ξ such that, for N ≥Nδ, we further have p?(ξ̂(ki+1)) ≥ δ

2 (as ξ̂(ki+1) is close enough to ξ) and
μ < ξ̂(ki−1) < ξ̂(ki) < ξ < ξ̂(ki+1). Note that p? is monotonically decreasing over [ξ̂(ki), ξ̂(ki+1)]. By the definitions of lSRα (ξ) and
uSRα (ξ) in (16) and the second line of the constraints in (15), we must have

uSRα (ξ) ≤ c+

ξ̂(ki) − ξ̂(ki−1)
and lSRα (ξ) ≥ c−

ξ̂(ki+1) − ξ̂(ki)
,

Figure 6. (Color online) The Out-of-Sample Performance of CLX andWASS on a Portfolio Selection Problem

Note. The boundary of the shaded area represents the 20th and 80th percentiles, and the solid line represents the mean from 100 independent
trials.
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which implies

uSRα (ξ) − lSRα (ξ) :�Dξ ≤ c+

ξ̂(ki) − ξ̂(ki−1)
− c−

ξ̂(ki+1) − ξ̂(ki)
: (A.1)

By the monotonicity of p? on [μ,b], we can show that

(ξ̂(ki) − ξ̂(ki−1))p?(ξ̂(ki)) ≤ Δi � F?(ξ̂(ki)) − F?(ξ̂(k(i−1))) ≤ (ξ̂(ki) − ξ̂(ki−1))p?(ξ̂(ki−1)), (A.2)

(ξ̂(ki+1) − ξ̂(ki))p?(ξ̂(ki+1)) ≤ Δi+1 � F?(ξ̂(ki+1)) − F?(ξ̂(ki)) ≤ (ξ̂(ki+1) − ξ̂(ki))p?(ξ̂(ki)): (A.3)

Applying (A.2) and (A.3) to (A.1), we obtain

Dξ ≤
∣∣∣∣∣ c+p?(ξ̂(ki−1))

Δi
− c−p?(ξ̂(ki+1))

Δi+1

∣∣∣∣∣
≤ p?(ξ̂(ki+1))

∣∣∣∣∣ c+Δi
− c−

Δi+1

∣∣∣∣∣ + c+

Δi

∣∣∣∣∣p?(ξ̂(ki+1)) − p?(ξ̂(ki−1))
∣∣∣∣∣

≤ U

∣∣∣∣∣ c+Δi
− c−

Δi+1

∣∣∣∣∣ + Cc+

Δi

∣∣∣∣∣ξ̂(ki+1) − ξ̂(ki−1)

∣∣∣∣∣
ρ

≤ U

∣∣∣∣∣ c+Δi
− c−

Δi+1

∣∣∣∣∣ + Cc+

Δi

∣∣∣∣∣Δi + Δi+1
p?(ξ̂(ki+1))

∣∣∣∣∣
ρ

≤ U

∣∣∣∣∣ c+Δi
− c−

Δi+1

∣∣∣∣∣ + Cc+

Δi

∣∣∣∣∣Δi + Δi+1
δ=2

∣∣∣∣∣
ρ

,

(A.4)

where the second inequality is by the triangle inequality, the third by Assumption 1(A3) and the (C,ρ)-Hölder continuity of

p?, the fourth by (A.2) and (A.3) as well as the fact that p?(ξ̂(ki+1)) ≤ p?(ξ̂(ki)), and the last by the fact that p?(ξ̂(ki+1)) ≥ δ
2.

The proof shows that (A.4) holds when ξ ∈ Ξδ and ξ > μ. Using a similar argument, we can also show that (A.4) holds
when ξ ∈ Ξδ and ξ < μ. As a result, (A.4) holds for any ξ ∈ Ξδ except ξ � μ. However, we don’t need to upper bound Dξ

when ξ � μ because the point μ has a zero measure so that it does not affect the Lebesgue integrals that we use in the
rest of the proof.

According to equations (98) and (101) with (τ � 2) in Hengartner and Stark (1995), we have

lim
N→+∞P | c+

Δi
− c−

Δi+1
| ≤ 4

##############
log (N=K)

K

√( )
≥ 1 − 2θ (A.5)

and

lim
N→+∞P

c+

Δi
(Δi + Δi+1)ρ ≤ 2

K
N

( )ρ( )
≥ 1 − 2θ: (A.6)

for any θ ∈ (0, 1) and for all i � 2, 3, : : : ,M. We then apply (A.5) and (A.6) to (A.4) to achieve

lim
N→+∞P Dξ ≤ 4U

#############
log (N=K)

K

√
+ 2ρ+1C

δρ
K
N

( )ρ( )
≥ 1− 4θ, ∀ξ ∈ Ξδ\ μ{ }: (A.7)

Because (A.7) holds for any θ ∈ (0, 1), using a union bound, we can show that, for any finite set Ξ′ ⊂ Ξδ,

lim
N→+∞P max

ξ∈Ξ′ Dξ ≤ 4U

#############
log (N=K)

K

√
+ 2ρ+1C

δρ
K
N

( )ρ( )
≥ 1− 4θ (A.8)

for any θ ∈ (0, 1), which further implies

lim
N→+∞P

∫
Ξδ

|uSRα (ξ) − lSRα (ξ)|dξ ≤ (b− a) 4U
#############
log (N=K)

K

√
+ 2ρ+1C

δρ
K
N

( )ρ[ ]( )
≥ 1− 4θ (A.9)

for any θ ∈ (0, 1). LetM(·) represent the Lebesgue measure. We then set δ small enough such that
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max
x∈X,ξ∈Ξ

|f (x,ξ)| ·U ·M(Ξ\Ξδ) ≤ ε

4
: (A.10)

Because p? ∈DSR(Ξ̂N, α) with a probability of 1− α, we have

max
x∈X

∣∣∣∣∣
∫
Ξ

f (x,ξ)p?(ξ)dξ− sup
p∈DSR(Ξ̂N, α)

∫
Ξ

f (x,ξ)p(ξ)dξ
∣∣∣∣∣

≤ max
x∈X,ξ∈Ξ

|f (x,ξ)| ·
∫
Ξ

|uSRα (ξ) − lSRα (ξ)|dξ
� max

x∈X,ξ∈Ξ
|f (x,ξ)| ·

∫
Ξδ

|uSRα (ξ) − lSRα (ξ)|dξ+ max
x∈X,ξ∈Ξ

|f (x,ξ)|
∫
Ξ\Ξδ

|uSRα (ξ) − lSRα (ξ)|dξ

≤ max
x∈X,ξ∈Ξ

|f (x,ξ)| ·
∫
Ξδ

|uSRα (ξ) − lSRα (ξ)|dξ+ 2 max
x∈X,ξ∈Ξ

|f (x,ξ)| ·U ·M(Ξ\Ξδ)

with a probability of 1− α. Here, the first inequality is because p? ∈DSR(Ξ̂N, α) and the second is because 0 ≤ lSRα (ξ) ≤
uSRα (ξ) ≤U. Using a union bound, the preceding inequality, (A.9), and (A.10) together imply that

lim
N→+∞P

max
x∈X

∣∣∣∣∣
∫

Ξ

f (x,ξ)p?(ξ)dξ− sup
p∈DSR(Ξ̂N, α)

∫
Ξ

f (x,ξ)p(ξ)dξ
∣∣∣∣∣

≤ max
x∈X,ξ∈Ξ

|f (x,ξ)|(b− a) 4U
#############
log (N=K)

K

√
+ 2ρ+1C

δρ
K
N

( )ρ[ ]
+ ε

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≥ 1− 4θ− α,

for any θ ∈ (0,1). Because

lim
N→+∞ 4U

#############
log (N=K)

K

√
+ 2ρ+1C

δρ
K
N

( )ρ[ ]
� 0,

we have, for any ε,

lim
N→+∞P max

x∈X

∣∣∣∣∣
∫
Ξ

f (x,ξ)p?(ξ)dξ− sup
p∈DSR(Ξ̂N, α)

∫
Ξ

f (x,ξ)p(ξ)dξ
∣∣∣∣∣ ≤ ε

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≥ 1− α,

which is the first conclusion. The second conclusion can be easily implied from the first conclusion.

Appendix B. Proof of Theorem 4
Let M(·) represent the Lebesgue measure on R

m. Suppose p? ∈DKDE(Ξ̂N, α). We have

max
x∈X

∣∣∣∣∣
∫
Ξ

f (x,ξ)p?(ξ)dξ− sup
p∈DKDE(Ξ̂N, α)

∫
Ξ

f (x,ξ)p(ξ)dξ
∣∣∣∣∣

≤max
x∈X

∫
Ξ

|f (x,ξ)||uKDE
α (ξ) − lKDE

α (ξ)|dξ

≤max
x∈X

∫
Ξ

|f (x,ξ)|2δdξ ≤ 2δ max
x∈X,ξ∈Ξ

|f (x,ξ)|M(Ξ),

where δ is defined in (20). By the definition of δ and the fact that h � log (N=α)=N( )1=(2ρ+m), we have

lim
N→+∞2δ max

x∈X,ξ∈Ξ
|f (x,ξ)|M(Ξ) � 0:

As a result of Theorem 3, we have

lim
N→+∞P max

x∈X

∣∣∣∣∣
∫
Ξ

f (x, ξ)p?(ξ)dξ − sup
p∈DKDE(Ξ̂N, α)

∫
Ξ

f (x, ξ)p(ξ)dξ
∣∣∣∣∣ ≤ ε

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≥ lim

N→+∞P p? ∈ DKDE(Ξ̂N, α)
( )

≥ 1 − α:

The second conclusion can be easily implied from the first conclusion.

Appendix C. Proof of Lemma 3
We first reformulate (27) as the linear conic program considered in Shapiro (2001). We consider the Banach space of Leb-
esgue integrable functions on Ξ, denoted by X � L1(Ξ), and its dual space of Lebesgue integrable essentially bounded
functions on Ξ, denoted by X′ � L∞(Ξ). In addition, we define L+

1 (Ξ) as the cone of the almost surely nonnegative func-
tions in L1(Ξ). Note that uα and lα are in L+

1 (Ξ) because of Assumption 3(A1) and f (x,ξ) ∈ L∞(Ξ) by the assumption that
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max ξ∈Ξ |f (x,ξ)| < +∞. Let the bilinear form 〈 · , · 〉 : X′ × X→ R be defined as 〈h,p〉 �
∫
Ξ

h(ξ)p(ξ)dξ. Then, we define the fol-

lowing parameterized linear conic program

V(y) :� inf
p∈ X

〈f (x, ·),p〉
s:t A(p)+y ∈ K,

(C.1)

where A : X→ Y :� R × L1(Ξ) × L1(Ξ) is the linear mapping

A(p) :�
∫
Ξ

p(ξ)dξ, − p,p
( )

,

y � (δ,μ,ν) ∈ Y, and K � {0} × L+
1 (Ξ) × L+

1 (Ξ) is a cone in Y. Note that (27) is exactly (C.1) with b � (−1,uα, − lα) ∈ Y. Also note
that the linear mappings 〈f (x, ·),p〉 and A(p) are continuous, and the cone K is closed. We equip the space Y with the norm

||y|| �
#####################
δ2 + ||μ||21 + ||ν||21

√
for y � (δ,μ,ν) ∈ Y. Let

D :� ||f (x, ·)||∞ �max
ξ∈Ξ

|f (x,ξ)|:

Consider any y � (δ,μ,ν) ∈ Y. We claim that the set

Sy :� p ∈ X : 〈f (x, ·),p〉 ≤D,A(p) + y ∈ K
{ }

is nonempty when y � b and that Sy is contained in the compact set p ∈ X : ||p||1 ≤ ||uα||1 + ε
{ }

if y is in the ε-neighborhood of b,
namely #######################################

(δ+ 1)2 + ||μ− uα||21 + ||ν+ lα||21
√

≤ ε::

In fact, the set D(Ξ̂N,α) is exactly the set of functions p satisfying A(p) + b ∈ K, and it is nonempty by Assumption 3(A2).
Moreover, each p ∈D(Ξ̂N,α) satisfies 〈f (x, ·),p〉 ≤D by the Cauchy–Schwartz inequality. Hence, Sy is nonempty when y �
b. If y is in the ε-neighborhood of b, by the constraint −ν ≤ p ≤ μ satisfied by any p ∈ Sy, we have

||p||1 ≤ ||max (|ν|, |μ|)||1 ≤ ε+ ||uα||1:
As a result, all conditions in proposition 2.4 in Shapiro (2001) hold such that the set of optimal solutions of (27) is non-
empty and compact and V(y) is lower semicontinuous at y � b. By proposition 2.3 in Shapiro (2001), the optimal objective
value of the dual problem (29) equals lscV(b), that is, the value of the lower semicontinuous hull of the function V at b.
Because V(y) is lower semicontinuous at y � b, we have lscV(b) � V(b), where V(b) is the optimal objective value of (27)
according to (C.1). Hence, strong duality holds between (27) and (29).

Appendix D. Proof of Theorem 5
According to Lemma 4, there exists a Lebesgue integrable mapping f ′(x,ξ) : X × Ξ→ R

d such that (32) and (33) hold.
Therefore, for any x ∈ X and a batch size B, if we generate a sample {ξ1,ξ2, : : : ,ξB} from a uniform distribution over I
and construct

gx � |I|
B

∑
i:f (x,ξi)<λ

l(ξi)f ′(x,ξi) + |I|
B

∑
i:f (x,ξi)≥λ

u(ξi)f ′(x,ξi)

gλ � 1− |I|
B

∑
i:f (x,ξi)<λ

l(ξi) − |I|
B

∑
i:f (x,ξi)≥λ

u(ξi),

we must have

E(gx) �
∫

l(ξ)f ′(x,ξ)If (x,ξ)<λ(ξ)dξ+
∫

u(ξ)f ′(x,ξ)If (x,ξ)≥λ(ξ)dξ ∈ ∂xF(x,λ)

E(gλ) � 1−
∫

l(ξ)If (x,ξ)<λ(ξ)dξ−
∫

u(ξ)If (x,ξ)≥λ(ξ)dξ ∈ ∂λF(x,λ),

where the expectation is taken over the sample {ξ1,ξ2, : : : ,ξB}. Hence, assumptions A1 and A2 in Nemirovski et al. (2009) are

satisfied. By the assumption of Theorem 5, there exist a constantM such that E||(gkx,gkλ)||22 ≤M2 for all k, which ensures condition
(2.40) in holds Nemirovski et al. (2009). Because assumptions A1, A2, and (2.40) in Nemirovski et al. (2009) hold, the convergence
property (2.48) in Nemirovski et al. (2009) holds with θ � 1 and α � 1. Applying (2.48) in Nemirovski et al. (2009) to the sequence
(x̄k, λ̄k) from Algorithm 3 yields the second inequality of (36). Note that the first inequality in (36) is because of (30), which indicates
vD(x) ≤ F(x,λ) for any λ.
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Appendix E. Behavior of uSR
a (j) Near μ in Figures 3 and 4

In this section, we provide an explanation of the spikes in the upper bands uSRα in Figures 3 and 4 near the location of
mode μ. We only need to focus on the case in which ξ < μ because the case in which ξ > μ can be explained similarly by
symmetry.

Recall that N̂ ∈ Z+ is the number of distinct elements in the set {a,b,μ,ξ, ξ̂(k1), : : : , ξ̂(kM)}, and zj is the jth smallest ele-
ment in this set. Recall also that ĵ and j̃ are the indexes such that zĵ � ξ and zj̃ � μ. According to the definition of uSRα (ξ)
in (15) and (16), we have uSRα (ξ) �maxβ∈H(Ξ̂N ,α)βĵ , which is a linear program. Suppose ξ takes a value, say ξ′, which is less

than μ but close enough to μ so that j̃ − 1 � ĵ. The constraints involving variable βĵ in this linear program are as follows:

c−(α) ≤ βĵ−1(ξ′ − zĵ−1) + βĵ (μ− ξ′) + βj̃ (zj̃+1 −μ) ≤ c+(α), (E.1)

∑N̂−1

j�1
βj(zj+1 − zj) � 1, βĵ−1 ≤ βĵ , 0 ≤ βĵ ≤U: (E.2)

Suppose there exists a feasible solution β′ � (β1′, : : : ,βN̂−1
′) for this linear program that satisfies βĵ−1

′ < βĵ
′. We define

c(ξ′) :� βĵ−1
′(ξ′ − zĵ−1) + βĵ

′(μ− ξ′):
Then, for any ξ ∈ (ξ′,μ), we define a solution βξ :� (βξ1, : : : ,βξN̂−1), where βξj � βj

′ for j≠ ĵ and

βĵ
ξ �

c(ξ′) − βξ
ĵ−1(ξ− zĵ−1)
μ− ξ

�
β′̂j−1(ξ′ − ξ) + βĵ

′(μ− ξ′)
μ− ξ

�
β′̂j−1(μ− ξ) + (βĵ ′ − βĵ−1

′)(μ− ξ′)
μ− ξ

:

With this construction, we have βξ
ĵ−1(ξ− zĵ−1) + βĵ

ξ(μ− ξ) � c(ξ′) for any ξ ∈ (ξ′,μ) so that all constraints in (E.1) and (E.2)

remain satisfied except the constraint βĵ ≤U. Note that, as a conservative global upper bound of p∗(ξ), U is a relatively

large number. By definition, uSRα (ξ) ≥ βĵ
ξ
and βĵ

ξ
increases to infinity as ξ increases to μ. Hence, the upper band uSRα (ξ) in-

creases to U as ξ approaches μ from the left. This explains the spike at μ in Figures 3 and 4. Although U is large, it is still
a finite number so the height of the spikes in both figures are U instead of infinity. However, we do not include the
peaks of the spikes in the figure in order to display the curves in a readable scale.

Endnotes
1 In this paper, the notations ξ? ~ P and ξ? ~ pmean random variable ξ? follows distribution P and has density function p, respectively.

2 In this paper, an integral in the form of
∫

(·)dξ represents the Lebesgue integral.

3 Note that p?(ξ) can still be zero on Ξ.vf.
4 Equation (104) in Hengartner and Stark (1995) was stated slightly differently from (17) by replacing “lim” by “liminf” and “� 1” by “> 0”
in (17). That equation was obtained by choosing the parameter τ2 in their proof to be 2+ 2ρ. However, the same proof leads to Lemma 1 once
we choose τ2 � 3+ 2ρ in their proof.

5 Note that
∫ ∞

0
κ(t)tm+ρdt < +∞ because of Assumption 2(A2).
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