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ABSTRACT
The stochastic gradient descent (SGD) algorithm is widely used for parameter estimation, especially for
huge datasets and online learning. While this recursive algorithm is popular for computation and memory
efficiency, quantifying variability and randomness of the solutions has been rarely studied. This article aims
at conducting statistical inference of SGD-based estimates in an online setting. In particular, we propose
a fully online estimator for the covariance matrix of averaged SGD (ASGD) iterates only using the iterates
from SGD. We formally establish our online estimator’s consistency and show that the convergence rate is
comparable to offline counterparts. Based on the classic asymptotic normality results of ASGD,we construct
asymptotically valid confidence intervals for model parameters. Upon receiving new observations, we can
quickly update the covariance matrix estimate and the confidence intervals. This approach fits in an online
setting and takes full advantage of SGD: efficiency in computation and memory.

ARTICLE HISTORY
Received June 2020
Accepted May 2021

KEYWORDS
Asymptotic normality;
Averaging stochastic
gradient descent; Recursive;
Statistical inference;

1. Introduction

Model parameter estimation through optimization of an objec-
tive function is a fundamental problem in statistics andmachine
learning. Here, we consider the classic setting where the true
model parameter x∗ ∈ R

d can be characterized as theminimizer
of a convex objective function F : Rd → R, that is,

x∗ = argmin
x∈Rd

F(x). (1)

The objective function F(x) is defined as F(x) = Eξ∼�f (x, ξ),
where f (x, ξ) is a noisy measurement of F(x) and ξ is a random
variable following the distribution �.

In the recent years, huge datasets and streaming data arise
frequently. Classic deterministic optimization methods that
require storing all the data are not appealing due to expensive
memory cost and computational inefficiency. To resolve these
issues, one can apply the Robbins-Monro algorithm (Robbins
and Monro 1951; Kiefer and Wolfowitz 1952), also known as
stochastic gradient descent (SGD), especially for online learning
(Bottou 1998; Mairal et al. 2010; Hoffman, Bach, and Blei 2010).
Setting x0 as the initial point, the ith iteration of the SGD
algorithm takes the following form:

xi = xi−1 − ηi∇f (xi−1, ξi), i ≥ 1, (2)

where {ξi}i≥1 is a sequence of iid sample from the distribution
�,∇f is the gradient of f (x, ξ)with respect to the first argument
x, and ηi is the step size at the ith step. This recursive adaptive
algorithm performs one update at a time and does not need
to remember outcomes in previous iterations. Therefore, it is
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computationally efficient, memory friendly, and able to process
data on the fly.

Despite these advantages, SGD performs frequent updates
with high variability, and the outcomes can fluctuate heavily.
The crucial problem is to understand the variability and ran-
domness of the solutions. In this article, we address the uncer-
tainty quantification problem in the online setting where data
can arrive sequentially. In particular, we propose a fully online
approach to estimate the covariance matrix of SGD-based esti-
mates only using the iterates from SGD. The efficient algorithm
we propose is recursive. It performs an immediate update of
the covariance estimate as new data arrives, which follows the
spirit of SGD.We can then conduct statistical inference with the
estimated covariance matrix and construct confidence intervals
for model parameters in a fully online fashion.

Before discussing our method, we provide a brief review
of the literature on SGD. The asymptotic convergence of SGD
iterates has been studied extensively in the early years (Blum
1954;Dvoretzky 1956; Robbins and Siegmund 1971; Ljung 1977;
Sacks 1958; Fabian 1968; Lai 2003). To further investigate the
asymptotic distribution of SGD, Polyak and Juditsky (1992) and
Ruppert (1988) introduced the averaged SGD (ASGD), a simple
modification where iterates are averaged, and established the
asymptotic normality of the obtained estimate. Moreover, it is
known that ASGD estimates achieve the optimal central limit
theorem rateOP(1/

√
n) by running SGD for n iterations under

certain regularity conditions. For linear stochastic approxima-
tion, Mou et al. (2020) modified the Polyak-Ruppert covariance
with an additional correction term concerning the constant step
size. Differently from the SGD algorithm, Toulis and Airoldi
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(2017) introduced implicit SGD procedures and analyzed the
asymptotic distribution of the averaged implicit SGD iterates.
Convergence in nonasymptotic fashion has also been studied
recently for SGD and its variants with different objective func-
tions (Rakhlin, Shamir, and Sridharan 2012; Moulines and Bach
2011; Hazan and Kale 2014; Bach and Moulines 2013; Duchi,
Hazan, and Singer 2011; Kingma and Ba 2015; Shamir and
Zhang 2013). Our method and analysis rely on the averaged
SGD and its asymptotic normality in later discussions.

In addition to convergence and error bounds of SGD-based
estimators, statistical inference problems based on SGD have
recently started to gain more attention. Instead of focusing on
point estimators, one is interested in assessing the uncertainty of
the estimates through their confidence intervals/regions. Chen
et al. (2020) introduced the inference problem and proposed
a batch-means method to construct asymptotically valid
confidence intervals based on asymptotic normality of ASGD.
Fang, Xu, and Yang (2018) and Fang (2019) proposed bootstrap
procedures for constructing confidence intervals through the
perturbed-SGD. Meanwhile, variants of the SGD algorithm and
corresponding inference in nonasymptotic fashion are studied
in Su and Zhu (2018) and Liang and Su (2019). For online l1
penalized problems, Chao and Cheng (2019) proposed a class
of generalized regularized dual averaging andmade uncertainty
quantification possible for online sparse algorithms.

1.1. Problem Formulation

Our work in this article is applicable to vanilla SGD, which is
most widely used in practice. We use the ASGD iterate

x̄n = n−1
n∑

i=1
xi

as the estimate for the model parameter at the nth step. We set
step size ηi = ηi−α(i ≥ 1) with η > 0 and α ∈ (0.5, 1) as
suggested by Polyak and Juditsky (1992). Define

A = ∇2F(x∗), S = E
([∇f (x∗, ξ)][∇f (x∗, ξ)]T) . (3)

From Polyak and Juditsky (1992), under suitable conditions, x̄n
has the asymptotic normality:

√
n(x̄n − x∗) ⇒ N(0,�), (4)

where � = A−1SA−1, which is known as the “sandwich” form
of the covariance matrix. To leverage the asymptotic normality
result for inference, it is critical to estimate the limiting covari-
ance matrix �. Intuitively, one can estimate S with a simple
sample average Ŝn = n−1∑n

i=1[∇f (xi−1, ξi)][∇f (xi−1, ξi)]T ,
and similarly estimate A with Ân = n−1∑n

i=1 ∇2f (xi−1, ξi).
Then the limiting covariance matrix � can be estimated by the
consistent plug-in estimator Â−1

n ŜnÂ−1
n (see Chen et al. 2020).

However, computation of theHessianmatrix of the loss function
is not always available, for example, certain computations are
not available in many existing codebases that only adopt SGD
for optimization and in cases such as quantile regression, the
Hessian matrix does not even exist. Also, the plug-in estimator
may be computationally costly when d is large since it involves
matrix inversion with O(d3) time complexity in general.

Our goal is to obtain an online estimate of the covariance
matrix of

√
nx̄n, only through the SGD iterates {x1, x2, . . . , xn}.

Our approach is attractive in situations where the computation
for A−1 and S are difficult, which is quite typical in practice.
Also, the approach is efficient in both computation andmemory
due to its recursive property, that is, the estimate at the nth step
�̂n can be updated from �̂n−1 withinO(d2) computation.With
the estimate, we can perform uncertainty quantification and
statistical inference with desirable computation and memory
efficiency. The approach is useful for online learning, where the
data is constantly arriving over time, such as streaming data.

For the time-homogeneous Markov chain, {xi}i∈Z is a sta-
tionary process. Under certain short-range dependence condi-
tions, we have

√
n (x̄n − Exi) ⇒ N(0, σ 2),

where

σ 2 = lim
n→∞ var(

√
nx̄n) =

∞∑
i=−∞

cov(x0, xi)

is the long-run variance, and it plays a fundamental role in
the statistical inference of stationary processes. To estimate
the long-run variance, one can apply the batch-means method
(Glynn and Whitt 1991; Kitamura et al. 1997; Politis, Romano,
and Wolf 1999; Lahiri 2003; Flegal and Jones 2010). Given
x1, . . . , xn, let 1 ≤ ln ≤ n be the batch size. Based on batch-
means

∑i+ln
k=i xk/ln − x̄n for 1 ≤ i ≤ n− ln +1, one can estimate

σ 2 by

σ 2
n = ln

n − ln + 1

n−ln+1∑
i=1

⎛
⎝i+ln−1∑

k=i
xk/ln − x̄n

⎞
⎠2

.

As an alternative, one can use the nonoverlapping batch-means∑i+ln
k=i xk/ln − x̄n for i = 1, 1 + ln, 1 + 2ln, . . ., to construct a

similar estimate. Properties of overlapping and nonoverlapping
batch-means estimators are discussed in Politis, Romano, and
Wolf (1999) and Lahiri (2003). In our problem, estimation of
� in (4) becomes more complicated since SGD iterates form a
nonstationary Markov Chain.

To apply to SGD, Chen et al. (2020) modified the classic
nonoverlapping batch-means by allowing increasing batch sizes
and showed that the modified batch-means estimator is con-
sistent. However, their approach is not in line along with the
spirit of SGD, the fully online fashion. Their construction of
covariance estimator �̂n requires the information on the total
number of iterations n a priori. There is no simple algebraic
relation between �̂n and �̂n+1. In other words, when a new
data point xn+1 arrives later, their algorithmneeds to recompute
their estimate from the beginning and cannot perform efficient
sequential updating. So the approach is computationally expen-
sive for online learning, where the dynamic training data are
arriving over time, and the goal is to make sequential predic-
tions; see Remark 2.1 for a detailed discussion of Chen et al.
(2020).

To address the above problems, we develop in this article a
fully online approach for asymptotic covariance matrix estima-
tion, which we refer to as online batch-meansmethod. The con-
struction does not require prior knowledge of the total sample
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size. Immediate updates from �̂n to �̂n+1 can be performed
recursively as new data are coming in, which fits our online
setting. To achieve this goal, we design a novel construction of
batches with time-varying size, which substantially extends the
one in Chen et al. (2020). Similar to the recursive nature of SGD,
our algorithm is also recursive and it updates the covariance
matrix estimate once at a time only through the stochastic gradi-
ent withinO(d2) computation. Note that since we are learning a
d×d covariancematrix, it requires at leastO(d2) computation to
update the covariancematrix estimates. In the important special
case of marginal inference of each coordinate of the parameter
vector, our online batch-means estimator only needs to compute
and store diagonals of the covariance matrix estimate, which
only require O(d) computation and O(d) memory. The idea
of online estimation is motivated by Wu (2009), who studied
the estimation of long-run variances of stationary and ergodic
processes. Asmentioned above, the SGD iterates in Equation (2)
form a nonhomogeneous (nonstationary) Markov Chain since
the step size ηk decays as k increases, for example ηk = ηk−α for
α ∈ (1/2, 1) as suggested by Polyak and Juditsky (1992). Hence,
the asymptotic behaviors of SGD and stationary processes are
fundamentally different. The construction, which is associated
with batch sizes, is novel and different for SGD iterates and
stationary sequences. This nonstationarity also brings substan-
tial difficulties in technical analysis. The convergence of our
estimator is far from being trivial. We formally establish the
consistency result and obtain the convergence rate of our online
estimator in Section 3.

We summarize our contributions as follows. We propose
a fully online approach to estimate the asymptotic covariance
matrix of the ASGD solution and conduct statistical inference.
The fully online fashion allows efficient sequentially updat-
ing. It is important for online learning, where data come in
a stream and real-time update of predictions is needed before
seeing future data. It has potential applications such as online
advertisement placement and online web ranking (Richardson,
Dominowska, and Ragno 2007; Zhang et al. 2016). Our method
is efficient in both computation and memory. In particular, the
computational and memory complexity at the update step is
O(d2), and the total computational cost only scales linearly in
n. In terms of theoretical merits, the proposed estimator is the
first fully online fashion estimator with rigorous convergence
property for asymptotic covariance of ASGD. We show that the
convergence rate of our online estimator is comparable to the
offline counterparts.

1.2. Organization and Notation

The remainder of this article is organized as follows. In Sec-
tion 2, we propose the online estimator (two versions) for the
asymptotic covariancematrix of ASGD iterates and correspond-
ing algorithms. In Section 3, we show that the online esti-
mator is consistent and obtains the desired convergence rate.
Also, confidence intervals/regions based on our online estima-
tor are constructed for statistical inference. Section 4 provides
a simulation study to demonstrate the convergence rate of the
online estimator and the asymptotically valid coverage of the
confidence intervals. Further discussion and future work are
presented in Section 5.

Throughout the article, for a vector a = (a1, . . . , ad) ∈ R
d,

‖a‖2 is defined as the vector l2 norm ‖a‖2 =
(∑d

i=1 a2i
)1/2

.
For a matrix A = (aij) ∈ R

d×d, we use ‖A‖F to denote its

Frobenius norm ‖A‖F =
(∑d

i=1
∑d

j=1 a2ij
)1/2

, and ‖A‖2 to
denote its operator norm ‖A‖2 = max‖x‖2≤1 ‖Ax‖2. When A
is positive semidefinite, λA denotes the largest eigenvalue of A
and tr(A) denotes its trace. We use Id to denote a d× d identity
matrix. For positive sequences {an}n∈N and {bn}n∈N, an � bn
means there exists some constant C such that an ≤ Cbn for
all large n. And an 
 bn if both an � bn and bn � an
hold. For t ∈ R, �t� is the largest integer less than or equal
to t. For notational simplicity, we use notation C for constants
which can take different values in different equations.We define
conditional expectationEn(·) = E(·|Fn), whereFn isσ -algebra
generated by {ξi}i≤n.Moreover, we use⇒ to denote convergence
in distribution.

2. Online Approach

We first introduce a time varying batch scheme used in our
online approach. Consider infinite sequentially arriving SGD
iterates {xi}i=1,2,... in (2). Let {am}m∈N be a strictly increasing
integer-valued sequence with a1 = 1. For the ith iterate xi, we
consider a data block Bi including iterates from past iterations ti
to i, that is,

Bi = {xti , . . . , xi},
where ti is the index of iterate we trace back to at the ith step.
The value of ti is determined by the sequence {am}m∈N through
ti = am when i ∈ [am, am+1). For example, ti =

⌊√
i
⌋2

if
am = m2. In this case, we have
B1 = {x1}, B2 = {x1, x2}, B3 = {x1, x2, x3},
B4 = {x4}, B5 = {x4, x5}, B6 = {x4, x5, x6}, B7 = {x4, x5, x6, x7},
B8 = {x4, x5, x6, x7, x8},
B9 = {x9}, B10 = {x9, x10}, B11 = {x9, x10, x11}, . . ..
We can see that the batch sizes are time-varying. The blocks {Bi :
am ≤ i < am+1} can also be viewed as the so-called forward
scans in block subsampling (McElroy et al. 2007; Nordman,
Bunzel, and Lahiri 2013). That is, given nonoverlapping blocks
{xam , . . . , xam+1−1}, the forward scans are overlapping blocks of
sequentially increasing length starting from xam .

2.1. Online CovarianceMatrix Estimator Based on Batch
Means

Based on blocks {Bi}i∈N, the covariance matrix estimator is
defined as the sum of squared block sums (centered) divided by
the sum of block lengths, that is, at the nth step

�̂n =
∑n

i=1

(∑i
k=ti xk − lix̄n

) (∑i
k=ti xk − lix̄n

)T
∑n

i=1 li
, (5)

where li = |Bi| = i − ti + 1 denotes the length of Bi.
The novel idea of constructing data block Bi, which only

includes past iterates, is the key to make the algorithm fully
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online. Next, we will show that the estimate �̂n can be com-
puted recursively. Let Wi denote the sum of the block Bi =
{xti , . . . , xi}, that is,

Wi =
i∑

k=ti

xk. (6)

When ti+1 = ti = am for somem, Bi+1 = Bi ∪ {xi+1} and
Wi+1 = Wi + xi+1, li+1 = li + 1.

When ti+1 = am+1 for some m, we start a new block Bi+1 =
{xi+1} and

Wi+1 = xi+1, li+1 = 1.

We can see that both the batch sum Wi and the batch length
li can be updated recursively. With the notation of Wi, the
estimator in (5) can be expressed as

�̂n =

∑n
i=1WiWT

i + ∑n
i=1 l2i x̄nx̄Tn

− (∑n
i=1 liWi

)
x̄Tn − x̄n

(∑n
i=1 liWi

)T
n∑n

i=1 li
. (7)

To further simplify the form, we introduce

Vn =
n∑

i=1
WiWT

i , Pn =
n∑

i=1
liWi.

vn =
n∑

i=1
li, and qn =

n∑
i=1

l2i .
(8)

They can be computed recursively since both Wi and li can
be updated recursively. Now, �̂n in Equation (5) can be finally
rewritten as

�̂n = Vn + qnx̄nx̄Tn − Pnx̄Tn − x̄nPTn
vn

. (9)

All five components in Equation (9): Vn, qn,Pn, vn, x̄n can be
updated recursively. Thus, �̂n can be updated through results
in the (n − 1)th step and the new iterate xn within O(d2)
computation.

To summarize, we propose Algorithm 1. As shown in Algo-
rithm 1, the five components of �̂n+1 can be easily updated
from their values in the nth step. There is no need to store all
the outcomes in the previous steps. The memory complexity
is O(d2), independent of the sample size n. In the update step,
the computational complexity is also O(d2). The total compu-
tational cost scales linearly in n. The algorithm is much more
efficient compared to non-recursive methods and naturally fits
online learning scenarios.

2.1.1. An Alternative Version
The estimate �̂n in Equation (5) includes squared block sums
from all n blocks {Bi}i=1,2,...,n. Block Bi and Bj are overlapped
when am ≤ i < j < am+1 for somem. So �̂n in Equation (5) is
a full overlapping version of the online batch-means estimator.
We also introduce an alternative nonoverlapping version with
a slightly simpler form which has a comparable performance.
As data arriving sequentially, we follow the same batch scheme
above to construct {Bi}i=1,2,..., while only include a few squared

block sums. At the nth step, define set Sn = {n}⋃{ai − 1 : i >

1, ai ≤ n}. Consider a set of nonoverlapping blocks {Bi}i∈Sn , that
is,

{{xa1 , . . . , xa2−1}, . . . , {xam−1 , . . . , xam−1}, {xam , . . . , xn}}.
Ba2−1 Bam−1 Bn.

The alternative nonoverlapping estimate at the nth step includes
squared block sums of {Bi}i∈Sn . It is then defined as

�̂n,NOL = 1
n
∑
i∈Sn

⎛
⎝ i∑

k=ti

xk − lix̄n

⎞
⎠
⎛
⎝ i∑

k=ti

xk − lix̄n

⎞
⎠T

. (10)

The nonoverlapping version estimator is also recursive and can
perform a real-time update. The algorithm is almost the same
as the overlapping one with same computational and memory
complexity. One can follow the derivation of Algorithm 1 to get
Algorithm 2.

In the stationary process case, Lahiri (2003, 1999) showed
that the mean squared error of the classic (non-recursive)
nonoverlapping batch-means estimate is 33% larger than that
of its overlapping version, while the convergence rates are the
same. The comparison between the full overlapping version
and the nonoverlapping version of our online estimators is
more complicated in the nonstationary case. In Section 3.3, we
provide upper bounds for estimation errors for both overlapping
and nonoverlapping estimators. The two upper bounds are
of the same order. The nonoverlapping version is easier to
analyze theoretically, given its simpler structure. In the mean
estimation model, we can obtain the precise order of the mean
squared error for the nonoverlapping one; see Section 3.1. We
also compare the empirical performance of the two versions

Algorithm 1: Update ASGD iterate and covariance matrix
estimate recursively
Input: function f (·), parameter (α, η), step size ηi = ηi−α

for i ≥ 1, predefined sequence {am}m∈N .
Initialize:
m0 = l0 = 0, v0 = P0 = q0 = V0 = W0 = x̄0 = 0, x0;
For n = 0, 1, 2, 3, …

Receive: new data ξn+1
Do the following update:

1. xn+1 = xn − ηn+1∇f (xn, ξn+1);
2. x̄n+1 = (nx̄n + xn+1)/(n + 1);
3. if n + 1 = amn+1, then:
mn+1 = mn + 1; ln+1 = 1;Wn+1 = xn+1;

else:
mn+1 = mn; ln+1 = ln + 1;

Wn+1 = Wn + xn+1;
4. qn+1 = qn + l2n+1;
5. vn+1 = vn + ln+1;
6. Vn+1 = Vn + Wn+1WT

n+1;
7. Pn+1 = Pn + ln+1Wn+1;
8.

S = Vn+1 + qn+1x̄n+1x̄Tn+1 − Pn+1x̄Tn+1 − x̄n+1PTn+1;
Output: ASGD estimator x̄n+1, estimated covariance

�̂n+1 = S/vn+1
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Algorithm 2: Update ASGD estimator and covariance
matrix estimate (nonoverlapping version) recursively
Input: function f (·), parameter (α, η), step size ηi = ηiα
for i ≥ 1, predefined sequence {am}m∈N.
Initialize:
m0 = l0 = 0, v0 = P0 = q0 = V0 = W0 = x̄0 = 0, x0;
For n = 0, 1, 2, 3, …

Receive: new data ξn+1
Do the following update:

1. xn+1 = xn − ηn+1∇f (xn, ξn+1);
2. x̄n+1 = (nx̄n + xn+1)/(n + 1);
4. if n + 1 = amn+1, then:
mn+1 = mn + 1; ln+1 = 1;Wn+1 = xn+1;
qn+1 = qn + l2n; Vn+1 = Vn + WnWT

n ;
Pn+1 = Pn + lnWn

else:
mn+1 = mn; ln+1 = ln + 1;

Wn+1 = Wn + xn+1;
qn+1 = qn; Vn+1 = Vn; Pn+1 = Pn

5. S′ = Wn+1WT
n+1 + l2n+1x̄n+1x̄Tn+1 −

ln+1Wn+1x̄Tn+1 − ln+1x̄n+1WT
n+1;

6.
S = Vn+1 + qn+1x̄n+1x̄Tn+1 − Pn+1x̄Tn+1 − x̄n+1PTn+1 + S′;

Output: ASGD estimator x̄n+1, estimated covariance
�̂n+1,NOL = S/(n + 1)

in Section 4.1. However, it is hard to tell which one is more
efficient based on the simulation results. We leave the rigorous
comparison as a future research problem by extending Lahiri
(2003) to nonstationary processes.

Remark 2.1 (Comparison with the non-recursive batch-means
covariance matrix estimator). The nonoverlapping version (10)
appears similar to the batch-means estimator (Chen et al. 2020).
However, the batch schemes of the two methods are fundamen-
tally different. Chen et al. (2020) split n iterates of SGD intoM+
1 nonoverlapping blocks, where M and batch sizes bm,n (m =
0, . . . ,M) are chosen based on n for desired convergence. With
em,n denoting the ending index of the kth block, the covariance
matrix estimator at nth iteration in Chen et al. (2020) is defined
as

�̂n,BM = 1
M

M∑
m=1

bm,n

⎛
⎝ em,n∑

k=em−1,n+1
xk/bm,n − x̄n

⎞
⎠

⎛
⎝ em,n∑

k=em−1,n+1
xk/bm,n − x̄n

⎞
⎠T

, (11)

where eM,n = n. The optimal batch size setting as suggested
in Chen et al. (2020) is em,n = ((m + 1)/(M + 1))1/(1−α) n
with the number of batches M = n(1−α)/2. Since em,n must
depend on n to ensure the desired convergence rate at the
nth iteration, there is no simple algebraic relation between
�̂n,BM and �̂n+1,BM. So the batch-means estimator (Chen
et al. 2020) is only suitable for offline tasks requiring final
prediction/inference given the prespecified total sample size n.
In contrast, our fully online estimator can sequentially improve

over each iteration. Also, n does not need to be specified
beforehand.

Remark 2.2 (Choice of batch-sizes when n is unknown). Chen
et al. (2020) also proposed an approach based on a target
error tolerance to apply the batch-means estimator when n is
unknown. In particular, given the prespecified error ε, Chen
et al. (2020) propose to set the ending index of the kth batch by
ek = (

(k + 1)Cε−2)1/(1−α), whereC is a constant. The approach
indeed enables an online updating, thus achieve the goal of
recursive processing. However, choosing the constant C can
be difficult or arbitrary in online settings. Moreover, there is a
fundamental difference. The approach in Chen et al. (2020) only
ensures that the expected spectrum norm loss of the covariance
matrix is smaller than ε (up to a constant) for large n, rather than
goes to 0. In other words, the covariance matrix estimator is
not necessarily consistent. While our online method constantly
improves the covariance matrix estimate as n → ∞, and the
estimation error goes to 0.

2.1.2. Choice of Batch Sizes
The remaining question is to specify the sequence {am}m∈N.
This predefined sequence does not depend on n. This ensures
that we can construct batches even if the total number of data is
unknown (which is a typical situation), and the incoming data
will not affect the recursive estimation process. In Section 3.3,
we show that am is required to take a polynomial form so that
the estimator is consistent. Next, we shall give some intuitive
explanation and one example of choice.

The formula in Equation (5) bears a certain similarity to the
sample covariance matrix Sn = n−1∑n

i=1(xi − x̄n)(xi − x̄n)T .
On the other hand, in contrast to the standard sample covari-
ance matrix where {xi}i≥1 are independent, our SGD iterates in
Equation (5) are highly correlated. In other words, we cannot
ignore the covariance between data as in the construction of
the sample covariance matrix. According to Equation (2), the
correlation between xi and xj diminishes as the distance |j −
i| becomes larger, while the correlation between xi and xi+1
becomes stronger as i goes to infinity. The idea of online estima-
tion is to choose sequence (am)m∈N and form nonoverlapping
blocks {Bam−1}m>1 asmentioned above such that the correlation
between xi and xj is sufficiently small when they are in different
nonoverlapping blocks. So when considering the effect of xi, we
trace back to the starting point of the nonoverlapping block xi
belongs to, that is, construct data block Bi = {xti , . . . , xi}. Recall
that the ith iterate xi through SGD takes the form

xi = xi−1 − ηi∇f (xi−1, ξi).

Let δi = xi−x∗ be the error sequence, where x∗ is theminimizer
in Equation (1). Then

δi = δi−1 − ηi∇F(xi−1) + ηiεi, (12)

where εi = ∇F(xi−1)−∇f (xi−1, ξi). Note that∇F(x∗) = 0 since
x∗ is the minimizer of F(x). By Taylor’s expansion of ∇F(xi−1)
around x∗, we have ∇F(xi−1) ≈ ∇Aδi−1, where A = ∇2F(x∗).
Thus, by modifying Equation (12) with∇F(xi−1) approximated
by Aδi−1, for large i

δi ≈ (I − ηiA)δi−1 + ηiεi. (13)
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Then for the ith iterate xi and the jth iterate xj (assume j < i),
the strength of correlation between them is roughly

�i
k=j+1 ‖Id − ηkA‖2 ≤ (1 − ηλAi−α)i−j, (14)

when ηk = ηk−α . Tomake the correlation small, one can choose
i− j ≈ Ki(α+1)/2, where K is a constant. Then the correlation is
less than (1 − ηλAi−α)Ki

α i(1−α)/2 , which goes to zero as i goes to
infinity. Combining the correlation between xi, xj and the form
of i−j, a reasonable setting is that the sequence {am}m∈N satisfies

am − am−1 = Ka(α+1)/2
m . (15)

Let am increase polynomially, that is, am = Cmβ for some
constant C. We obtain β = 2/(1− α) by solving Equation (15).
Thus, a natural choice of am is

am =
⌊
Cm2/(1−α)

⌋
. (16)

This is also the best choice in the general setting, as discussed in
Section 3.3. However, the best choice of β may change consid-
ering specific objective functions.

2.2. Statistical Inference

Now the limiting covariance matrix � can be approximated
through the online estimation proposed above. Let 0 < q < 1.
Based on the asymptotic normality of ASGD in Equation (4),
the (1−q)100% confidence interval for x∗

i , the ith coordinate of
x∗, can be constructed as[

x̄n,i − z1−q/2
√

σ̂ii/n, x̄n,i + z1−q/2
√

σ̂ii/n
]
, (17)

where x̄n,i is the ith coordinate of x̄n, z1−q/2 is the (1 − q/2)th
percentile of the standard Gaussian distribution and σ̂ii is the
ith diagonal of the covariance matrix estimate. The confidence
interval is constructed in a fully online fashion since both x̄n,i
and σ̂ii can be computed recursively. Joint confidence regions
and general form of confidence intervals are discussed in
Section 3.4.

2.2.1. Relation to Empirical Likelihood
As pointed out by a reviewer, the construction of the nonover-
lapping version estimator shares a similar spirit with the block-
ing scheme and covariance estimator by Kim, Lahiri, and Nord-
man (2013), who developed a progressive block empirical like-
lihood (PBEL) method. They considered a stationary, weakly
dependent sequence (X1, . . . ,Xn) with mean μ such that the
CLT

√
n(X̄n − μ) ⇒ N(0, σ 2) holds. The variance estima-

tor σ̂ 2
n,NOL in Kim, Lahiri, and Nordman (2013) matched our

scheme in Section 2.1.1 with am = (m − 1)m/2 + 1 (or
the ith block has length i) and is shown to be a consistent
variance estimator. The chi-squared limit of the log-likelihood
ratio based on PBEL is established following the consistency of
σ̂ 2
n,NOL. It would be interesting to see if one can obtain similar

results as the PBEL ratio and establish a limiting distribution
that can be used to calibrate confidence regions in the SGD case
here.

3. Theoretical Results

3.1. Preamble: Mean EstimationModel

Before investigating the convergence property of the online
batch-means estimators in the general setting, we shall look at
the simple mean estimation example. Taking advantage of the
simpler structure of the nonoverlapping version, we can obtain
the exact order of convergence. Consider the mean estimation
model

y = x∗ + e,

where x∗ ∈ R is the mean we want to estimate, e is the random
error with mean 0. Let {yi}i∈N be a sequence of iid sample from
the model. Consider the squared loss function at x, F(x) = (y−
x)2/2. The ith SGD iterate takes the form

xi = xi−1 + ηi(yi − xi−1), i ≥ 1, (18)

where we choose the step size ηi = ηi−α , α ∈ (1/2, 1). Then the
error δi = xi − x∗ takes the form

δi = (1 − ηi)δi−1 + ηiei.

In this case, one can have an explicit form of var(
√
nx̄n) and

�̂n,NOL. Additionally, we can have an explicit form for the order
of magnitude of the mean squared error of �̂n,NOL. Let the
variance var(

√
nx̄n) = σ 2

n . We have the following proposition.

Proposition 3.1. For m ≥ 2, let am = �cmβ�, where β > 1 and
c > 0 are constants. Given the SGD iterates defined in (18), we
have

E(�̂n,NOL − σ 2
n )2 
 n−1/β + n2α+2/β−2. (19)

Choose β = 3/(2(1−α)). In themean estimationmodel, the
above proposition asserts that the convergence rate of the mean
squared error of our recursive nonoverlapping variance estimate
is n−2(1−α)/3. Forα close to 1/2, the latter rate approaches n−1/3.
This rate is faster than that of the batch-means estimator in
Chen et al. (2020), which approaches n−1/4. So, besides the
advantage of the recursive property, our estimator may improve
the convergence rate.

In the general setting, the analysis is muchmore complicated
due to the nonlinearity. Upper bounds for the convergence rates
of online estimators for both overlapping and nonoverlapping
versions are given in Section 3.3.

3.2. Assumptions and Existing Convergence Results

In the work of Polyak and Juditsky (1992), assumptions on the
objective function F(x) and the gradient difference are proposed
to prove the asymptotic normality of ASGD estimate. Those
assumptions are necessary for our problem since we adopt
the ASGD as the point estimator and require the asymptotic
normality for statistical inference. Those assumptions, as well
as some error bounds, are also proposed in other literature. We
impose similar assumptions and review some existing results in
this section.
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Assumption 1. Assume that the objective function F(x) is con-
tinuously differentiable and strongly convex with parameter
μ > 0. That is, for any x1 and x2,

F(x2) ≥ F(x1) + 〈∇F(x1), x2 − x1〉 + μ

2
‖x1 − x2‖22.

Furthermore, assume that∇2F(x∗) exists and∇F(x) is Lipschitz
continuous in the sense that there exist L > 0 such that,

‖∇F(x1) − ∇F(x2)‖2 ≤ L‖x1 − x2‖2.
Assumption 2. For the nth iteration, define error δn = xn − x∗
and gradient difference εn = ∇F(xn−1) − ∇f (xn−1, ξn). Recall
that En(·) = E(·|ξn, ξn−1, . . .). The following hold:

1. The function f (x, ξ) is continuously differentiable with
respect to x for any ξ and ‖∇f (x, ξ)‖2 is uniformly
integrable for any x. So En−1

[∇f (xn−1, ξn)
] = ∇F(xn−1),

which implies that En−1 (εn) = 0.
2. The conditional covariance of εn has an expansion around S

which satisfies∥∥En−1
(
εnε

T
n
) − S

∥∥
2 ≤ C

(‖δn−1‖2 + ‖δn−1‖22
)
, (20)

whereC > 0 is some constant. Here S is defined in Equation
(3).

3. There exists a constant C > 0 such that the fourth condi-
tional moment of εn is bounded by

En−1
(‖εn‖42) ≤ C

(
1 + ‖δn−1‖42

)
.

Assumption 1 imposes strong convexity of the objective
function F(x) and Lipschitz continuity of its gradient. Assump-
tion 2 asserts the regularity and the bound of the noisy gradient.
These assumptions are widely used in SGD literature (Ruppert
1988; Polyak and Juditsky 1992; Moulines and Bach 2011;
Rakhlin, Shamir, and Sridharan 2012). With these assumptions,
we have the asymptotic normality for averaged SGD iterates by
Polyak and Juditsky (1992) and Ruppert (1988). We also review
the error bound for SGD iterates in Lemma 3.1.

Lemma 3.1. UnderAssumptions 1 and 2, for some constantC >

0 and n0 ∈ N, we have for any n > n0, the sequence of error
δn = xn − x∗ satisfies

E(‖δn‖2) ≤ Cn−α/2(1 + ‖δ0‖2),
E(‖δn‖22) ≤ Cn−α(1 + ‖δ0‖22),
E(‖δn‖42) ≤ Cn−2α(1 + ‖δ0‖42),

when the step size is chosen to be ηn = ηn−α with 1/2 < α < 1.

3.3. Convergence Properties for the Online Estimator

Theorem 3.1. Under Assumptions 1 and 2, let am = ⌊
Cmβ

⌋
,

where C > 0 is a constant, β > (1−α)−1. Set step size at the ith
iteration as ηi = ηi−α with 1/2 < α < 1. Then for �̂n defined
in Equation (5)

E
∥∥�̂n − �

∥∥
2 � n−1/(2β) + n(α−1)/2+1/(2β). (21)

Theorem 3.1 shows that as n → ∞, the estimator �̂n
converges to the limiting covariancematrix of the averaged SGD
iterates in terms of operator norm loss. The convergence rate is
associated with the parameters α and β . We state the following
Corollary 3.1 to suggest the best choice of β .

Corollary 3.1. Under conditions in Theorem 3.1 and let β =
2/(1 − α), we have

E
∥∥�̂n − �

∥∥
2 � n−(1−α)/4. (22)

Remark 3.1. This convergence rate is the same as that of the
nonrecursive batch-means estimator in Chen et al. (2020).
According to Chen et al. (2020, corol. 4.5), the upper bound
of the batch-means estimator is also O(n−(1−α)/4) with the
prior knowledge of the sample size n. So we make it possible
that online estimation of covariance matrix achieves the same
efficiency as offline methods. The plug-in approach in Chen
et al. (2020) achieved the rate of O(n−α/2) when the ith step
size is chosen to be i−α . As a tradeoff, the online estimator
enjoys efficient computation without the necessity of accessing
Hessian information but pays the price in terms of the slower
convergence rate.

Next, wewill show inTheorem3.2 that the alternative version
�̂n,NOL shares the same upper bound.

Theorem 3.2. Under conditions in Theorem 3.1, the alternative
version �̂n,NOL defined in Equation (10) satisfies

E
∥∥�̂n,NOL − �

∥∥
2 � n−1/(2β) + n(α−1)/2+1/(2β). (23)

3.4. Asymptotically Accurate Confidence
Intervals/Regions

The next corollary shows that the confidence interval/region
based on the online estimator achieves asymptotically correct
coverage level 1 − q for a prespecified q with 0 < q < 1.

Corollary 3.2. Under conditions in Theorem 3.1, as n goes to
infinity

P(x∗
i ∈ CIq,n,i) → 1 − q, (24)

where

CIq,n,i =
[
x̄n,i − z1−q/2

√
σ̂ii/n, x̄n,i + z1−q/2

√
σ̂ii/n

]
and σ̂ii is the ith diagonal of the online batch-means estimator
�̂n (or �̂n,NOL). We can also construct joint confidence regions
as follows:

P
(
x∗ ∈ Cq,n

) → 1 − q, (25)

where

Cq,n =
{
x ∈ R

d : n (x̄n − x)T �̂−1
n (x̄n − x) ≤ χ2

d,1−2/q

}
.

Corollary 3.2 constructs asymptotic valid confidence inter-
vals for each coordinate of x∗ and joint confidence regions for
x∗ ∈ R

d. More generally, for any unit length vectorw ∈ R
d (i.e.,

‖w‖2 = 1), we have by Theorem 3.1 and Slutsky’s theorem,
√
nwT(x̄n − x∗)√

wT�̂nw
⇒ N(0, 1). (26)
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Figure 1. Linear regression: Log loss (operator norm) of the estimated covariance matrix against the log of total number of steps. Here F denotes the full overlapping
version (5), NOL denotes the nonoverlapping version (10), and C denotes the constant in am =

⌊
Cm2/(1−α)

⌋
.

Therefore, the (1− q)100% confidence interval for wTx∗ can be
constructed as[

wTx̄n − z1−q/2

√
wT�̂nw/n,wTx̄n + z1−q/2

√
wT�̂nw/n

]
.

(27)

3.4.1. Stopping Rule
In principle, SGD constantly improves the quality of x̄n, and our
method constantly improves the covariance estimate �̂n as n
grows. A natural questions is when can we stop updating x̄n and
�̂n? There are several heuristics of stopping rules widely used
in machine learning. For example, an online algorithm can stop
when the neighboring estimates become sufficiently close. Or a
more widely used approach in stopping SGD is to evaluate the
error on a separate validation dataset and stops the SGD when
the error becomes stable.

We can better answer this question and assess the SGD error
based on the inference results, inspired by stopping rules for
Markov chain Monte Carlo (MCMC) that rely on a Markov
chain central limit theorem. Especially, one can apply the fixed-
width sequential stopping rule in Jones et al. (2006), where the
updating is terminated the first time when the width of the
confidence interval for each component is small enough. More
formally, for a desired tolerance of εi for the ith coordinate, the
rule terminates updating the first time after the nth iteration
when the following condition is satisfied for all the coordinates
i = 1, . . . , d,

t∗
σ̂n,i√
n

+ n−1 ≤ εi,

where σ̂n,i is the ith diagonal of the online estimator �̂n (or
�̂n,NOL), and t∗ is an appropriate t-distribution quantile. For
the joint inference, one may consider simplifying the relative
standard deviation fixed-volume sequential stopping rule in
Vats, Flegal, and Jones (2019), where updating is terminated
the first time when the volume of the confidence region
Cn (25) is small enough. For a desired tolerance of ε, the
rule terminates updating the first time after the nth iteration
when

Vol(Cn)
1/d + n−1 ≤ ε,

Figure 2. Relative efficiency (ratio of MSE) of the full overlapping version (5) and
nonoverlapping version (10). We set d = 5 in linear regression. Here C denotes the
constant in am =

⌊
Cm2/(1−α)

⌋
.

where Vol(Cn) = 2
(
πχ2∗/n

)d/2 |�̂n|1/2/(d�(d/2)), | · | denotes
determinant, χ2∗ is an appropriate chi-squared distribution
quantile, and �̂n is our online estimator. We also include a
simple simulation study of the stopping rule in the last section
of the supplementary material.

Remark 3.2. The original stopping rule inVats, Flegal, and Jones
(2019) avoided the practical issue of choosing ε with the idea of
effective sample size (ESS). They consider an F-invariant Harris
recurrent Markov chain and define a multivariate approach
to ESS. The stopping rule in Vats, Flegal, and Jones (2019)
terminated the MCMC simulation the first time the estimated
ESS is larger than a prespecified lower bound. However, we
need to redefine ESS in the nonstationary case, which requires
more careful considerations.We will leave it as a future research
direction.

4. Simulation Studies

In this section, we evaluate the empirical performance of
the proposed online approach. We focus on two classes of
examples: linear regression and logistic regression. Let {ξi ≡
(ai, bi)}i=1,2,... denotes an iid sequence of pairs, and x∗ denote
the true parameter in the models. In both linear regression
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and logistic regression cases, ai ∈ R
d is generated from

N(0, Id). In the former case, bi = aTi x∗ + εi, where εi
is independently generated from N(0, 1). In the latter case,
bi|ai ∼ Bernoulli((1 + exp(−aTi x∗))−1). The loss function
f (·) is defined as the negative log-likelihood function, so

we have

f (x, ai, bi) =
⎧⎨
⎩

1
2 (a

T
i x − bi)2 linear regression

(1 − bi)aTi x+ log(1 + exp(−aTi x)) logistic regression.

Figure 3. Linear regression with d = 5: (a): Empirical coverage rate against the number of steps. Red dashed line denotes the nominal coverage rate of 0.95. (b): Length of
confidence intervals. (c): Density plot for the standardized error. Red curve denotes the standard normal density.

Table 1. Empirical coverage rates: the average coverage rate for the nominal coverage probability 95%.

Linear model

(d = 5) n = 50,000 n = 80,000 n = 100,000 n= 125,000
online-BM 0.894 (0.02177) 0.901 (0.02114) 0.917 (0.01951) 0.935 (0.01746)
BM 0.894 (0.02177) 0.904 (0.02085) 0.910 (0.02022) 0.928 (0.01831)
(d = 20) n = 50,000 n = 100,000 n = 150,000 n = 200,000
online-BM 0.904 (0.02078) 0.907 (0.02050) 0.910 (0.02022) 0.914 (0.01986)
BM 0.878 (0.02312) 0.901 (0.02121) 0.908 (0.02043) 0.910 (0.02029)

Logistic model
(d = 5) n = 100,000 n = 200,000 n = 300,000 n = 400,000
online-BM 0.828 (0.01011) 0.844 (0.00933) 0.875 (0.00770) 0.889 (0.00700)
BM 0.822 (0.01032) 0.847 (0.00919) 0.875 (0.00771) 0.885 (0.00721)
(d = 20) n = 100,000 n = 300,000 n = 500,000 n = 700,000
online-BM 0.791 (0.01167) 0.829 (0.01004) 0.845 (0.00926) 0.864 (0.00834)
BM 0.787 (0.01188) 0.827 (0.01011) 0.839 (0.00955) 0.859 (0.00856)

NOTE: Standard errors are reported in the brackets.
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Figure 4. Comparison of online-BM and Plug-in estimators. First/Middle row: Empirical coverage rate against the number of steps in linear/logistic model. Red dashed line
denotes the nominal coverage rate of 0.95. Third row: total computation time for updating covariance estimate and confidence intervals in SGD.

The true coefficient x∗ is a d-dimensional vector linearly spaced
between 0 and 1. In the SGD procedure, the step size ηj is set
to be 0.5j−α and the parameter α is chosen to be 0.505. The
sequence {ak}k≥1 in our online approach is chosen in the formof
am = ⌊

Cm2/(1−α)
⌋
, for some constant C. All the measurements

in the following discussions are averaged over 200 independent
runs.

4.1. Empirical Performance of the ProposedOnline
Approach

4.1.1. Convergence of the Recursive Estimator
We focus on linear regression here since the true limiting covari-
ance matrix is easy to compute. In the linear regression model
described above

A = E
[∇2f (x∗)

] = E
(
aaT

) = Id,
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S = E
([∇f (x∗, ξ)][∇f (x∗, ξ)]T) = E(ε2)E

(
aaT

) = Id.

Then the limiting covariance matrix

� = A−1SA−1 = Id.

We check the convergence of our proposed online estimators,
both the full overlapping and the nonoverlapping versions, by
computing the operator norm loss of the covariance matrix
estimate, that is, ‖�̂n − �‖2. Figure 1 shows that the log loss
of the online estimators are approximately linear with the log
number of steps and the slopes are about−1/8 for the large total
number of steps. It suggests that both the full overlapping and
the nonoverlapping versions converge to the limiting covariance
matrix with the same convergence rate, about O(n−1/8). We
also compute the relative efficiency (MSE of the full overlapping
version (5) divided byMSE of the nonoverlapping version (10));
see Figure 2. Their performances are comparable. Also, the
performance is relatively insensitive to the choice of C in am =⌊
Cm2/(1−α)

⌋
. Therefore, we will implement the nonoverlapping

version and setC = 1 in the subsequent simulationswithout any
specification.

4.1.2. Asymptotic normality and CI coverage
With the covariance matrix estimates, we construct 95% confi-
dence intervals for the averaged coefficientμ = 1Tx∗ according
to Equation (27), that is,[

1Tx̄n − z1−q/2

√
1T�̂n1/n, 1Tx̄n + z1−q/2

√
1T�̂n1/n

]
.

We also compute the oracle 95% confidence intervals based on
the true limiting covariance matrix. Figure 3 shows that for
both overlapping and nonoverlapping versions, the empirical
coverage rate converges to 95%, and the standardized error√
n1T (̂x−x∗)/

√
1T�̂n1 is approximately standard normal. Also,

the estimated CI length converges to the oracle length.

4.2. ComparisonWith OtherMethods

In this section, we compare the performance of the proposed
online estimator, which we refer to as online-BM in the
subsequent numerical experiments, with other estimators for
marginal inference of each individual regression coefficient.
We consider both linear and logistic regression examples. The
nominal coverage probability is set to 95%.

Wefirst compare the empirical coverage rates of the proposed
estimator with the plug-in estimator in Chen et al. (2020). As we
mentioned in the introduction, the plug-in estimator requires
the computation of theHessianmatrix (of the loss function) and
its inverse. Figure 4 shows that our online estimator (online-
BM) has a comparable performance as the plug-in estimator
when the number of iterations is large enough. Although the
online-BM has a slower convergence rate, it has an advantage
in computational efficiency since it only uses the iterates from
SGD. The online-BM is more desirable for practitioners when
the computation is limited or only stochastic gradient informa-
tion is available.

Next, we compare the finite sample coverage rate of the
proposed online-BM estimator and the batch-means covariance

matrix estimator from Chen et al. (2020), which we refer to as
BM. Table 1 shows that the finite sample coverage rates of the
two estimators are close to each other in all cases, and the finite
sample performance of our method slightly outperforms Chen
et al. (2020) when n is large. In fact, this is not a totally fair
comparison for us since we implement themethod inChen et al.
(2020) based on the prior knowledge of the exact sample size.

5. Conclusion and FutureWork

In this article, we propose a fully online approach to estimate
the asymptotic covariance matrix in SGD. The recursive algo-
rithm to compute the covariance matrix estimate is computa-
tionally efficient. We demonstrate that the online batch-means
covariance matrix estimator (both full overlapping version and
nonoverlapping version) is consistent with the upper bound
of convergence rate O(n−(1−α)/4) in the general case. Based
on the estimated covariance matrix, we construct confidence
intervals/regions with asymptotically correct coverage proba-
bilities for the model parameters. As for future directions, it
would be of interest to develop a lower bound result on the
online estimation of limiting covariance matrices. With such a
result, we will be able to tell whether the proposed estimator is
rate-optimal. Also, as mentioned in Section 2.2.1, it would be
interesting to see if one can obtain statistics similar to the PBEL
ratio based on the nonoverlapping version online covariance
estimator and establish a limiting distribution that can be used
to calibrate confidence regions for SGD solutions without using
the asymptotic normality results.
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