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ABSTRACT
The growing size of modern datasets brings many challenges to the existing statistical estimation ap-
proaches, which calls for new distributed methodologies. This article studies distributed estimation for a
fundamental statisticalmachine learningproblem, principal component analysis (PCA). Despite themassive
literature on top eigenvector estimation, much less is presented for the top-L-dim (L > 1) eigenspace esti-
mation, especially in a distributedmanner. We propose a novel multi-round algorithm for constructing top-
L-dim eigenspace for distributed data. Our algorithm takes advantage of shift-and-invert preconditioning
and convex optimization. Our estimator is communication-efficient and achieves a fast convergence rate.
In contrast to the existing divide-and-conquer algorithm, our approach has no restriction on the number of
machines. Theoretically, the traditional Davis–Kahan theorem requires the explicit eigengap assumption to
estimate the top-L-dim eigenspace. To abandon this eigengap assumption, we consider a new route in our
analysis: instead of exactly identifying the top-L-dim eigenspace, we show that our estimator is able to cover
the targeted top-L-dim population eigenspace. Our distributed algorithm can be applied to awide range of
statistical problems based on PCA, such as principal component regression and single index model. Finally,
we provide simulation studies to demonstrate the performance of the proposed distributed estimator.

ARTICLE HISTORY
Received April 2020
Accepted February 2021

KEYWORDS
Convergence analysis;
Distributed estimation;
Enlarged eigenspace;
Principal component
analysis; Shift-and-invert
preconditioning

1. Introduction

The development of technology has led to the explosive growth
in the size ofmodern datasets. The challenge arises, whenmem-
ory constraints and computation restrictions make the tradi-
tional statistical estimation and inferencemethods no longer ap-
plicable. For example, in a sensor network, the data are collected
on each tensor in a distributed manner. The communication
cost would be rather high if all the data are transferred and com-
puted on a single (central)machine, and itmay be even impossi-
ble for the central machine to store and process computation on
such large-scale datasets. Distributed statistical approaches have
drawn a lot of attentions these days and methods are developed
for various statistics problems, such as sparse regression (see,
e.g., Lee et al. 2017), likelihood-based inference (see, e.g., Battey
et al. 2018; Jordan, Lee, and Yang 2019), kernel ridge regression
(Zhang, Duchi, and Wainwright 2015), semiparametric partial
linear models (Zhao, Cheng, and Liu 2016), quantile regression
(see, e.g., Chen, Liu, and Zhang 2019; Volgushev, Chao, and
Cheng 2019; Chen et al. 2020), linear support vector machine
(Wang et al. 2019), Newton-type estimator (Chen, Liu, and
Zhang 2021), and M-estimators with cubic rate (Shi, Lu, and
Song 2018; Banerjee, Durot, and Sen 2019). All these works are
seeking for distributed statisticalmethods that are able to handle
massive computation tasks efficiently for large-scale data and
achieve the same convergence rate as those classical methods as
well.

CONTACT Xi Chen xc13@stern.nyu.edu Stern School of Business, New York University, New York, NY 10012.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

In a typical distributed environment, each machine has ac-
cess to a different subset of samples of the whole dataset. The
communication and computation follow from a hierarchical
master-slave-type architecture, where a central machine acts as
a fusion node. Computation tasks for local machines and the
central machine are different. After local machines finish their
computation, the local results will be transferred to the master
machine, where they will be merged together and the fusioned
result will be transferred back to all local machines for the next
step.

In this article, we study the problem of principal component
analysis (PCA) in a distributed environment. PCA (Pearson
1901; Hotelling 1933) is one of the most important and funda-
mental tools in statistical machine learning. For random vectors
a1, . . . , an in R

d with mean zero and covariance matrix �, its
empirical covariance matrix is �̂ = 1

n
∑n

i=1 aia�
i . The L-PCA

(L ≤ d) finds a L-dimension subspace projection that preserves
the most variation in the dataset, which is equivalent to the
following optimization problem:

max
U∈Rd×L:UTU=IL

∣∣∣∣∣∣�̂U
∣∣∣∣∣∣
F , (1)

where |||·|||F denotes the matrix Frobenius norm and IL is the
L×L identitymatrix. In otherwords,U ∈ R

d×L is the top-L-dim
eigenspace of �̂. PCA has been widely used in many aspects of
statistical machine learning, for example, principal component
regression (Jeffers 1967; Jolliffe 1982), single index model (Li
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1992), representation learning (Bengio, Courville, and Vincent
2013).

Under distributed regime, Fan et al. (2019) proposed a
novel one-shot type of algorithm which is often called divide-
and-conquer (DC) method. In Fan et al. (2019), DC method
first computes local covariance matrices �̂i on each machine
k = 1, . . . ,K. Eigenspaces ̂Uk, k = 1, . . . ,K are then
computed locally using the traditional PCA algorithm and
transmitted to the central machine. Central machine combines
local eigenspaces ̂Uk into an aggregated covariance estimator,
�̃ = 1

K
∑K

k=1 ̂Uk̂U
�
k . The final estimator is obtained as the top-

L-dim eigenspace of �̃. DC method is easy to implement and
requires only O(dL) communications for each local machine,
where d denotes the data dimension, n the total sample size,
and m the sample size on each local machine. Let us denote
the condition number of the population covariance matrix
� by ρ, that is, ρ = λ1/(λL − λL+1), and the effective
rank of � by r = Tr(�)/λ1. For asymmetric innovation
distributions, Fan et al. (2019) showed that when the number of
machines is not very large (no greater than O(m/(ρ2r))), DC
method enjoys an optimal statistical convergence rate of order
O(ρ

√
Lr/n). However, when the number of machines becomes

larger, DC method only achieves a slow convergence rate of
O(ρ

√
Lr/n + ρ2√Lr/m). This feature may not be desirable in

distributed settings. For example, in a sensor network with a
vast number of sensors, the number of machines may exceed
the constraint set for the optimal rate. The precise definition
of asymmetric innovation above is given in Section 4.2 of Fan
et al. (2019). Roughly speaking, a random variable a ∈ R

d is
distributed under asymmetric innovation if flipping the sign of
one component of a changes its distribution.

One question naturally arises from the analysis of DC
method, can we possibly relax the restriction on the number
of machines? Motivated by this question, our article presents
a multi-round distributed algorithm for top-L-dim eigenspace
estimation.

The contribution of our method is 2-fold. First, as compared
to DC method in Fan et al. (2019), we completely remove the
assumption on the number of machines. Our method lever-
ages shift-and-invert preconditioning (a.k.a., Rayleigh quotient
iteration) from numerical analysis (Van Loan and Golub 2012)
together with quadratic programming and achieves a fast con-
vergence rate. Moreover, most previous convergence analysis of
eigenspace estimation relies on the assumption of an explicit
eigengap between the Lth and the (L + 1)th population eigen-
values λL and λL+1, that is, λL − λL+1 > 0, or other specific
eigen-structures of �. The second contribution of our article is
that we propose an enlarged eigenspace estimator that does not
require any eigengap assumption.

In particular, let UL denote the top-L-dim eigenspace of
the population covariance matrix �, and ̂UL the top-L-dim
eigenspace of the empirical covariance �̂. Estimation consis-
tency of ̂UL is guaranteed by the (variant of) Davis–Kahan
theorem (Davis and Kahan 1970; Yu, Wang, and Samworth
2014): there exists an orthogonal matrix Q ∈ R

L×L, such that

∣∣∣∣∣∣∣∣∣UL − ̂ULQ
∣∣∣∣∣∣∣∣∣
2

≤
√
2

∣∣∣∣∣∣�̂ − �
∣∣∣∣∣∣
2

min(|̂λL−1 − λL|, |̂λL+1 − λL|)
, (2)

where |||·|||2 denotes the matrix spectrum norm. Since the em-
pirical eigenvalue λ̂l is expected to be concentrated around its
population counterpart λl for all l ∈ [d], the consistency of ̂UL
relies on an eigengap condition requiring min(λL−1 − λL, λL −
λL+1) to be strictly away from zero. Unfortunately, without
such an eigenvalue gap condition, the top-L-dim subspace UL
is not statistically identifiable and estimation error from ̂UL
can be arbitrarily large (see a counter-example provided in Yu,
Wang, and Samworth (2014)). Fortunately, in many statistical
applications of PCA such as the principal component regression
(see Example 1), it suffices to retrieve the variation captured by
the top eigenspace rather than exactly recover the top eigenspace
to achieve a small in-sample prediction risk. To address the chal-
lenge of no explicit eigengap, we choose a different perspective.
In particular, we consider an an enlarged estimator V>(1−δ)̂λL
(see Equation (3)), where δ is a prespecified constant to quantify
the amount of enlargement.

u1, . . . , uL︸ ︷︷ ︸
UL

, uL+1, . . . , uS, uS+1, . . . , ud, (3)

v1, . . . , vL, vL+1, . . . , vS︸ ︷︷ ︸
V>(1−δ)̂λL

, vS+1, . . . , vd︸ ︷︷ ︸
V≤(1−δ)̂λL

.

Roughly speaking, we prove that our distributed estimator
V>(1−δ)̂λL

satisfies inequality (2) with the following property:
the angle between the target UL and the complement of our
estimatorV≤(1−δ)̂λL

is sufficiently small (please see Theorem 3.3
for more details). Such a property shows that the enlarged
estimator V>(1−δ)λL almost cover the UL even without an
eigengap condition.

Our method is motivated by the shift-and-invert precon-
ditioning. The idea of solving PCA via shift-and-invert pre-
conditioning has long history in numerical analysis (Van Loan
and Golub 2012). It is an iterative method that sequentially
solves linear system to obtain increasingly accurate eigenvector
estimates. Its connection with convex optimization has been
studied in the past decade. In a single-machine setting, Garber
et al. (2016) and Allen-Zhu and Li (2016) formulated each
round of shift-and-invert preconditioning as a quadratic opti-
mization problem and it can be solved with first-order deter-
ministic (accelerated) gradient method like Nesterov acceler-
ated method. Garber and Hazan (2015), Shamir (2016), and
Xu (2018) also related the same convex optimization problem
with variance-reduction stochastic technique (SVRG, see, e.g.„
Johnson and Zhang 2013). Furthermore, in distributed settings,
Garber, Shamir, and Srebro (2017) performed a multi-round
algorithm but they only consider the estimation task of the
first eigenvector. This article proposes a general distributed
algorithm that estimates the top-L-dim eigenspace without a
restriction on the eigengap.

The proposed algorithm can facilitatemany fundamental ap-
plications based on PCA in distributed environment. In partic-
ular, we illustrate two important applications, namely principal
component regression (see Appendix B.1 in the supplementary
materials) and single index model (see Appendix B.2 in the
supplementary materials).



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

1.1. Example 1: Principal Component Regression

Introduced by Jeffers (1967) and Jolliffe (1982), principal
component regression (PCR) is a regression analysis technique
based on PCA. Typically, PCR assumes a linear model y =
Aβ∗ + ε with the further assumption that coefficient β∗ lies in
the low-rank eigenspace of data covariance matrix. Therefore,
PCA can be performed to obtain the principal components ̂UL
of the observed covariance matrix �̂ = 1

nA
�A and the data

matrix A is then projected on ̂UL. The estimator ̂β of β∗ is
then obtained by regress y on this projected data matrix ÂUL.
Many previous work has analyze the statistical property of PCR,
see Frank and Friedman (1993) and Bair et al. (2006). Under
a distributed environment, our distributed PCA algorithm can
replace the traditional PCA algorithm in the above procedure
and lead to a distributed algorithm for PCR. As we will show in
Appendix B.1 in the supplementary materials, this distributed
estimator achieves a similar error as in the single-machine
setting.

1.2. Example 2: Single IndexModel

Single indexmodel (Li 1992) considers a semiparametric regres-
sion model y = f (〈β∗, a〉) + ε. Under some mild condition on
the link function f (·), we would like to make estimation on the
coefficient β∗ using observed data {ai, yi}ni=1 without knowing
f (·). Some previousmethods include semiparametricmaximum
likelihood estimator (Horowitz 2009) and gradient-based es-
timator (Hristache, Juditsky, and Spokoiny 2001). Moreover,
many works propose to use Stein’s identity (Stein 1981; Janza-
min, Sedghi, and Anandkumar 2014) to estimate β∗ (see, e.g.,
Li 1992; Yang, Balasubramanian, and Liu 2017 and references
therein). Specifically, under Gaussian innovation where a is
standard multivariate normal random vector, the estimator ̂β

can be calculated from the top eigenvector of 1
n

∑n
i=1 yi ·(aia�

i −
Id). This method can be naturally extended to a distributed
manner with a distributed eigen-decomposition of 1

n
∑n

i=1 yi ·
(aia�

i − Id).

1.3. Notations

We first introduce the notations related to our work. We write
vectors in R

d in boldface lower-case letters (e.g., a), matrices in
boldface upper-case letters (e.g., A), and scalars are written in
lightface letters (e.g., t). Let ‖ · ‖ denote vector norm (e.g., ‖ · ‖2
is standard Euclidean norm for vectors). Matrix norm is written
as |||·|||. For a matrix A ∈ R

n×d, |||A|||2 and |||A|||F represent the
spectral norm and Frobenius norm, respectively. Furthermore,
0 represents zero vector with corresponding dimension and
identity matrix with dimension d × d is shortened as Id. We
use e1, . . . , ed to denote the standard unit vectors in R

d, that is,
ei = [0, . . . , 0, 1, 0, . . . , 0] where only the ith element of ei is 1.

WeuseOp to describe a high probability boundwith constant
term omitted. We also use Õp to further omit the logarithm
factors.

We adopt the standard definition of sub-Gaussian random
vectors (see, e.g., Vershynin 2012; Rigollet andHütter 2015) that
a random vector a ∈ R

d is said to be a d-dimensional sub-

Gaussian with variance proxy σ if E[a] = 0 and for any unit
vector u,

E[exp(sa�u)] ≤ exp
(

σ 2s2

2

)
, ∀s ∈ R.

1.4. Article Organization

The remainder of this article is organized as follows. In Sec-
tion 2, we introduce the problem setups of the distributed PCA
and give our algorithms. Section 3 develops the convergence
analysis of our estimator. Finally, extensive numerical experi-
ments are provided in Section 4. The technical proofs and some
additional experimental results are provided in the supplemen-
tary materials. We also conduct analysis on two application
scenarios, that is, principal component regression and single
index model in Appendix B in the supplementary materials
where we provide convergence analysis for both single-machine
and distributed settings.

2. Problem Setups

In the following section, we collect the setups for our distributed
PCA and present the algorithms.

Assume that there are n iid zero mean vectors ai sampling
from some distribution D in R

d. Let A = [a1, . . . , an]� ∈
R
n×d be the data matrix. Let � be the population covari-

ance matrix � = Ea∼D[aa�] with the eigenvalues λ1(�) ≥
λ2(�) ≥ · · · λd(�) ≥ 0 and the associated eigenvectors are
U = [u1, . . . , ud] ∈ R

d×d.
In the distributed PCA, for a given number L, 1 ≤ L ≤

d, we are interested in estimating the eigenspace spanned by
UL := {u1, . . . , uL} in a distributed environment. We assume
n samples are split uniformly at random on K machines, where
each machine contains m samples, that is, n = mK. We note
that since our algorithm aggregates gradient information across
machines, it can handle the unbalanced data case without any
modification. We choose to present the balanced data case only
for the ease of presentation (see Remark 3.2 for more details).
The data matrix on each machine k is denoted by Ak ∈ R

m×d

for k ∈ [K].
Let us first discuss a special case (illustrated in Algorithm 1),

where we estimate the top eigenvector, that is, L = 1. The basic
idea of our Algorithm 1 is as follows.

Let w(0) be the initial estimator of the top eigenvector and
λ1 a crude estimator of an upper bound of the top eigenvalue.
Here we propose to compute w(0) and λ1 only using the data
from the first machine, and thus there does not incur any com-
munication cost. For example, λ1 can be computed with λ1 =
λ1(A�

1 A1/m) + 3η/2, where λ1(A�
1 A1/m) is the top eigenvalue

for the empirical covariance matrix on the first machine and η

is a special constant defined later in Equation (11). Thew(0) can
be simply computed via eigenvalue decomposition of A�

1 A1/m.
We note the that Algorithm 1 is almost tuning free. The only
parameter in constructing λ1 is η. According to our theory, we
could set η = c0

√
d/m for some sufficiently large c0 and the

result is not sensitive to c0. There are other tuning-free ways
to obtain a crude top-eigenvalue estimator λ1 only using the
sample on the first machine (e.g., the adaptive Algorithm 1 in
Garber et al. (2016) without tuning parameters).
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Algorithm 1 Distributed top eigenvector (Distri-Eigen)
Input: Data matrix Ak on each machine k = 1, . . . ,K. The
initial top eigenvalue estimator λ1 and eigenvector estimator
w(0). The number of outer iterations T and the number of inner
iterations T′.
1: Distribute λ1 to each local machine and each local machine

computesHk = λ1I − A�
k Ak/m.

2: for t = 0, 1, . . . , (T − 1) do
3: Distribute w(t) to each local machine and each local ma-

chine sets w(t+1)
0 = w(t)

4: for j = 0, 1, . . . , (T′ − 1) do
5: for each local machine k = 1, . . . ,K do
6: Compute the local gradient information gk =

Hkw(t+1)
j − w(t)

7: Transmit the local gradient information gk to the
central machine.

8: end for
9: Calculate the global gradient information g =

1
K

∑K
k=1 gk.

10: Perform the approximate Newton’s step: w(t+1)
j+1 =

w(t+1)
j − H−1

1 g.
11: end for
12: The central machine updates w(t+1) = w(t+1)

T′
‖w(t+1)

T′ ‖2
.

13: end for
14: Output: w(T).

Given w(0) and λ1, we perform the shift-and-invert precondi-
tioning iteration in a distributed manner. In particular, for each
iteration t = 0, 1, . . . ,

w̃(t+1) =
(

λ1I − 1
n
A�A

)−1
w(t), w(t+1) = w̃(t+1)

‖w̃(t+1)‖2
. (4)

Therefore, the nonconvex eigenvector estimation problem (1)
is reduced to solving a sequence of linear system. The key
challenge is how to implement (λ1I−A�A/n)−1 in a distributed
setup.

To address this challenge, we formulate (4) into a quadratic
optimization problem. In particular, the update w̃(t+1) = (λ1I−
A�A/n)−1w(t) is equivalent to the following problem,

w̃(t+1) = argmin
w

[
Q(w) := 1

2
w�Hw − w�w(t)

]
, (5)

H � λ1I − 1
n
A�A.

To solve this quadratic programming, the standard Newton’s
approach computes a sequence for j = 0, . . . , with a starting
point w(t+1)

0 = w(t):

w(t+1)
j+1 = w(t+1)

j −
(
∇2Q(w(t+1)

j )
)−1 [

∇Q(w(t+1)
j )

]
, (6)

where theHessianmatrix∇2Q(w(t+1)
j ) is indeedH. If we define,

for each machine k ∈ [K],
Hk = λ1I − 1

m
A�
k Ak, (7)

Qk(w) = 1
2
w�Hkw − w�w(t).

It is easy to see that H = ∑K
k=1Hk/K and Q(w) =∑K

k=1 Qk(w)/K. Therefore, in theNewton’s update (6), comput-
ing the full Hessian matrix ∇2Q(w(t+1)

j ) requires each machine
to communicate a d × d local Hessian matrix Hk to the central
machine. This procedure incurs a lot of communication cost.
Moreover, taking the inverse of thewhole sampleHessianmatrix
H almost solves the original linear system (4). To address
this challenge, we adopt the idea from Shamir, Srebro, and
Zhang (2014), Jordan, Lee, and Yang (2019), and Fan, Guo,
and Wang (2019). In particular, we approximate the Newton’s
iterates by only using the Hessian information on the first
machine, which significantly reduces the communication cost.
This approximated Newton’s update can be written as,

w(t+1)
j+1 = w(t+1)

j −
(
∇2Q1(w(t+1)

j )
)−1 [

∇Q(w(t+1)
j )

]
(8)

= w(t+1)
j − H−1

1

[
1
K

K∑
k=1

(Hkw(t+1)
j − w(t))

]
,

where H1 is the Hessian matrix of the first machine. This pro-
cedure can be computed easily in a distributed manner, that is,
each machine computes local gradient gk = Hkw(t+1)

j − w(t),
and these gradient vectors are communicated to the central
machine for a final update g = ∑K

k=1 gk/K. Therefore, in each
inner iteration, the communication cost for each local nodes is
onlyO(d). See Algorithm 1 for a complete description.

Remark 2.1. In this remark, we explain why we choose the
Newton approach in the inner loop (8), instead of the quasi-
Newton method (the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method) or other gradient methods with line search
(e.g., Barzilai–Borwein gradient method in Wen and Yin
(2013)). Due to the special structure of the PCA problem
in our quadratic programming (5), the Hessian matrix is
fixed and will not change over iterations. In other words, as
shown in Algorithm 1, we compute each local Hessian Hk
for k = 1, . . . ,m (see Equation (7)), and the inverse of the
local Hessian on the first machineH1 only once. Therefore, the
distributed Newton method is computationally more efficient
for the PCA problem. In comparison, BFGS is often used when
the inverse of Hessian matrixH is hard to compute and changes
over iterations, which is not the scenario of our PCA problem.
Moreover, as wewill show later in Section 3, theNewtonmethod
has already achieved a linear convergence rate in the inner
loop (see Lemma 3.2), BFGS cannot be faster than that. In fact,
although BFGSwill eventually achieve a linear convergence rate,
it can be quite slow at the very beginning with a crude Hessian
inverse estimation.

Remark 2.2. In this remark, we compare the computational
and communication costs between our method and the DC ap-
proach. Notice that the communication cost of our Algorithm 1
from each local machine is O(TT′d), where TT′ is the total
number of iterations. By our theoretical results in Section 3
(see Corollary 3.1), for a targeting error rate ε, we only require
T and T′ and to be an logarithmic order of 1/ε (i.e., TT′ =
O(log2(1/ε))). Therefore, the total number of iterations is quite
small. While it is more than O(d) communication cost of the
DC approach, it is still considered as a communication efficient
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Algorithm 2 Distributed top-L-dim principal subspace
Input: The data matrix Ak on each machine k = 1, . . . ,K. The
number of top-eigenvectors L.
1: Initialize V0 = [], Ak,0 = Ak
2: for l = 1, . . . , L do
3: Compute the initial lth eigenvalue estimator λl and eigen-

vector estimator w(0)
l .

4: Call Algorithm 1 with {Ak,l−1}Kk=1 on each local machine
to obtain wl on the central machine.

5: Projectwl toV⊥
l−1 by computing vl = (I−V l−1V�

l−1)wl
‖(I−V l−1V�

l−1)wl‖2 as
the estimated lth eigenvector

6: Update V l = [V l−1, vl]
7: Transmit vl to each local machine.
8: for each local machine k = 1, . . . ,K do
9: Update the data matrix Ak,l = Ak,l−1(I − vlv�

l )

10: end for
11: end for
12: Output: VL.

protocol. In distributed learning literature (e.g., Jordan, Lee, and
Yang 2019), a communication-efficient algorithm usually refers
to an algorithm that only transmits an O(d) vector (instead of
O(d2) Hessian matrices) at each iteration.

When the full data of n samples can be stored in thememory,
the oracle PCA method incurs a computation cost (i.e., run-
time) of O(nd2 + d3), where nd2 is for the computation of the
sample covariance matrix and d3 is for performing the eigen-
decomposition. In the distributed setting with m samples on
each local machine, the DC approach incurs the computation
cost of O(md2 + d3) since it is a one-shot algorithm. In com-
parison, our method incurs theO(md2 + d3 + TT′d2) compu-
tational cost, to achieve the optimal convergence rate. We note
that our method incurs one-time computational of the Hessian
inverse withO(d3) and each iteration only involves the efficient
computation of the gradient (i.e., O(d2)). Therefore, the extra
computational overhead over the DC O(TT′d2) is a smaller
order term in d as compared toO(d3). Moreover, the number of
iterations TT′ is relatively small and thus the extra computation
as compared to the DC is rather limited. In practice, one can
easily combine two approaches. For example, one can initialize
the estimator using the DC method, and further improve its
accuracy using our method.

For the top-L-dim eigenspace estimation, we extend a frame-
work from Allen-Zhu and Li (2016) to our distributed settings.
In our Algorithm 2, we first compute the leading eigenvector
v1 of A�A/n in a distributed manner with Algorithm 1. The
v1 is then transferred back to local machines and used to right-
project data matrix, that is, Ak(Id − v1v�

1 ) for k ∈ [K]. The
next eigenvector v2 is obtained with these projected data ma-
trices and Algorithm 1. In other words, we estimate the top
eigenvector of (Id − v1v�

1 )�̂(Id − v1v�
1 ) in distributed settings.

This procedure is repeated L times until we obtain all the L top
eigenvectorsVL = [v1, . . . , vL]. This deflation technique is quite
straight-forward and performs well in our later convergence
analysis.

Remark 2.3. Our article, and also the earlier works (Allen-Zhu
and Li 2016; Fan et al. 2019) all assume data vectors are centered,
that is, zero-mean data vectors E[a] = 0. When the data is
noncentered, we could adopt a two stage estimator, where the
first stage centralizes the data in a distributed fashion and second
stage applies our distributed PCA algorithm. In particular, each
local machine k first computes the mean of local samples, that
is, āk = 1

mk

∑
i∈Dk

ai, where Dk denotes the sample indices on
the k-local machine and mk = |Dk|. Then each local machine
transmits (ak,mk) to the center. The center computes their
average ā =

∑K
k=1 mkāk∑K
k=1 mk

, which will be transmitted back to each
local machine to center the data (i.e., each sample ai will be
ai − ā). Given the centralized data, we can directly apply our
distributed PCA algorithm. This centralization step only incurs
one extra round of communication and each local machine
only transmits an O(d) vector to the center (which is the same
amount of communication as in our algorithm that transmits
the gradient).

3. Theoretical Properties

This section exhibits the theoretical results for our setups in
Section 2. The technical proofs will be relegated to the supple-
mentary materials (see Appendix A).

3.1. Distributed Top Eigenvector Estimation

We first investigate the theoretical properties of the top eigen-
vector estimation in Algorithm 1. Let �̂k = A�

k Ak/m ∈ R
d×d

denote the local sample covariance matrix on machine k ∈ [K],
and �̂ = K−1 ∑K

k=1 �̂k the global sample covariance matrix
using all data. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d ≥ 0 and û1, û2, . . . , ûd
denote the sorted eigenvalues and associated eigenvectors of �̂.
We are interested in quantifying the quality of some estimator
w(t). More specifically, we will reserve the letter δ to denote the
relative eigenvalue gap threshold, andwillmeasure the closeness
between w(t) and the top eigenvector û1 via proving∑

l: λ̂l≤(1−δ) λ̂1

|〈̂ul,w(t)〉|2 ≤ ε2

δ2
, (9)

for error ε > 0 and any constant δ ∈ (0, 1). In particular, the
result (9) is always stronger (modulo constants) than the usual
bound

θ̂ (t) := arccos |〈̂u1,w(t)〉| ≤ C ε
λ̂1

λ̂1 − λ̂2
, (10)

that involves the relative gap between the first two eigenvalues
of �̂. Here C is a constant. To see this, we can simply choose
δ = (̂λ1 − λ̂2)/̂λ1 in Equation (9). Then sin2 θ̂ (t) = 1 −
|〈̂u1,w(t)〉|2 = ∑

l: λ̂l≤(1−δ) λ̂1
|〈̂ul,w(t)〉|2 ≤ ε2/δ2, implying

θ̂ (t) ≤ arcsin(ε/δ) ≤ C ε λ̂1/(̂λ1 − λ̂2) for some universal
constant C > 0. Moreover, it has to be assumed that λ̂1 >

λ̂2 in the usual bound (10), which may not be held in some
applications.

From our enlarged eigenspace viewpoint, the result in Equa-
tion (9) indicates that the top eigenvector estimator w(t) is
almost covered by the span of {̂ul : λ̂l > (1 − δ) λ̂1}.
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As we will show in the theoretical analysis later, the success
of our algorithm relies on the initial values of both eigenvalue
and eigenvector. We first clarify our choice of initial eigenvalue
estimates.

For the top eigenvector estimation in Algorithm 1, since we
have the following high probability bound (see Equation (A.2) in
LemmaA.2 in the supplementary appendix for the justification),∣∣∣∣∣∣�̂ − �̂1

∣∣∣∣∣∣
2 ≤ η/2 for some constant η > 0. If we choose

λ
(0)
1 = λ1(�̂1) + 3η/2, then it is guaranteed that, 2η ≥ λ

(0)
1 −

λ̂1 ≥ η. Lemma A.2 (Equation (A.3) in the supplementary
materials) also provides a concentration bound on our initial
value of eigenvectors,

∑
l: λ̂l≤(1−δ) λ̂1

∣∣〈̂ul,w(0)〉∣∣2 ≤ 3/4 with
high probability. Here {̂ul : λ̂l ≤ (1 − δ) λ̂1} are all the
eigenvectors for the full sample covariance matrix �̂ whose
associated eigenvalues have a relative gap δ from the largest
eigenvalue λ̂1 and w(0) is the top eigenvector for the sample
covariance matrix on the first machine.

Given our initial estimators λ(0)
1 andw(0), we have the follow-

ing convergence guarantee for our Algorithm 1. With the above
guarantees of initial estimator λ1 andw(0), our first lemma char-
acterizes the convergence rate of the outer loop in Algorithm 1.

Lemma 3.1. Suppose the initial estimator λ1 satisfies

η ≤ λ1 − λ̂1 ≤ 2η for some η > 0. (11)

For any w ∈ R
d, and v ∈ R

d that satisfies

‖w‖2 = 1,
∑

l: λ̂l≤(1−δ) λ̂1

∣∣〈̂ul,w〉∣∣2 ≤ 3
4
, (12)

and

‖v − H−1w‖2 ≤ ε ≤ (8η)−1, (13)

and for each index l = 1, . . . such that λ̂l ≤ (1 − δ) λ̂1, we have
|〈̂ul, v〉|
‖v‖2 ≤ 8η

δ̂λ1

|〈̂ul,w〉|
‖w‖2 + 8ηε. (14)

Moreover, we have∑
l: λ̂l≤(1−δ) λ̂1

|〈̂ul, v〉|2
‖v‖22

≤ 128η2

δ2̂λ21

∑
l: λ̂l≤(1−δ) λ̂1

|〈̂ul,w〉|2
‖w‖22

+ 128η2ε2. (15)

For the outer loop in our Algorithm 1, w and v/‖v‖2 in
Lemma 3.1 can be explained as the tth round and (t+1)th round
estimatorsw(t) andw(t+1), respectively. This lemma implies that
up to a numerical tolerance ε for invertingH (Condition (13)),
each application of the outer loop reduces the magnitude of the
projection ofw(t) onto ûl by a factor ofO

(
(δ̂λ1)

−1η
) � 1 given

η � 1 (if we have a good initial estimator of λ̂1 and δ̂λ1 =
�(1)). Notice that if w(t) satisfies condition (12), our Equa-
tion (15) claims thatw(t+1) = v/‖v‖2 satisfies Condition (12) as
well. This condition is justified if w(0) satisfies Condition (12),
which is a conclusion from Lemma A.2 in the supplementary
appendix.

Our second lemma characterizes the convergence rate of
distributively solving the linear system Hw = w(t) in the inner
loop of Algorithm 1. Recall that in Equation (4), w̃(t+1) =
H−1w(t) denote the exact solution of this linear system.

Lemma 3.2. Suppose the initial estimator λ1 satisfies

λ1 − λ̂1 ≥ η ≥ 1
2

∣∣∣∣∣∣�̂ − �̂1
∣∣∣∣∣∣
2 .

Then for each j = 0, 1, . . . , (T′ − 1), we have

‖wt+1
j+1 − w̃(t+1)‖2 ≤ 2

∣∣∣∣∣∣�̂ − �̂1
∣∣∣∣∣∣
2

η
‖wt+1

j − w̃(t+1)‖2. (16)

Here
∣∣∣∣∣∣�̂ − �̂1

∣∣∣∣∣∣
2 on the RHS of (16) is due to the

approximation using the Hessian matrix H1 on the first
machine in place of original Hessian matrix H. As we will
show later, by standard matrix concentration inequalities, we
have

∣∣∣∣∣∣�̂ − �̂1
∣∣∣∣∣∣
2 = O

(√
d/m

)
with high probability. As a

consequence, the inner loop of Algorithm 1 has a contraction
rate of order O(η−1√d/m), which is inversely proportional to
the gap λ1 − λ̂1 (due to the condition number of the Hessian
H).

Combining these two lemmas, we come to our first main
theoretical result for the convergence rate of Algorithm 1.

Theorem 3.1. Let κ := ∣∣∣∣∣∣�̂ − �̂1
∣∣∣∣∣∣
2 = OP(

√
d/m). Assume

2η ≥ λ1 − λ̂1 ≥ η ≥ 1
2

κ ,

and the initial eigenvector estimator w(0) satisfies∑
l: λ̂l≤(1−δ) λ̂1

∣∣∣〈̂ul,w(0)〉
∣∣∣2 ≤ 3

4
.

Then for each T and T′ as the outer and inner iterations in
Algorithm 1, respectively, and the relative eigenvalue gap δ ∈
(0, 1), we have

∑
l: λ̂l≤(1−δ) λ̂1

|〈̂ul,w(t)〉|2 ≤
(128η2

δ2̂λ21

)T
+ 512 η

1 − 128η2/(δ̂λ1)2
(4κ2

η2

)T′
.

(17)

We can further simplify Equation (17) by choosing proper η

and T′.

Corollary 3.1. In particular, if η ≤ δ̂λ1/16, and we choose T′ =
T, and η = (

κδ̂λ1
)1/2

/3 = OP(
4
√
d/m), then the final output

w(T) satisfies ∑
l: λ̂l≤(1−δ) λ̂1

|〈̂ul,w(T)〉|2 ≤ 257
( 6κ

δ̂λ1

)2T
. (18)

As indicated in (18), when 6κ/δ̂λ1 � 1, our Algorithm 1 en-
joys a linear convergence rate. Moreover, to ensure this conver-
gence, when the absolute eigengap δ̂λ1 is small, κ = OP(

√
d/m)

needs to be smaller, that is, κ = o(δ̂λ1) Recall that κ :=∣∣∣∣∣∣�̂ − �̂1
∣∣∣∣∣∣
2, which is defined in Theorem 3.1. This indicates

that more samples are needed on each local machine.
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Remark 3.1. Under the setting without an explicit eigengap, our
goal is not to construct a good estimator of the top eigenvector.
Instead, we aim to construct an estimator that captures a similar
amount of variability in the sample data as the top eigenvector.
Recall that by Theorem 3.1, we construct an estimator w such
that

∑
l: λ̂l≤(1−δ) λ̂1

|〈̂ul,w〉|2 ≤ ε for some error term ε > 0. We
can see that,

w��̂w > (1 − δ) (1 − ε) λ̂1. (19)

This fact can be easily derived as follows (see also the proof of
Theorem 3.1 in Allen-Zhu and Li (2016)),

w��̂w =
d∑

i=1
λ̂i(w�ûi)2 ≥

∑
l: λ̂l>(1−δ) λ̂1

λ̂l(w�ûl)2 ≥ (1 − δ)̂λ1

×
∑

l: λ̂l>(1−δ) λ̂1

(w�ûl)2

≥ (1 − δ) (1 − ε) λ̂1.

According to (19), our estimator w captures almost the same
amount of variability of the sampled data (up to a (1− δ)(1− ε)

multiplicative factor). This type of results are also known as the
gap-free bound in some optimization literature (see e.g., Allen-
Zhu and Li 2016).

When the eigengap is extremely small, identifying the top
eigenvector is an information-theoretically difficult problem.
As an extreme case, when the gap is zero, it is impossible to
distinguish between the top and the second eigenvectors. In
contrast, our setting is favorable in practice since the main goal
of PCA/dimension reduction is to capture the variability of the
data.

Moreover, we note that the parameter δ is a prespecified
parameter that measures the proportion of the variability ex-
plain by the estimator w. For example, when setting δ = ε,
the estimator w will capture at least (1 − 2ε) of the variability
captured by the top eigenvector according to (19). We can also
choose δ = c0/̂λ1 for some constant c0 so that δ̂λ1 = �(1).

3.2. Distributed Top-L-Dim Principal Subspace Estimation

With the theoretical results for the top eigenvector estimation in
place, we further present convergence analysis on the top-L-dim
eigenspace estimation in Algorithm 2.

Let ̂U≤(1−δ)̂λL
= [̂uS+1, . . . , ûd] denote the column orthogo-

nal matrix composed of all eigenvectors of �̂ whose associated
eigenvalues have a relative gap δ from the Lth largest eigenvalue
λ̂L, that is, S := argmax{l : λ̂l > (1 − δ) λ̂L}. We also
denote ̂U>(1−δ)̂λL

= [̂u1, . . . , ûS] to be the enlarged eigenspace
corresponding to the eigenvalues larger than (1 − δ)̂λL.

We also use the notation �̂
(l) = (I − V l−1V�

l−1)�̂(I −
V l−1V�

l−1) for l = 0, 1, . . . , L−1.HereV l = [v1, . . . , vl] consists
of all the top-l eigenvector estimations and V0 = 0. Notice that
�̂

(l) is just the matrixA(l)A(l)/nwhere A(l) := [A�
1,l, . . . ,A

�
K,l]�

and AT
k,l is the projected data matrix on machine k (k ∈ [K]) for

the lth eigenvector estimation.
We first provide our choices of initial eigenvalue estimates.

For Algorithm 2 for the top-L-dim principal, let �̂
(l)
k =

A�
k,lAk,l/m and �̂

(l) = K−1 ∑K
k=1 �̂

(l)
k denote the local and

global projected sample covariance matrices at the outer
iteration l. For the same constant η defined above in (11), we
choose λl = λ1(�̂

(l)
1 ) + 3η/2 for l ∈ [L]. This follows from∣∣∣∣∣∣∣∣∣�̂(l) − �̂

(l)
1

∣∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣∣(I − V lV�

l )(�̂ − �̂1)(I − V lV�
l )

∣∣∣∣∣∣∣∣∣
2

≤ ∣∣∣∣∣∣�̂ − �̂1
∣∣∣∣∣∣
2 ≤ η

2
,

which implies that,

2η ≥ λl − λ1(�̂
(l)

) ≥ η.

Our main result is summarized as follows.

Theorem 3.2. Let κ = ∣∣∣∣∣∣�̂ − �̂1
∣∣∣∣∣∣
2 = OP(

√
d/m). Assume

2η ≥ λl − λ1(�̂
(l)

) ≥ η ≥ 1
2

κ ,

for each l ∈ [L], where λ1(�̂
(l)

) denotes the largest eigen value
of �̂(l). Then we have∣∣∣∣∣∣∣∣∣̂U�

≤(1−δ)̂λLVL

∣∣∣∣∣∣∣∣∣2
2

≤ 64̂λ1L2

λ̂Lδ

√(128η2
δ2̂λ2L

)T + 512 η

1 − 128η2/(δ̂λL)2
(4κ2

η2

)T′
.

(20)

By choosing specific settings of some parameters, the result
in Theorem 3.2 can be simplified as shown in the following
corollary.

Corollary 3.2. Similarly, if η ≤ δ̂λ1/16, and we choose T′ = T,
and η = (

κδ̂λ1
)1/2

/3 = OP(
4
√
d/m), then our estimator VL

satisfies ∣∣∣∣∣∣∣∣∣̂U�
≤(1−δ)̂λLVL

∣∣∣∣∣∣∣∣∣2
2

= O
(

λ̂1L2

λ̂Lδ

( 6κ
δ̂λL

)T)
.

Here we could also interpret our results in Theorem 3.2 from
an “angle” point of view corresponding to the classical sin�

result. Since there is no eigengap assumption, it is impossible
to directly estimate UL. Therefore, we choose a parameter δ,
and consider an enlarged eigenspace U>(1−δ)̂λL

. Our theoretical
results (see Theorem 3.2 and Corollary 3.2) imply that the
“angle” between our estimator VL and ̂U≤(1−δ)̂λL

is sufficiently
small. This result extends the classical sin� result.

Similar to the top-eigenvector case in Remark 3.1, our esti-
mator VL can also capture a similar amount of variability in the
sampled data to ̂UL := {̂u1, . . . , ûL}. We further describe this
property in the following Corollary 3.3.

Corollary 3.3. Assume our estimator VL from Algorithm 2
satisfies

∣∣∣∣∣∣∣∣∣̂U�
≤(1−δ)̂λLVL

∣∣∣∣∣∣∣∣∣
2

≤ δ

16̂λ1/̂λL+1
, then we have,

λ̂L+1 ≤
∣∣∣∣∣∣∣∣∣(Id − VLV�

L

)
�̂

(
Id − VLV�

L

)∣∣∣∣∣∣∣∣∣
2

≤ λ̂L+1
1 − δ

, (21)

(1 − δ)̂λl ≤ v�
l �̂vl ≤ 1

1 − δ
λ̂l, ∀l ∈ [L]. (22)
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Now we further extend the result in Corollary 3.2 to quan-
tify the “angle” between our estimator VL and the population
eigenspace U≤(1−2δ)λL .

Corollary 3.4. Assume our estimator VL from Algorithm 2
satisfies

∣∣∣∣∣∣∣∣∣̂U�
≤(1−δ)̂λLVL

∣∣∣∣∣∣∣∣∣
2

≤ ε for some error term ε > 0, then
we have,∣∣∣∣∣∣∣∣∣U�

≤(1−2δ)λLVL

∣∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣� − �̂

∣∣∣∣∣∣
2

(1 − δ)(̂λL − λL) + δλL
+ ε, (23)

where U≤(1−2δ)λL is the eigenvectors of the population covari-
ance matrix � corresponding to eigenvalues less than or equal
to (1 − 2δ)λL.

We further provide a different “angle” result on quantifying
the complement of an enlarged space ofVL. Recall our definition
S := argmax{l : λ̂l > (1 − δL) λ̂L}. We can classify
û1, . . . , ûd and correspondingly our estimators v1, . . . , vd from
Algorithm 2 into three regimes:

̂US︷ ︸︸ ︷
û1, . . . , ûL︸ ︷︷ ︸

̂UL

, ûL+1, . . . , ûS, ûS+1, . . . , ûd︸ ︷︷ ︸
̂U≤(1−δ)̂λL

, (24)

VS︷ ︸︸ ︷
v1, . . . , vL︸ ︷︷ ︸

VL

, vL+1, . . . , vS, vS+1, . . . , vd︸ ︷︷ ︸
V≤(1−δ)̂λL

.

Corollary 3.2 shows that the “angle” between our estimator
VL and ̂U≤(1−δ)̂λL

is sufficiently small. Similarly, we can show
the counterpart of this result, which indicates that the “angle”
between ̂UL and V≤(1−δ)̂λL

is also very small. This result will be
useful in our principal component regression example. To intro-
duce our result, we denote λ̂S to be the Sth largest eigenvalue of
�̂.

Theorem 3.3. By running Algorithm 2 for obtaining the dis-
tributed top-S-dim principal subspace estimator VS, if there
exists δS < δ such that

∣∣∣∣∣∣∣∣∣̂U�
≤(1−δS )̂λSVS

∣∣∣∣∣∣∣∣∣
2

≤ δS
16̂λ1/̂λS+1

, then we

have for the empirical eigenspace ̂UL∣∣∣∣∣∣∣∣∣̂U�
L V≤(1−δ)̂λL

∣∣∣∣∣∣∣∣∣
2

≤ S
δŜλ1

λ̂L(1 − δS) − λ̂S
. (25)

Furthermore, for the population eigenspace UL, we can derive
that ∣∣∣∣∣∣∣∣∣U�

L V≤(1−2δ)̂λL

∣∣∣∣∣∣∣∣∣
2

≤ S
δŜλ1

λ̂L(1 − δS) − λ̂S

+
∣∣∣∣∣∣� − �̂

∣∣∣∣∣∣
2

(1 − δ)(̂λL − λL) + δλL
. (26)

The reason why we impose the upper bound on∣∣∣∣∣∣∣∣∣̂U�
≤(1−δS )̂λSVS

∣∣∣∣∣∣∣∣∣
2
ismainly to obtain the result in Equation (21)

forVS.We also note that this upper bound can be easily satisfied
as long as we run Algorithm 2 for sufficiently large number of
iterations.

Let us recall the classical Davis-Kahan result for PCA in
Equation (2). As we explained in the introduction, without an
eigengap condition, the estimation error can be arbitrarily large.
However, our enlarged eigenspace estimator VS in (24) (i.e.,
V>(1−δ)̂λL

) will almost contain the top-L-dim eigenspace of the
population covariance matrix. In particular, by Equation (26)
and LemmaA.1 in the supplementary appendix, we have shown
that there exists a matrix Q satisfying |||Q|||2 ≤ 1 such that the
error bound

∣∣∣∣∣∣∣∣∣UL − V>(1−2δ)̂λLQ
∣∣∣∣∣∣∣∣∣
2
is sufficiently small.

Our enlarged eigenspace results find important applications
to many statistical problems. In particular, in Appendix B in
the supplementary materials, we illustrate how the theoretical
results can be applied to the principal component regression
(Example 1) and the single index model (Example 2). We also
provide simulation studies of these two applications in Ap-
pendix D in the supplementary materials.

Remark 3.2. It is also worthwhile to note that we assume the
data are evenly split only for the ease of discussions. In fact, the
local sample size m in our theoretical results is the sample size
on the firstmachine (or any othermachine that used to compute
the estimation of Hessian H) in Algorithms 1 and 2. As long as
the sample size m on the first machine is specified, our method
does not depend on the partition of the entire dataset.

4. Numerical Study

In this section, we provide simulation experiments to illustrate
the empirical performance of our distributed PCA algorithm.

Our data follows a normal distribution, E[a] = 0 and the
population covariance matrix E[aa�] = � is generated as
follows:

� = U�UT ,

where U is an orthogonal matrix generated randomly and � is
a diagonal matrix. Since our experiments mainly estimate the
top-3 eigenvectors, � has the following form,

� = diag (1 + 3δ, 1 + 2δ, 1 + δ, 1, . . . , 1) . (27)

For example, when the relative eigengap δ is 1,� = diag(4, 3, 2,
1, . . . , 1).

For orthogonal matrix U = [uij] ∈ R
d×d, we first generate

all elements uij, i, j = 1, . . . , d such that they are iid standard
normal variables. We then use Gram–Schmidt process to or-
thonormalize the matrix and obtain the U .

We will compare our estimator with the following two esti-
mators:

1. Oracle estimator: the PCA estimator is computed in the
single-machine settingwith pooled data, that is, we gather all the
sampled data and compute the top eigenspace of �̂ = 1

nAA
�,

where A ∈ R
n×d i the data matrix.

2. DC estimator (Algorithm 1 in Fan et al. (2019)): it first
computes the top-L-dim eigenspace estimation ̂U(k)

L , k =
1, . . . ,K on each machine, and merges every local result
together with �̃ = 1

K
∑K

k=1 ̂U(k)
L ̂U(k)�

L . The final estimator
is given by the eigenvalue decomposition of �̃.
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Note that all the reported estimation errors are computed
based on the average of 100 Monte Carlo simulations. Since
the standard deviations of Monte Carlo estimators for all the
methods are similar and sufficiently small, we omit standard
deviation terms in the following figures and only report the
average errors for better visualization. As shown in the follow-
ing subsections, our distributed algorithm gets to a very close
performance with the oracle one when the number of outer
iterations T is large enough and outperforms its divide-and-
conquer counterpart.

For distributed PCA, we adopt the following error measure-
ments from the bound (17) and bound (20) with population
eigenvectors replacing the oracle estimator. To be more specific,
for the top eigenvector case, with the estimator û1, population
eigenvectors u1, . . . , ud, population eigenvalues λ1, . . . , λd and
relative eigenvalue gap δ ∈ (0, 1), the error measurement is
defined as

error(̂u1) =
∑

l:λl≤(1−δ)λ1

∣∣〈ul, û1〉∣∣2 . (28)

As for the top-L-dim eigenspace estimation, let ˜U =
[ulδ , . . . , ud] be the column orthogonal matrix composed of
all eigenvectors of population covariance � whose associated
eigenvalues have a relative gap δ from the Lth largest eigenvalue
λL. That is, lδ := argmin{l : λ̂l ≤ (1 − δ) λ̂L}. Recall that ̂UL
is the estimator the top-L eigenvectors. Then the corresponding
error should be

error(̂UL) =
∣∣∣∣∣∣∣∣∣˜U�

̂UL

∣∣∣∣∣∣∣∣∣2
2
. (29)

4.1. Varying the Number of Outer Iterations

In this section, we present tests on how the performance of our
distributed PCA changes with the number of outer iterations T
in Algorithm 1. Consider data dimension d to be 50, sample size
on each machine to be 500, and the number of machines to be
200, that is, a ∈ R

50,m = 500 and K = 200.
We will report the logarithmic error. As shown in Theo-

rem 3.1, the logarithmic error follows an approximately linear
decrease with respect to the number of outer iterations. A linear
relationship between the number of outer iterations and loga-
rithmic error verifies our theoretical findings.

We now check the performance of these three approaches
(oracle one, our method and DC method) under the setting of
a small eigengap. Specifically, we let eigengap δ to be 1.0 and
2.0. Our data are drawn independently, and ai ∼ N (0,�) for
i = 1, . . . ,mK. We vary the number of outer iterations T to
evaluate the performance.

As we fix the total sample size n = 105, the errors of oracle
estimator and DC estimator should be constants (illustrated
by two horizontal dash lines in the graphs since they are not
iterative algorithms). As shown below in Figures 1 and 2, our
method converges to the oracle estimator in around 20 iterations
and outperforms the DC method. Moreover, as expected, we
observe an approximately linear relation between logarithmic
error and the number of outer iterations. We also observe that,
empirically, setting the number of inner iterations T′ = 5 in
Algorithm 1 is good enough for most cases.

Figure 1. Comparison between algorithms when the number of outer iterations varies. The x-axis is the number of outer iterations and the y-axis is the logarithmic error.
The blue line is our error, the red line is the DC method performance and the yellow one is logarithmic error for the oracle estimator. (a)–(c) The experiments with 5 inner
loops. (d)–(f ) The experiments with 10 inner loops. Eigengap δ is fixed to be 1.0.
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Figure 2. Comparison between algorithms when the number of outer iterations varies, under the same setting as in Figure 1. (a)–(c) The experiments with 5 inner loops.
(d)–(f ) The experiments with 10 inner loops. Eigengap δ is fixed to be 2.0.

Figure 3. Comparison between algorithms when the eigengap varies. The x-axis is the reciprocal of eigengap and the y-axis is the logarithmic error.

4.2. Varying the Eigengap

In the convergence analysis of both our distributed algorithm
and DC method, eigengap plays a central role in the error
bound. When the eigengap between λL and λL+1 becomes
smaller, the estimation task turns to be harder and more rounds
are needed for the same error. Theorem 4 in Fan et al. (2019)
also shows a similar conclusion. In this part, we continue
our experiment in Section 4.1, and examine the relationship
between estimation error and eigengap.

We fix the number of inner iterations to be 10, and the
number of outer iterations to be 40, which, from Section 4.1,
is large enough for top-3-dim eigenspace. We still consider data
dimension d to be 50, sample size on each machine to be 500,
and the number ofmachines to be 200, that is, a ∈ R

50,m = 500
and K = 200. Under this setting, we vary δ in (27) and the

results is shown in Figure 3. In Figure 3, the logarithmic error
increases with respect to 1/δ, which agrees with our theoretical
findings. Furthermore, our estimator has the same performance
as the oracle one.

4.3. Varying the Number ofMachines for Asymmetric
Innovation Distributions

In this section, we compare our method to the DC method by
varying the number of local machines. As mentioned in Theo-
rem 4 in Fan et al. (2019), DCmethod has a slower convergence
rate (of orderO(ρ

√
Lr/n) + O(ρ2√Lr/m) instead of the opti-

mal rate O(ρ
√
Lr/n)) when the number of machines is greater

than O
(
m/(ρ2r)

)
in the asymmetric innovation distributions

(defined in Section 1.3) setting. Here ρ is the condition number
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Figure 4. Comparison between algorithms when the number of machines varies. The x-axis is the log the number of machines and the y-axis is the logarithmic error.
(a)–(c) The experiments of top-1-dim to top-3-dim eigenvector estimation with skewness 4.0 and (d)–(f ) 6.0.

of the population covariance matrix, that is, ρ = λ1/(λL −
λL+1), and r = Tr(�)/λ1 is the effective rank of �.

We set data dimension d to be 50, local sample size to be 500,
that is, a ∈ R

50,m = 500. We choose eigengap δ to be 0.5, thus
� = diag(2.5, 2, 1.5, 1, . . . , 1). Here, without sticking on our
Gaussian setting, we consider to use skew-distributed random
variables. In particular, we generate a = [a1, . . . , ad]� ∈ R

d

from beta distribution family such that for each ai, i = 1, . . . , d,
we set its mean to be zero, variance to be�ii and skewness to be
4 or 6, respectively.

We set the iteration parameters as in Section 4.2 and the
number of machines is varied from 100 to 51,200. Our results
are shown in Figure 4. As can be seen fromFigure 4, ourmethod
achieves the same statistical convergence rate as the oracle one.
When the number of machines is small, the estimation error of
the DC method also decreases at the same rate as the number
of machines increases. However, the estimation error the of
DC method becomes flat (or decreases at a much slower rate)
when the number of machines is larger than a certain threshold.
In that regime, our approach is still comparable to its oracle
counterpart.

We also conduct simulation studies on principal component
regression and Gaussian single index model cases and compare
our approach with the oracle and the DC ones. Due to the
space limitation, we defer these results to Appendix D in the
supplementary materials.

5. Discussions and FutureWork

In this article, we address the problem of distributed estimation
for principal eigenspace. Our proposed multi-round method
achieves fast convergence rate. Furthermore, we establish an

error bound for our method from an enlarged eigenspace
viewpoint, which can be seen as an extension to the traditional
error bound. The insight behind our work is the combination of
shift-and-invert preconditioning and convex optimization, with
the adaption into distributed environment. This distributed
PCA algorithm refines the divide-and-conquer scheme and
removes the constraint on the number of machines from
previous methods.

One important future direction is to further investigate the
principal eigenspace problem under distributed settings. Specif-
ically, computational approaches and theoretical tools can be
established for other types of PCA problems, such as PCA in
high dimension (see, e.g., Johnstone 2001; Fan and Wang 2017;
Cai and Zhang 2018) and sparse PCA (see, e.g., Johnstone and
Lu 2009; Cai, Ma, and Wu 2013; Vu and Lei 2013).

SupplementaryMaterials

In the supplementary material, we first provide detailed proofs of all our
theoretical results in Section 3. We then study two applications of our dis-
tributed PCA: principal component regression and single index model. We
provide theoretical findings and conduct additional numerical experiments
for these two applications.

Acknowledgments

The authors would like to thank the editor-in-chief, the anonymous asso-
ciated editor, and two anonymous referees for many useful suggestions and
feedback that greatly improve the article.

Funding

Xi Chen is supported by NSF grant IIS-1845444. Jason D. Lee is supported
by NSF grant CCF-2002272. Yun Yang is supported by NSF grant DMS-
1810831.



12 X. CHEN ET AL.

References

Allen-Zhu, Z., and Li, Y. (2016), “LazySVD: Even Faster SVD Decompo-
sition Yet Without Agonizing Pain,” in Proceedings of the Advances in
Neural Information Processing Systems (NIPS). [2,5,7]

Bair, E., Hastie, T., Paul, D., and Tibshirani, R. (2006), “Prediction by
Supervised Principal Components,” Journal of the American Statistical
Association, 101, 119–137. [3]

Banerjee, M., Durot, C., and Sen, B. (2019), “Divide and Conquer in Non-
standard Problems and the Super-Efficiency Phenomenon,” The Annals
of Statistics, 47, 720–757. [1]

Battey, H., Fan, J., Liu, H., Lu, J., and Zhu, Z. (2018), “Distributed Testing
and Estimation Under Sparse High Dimensional Models,” The Annals of
Statistics, 46, 1352. [1]

Bengio, Y., Courville, A., and Vincent, P. (2013), “Representation Learning:
A Review and New Perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35, 1798–1828. [2]

Cai, T. T., Ma, Z., and Wu, Y. (2013), “Sparse PCA: Optimal Rates and
Adaptive Estimation,” The Annals of Statistics, 41, 3074–3110. [11]

Cai, T. T., and Zhang, A. (2018), “Rate-Optimal Perturbation Bounds for
Singular Subspaces With Applications to High-Dimensional Statistics,”
The Annals of Statistics, 46, 60–89. [11]

Chen, X., Liu, W., Mao, X., and Yang, Z. (2020), “Distributed High-
Dimensional Regression Under a Quantile Loss Function,” Journal of
Machine Learning Research, 21, 1–43. [1]

Chen, X., Liu,W., and Zhang, Y. (2021), “First-Order Newton-Type Estima-
tor for Distributed Estimation and Inference,” Journal of the American
Statistical Association, in press, DOI: 10.1080/01621459.2021.1891925.
[1]

Chen, X., Liu, W., and Zhang, Y. (2019), “Quantile Regression Under
Memory Constraint,” The Annals of Statistics, 47, 3244–3273. [1]

Davis, C., and Kahan, W. M. (1970), “The Rotation of Eigenvectors by a
Perturbation. III,” SIAM Journal on Numerical Analysis, 7, 1–46. [2]

Fan, J., Guo, Y., and Wang, K. (2019), “Communication-Efficient Accurate
Statistical Estimation,” arXiv no. 1906.04870. [4]

Fan, J., Wang, D., Wang, K., and Zhu, Z. (2019), “Distributed Estimation of
Principal Eigenspaces,”TheAnnals of Statistics, 47, 3009–3031. [2,5,8,10]

Fan, J., and Wang, W. (2017), “Asymptotics of Empirical Eigen-Structure
for Ultra-High Dimensional Spiked Covariance Model,” The Annals of
Statistics, 45, 1342–1374. [11]

Frank, L. E., and Friedman, J. H. (1993), “A Statistical View of Some
Chemometrics Regression Tools,” Technometrics, 35, 109–135. [3]

Garber, D., and Hazan, E. (2015), “Fast and Simple PCA via Convex
Optimization,” arXiv no. 1509.05647. [2]

Garber, D., Hazan, E., Jin, C., Kakade, S. M., Musco, C., Netrapalli, P.,
and Sidford, A. (2016), “Faster Eigenvector Computation via Shift-and-
Invert Preconditioning,” in Proceedings of the International Conference
on Machine Learning (ICML). [2,3]

Garber, D., Shamir, O., and Srebro, N. (2017), “Communication-Efficient
Algorithms for Distributed Stochastic Principal Component Analysis,”
in Proceedings of the International Conference on Machine Learning
(ICML). [2]

Horowitz, J. L. (2009), Semiparametric and Nonparametric Methods in
Econometrics (Vol. 12), New York: Springer. [3]

Hotelling, H. (1933), “Analysis of a Complex of Statistical Variables Into
Principal Components,” Journal of Educational Psychology, 24, 417–441.
[1]

Hristache, M., Juditsky, A., and Spokoiny, V. (2001), “Direct Estimation of
the Index Coefficient in a Single-Index Model,” The Annals of Statistics,
29, 595–623. [3]

Janzamin, M., Sedghi, H., and Anandkumar, A. (2014), “Score Function
Features for Discriminative Learning: Matrix and Tensor Framework,”
arXiv no. 1412.2863. [3]

Jeffers, J. (1967), “Two Case Studies in the Application of Principal Compo-
nent Analysis,” Journal of the Royal Statistical Society, Series C, 16, 225–
236. [1,3]

Johnson, R., and Zhang, T. (2013), “Accelerating Stochastic Gradient De-
scent Using Predictive Variance Reduction,” in Advances in Neural In-
formation Processing Systems (NIPS). [2]

Johnstone, I. M. (2001), “On the Distribution of the Largest Eigenvalue in
Principal Components Analysis,” The Annals of Statistics, 29, 295–327.
[11]

Johnstone, I. M., and Lu, A. Y. (2009), “On Consistency and Sparsity for
Principal Components Analysis in High Dimensions,” Journal of the
American Statistical Association, 104, 682–693. [11]

Jolliffe, I. T. (1982), “A Note on the Use of Principal Components in
Regression,” Journal of the Royal Statistical Society, Series C, 31, 300–303.
[1,3]

Jordan, M. I., Lee, J. D., and Yang, Y. (2019), “Communication-Efficient
Distributed Statistical Inference,” Journal of the American Statistical
Association, 114, 668–681. [1,4,5]

Lee, J. D., Liu,Q., Sun, Y., andTaylor, J. E. (2017), “Communication-Efficient
Sparse Regression,” Journal of Machine Learning Research, 18, 1–30. [1]

Li, K.-C. (1992), “On Principal Hessian Directions for Data Visualization
and Dimension Reduction: Another Application of Stein’s Lemma,”
Journal of the American Statistical Association, 87, 1025–1039. [2,3]

Pearson, K. (1901), “LIII. On Lines and Planes of Closest Fit to Systems
of Points in Space,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2, 559–572. [1]

Rigollet, P., and Hütter, J.-C. (2015), “High Dimensional Statistics,” Lecture
Notes for Course 18S997. [3]

Shamir, O. (2016), “Fast Stochastic Algorithms for SVD and PCA: Con-
vergence Properties and Convexity,” in Proceedings of the International
Conference on Machine Learning (ICML). [2]

Shamir, O., Srebro, N., and Zhang, T. (2014), “Communication Effi-
cient Distributed Optimization Using an Approximate Newton-Type
Method,” in Proceedings of the International Conference on Machine
Learning (ICML). [4]

Shi, C., Lu, W., and Song, R. (2018), “A Massive Data Framework for M-
EstimatorsWithCubic-Rate,” Journal of American Statistical Association,
113, 1698–1709. [1]

Stein, C. M. (1981), “Estimation of the Mean of a Multivariate Normal
Distribution,” The Annals of Statistics, 9, 1135–1151. [3]

Van Loan, C., and Golub, G. (2012),Matrix Computations (3rd ed.), Balti-
more, MD: Johns Hopkins University Press. [2]

Vershynin, R. (2012), “Introduction to the Non-Asymptotic Analysis of
RandomMatrices,” in Compressed Sensing, pp. 210–268. [3]

Volgushev, S., Chao, S.-K., and Cheng, G. (2019), “Distributed Inference for
Quantile Regression Processes,” The Annals of Statistics, 47, 1634–1662.
[1]

Vu, V. Q., and Lei, J. (2013), “Minimax Sparse Principal Subspace Estima-
tion in High Dimensions,” The Annals of Statistics, 41, 2905–2947. [11]

Wang, X., Yang, Z., Chen, X., and Liu,W. (2019), “Distributed Inference for
Linear Support Vector Machine,” Journal of Machine Learning Research,
20, 1–41. [1]

Wen, Z., and Yin, W. (2013), “A Feasible Method for Optimization With
Orthogonality Constraints,”Mathematical Programming, 142, 397–434.
[4]

Xu, Z. (2018), “Gradient Descent Meets Shift-and-Invert Preconditioning
for Eigenvector Computation,” in Advances in Neural Information Pro-
cessing Systems (NIPS). [2]

Yang, Z., Balasubramanian, K., and Liu, H. (2017), “On Stein’s Identity and
Near-Optimal Estimation in High-Dimensional Index Models,” arXiv
no. 1709.08795. [3]

Yu, Y.,Wang, T., and Samworth, R. J. (2014), “AUseful Variant of the Davis–
Kahan Theorem for Statisticians,” Biometrika, 102, 315–323. [2]

Zhang, Y., Duchi, J., andWainwright, M. (2015), “Divide and Conquer Ker-
nel Ridge Regression: A Distributed AlgorithmWith Minimax Optimal
Rates,” Journal of Machine Learning Research, 16, 3299–3340. [1]

Zhao, T., Cheng, G., and Liu, H. (2016), “A Partially Linear Framework for
Massive Heterogeneous Data,” The Annals of Statistics, 44, 1400–1437.
[1]


	Abstract
	1.  Introduction
	1.1.  Example 1: Principal Component Regression
	1.2.  Example 2: Single Index Model
	1.3.  Notations
	1.4.  Article Organization

	2.  Problem Setups
	3.  Theoretical Properties
	3.1.  Distributed Top Eigenvector Estimation
	3.2.  Distributed Top-L-Dim Principal Subspace Estimation

	4.  Numerical Study
	4.1.  Varying the Number of Outer Iterations
	4.2.  Varying the Eigengap
	4.3.  Varying the Number of Machines for Asymmetric Innovation Distributions

	5.  Discussions and Future Work
	Supplementary Materials
	Acknowledgments
	Funding
	References


