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ABSTRACT

The stochastic gradient descent (SGD) algorithm is widely used for parameter estimation, especially for
huge datasets and online learning. While this recursive algorithm is popular for computation and memory
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efficiency, quantifying variability and randomness of the solutions has been rarely studied. This article aims

at conducting statistical inference of SGD-based estimates in an online setting. In particular, we propose
a fully online estimator for the covariance matrix of averaged SGD (ASGD) iterates only using the iterates
from SGD. We formally establish our online estimator’s consistency and show that the convergence rate is
comparable to offline counterparts. Based on the classic asymptotic normality results of ASGD, we construct
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asymptotically valid confidence intervals for model parameters. Upon receiving new observations, we can
quickly update the covariance matrix estimate and the confidence intervals. This approach fits in an online
setting and takes full advantage of SGD: efficiency in computation and memory.

1. Introduction

Model parameter estimation through optimization of an objec-
tive function is a fundamental problem in statistics and machine
learning. Here, we consider the classic setting where the true
model parameter x* € R¥ can be characterized as the minimizer
of a convex objective function F : R — R, that is,

x* = arg minF(x). (1)
xeR4

The objective function F(x) is defined as F(x) = Eg~nif(x, &),
where f(x, £) is a noisy measurement of F(x) and & is a random
variable following the distribution IT.

In the recent years, huge datasets and streaming data arise
frequently. Classic deterministic optimization methods that
require storing all the data are not appealing due to expensive
memory cost and computational inefficiency. To resolve these
issues, one can apply the Robbins-Monro algorithm (Robbins
and Monro 1951; Kiefer and Wolfowitz 1952), also known as
stochastic gradient descent (SGD), especially for online learning
(Bottou 1998; Mairal et al. 2010; Hoffman, Bach, and Blei 2010).
Setting xp as the initial point, the ith iteration of the SGD
algorithm takes the following form:

xi = xi—1 — NiVf(xi—1, &), i > 1, (2)

where {&;}i>1 is a sequence of iid sample from the distribution
I, Vf is the gradient of f (x, £ ) with respect to the first argument
x, and n); is the step size at the ith step. This recursive adaptive
algorithm performs one update at a time and does not need
to remember outcomes in previous iterations. Therefore, it is

computationally efficient, memory friendly, and able to process
data on the fly.

Despite these advantages, SGD performs frequent updates
with high variability, and the outcomes can fluctuate heavily.
The crucial problem is to understand the variability and ran-
domness of the solutions. In this article, we address the uncer-
tainty quantification problem in the online setting where data
can arrive sequentially. In particular, we propose a fully online
approach to estimate the covariance matrix of SGD-based esti-
mates only using the iterates from SGD. The efficient algorithm
we propose is recursive. It performs an immediate update of
the covariance estimate as new data arrives, which follows the
spirit of SGD. We can then conduct statistical inference with the
estimated covariance matrix and construct confidence intervals
for model parameters in a fully online fashion.

Before discussing our method, we provide a brief review
of the literature on SGD. The asymptotic convergence of SGD
iterates has been studied extensively in the early years (Blum
1954; Dvoretzky 1956; Robbins and Siegmund 1971; Ljung 1977;
Sacks 1958; Fabian 1968; Lai 2003). To further investigate the
asymptotic distribution of SGD, Polyak and Juditsky (1992) and
Ruppert (1988) introduced the averaged SGD (ASGD), a simple
modification where iterates are averaged, and established the
asymptotic normality of the obtained estimate. Moreover, it is
known that ASGD estimates achieve the optimal central limit
theorem rate Op(1/+/n) by running SGD for  iterations under
certain regularity conditions. For linear stochastic approxima-
tion, Mou et al. (2020) modified the Polyak-Ruppert covariance
with an additional correction term concerning the constant step
size. Differently from the SGD algorithm, Toulis and Airoldi
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(2017) introduced implicit SGD procedures and analyzed the
asymptotic distribution of the averaged implicit SGD iterates.
Convergence in nonasymptotic fashion has also been studied
recently for SGD and its variants with different objective func-
tions (Rakhlin, Shamir, and Sridharan 2012; Moulines and Bach
2011; Hazan and Kale 2014; Bach and Moulines 2013; Duchi,
Hazan, and Singer 2011; Kingma and Ba 2015; Shamir and
Zhang 2013). Our method and analysis rely on the averaged
SGD and its asymptotic normality in later discussions.

In addition to convergence and error bounds of SGD-based
estimators, statistical inference problems based on SGD have
recently started to gain more attention. Instead of focusing on
point estimators, one is interested in assessing the uncertainty of
the estimates through their confidence intervals/regions. Chen
et al. (2020) introduced the inference problem and proposed
a batch-means method to construct asymptotically valid
confidence intervals based on asymptotic normality of ASGD.
Fang, Xu, and Yang (2018) and Fang (2019) proposed bootstrap
procedures for constructing confidence intervals through the
perturbed-SGD. Meanwhile, variants of the SGD algorithm and
corresponding inference in nonasymptotic fashion are studied
in Su and Zhu (2018) and Liang and Su (2019). For online ;
penalized problems, Chao and Cheng (2019) proposed a class
of generalized regularized dual averaging and made uncertainty
quantification possible for online sparse algorithms.

1.1. Problem Formulation

Our work in this article is applicable to vanilla SGD, which is
most widely used in practice. We use the ASGD iterate

n
Xy = n! E X;
i=1

as the estimate for the model parameter at the nth step. We set
step size n; = i~ %G > 1) withn > 0and ¢ € (0.5,1) as
suggested by Polyak and Juditsky (1992). Define

E (IVF S OUVFESOTT) . (3)

From Polyak and Juditsky (1992), under suitable conditions, x,
has the asymptotic normality:

A = V2F(x*), S =

Vnx, —x*) = N(, 2), (4)

where ¥ = A7!SA™!, which is known as the “sandwich” form
of the covariance matrix. To leverage the asymptotic normality
result for inference, it is critical to estimate the limiting covari-
ance matrix X. Intu1t1vely, one can estimate S with a s1mple
sample average S = n! Zl V(i1 EDTVS (-1, 17,
and similarly estimate A with A, = n~! Z, 1 sz(x, LE).
Then the limiting covariance matrix E can be estimated by the
consistent plug-in estimator A 1S, A~ (see Chen et al. 2020).
However, computation of the Hess1an matr1x of theloss function
is not always available, for example, certain computations are
not available in many existing codebases that only adopt SGD
for optimization and in cases such as quantile regression, the
Hessian matrix does not even exist. Also, the plug-in estimator
may be computationally costly when d is large since it involves
matrix inversion with O(d”) time complexity in general.

Our goal is to obtain an online estimate of the covariance
matrix of 4/nx,, only through the SGD iterates {x1,x2, . . ., Xy}
Our approach is attractive in situations where the computation
for A= and S are difficult, which is quite typical in practice.
Also, the approach is efficient in both computation and memory
due to its recursive property, that is, the estimate at the nth step

%, can be updated from Zn 1 within O(d?) computation. With
the estimate, we can perform uncertainty quantification and
statistical inference with desirable computation and memory
efficiency. The approach is useful for online learning, where the
data is constantly arriving over time, such as streaming data.

For the time-homogeneous Markov chain, {x;}icz is a sta-
tionary process. Under certain short-range dependence condi-
tions, we have

Vn (xy — Exi) = N(0,07),

where
o0
= lim var(v/nk,) = Z cov(xo, X;)
n—oo

i=—00

is the long-run variance, and it plays a fundamental role in
the statistical inference of stationary processes. To estimate
the long-run variance, one can apply the batch-means method
(Glynn and Whitt 1991; Kitamura et al. 1997; Politis, Romano,
and Wolf 1999; Lahiri 2003; Flegal and Jones 2010). Given

X1,...,Xn, let 1 < [, < n be the batch size. Based on batch-
means ZH'Z" xk/ln — %, for 1 <i < n—1I,+1, one can estimate
2 bY
i p et (o 2
0, = ——— Z Zxk/ln_in
n—1I,+1 — —

As an alternative, one can use the nonoverlapping batch-means

’+l Y xk/ln — Xy fori = 1,1 + 1,1 + 2l,. .., to construct a
31m11ar estimate. Properties of overlapping and nonoverlapping
batch-means estimators are discussed in Politis, Romano, and
Wolf (1999) and Lahiri (2003). In our problem, estimation of
¥ in (4) becomes more complicated since SGD iterates form a
nonstationary Markov Chain.

To apply to SGD, Chen et al. (2020) modified the classic
nonoverlapping batch-means by allowing increasing batch sizes
and showed that the modified batch-means estimator is con-
sistent. However, their approach is not in line along with the
spirit of SGD, the fully online fashion. Their construction of
covariance estimator X, requires the information on the total
number of iterations n a priori. There is no simple algebraic
relation between E and En+1 In other words, when a new
data point x,,y] arrives later, their algorithm needs to recompute
their estimate from the beginning and cannot perform efficient
sequential updating. So the approach is computationally expen-
sive for online learning, where the dynamic training data are
arriving over time, and the goal is to make sequential predic-
tions; see Remark 2.1 for a detailed discussion of Chen et al.
(2020).

To address the above problems, we develop in this article a
tully online approach for asymptotic covariance matrix estima-
tion, which we refer to as online batch-means method. The con-
struction does not require prior knowledge of the total sample



size. Immediate updates from ’E\n to §n+1 can be performed
recursively as new data are coming in, which fits our online
setting. To achieve this goal, we design a novel construction of
batches with time-varying size, which substantially extends the
one in Chen et al. (2020). Similar to the recursive nature of SGD,
our algorithm is also recursive and it updates the covariance
matrix estimate once at a time only through the stochastic gradi-
ent within O(d?) computation. Note that since we are learning a
d x d covariance matrix, it requires at least O(d?) computation to
update the covariance matrix estimates. In the important special
case of marginal inference of each coordinate of the parameter
vector, our online batch-means estimator only needs to compute
and store diagonals of the covariance matrix estimate, which
only require O(d) computation and O(d) memory. The idea
of online estimation is motivated by Wu (2009), who studied
the estimation of long-run variances of stationary and ergodic
processes. As mentioned above, the SGD iterates in Equation (2)
form a nonhomogeneous (nonstationary) Markov Chain since
the step size ny decays as k increases, for example 7 = nk™* for
a € (1/2,1) as suggested by Polyak and Juditsky (1992). Hence,
the asymptotic behaviors of SGD and stationary processes are
fundamentally different. The construction, which is associated
with batch sizes, is novel and different for SGD iterates and
stationary sequences. This nonstationarity also brings substan-
tial difficulties in technical analysis. The convergence of our
estimator is far from being trivial. We formally establish the
consistency result and obtain the convergence rate of our online
estimator in Section 3.

We summarize our contributions as follows. We propose
a fully online approach to estimate the asymptotic covariance
matrix of the ASGD solution and conduct statistical inference.
The fully online fashion allows efficient sequentially updat-
ing. It is important for online learning, where data come in
a stream and real-time update of predictions is needed before
seeing future data. It has potential applications such as online
advertisement placement and online web ranking (Richardson,
Dominowska, and Ragno 2007; Zhang et al. 2016). Our method
is efficient in both computation and memory. In particular, the
computational and memory complexity at the update step is
O(d?), and the total computational cost only scales linearly in
n. In terms of theoretical merits, the proposed estimator is the
first fully online fashion estimator with rigorous convergence
property for asymptotic covariance of ASGD. We show that the
convergence rate of our online estimator is comparable to the
offline counterparts.

1.2. Organization and Notation

The remainder of this article is organized as follows. In Sec-
tion 2, we propose the online estimator (two versions) for the
asymptotic covariance matrix of ASGD iterates and correspond-
ing algorithms. In Section 3, we show that the online esti-
mator is consistent and obtains the desired convergence rate.
Also, confidence intervals/regions based on our online estima-
tor are constructed for statistical inference. Section 4 provides
a simulation study to demonstrate the convergence rate of the
online estimator and the asymptotically valid coverage of the
confidence intervals. Further discussion and future work are
presented in Section 5.
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,a4) € R4,

1/2
lla]l, is defined as the vector I, norm |a|, = (Z?:l a?) .

Throughout the article, for a vector a = (ay, ...

Rdxd

For a matrix A = (a;) € , we use ||A|F to denote its

Frobenius norm ||Al|r = (Z?:l Zﬁzl aé)l/z, and ||A]|; to
denote its operator norm ||All; = maxx|,<1 |[Ax|2. When A
is positive semidefinite, A4 denotes the largest eigenvalue of A
and tr(A) denotes its trace. We use I; to denote a d x d identity
matrix. For positive sequences {a,},cy and {bn},ens an S b
means there exists some constant C such that a, < Cb,, for
all large n. And a, =< b, if both a, < b, and b, < a,
hold. For t € R, [t] is the largest integer less than or equal
to t. For notational simplicity, we use notation C for constants
which can take different values in different equations. We define
conditional expectation E, (-) = E(:|F;,), where F, is 0 -algebra
generated by {£;};<,. Moreover, we use = to denote convergence
in distribution.

2. Online Approach

We first introduce a time varying batch scheme used in our
online approach. Consider infinite sequentially arriving SGD
iterates {x;}i=1,2,.. in (2). Let {am}men be a strictly increasing
integer-valued sequence with a; = 1. For the ith iterate x;, we
consider a data block B; including iterates from past iterations ;
to i, that is,
B = {xt;,...,xi},

where ¢; is the index of iterate we trace back to at the ith step.
The value of t; is determined by the sequence {a,;}men through

ti = am wheni € [am,am+1). For example, t; = LJ;J if

a,, = m2. In this case, we have

By = {x1}, By = {x1, %2}, B3 = {x1, %2, x3},

By = {X4},BS = {X4,XS}, Bs = {X4,x5,X6}, B; = {X4,XS,X6,X7},
Bg = {x4, X5, X6, X7, X8},

By = {x9}, B1o = {x9, x10}, B11 = {X9, X10, X11}, . . ..

We can see that the batch sizes are time-varying. The blocks {B; :
am < i< am+1} can also be viewed as the so-called forward
scans in block subsampling (McElroy et al. 2007; Nordman,
Bunzel, and Lahiri 2013). That is, given nonoverlapping blocks
{Xay» - - s Xa,1—1), the forward scans are overlapping blocks of
sequentially increasing length starting from x,,,.

2.1. Online Covariance Matrix Estimator Based on Batch
Means

Based on blocks {B;}ieN, the covariance matrix estimator is
defined as the sum of squared block sums (centered) divided by
the sum of block lengths, that is, at the nth step

. A T
o X (They - 1) (Thoy ok — ) -
X, = , 5
! Yl
where [; = |B;| = i — t; + 1 denotes the length of B;.
The novel idea of constructing data block B;, which only
includes past iterates, is the key to make the algorithm fully
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online. Next, we will show that the estimate ’E\,, can be com-
puted recursively. Let W; denote the sum of the block B; =
{x4,...,x;}, that s,

W; =

i

Xk. (6)

When ti4) = t; = ay, for some m, Bj;; = B; U {x;4+1} and
Wit1 = Wi+ xiv1, iy =L+ L
When ti11 = a1 for some m, we start a new block Biy; =
{xi+1} and
Wit1 = Xit1, iy = 1.

We can see that both the batch sum W; and the batch length
li can be updated recursively. With the notation of W;, the
estimator in (5) can be expressed as

Z?:l Wi WiT + Z?:l lf:'cn:'c,f
_ _ T
S - (Z?:l liWi) xZ — Xn (Z?:l liWi)n @)
! Z?:l l; '

To further simplify the form, we introduce

n n
Va=Y WiW[, P,=> LW,
i=1 i=1

n n
vV, = Zl,-, and ¢q, = lez
i=1 i=1

They can be computed recursively since both W; and [; can

o~

be updated recursively. Now, X, in Equation (5) can be finally
rewritten as

(8)

s _Vut qu¥nXl — Pyxl — x,PL
n — .

(9)

Vn

All five components in Equation (9): Vy, gn, P, Vn, X, can be
updated recursively. Thus, S, can be updated through results
in the (n — 1)th step and the new iterate x, within O(d?)
computation.

To summarize, we propose Algorithm 1. As shown in Algo-
rithm 1, the five components of S.t1 can be easily updated
from their values in the nth step. There is no need to store all
the outcomes in the previous steps. The memory complexity
is O(d?), independent of the sample size #. In the update step,
the computational complexity is also O(d?). The total compu-
tational cost scales linearly in n. The algorithm is much more
efficient compared to non-recursive methods and naturally fits
online learning scenarios.

2.1.1. An Alternative Version

The estimate f,, in Equation (5) includes squared block sums
from all n blocks {B;}i=15,...n. Block B; and B; are overlapped
when a,, < i <j < amy; for some m. So ’E\n in Equation (5) is
a full overlapping version of the online batch-means estimator.
We also introduce an alternative nonoverlapping version with
a slightly simpler form which has a comparable performance.
As data arriving sequentially, we follow the same batch scheme
above to construct {B;}i=1 >, ., while only include a few squared

block sums. At the nth step, define set S, = {n} | J{a; —1:i >
1, a; < n}. Consider a set of nonoverlapping blocks {B;}cs,, that
is,

> Xn}}.

s Xag—1b -+ s A Xapy 1> 3 Xap—11 1Xap» - - -
B, —1 B,.

{{xa;5- -
Baz—l

The alternative nonoverlapping estimate at the nth step includes
squared block sums of {B}cs,. It is then defined as

T

(10)

i i
’E\n,NOL = l X — lixy X — lixy
n

ieS, \k=t; k=t;

The nonoverlapping version estimator is also recursive and can
perform a real-time update. The algorithm is almost the same
as the overlapping one with same computational and memory
complexity. One can follow the derivation of Algorithm 1 to get
Algorithm 2.

In the stationary process case, Lahiri (2003, 1999) showed
that the mean squared error of the classic (non-recursive)
nonoverlapping batch-means estimate is 33% larger than that
of its overlapping version, while the convergence rates are the
same. The comparison between the full overlapping version
and the nonoverlapping version of our online estimators is
more complicated in the nonstationary case. In Section 3.3, we
provide upper bounds for estimation errors for both overlapping
and nonoverlapping estimators. The two upper bounds are
of the same order. The nonoverlapping version is easier to
analyze theoretically, given its simpler structure. In the mean
estimation model, we can obtain the precise order of the mean
squared error for the nonoverlapping one; see Section 3.1. We
also compare the empirical performance of the two versions

Algorithm 1: Update ASGD iterate and covariance matrix
estimate recursively

Input: function f(-), parameter («, 1), step size n; = ni~*

for i > 1, predefined sequence {a;,}men-
Initialize:
mo =ly = 0,vo = Py = g0 = Vo = Wo = X0 = 0, x0;
Forn=0,1,2,3,...
Receive: new data &,
Do the following update:
L Xp41 = Xn — N1 Vf (X0 Ent1)s
2. Xng1 = (X + Xpy1)/(n+ 1);
3.if n+ 1 = am,+1, then:
Mptr1 = My + 15 ln+1 =1 Wn+1 = Xn+15
else:
Mpy1 = Mys b1 =1 + 15
Wi = Wy + Xpt15
4 Gupr = qn+ 25
5. Vnt1 = Vn + lut1s
6. Var1 = Vot Wurt Wi 5
7.Pup1 = Py 4 Ly i Wit
8.
S=Vuy1+ Qn+13_cn+1-’_f,{+1 - Pn+19_CZ+1 - )_CnJrle;_H;
Output: ASGD estimator X+, estimated covariance
Ynt1 = S/Vut1




Algorithm 2: Update ASGD estimator and covariance
matrix estimate (nonoverlapping version) recursively

Input: function f(-), parameter («, 1), step size n; = ni*
for i > 1, predefined sequence {d;,}meN.
Initialize:
my=1ly=0,v9p =Py =qo =
Forn=0,1,2,3,...
Receive: new data &,
Do the following update:
L Xp1 = Xn — Nup1 VS (n, Ent1)s
2. Xpy1 = (nXy + Xp11)/(n+ 1);
4.if n+1 = am,+1, then:
M1 = My + L lpp1 = 15 Wiyt = Xq13
dn+1 = 4qn + ln, Vit1 =V + WnWT
=P, +I,W,
else:
Mpp1 = My lpp1 =1 + 15
Wit1 = Wy + Xnt15
qn+1 = qns Vn+1 =V Ppy1 =Py

Wo—x()—OxO,

Pn+l

2 = =T
5.8 = Wy WL, + B XXl —
ln—H Wn+1x2+1 - ln—Hxn—i—l Wn+l;
6.

S = Vi1 + qup1Xnp1 Xy — Pn+156,f+1 — Xp1 Pl + S5
Output: ASGD estimator x,,+], estimated covariance
SaiiNoL = S/(n+ 1)

in Section 4.1. However, it is hard to tell which one is more
efficient based on the simulation results. We leave the rigorous
comparison as a future research problem by extending Lahiri
(2003) to nonstationary processes.

Remark 2.1 (Comparison with the non-recursive batch-means
covariance matrix estimator). The nonoverlapping version (10)
appears similar to the batch-means estimator (Chen et al. 2020).
However, the batch schemes of the two methods are fundamen-
tally different. Chen et al. (2020) split # iterates of SGD into M +
1 nonoverlapping blocks, where M and batch sizes by, ,, (m =
0,...,M) are chosen based on # for desired convergence. With
em,n» denoting the ending index of the kth block, the covariance
matrix estimator at nth iteration in Chen et al. (2020) is defined
as

M €m,n
~ 1 . _
XnBM = M Z byn Z Xk/ b — Xn
m=1 k=em—1,n+1
T
em,n
Z X/ bmn — Xn > (11)
k=em—1,n+1
where eyr, = n. The optimal batch size setting as suggested
in Chen et al. (2020) is ey, = ((m+1)/(M+ 1)1y
with the number of batches M = n1=%/2_ Since em,n Mmust

depend on n to ensure the desired convergence rate at the
nth iteration, there is no simple algebraic relation between
E,, sm and Zn+1BM So the batch-means estimator (Chen
et al. 2020) is only suitable for offline tasks requiring final
prediction/inference given the prespecified total sample size n.
In contrast, our fully online estimator can sequentially improve

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 5

over each iteration. Also, n does not need to be specified
beforehand.

Remark 2.2 (Choice of batch-sizes when n is unknown). Chen
et al. (2020) also proposed an approach based on a target
error tolerance to apply the batch-means estimator when # is
unknown. In particular, given the prespecified error €, Chen
et al. (2020) propose to set the ending index of the kth batch by

= ((k + 1)Ce 72) 1/(170[), where Cisa constant. The approach
indeed enables an online updating, thus achieve the goal of
recursive processing. However, choosing the constant C can
be difficult or arbitrary in online settings. Moreover, there is a
fundamental difference. The approach in Chen et al. (2020) only
ensures that the expected spectrum norm loss of the covariance
matrix is smaller than € (up to a constant) for large n, rather than
goes to 0. In other words, the covariance matrix estimator is
not necessarily consistent. While our online method constantly
improves the covariance matrix estimate as n — 00, and the
estimation error goes to 0.

2.1.2. Choice of Batch Sizes

The remaining question is to specify the sequence {a}men.
This predefined sequence does not depend on #. This ensures
that we can construct batches even if the total number of data is
unknown (which is a typical situation), and the incoming data
will not affect the recursive estimation process. In Section 3.3,
we show that a,, is required to take a polynomial form so that
the estimator is consistent. Next, we shall give some intuitive
explanation and one example of choice.

The formula in Equation (5) bears a certain similarity to the
sample covariance matrix S, = n1 Z?Zl(xi — Xp) (x; — Ecy,)T.
On the other hand, in contrast to the standard sample covari-
ance matrix where {x;};>1 are independent, our SGD iterates in
Equation (5) are highly correlated. In other words, we cannot
ignore the covariance between data as in the construction of
the sample covariance matrix. According to Equation (2), the
correlation between x; and x; diminishes as the distance |j —
i| becomes larger, while the correlation between x; and x4
becomes stronger as i goes to infinity. The idea of online estima-
tion is to choose sequence (d,)men and form nonoverlapping
blocks {B;,,—1}m>1 as mentioned above such that the correlation
between x; and x; is sufficiently small when they are in different
nonoverlapping blocks. So when considering the effect of x;, we
trace back to the starting point of the nonoverlapping block x;
belongs to, that is, construct data block B; = {x,, . . ., x;}. Recall
that the ith iterate x; through SGD takes the form

niVf(xi-1,&).

Let §; = x;j—x™ be the error sequence, where x* is the minimizer
in Equation (1). Then

Xi = Xi—1 —

8; = 8i—1 — niVF(xi—1) + ni€i, (12)

where €; = VF(xi—1)—Vf(xi_1,&). Note that VF(x*) = 0since
x* is the minimizer of F(x). By Taylor’s expansion of VF(x;_1)
around x*, we have VF(x;_;) & VAS8;_;, where A = V2F(x*).
Thus, by modifying Equation (12) with VF(x;_;) approximated
by Ad;_1, for large i

8; ~ (I — niA)8i—1 + nje;. (13)



6 W. ZHU, X. CHEN, AND W. B. WU

Then for the ith iterate x; and the jth iterate x; (assume j < i),
the strength of correlation between them is roughly

My Il — mAll, < (1= naai™®) 7, (19)
when n; = nk™*. To make the correlation small, one can choose
i —j~ Ki®®*tD/2 where K is a constant. Then the correlation is
less than (1 — n)»Ai_“)Kiai(l_a)/z, which goes to zero as i goes to
infinity. Combining the correlation between x;, x;j and the form
of i—j, areasonable setting is that the sequence {a,, } men satisfies

Am — Ap—1 = Ka§g+l)/2. (15)
Let a,, increase polynomially, that is, a, = CmP for some

constant C. We obtain 8 = 2/(1 — «) by solving Equation (15).
Thus, a natural choice of a,, is

am = LCmZ/(l_“)J ) (16)

This is also the best choice in the general setting, as discussed in
Section 3.3. However, the best choice of 8 may change consid-
ering specific objective functions.

2.2. Statistical Inference

Now the limiting covariance matrix ¥ can be approximated
through the online estimation proposed above. Let 0 < q < 1.
Based on the asymptotic normality of ASGD in Equation (4),
the (1 —)100% confidence interval for x, the ith coordinate of
x*, can be constructed as

[J_Cn,i — 21-q/2v/0ii/ 1y Xni+ Z17q/2\/3\ii/n] ,

where X, ; is the ith coordinate of X, z1—4/2 is the (1 — g/2)th
percentile of the standard Gaussian distribution and & is the
ith diagonal of the covariance matrix estimate. The confidence
interval is constructed in a fully online fashion since both X,;
and o;; can be computed recursively. Joint confidence regions
and general form of confidence intervals are discussed in
Section 3.4.

(17)

2.2.1. Relation to Empirical Likelihood

As pointed out by a reviewer, the construction of the nonover-
lapping version estimator shares a similar spirit with the block-
ing scheme and covariance estimator by Kim, Lahiri, and Nord-
man (2013), who developed a progressive block empirical like-
lihood (PBEL) method. They considered a stationary, weakly
dependent sequence (Xj,...,X,) with mean p such that the
CLT /n(X, — ) = N(0,0?) holds. The variance estima-
tor EiNOL in Kim, Lahiri, and Nordman (2013) matched our
scheme in Section 2.1.1 with a,, = (m — 1)m/2 + 1 (or
the ith block has length i) and is shown to be a consistent
variance estimator. The chi-squared limit of the log-likelihood
ratio based on PBEL is established following the consistency of
Ei,NOL' It would be interesting to see if one can obtain similar
results as the PBEL ratio and establish a limiting distribution
that can be used to calibrate confidence regions in the SGD case
here.

3. Theoretical Results
3.1. Preamble: Mean Estimation Model

Before investigating the convergence property of the online
batch-means estimators in the general setting, we shall look at
the simple mean estimation example. Taking advantage of the
simpler structure of the nonoverlapping version, we can obtain
the exact order of convergence. Consider the mean estimation
model

y=x"+e

where x* € R is the mean we want to estimate, e is the random
error with mean 0. Let {y;};en be a sequence of iid sample from
the model. Consider the squared loss function at x, F(x) = (y —
x)?/2. The ith SGD iterate takes the form

xi =Xxi—1 +ni(yi —xi—1),i > 1, (18)
where we choose the step size n; = ni™%, o € (1/2,1). Then the
error §; = x; — x* takes the form

8i = (1 —ni)di—1 + nie;.

In this case, one can have an explicit form of var(y/nx,) and
¥ ,,NoL. Additionally, we can have an explicit form for the order
of magnitude of the mean squared error of ¥,noL. Let the

variance var(,/nx,) = o,2. We have the following proposition.

Proposition 3.1. For m > 2,leta,, = LecmP |, where B > land
¢ > 0 are constants. Given the SGD iterates defined in (18), we
have

E(lin,NQL — 0'3)2 =n" VP + n2et2/B=2 (19)

Choose 8 = 3/(2(1—«)). In the mean estimation model, the
above proposition asserts that the convergence rate of the mean
squared error of our recursive nonoverlapping variance estimate
is n2(=®)/3 For & close to 1/2, the latter rate approaches n~1/3,
This rate is faster than that of the batch-means estimator in
Chen et al. (2020), which approaches n~14, So, besides the
advantage of the recursive property, our estimator may improve
the convergence rate.

In the general setting, the analysis is much more complicated
due to the nonlinearity. Upper bounds for the convergence rates
of online estimators for both overlapping and nonoverlapping
versions are given in Section 3.3.

3.2. Assumptions and Existing Convergence Results

In the work of Polyak and Juditsky (1992), assumptions on the
objective function F(x) and the gradient difference are proposed
to prove the asymptotic normality of ASGD estimate. Those
assumptions are necessary for our problem since we adopt
the ASGD as the point estimator and require the asymptotic
normality for statistical inference. Those assumptions, as well
as some error bounds, are also proposed in other literature. We
impose similar assumptions and review some existing results in
this section.



Assumption 1. Assume that the objective function F(x) is con-
tinuously differentiable and strongly convex with parameter
@ > 0. That is, for any x; and x3,

n
F(x2) 2 F(x) + (VF(n),x2 = 1)+l = xall3

Furthermore, assume that V2F(x*) exists and VF(x) is Lipschitz
continuous in the sense that there exist L > 0 such that,

[VE(x1) = VE(x2)ll; < Lllx1 — x2]l2.

Assumption 2. For the nth iteration, define error §, = x,, — x*
and gradient difference €, = VF(xy—1) — Vf(x4—1,&x). Recall
that E,(-) = E(:|&€4, €41, . . .). The following hold:

1. The function f(x,&) is continuously differentiable with
respect to x for any & and ||Vf(x,&)|2 is uniformly
integrable for any x. So E,_; [Vf(xn_l,?;‘n)] = VF(x,_1),
which implies that E,_; (¢,) = 0.

2. The conditional covariance of €, has an expansion around S
which satisfies

|En-1 (ener) =S|, < C(I8n-1ll2 + 18a-113),  (20)

where C > 0 is some constant. Here S is defined in Equation
(3).

3. There exists a constant C > 0 such that the fourth condi-
tional moment of €, is bounded by

Eno1 (lleall3) < C(L+ 184-1113) -

Assumption 1 imposes strong convexity of the objective
function F(x) and Lipschitz continuity of its gradient. Assump-
tion 2 asserts the regularity and the bound of the noisy gradient.
These assumptions are widely used in SGD literature (Ruppert
1988; Polyak and Juditsky 1992; Moulines and Bach 2011;
Rakhlin, Shamir, and Sridharan 2012). With these assumptions,
we have the asymptotic normality for averaged SGD iterates by
Polyak and Juditsky (1992) and Ruppert (1988). We also review
the error bound for SGD iterates in Lemma 3.1.

Lemma 3.1. Under Assumptions 1 and 2, for some constant C >
0 and n9 € N, we have for any n > nyg, the sequence of error
8, = x, — x* satisfies

E([18all2) < Cn™"2(1 4 [|80]l2)s
E(18,413) < Cn™(1 + 15013),
E(|8all3) < Cn™2* (1 4 [180]l3)s

when the step size is chosentobe n, = nn=* with1/2 < o < 1.

3.3. Convergence Properties for the Online Estimator

Theorem 3.1. Under Assumptions 1 and 2, let a,, = LCm’gJ,
where C > 0isa constant, 8 > (1 —a) ™. Set step size at the ith
iteration as n; = ni~* with 1/2 < @ < 1. Then for ¥, defined
in Equation (5)

B[Sy 5[, <n V0D 4 ueb2HaD ()
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Theorem 3.1 shows that as n — o0, the estimator in
converges to the limiting covariance matrix of the averaged SGD
iterates in terms of operator norm loss. The convergence rate is
associated with the parameters o and 8. We state the following
Corollary 3.1 to suggest the best choice of .

Corollary 3.1. Under conditions in Theorem 3.1 and let 8 =
2/(1 — a), we have

E|Z, - 2|, $n 704 (22)
Remark 3.1. This convergence rate is the same as that of the
nonrecursive batch-means estimator in Chen et al. (2020).
According to Chen et al. (2020, corol. 4.5), the upper bound
of the batch-means estimator is also O(n~1~9/4) with the
prior knowledge of the sample size n. So we make it possible
that online estimation of covariance matrix achieves the same
efficiency as offline methods. The plug-in approach in Chen
et al. (2020) achieved the rate of O(n~*/%) when the ith step
size is chosen to be i™®. As a tradeoff, the online estimator
enjoys efficient computation without the necessity of accessing
Hessian information but pays the price in terms of the slower
convergence rate.

Next, we will show in Theorem 3.2 that the alternative version

~

¥, NoL shares the same upper bound.

Theorem 3.2. Under conditions in Theorem 3.1, the alternative
version X, Nor defined in Equation (10) satisfies

E “ En,NOL - X ”2 < p V@ 4 p@=D/2+1/2P) (23)

3.4. Asymptotically Accurate Confidence
Intervals/Regions

The next corollary shows that the confidence interval/region
based on the online estimator achieves asymptotically correct
coverage level 1 — g for a prespecified g with 0 < g < 1.

Corollary 3.2. Under conditions in Theorem 3.1, as n goes to
infinity

P(x} € Clgni) = 1 — g, (24)

where
Clgni = I}_Cn,i — Z1—q/2v/ Gii/ Ny Xpi + Z1—q/2V az/n:l

and Gj; is the ith diagonal of the online batch-means estimator
%, (or £, NoL). We can also construct joint confidence regions
as follows:

P(x* € Cqn) > 1—9g, (25)
where

Cyn = {x R :n Gy — 0 S F—x) < X§,1_2/q} .

Corollary 3.2 constructs asymptotic valid confidence inter-
vals for each coordinate of x* and joint confidence regions for
x* € R% More generally, for any unit length vector w € R (i.e.,
[wll2 = 1), we have by Theorem 3.1 and Slutsky’s theorem,

Vw! (x, — x*)
VwIE,w

= N(0,1). (26)
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F,C=1 &= F,C=5 — NOL,C=2

group

— F,C=2 — NOL,C=1 NOL,C=5

5.0 75 10.0 12.5
log number of steps

(a) d=1

F,C=1 — F,C=5 — NOL,C=2
group

— F,C=2 — NOL,C=1 NOL,C=5

9
log number of steps

(b) d=5

Figure 1. Linear regression: Log loss (operator norm) of the estimated covariance matrix against the log of total number of steps. Here F denotes the full overlapping

version (5), NOL denotes the nonoverlapping version (10), and C denotes the constantinam = Lsz/“ _"‘)J.

Therefore, the (1 — q)100% confidence interval for wTlx* can be
constructed as

|:WT)_CH — Z1_g/2¢/ wanw/n, wlx, + Z1_g/2/ wanw/n] .

27)

3.4.1. Stopping Rule
In principle, SGD constantly improves the quality of x,, and our
method constantly improves the covariance estimate S, asn
rows. A natural questions is when can we stop updating x,, and
%,? There are several heuristics of stopping rules widely used
in machine learning. For example, an online algorithm can stop
when the neighboring estimates become sufficiently close. Or a
more widely used approach in stopping SGD is to evaluate the
error on a separate validation dataset and stops the SGD when
the error becomes stable.

We can better answer this question and assess the SGD error
based on the inference results, inspired by stopping rules for
Markov chain Monte Carlo (MCMC) that rely on a Markov
chain central limit theorem. Especially, one can apply the fixed-
width sequential stopping rule in Jones et al. (2006), where the
updating is terminated the first time when the width of the
confidence interval for each component is small enough. More
formally, for a desired tolerance of ¢; for the ith coordinate, the
rule terminates updating the first time after the nth iteration
when the following condition is satisfied for all the coordinates
i=1,...,d

On,i _
ti—=+nl <g,

/i

where G,,; is the ith diagonal of the online estimator fn (or
SanoL), and £, is an appropriate t-distribution quantile. For
the joint inference, one may consider simplifying the relative
standard deviation fixed-volume sequential stopping rule in
Vats, Flegal, and Jones (2019), where updating is terminated
the first time when the volume of the confidence region
C, (25) is small enough. For a desired tolerance of €, the
rule terminates updating the first time after the nth iteration
when

Vol(C)V + 17! <,

1.50- ‘
Z125- ‘ /\
c . type
o A \aa [\ . /\/\
Ko} At A oSN
© 1.00- | INVRLINY R o
o \ v — C=2
= WL A
E i L) — C=5
L o75- ’
050- !

100000 150000 200000

number of steps

0 50000

Figure 2. Relative efficiency (ratio of MSE) of the full overlapping version (5) and
nonoverlapping version (10). We set d = 5 in linear regression. Here C denotes the

constantinam = {sz/“ *D‘)J.

where Vol(C,) = 2 (7'()(,%/11)61/2 |§n|1/2/(d1"(d/2)), | - | denotes

determinant, x2? is an appropriate chi-squared distribution
quantile, and S, is our online estimator. We also include a
simple simulation study of the stopping rule in the last section
of the supplementary material.

Remark 3.2. The original stopping rule in Vats, Flegal, and Jones
(2019) avoided the practical issue of choosing € with the idea of
effective sample size (ESS). They consider an F-invariant Harris
recurrent Markov chain and define a multivariate approach
to ESS. The stopping rule in Vats, Flegal, and Jones (2019)
terminated the MCMC simulation the first time the estimated
ESS is larger than a prespecified lower bound. However, we
need to redefine ESS in the nonstationary case, which requires
more careful considerations. We will leave it as a future research
direction.

4. Simulation Studies

In this section, we evaluate the empirical performance of
the proposed online approach. We focus on two classes of
examples: linear regression and logistic regression. Let {§; =
(ai, bj)}i=1,,... denotes an iid sequence of pairs, and x* denote
the true parameter in the models. In both linear regression
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and logistic regression cases, a; € RY is generated from we have
N(0,I;). In the former case, b; = aiTx* + €;, where ¢; LaTx — b;)>
is independently generated from N(0,1). In the latter case, fxaiby) = (21 ! balx
bila; ~ Bernoulli((1 + exp(—aiTx*))_l). The loss function e s
f(-) is defined as the negative log-likelihood function, so

linear regression

+log(1 + exp(—aiTx)) logistic regression.

— Full NOL — Oracle

coverage
o
u
=}
1

o

N

()]
1

0.00-

0 50000 100000 150000 200000 250000
number of steps

(a) Empirical cover rate

— Full — NOL — Oracle

[]rur| |noL[ ] oracke

0.100-

0.075-

Cl length
o
g

0.025-
0.000-
0 50000 100000 150000 200000 250000 X -
number of steps standardized error
(b) CI length (¢) Normality

Figure 3. Linear regression with d = 5: (a): Empirical coverage rate against the number of steps. Red dashed line denotes the nominal coverage rate of 0.95. (b): Length of
confidence intervals. (c): Density plot for the standardized error. Red curve denotes the standard normal density.

Table 1. Empirical coverage rates: the average coverage rate for the nominal coverage probability 95%.

Linear model
(d=5) n=50,000 n=280,000 n=100,000 n= 125,000
online-BM 0.894 (0.02177) 0.901 (0.02114) 0.917(0.01951) 0.935 (0.01746)
BM 0.894 (0.02177) 0.904 (0.02085) 0.910 (0.02022) 0.928 (0.01831)
(d=20) n=50,000 n= 100,000 n= 150,000 n=200,000
online-BM 0.904 (0.02078) 0.907 (0.02050) 0.910 (0.02022) 0.914 (0.01986)
BM 0.878 (0.02312) 0.901 (0.02121) 0.908 (0.02043) 0.910 (0.02029)
Logistic model
(d=5) n=100,000 n=200,000 n=300,000 n=400,000
online-BM 0.828 (0.01011) 0.844 (0.00933) 0.875 (0.00770) 0.889 (0.00700)
BM 0.822(0.01032) 0.847 (0.00919) 0.875 (0.00771) 0.885 (0.00721)
(d=20) n=100,000 n=300,000 n=500,000 n=700,000
online-BM 0.791(0.01167) 0.829(0.01004) 0.845 (0.00926) 0.864 (0.00834)
BM 0.787(0.01188) 0.827 (0.01011) 0.839 (0.00955) 0.859 (0.00856)

NOTE: Standard errors are reported in the brackets.
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Figure 4. Comparison of online-BM and Plug-in estimators. First/Middle row: Empirical coverage rate against the number of steps in linear/logistic model. Red dashed line
denotes the nominal coverage rate of 0.95. Third row: total computation time for updating covariance estimate and confidence intervals in SGD.

The true coeflicient x* is a d-dimensional vector linearly spaced
between 0 and 1. In the SGD procedure, the step size 7; is set
to be 0.5j7% and the parameter « is chosen to be 0.505. The
sequence {ay }x>1 in our online approach is chosen in the form of
Ay = LCmZ/ (l_a)J , for some constant C. All the measurements
in the following discussions are averaged over 200 independent
runs.

4.1. Empirical Performance of the Proposed Online
Approach

4.1.1. Convergence of the Recursive Estimator

We focus on linear regression here since the true limiting covari-

ance matrix is easy to compute. In the linear regression model

described above

A=E [sz(x*)] =E (aaT) =1



$ = E ([Vf (&, OIVf (", 6)17) = E(e)E (aa”) = IL,.
Then the limiting covariance matrix
T=A"1sA"' =1,

We check the convergence of our proposed online estimators,
both the full overlapping and the nonoverlapping versions, by
computing the operator norm loss of the covariance matrix
estimate, that is, ||§3,, — X||». Figure 1 shows that the log loss
of the online estimators are approximately linear with the log
number of steps and the slopes are about —1/8 for the large total
number of steps. It suggests that both the full overlapping and
the nonoverlapping versions converge to the limiting covariance
matrix with the same convergence rate, about O(n~1/8). We
also compute the relative efficiency (MSE of the full overlapping
version (5) divided by MSE of the nonoverlapping version (10));
see Figure 2. Their performances are comparable. Also, the
performance is relatively insensitive to the choice of C in a,, =
LCmZ/ (-e )J . Therefore, we will implement the nonoverlapping
version and set C = 1 in the subsequent simulations without any
specification.

4.1.2. Asymptotic normality and Cl coverage

With the covariance matrix estimates, we construct 95% confi-
dence intervals for the averaged coefficient i = 17x* according
to Equation (27), that is,

[1%“ — 21 g 1T 1 %y 4 21— g2/ 1T§n1/n] :

We also compute the oracle 95% confidence intervals based on
the true limiting covariance matrix. Figure 3 shows that for
both overlapping and nonoverlapping versions, the empirical
coverage rate converges to 95%, and the standardized error

V1T G—x*)//1TZ, 1 is approximately standard normal. Also,
the estimated CI length converges to the oracle length.

4.2. Comparison With Other Methods

In this section, we compare the performance of the proposed
online estimator, which we refer to as online-BM in the
subsequent numerical experiments, with other estimators for
marginal inference of each individual regression coefficient.
We consider both linear and logistic regression examples. The
nominal coverage probability is set to 95%.

We first compare the empirical coverage rates of the proposed
estimator with the plug-in estimator in Chen et al. (2020). As we
mentioned in the introduction, the plug-in estimator requires
the computation of the Hessian matrix (of the loss function) and
its inverse. Figure 4 shows that our online estimator (online-
BM) has a comparable performance as the plug-in estimator
when the number of iterations is large enough. Although the
online-BM has a slower convergence rate, it has an advantage
in computational efficiency since it only uses the iterates from
SGD. The online-BM is more desirable for practitioners when
the computation is limited or only stochastic gradient informa-
tion is available.

Next, we compare the finite sample coverage rate of the
proposed online-BM estimator and the batch-means covariance
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matrix estimator from Chen et al. (2020), which we refer to as
BM. Table 1 shows that the finite sample coverage rates of the
two estimators are close to each other in all cases, and the finite
sample performance of our method slightly outperforms Chen
et al. (2020) when n is large. In fact, this is not a totally fair
comparison for us since we implement the method in Chen et al.
(2020) based on the prior knowledge of the exact sample size.

5. Conclusion and Future Work

In this article, we propose a fully online approach to estimate
the asymptotic covariance matrix in SGD. The recursive algo-
rithm to compute the covariance matrix estimate is computa-
tionally efficient. We demonstrate that the online batch-means
covariance matrix estimator (both full overlapping version and
nonoverlapping version) is consistent with the upper bound
of convergence rate O(n~(1=9/4) in the general case. Based
on the estimated covariance matrix, we construct confidence
intervals/regions with asymptotically correct coverage proba-
bilities for the model parameters. As for future directions, it
would be of interest to develop a lower bound result on the
online estimation of limiting covariance matrices. With such a
result, we will be able to tell whether the proposed estimator is
rate-optimal. Also, as mentioned in Section 2.2.1, it would be
interesting to see if one can obtain statistics similar to the PBEL
ratio based on the nonoverlapping version online covariance
estimator and establish a limiting distribution that can be used
to calibrate confidence regions for SGD solutions without using
the asymptotic normality results.
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